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Abstract

Hydrothermal time (HTT) models describe the time course of seed germination for a popu-
lation of seeds under specific temperature and water potential conditions. The parameters of
the HTT model are usually estimated using either a linear regression, non-linear least squares
estimation or a generalized linear regression model. There are problems with these
approaches, including loss of information, and censoring and lack of independence in the ger-
mination data. Model estimation may require optimization, and this can have a heavy com-
putational burden. Here, we compare non-linear regression with survival and Bayesian
methods, to estimate HTT models for germination of two clover species. All three methods
estimated similar HTT model parameters with similar root mean squared errors. However,
the Bayesian approach allowed (1) efficient estimation of model parameters without the
need for computation-intensive methods and (2) easy comparison of HTT parameters for
the two clover species. HTT models that accounted for a species effect were superior to
those that did not. Inspection of credibility intervals and estimated posterior distributions
for the Bayesian HTT model shows that it is credible that most HTT model parameters
were different for the two clover species, and these differences were consistent with known
biological differences between species in their germination behaviour.

Introduction

Many studies related to seed germination behaviour focus on predictive models such as the
hydrothermal time (HTT) model (Gummerson, 1986; Bradford, 2002; Finch-Savage, 2004;
Watt and Bloomberg, 2012; Mesgaran et al., 2013; Hay et al., 2014; Hardegree et al., 2015).
HTT models describe the time course of seed germination for a population of seeds germi-
nated under specific temperature (T ) and water potential (Ψ) conditions, since these are
the two main factors determining the speed of seed germination and the proportion of the
seed population that completes germination (Gummerson, 1986; Roberts, 1988; Probert,
2000; Bradford, 2002). The germination experiment usually consists of many identical dishes
with n seeds each, which are subject to factorial combinations of constant water potential and
temperature. Germination of seeds in the dishes is monitored at pre-specified time points. The
cumulative proportion of seeds germinated in each dish at each time point is then recorded,
and the cumulative proportion of the population that has completed germination (g(t)) is
modelled in the HTT model as a function of time since sowing (t) and seedbed water potential
and temperature. The parameters of the HTT model are usually estimated using either a linear
regression (e.g. Bradford, 2002) or non-linear least squares estimation (e.g. Watt et al., 2010)
with a suitably transformed response, or using a generalized linear regression model with a
suitable link function (Hay et al., 2014)].

There are, however, several problems with the above approaches. Firstly, while it is explicitly
assumed that the new seeds have germinated exactly at the time of observation, in fact they
must have germinated at any time between the current and the previous time of observation.
Secondly, by analyzing proportions rather than binomial counts, one loses information. For
example, although 1 out of 2 and 1000 out of 2000 both refer to the same proportion of
50%, the uncertainty (i.e. standard error) associated with this estimate is 10 times larger for
the first case. It is therefore important, to include both germination counts and the total num-
ber of seeds involved in a germination experiment. The censoring inherent in the experiment,
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because observation stops at some time and the fate of the
remaining seeds is unknown, is also not accounted for. Finally,
there is always a lag period in a germination experiment after
the seeds are sown, but before germination occurs. It is common
to drop these initial ‘nil’ observations, thus losing further infor-
mation. To solve these problems, several authors have proposed
the use of survival likelihood rather than analysis of cumulative
germination (McNair et al., 2012; Ritz et al., 2013; Hay et al.,
2014; Onofri et al., 2018).

A further problem with modelling such germination experi-
ments is that the observations are not independent and identically
distributed (i.i.d.), but rather correlated within the dish. Onofri
et al. (2014) suggest the use of jackknife resampling to remedy
this. It can be applied within the survival modelling framework
in a way similar to the non-linear modelling framework.
However, jackknife resampling is a non-parametric approach,
which does not require the modeller to state explicitly which para-
meters differ from dish to dish and which stay constant. The two-
stage approach proposed by Jensen et al. (2017) uses a weighted
mixed-effects model on germination curve parameter estimates
to account for that. However, the authors mention that the two-
step analysis has to be carried out separately for each parameter
of interest and may not optimally utilize germination data from
individual germination tests which were not run for long enough
time to characterize the entire germination curve.

Finally, in the case of a non-differentiable g(t), numerical opti-
mization algorithms are required for both the non-linear model
and the survival model, and these do not always work well. For
example, a grid-search based solution is feasible for some pro-
blems (Shayanfar et al., 2019), but for others the computational
burden is too great.

Bayesian inference is becoming more and more popular
among statistical practitioners due to its flexibility, the possibility
of taking into account prior knowledge based on the nature of the
phenomenon under study, prior experimental results or expert
elicitation and, finally, its ability to continuously update the
state of knowledge. As Humplík et al. (2020) say in their recent
paper on the application of Bayesian statistics to germination
modelling, ‘the Bayesian computational method properly handles
uncertainty in time-to-event data and it is capable to reliably
answer questions that are difficult to address by classical meth-
ods’. Here, we set the HTT model within the Bayesian modelling
framework to demonstrate how all the above problems can be
solved in an elegant and computationally efficient way. We also
show how the above framework provides a wealth of inferential
information allowing, among other things, for easy comparison
of HTT parameters among different species and comparison of
HTT models with different assumed frequency distributions for
parameters.

We use experimental germination data for two species of
clover− subterranean (or sub) clover (Trifolium subterraneum L.)
and white clover (Trifolium repens L.), to illustrate the performance
of the above methods. These two species are widely used in agricul-
tural pastures in many temperate regions of the world (Burdon,
1983; Gibson and Cope, 1985; McGuire, 1985; Smetham, 2003;
Frame and Laidlaw, 2005; Teixeira et al., 2015). Sub clover is a win-
ter active annual with ‘compulsory’ germination in autumn,
whereas white clover is a summer active perennial where annual
germination is not compulsory to maintain the population.

We hypothesize that (1) there will be differences in the HTT
model parameters of these two species, which may reflect their
different life histories and ecological niches and (2) the three

different statistical approaches (non-linear least squares, survival
and Bayesian) may differ in their ability to accurately estimate
HTT model parameters and therefore detect differences in the
HTT model parameters between the two species.

Materials and methods

Germination experiment

Sub clover seeds (‘Napier’, DM32Ø45RC) and white clover seeds
(‘Nomad’) (Seed Force Ltd, Christchurch, New Zealand 8441)
were screened carefully to remove empty or broken seeds from
the population. Then 50 seeds were placed on filter papers in
sealed 500-ml snap-top containers and incubated in the dark in
factorial combinations of seedbed temperature (5, 10, 15, 20, 25,
30 and 35°C) and water potential (0, −0.18, −0.37, −0.63 and
−0.95 MPa). There were three replicates for each combination
of temperature and water potential. Full details of seed prepar-
ation and treatment during the experiment are given in
Shayanfar et al. (2019). Seed germination was monitored every
8 h through the first 4 days, then inspected every 24 h for 25
days. Seeds were considered to have completed germination
when a ≥2 mm radicle protrusion occurred, at which point they
were counted, then removed from the container and discarded.

The HTT model

The HTT model is usually expressed as

f (g) = C− uHT/[(T − Tb)t] −Cb(50)
sCb

,

where g is the germination percentile observed at time t, Ψ and T
are the seedbed water potential and temperature, respectively, and
constants are Tb, the base threshold temperature, θHT, the HTT
constant, Ψb(50), the 50th percentile of the seed population’s
base water potential distribution and sCb , the standard deviation
of the Ψb values in the population. Here, f (g) is the inverse cumu-
lative distribution function (cdf). Often, the inverse normal cdf,
i.e. probit is chosen – in this paper, we will refer to such a
model as the Gaussian model – but a wide range of other options,
such as, for example, Weibull and Gamma distributions are pos-
sible (Watt et al., 2010; Mesgaran et al., 2013). Given the data, the
above model can be estimated using the non-linear least squares
regression and jackknife resampling as described in Onofri et al.
(2014).

The basic HTT model predicts faster seed germination rates
with higher temperature treatments, since an increase in T requires
a decrease in t for any specific value of f(g). However, germination
rates typically reach a maximum at optimum temperatures (often
in the range of 15–25°C) before declining to zero at the ceiling tem-
perature for germination. This process is commonly described as
‘thermo-inhibition’ (Horowitz and Taylorson, 1983; Hills and van
Staden, 2003). To account for thermo-inhibition at supra-optimal
temperatures, Rowse and Finch-Savage (2003) proposed a modifi-
cation to the HTT model, where

f (g) = C− uHT/[(T − Tb)t] − [Cb(50)+ k(T − Td)IT.Td ]
sCb

Here, Iz is an indicator function, which equals to one if the sub-
script is true and is zero otherwise, and the criterion is, T > Td.
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Td is the temperature above which thermo-inhibition of seed ger-
mination will occur. Thermo-inhibition is modelled by the term
[Cb(50)+ k(T − Td)IT.Td ] becoming larger at a rate of k for
every degree Celsius of seedbed temperature above Td, so that the
term t must become larger for any specific value of f(g).

Note that the addition of Iz makes the HTT model function
non-differentiable. This in turn may affect the convergence,
speed and general feasibility of the optimization (whether minim-
izing squared errors or maximizing the likelihood), since many
algorithms assume the object function to be smooth, i.e. differen-
tiable (Shor, 1985). In Shayanfar et al. (2019), the optimization
was done as follows:

(i) A grid of Td values was set up.
(ii) The non-linear least squares estimators were found condi-

tional on each value of the grid and the corresponding
sum of squared errors (SSE) was recorded.

(iii) The Td value associated with the smallest SSE and the corre-
sponding non-linear least squares estimators were then
finally chosen.

Note that the above algorithm means that the model needs to
be re-estimated for every possible value of Td. The grid resolution
defines the precision with which Td can be estimated and affects
the precision of other parameters. In this study, we used the
values in the range 15–30°C with 0.1°C steps, resulting in
151 iterations. Using jackknife to obtain standard errors for
the estimates means that the process needs to be repeated
as many times as there are dishes in the experiment (Onofri
et al., 2014). Thus, in our case, the model was re-estimated
93 × 151 = 14,043 times per species.

The survival likelihood

As explained in the introduction, the above HTT model ignores
the actual data generating mechanism i.e. it does not account
for the fact that the new seeds did not sprout at the observation
time, but instead germinated sometime between the current and
the previous observation instances. It also loses some information
by considering proportions only and thus ignoring the number of
seeds in each dish. To more precisely account for the experimental
process, one can make use of the survival modelling framework as
described by Ritz et al. (2013).

Let

g(t) = f −1 C− uHT/[(T − Tb)t] − [Cb(50)+ k(T − Td)IT.Td ]
sCb

( )

describe the cumulative probability of germination at time t. And
assume that the dish with n seeds is observed at time points 0 <
t1 < t2 < ⋅ ⋅ ⋅ < tk < tk+1. Let xj denote the number of new seeds
germinated between tj−1 and tj, where t0 = 0 and tk+1 = +∞, so that

∑k+1

j

xj = n.

The probability of a seed germinating between tj−1 and tj is
g(tj)− g(tj−1), and the observed data can be modelled via

multinomial likelihood as follows:

L(x)/
∏k+1

j=1

(g(tj)− g(t j−1))
xj ,

where g(t0) = g(0) = 0 and g(tk+1) = 1. Note that the last group, the
seeds which have not germinated before the end of the experi-
ment, includes both the seeds which are capable of germinating
later, and the seeds that would never germinate (dead or
dormant).

The corresponding log-likelihood

l(x) =
∑k+1

j=1

xj log (g(tj)− g(t j−1))

can be optimized with respect to the parameters of interest using a
suitable optimization routine, and the jackknife estimates may be
obtained by dropping one dish at a time and re-estimating the
parameters in a manner similar to that described by Onofri
et al. (2014) for the non-linear model. Note, however, that if
the likelihood function is non-differentiable, the possible caveats
regarding the performance of an optimization algorithm men-
tioned in the previous section still apply. Therefore, the following
algorithm was used to find the profile maximum likelihood
estimator:

(i) A grid of Td values was set up.
(ii) The likelihood was maximized conditional on each value of

the grid and recorded.
(iii) The Td value associated with the greatest likelihood and the

corresponding parameter estimates were chosen.

The Bayesian framework for the survival likelihood

Now that we have used the likelihood function to explicitly
describe the data generating mechanism, it is possible to frame
the analysis within the Bayesian paradigm. For that, it is necessary
to specify the prior distribution of the parameters involved. In the
absence of other information, vague conjugate priors are often
used. Accordingly, we have chosen to use the following structure:

uHT � N(0, 10−4)

Tb � N(0, 10−4)

logsCb � N(0, 10−4)

k � N(0, 10−2)

Td � N(20, 0.04)

Note, that, as is customary in Bayesian inference, the second
parameter of the normal distribution here is precision (i.e. the
inverse variance). The priors for k and Td were chosen to be
somewhat more informative due to the nature of these parameters
and their role in the model. The variation between dishes was
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incorporated explicitly into the parameter Ψb(50) via the prior:

[Cb(50)]j � N(mC, tC),

where j is the dish number, and furthermore

mC � N(0, 10−4)

and

tC � Gamma(0.01, 0.01)

The parameters μΨ and τΨ thus reflect the average water potential
and its variability among the dishes.

The Weibull distribution function

To illustrate the model selection, we have also considered a
Weibull germination model:

g(t) = 1− exp −
C− uHT/[(T − Tb)t]−

[Cb(50)− k(T − Td)IT.Td ]
sCb

⎛
⎜⎜⎝

⎞
⎟⎟⎠

h⎡
⎢⎢⎣

⎤
⎥⎥⎦.

This model allows for an asymmetric germination function and
the additional parameter η influences the degree of asymmetry
with η = 3.5 corresponding to an approximately normal distribu-
tion. In the Bayesian framework, to facilitate convergence, the
parameter η was given an informative prior:

h � Gamma(4, 1).

All the analyses have been done in R (R Core Team, 2018). The
non-linear model was estimated using the nls function and the
survival likelihood was estimated using the optim function.
Jackknife resampling was used to obtain estimator uncertainty
for these models. To estimate the parameters of the Bayesian
models, a Markov Chain Monte Carlo algorithm was written
and implemented in R. For the Gaussian model, 200,000 itera-
tions were run with 100,000 burn-in, and for the Weibull
model, 1,000,000 iterations were run with 500,000 burn-in. The
convergence was checked visually using trace and posterior dens-
ity plots. A regularly thinned posterior sample of size 1000 was
used for the inference. The posterior distribution has been sum-
marized using mean, standard deviation, median and 95% cred-
ible intervals.

The Bayesian model comparison has been done via the devi-
ance information criterion (DIC) (Spiegelhalter et al., 2014).
The smaller DIC corresponds to a statistically better model, and
a difference of at least 3 is considered statistically relevant.

Results

Observed germination behaviour

Under optimum seedbed water potential (0 MPa), the maximum
cumulative germination percentages for sub clover were 98%
(achieved over all temperatures from 5 to 35°C) and for white clo-
ver 94% (at T = 20°C). Germination time courses (percentage of
seeds with completed germination, plotted versus time from the
sowing of seeds) are shown for both sub clover and white clover

in Fig. 1. Sub clover maintained high maximum cumulative
germination percentages over the full range of temperatures
(5–35°C) under optimum seedbed water potential. This is
unusual, as most species decline in maximum cumulative germin-
ation percentages at temperatures approaching minimum and
ceiling temperature for germination. The maximum cumulative
germination percentage of sub clover was also quite resilient to
changes in water potential and only began to significantly decline
when seedbed water potential was −0.63 MPa or less. In contrast,
white clover maximum cumulative germination percentages
declined markedly above 25°C even when water potential was
0 MPa and declined to <20% when water potential was −0.63
or −0.95 MPa, even at optimum temperatures (Fig. 1).

Under optimum conditions of temperature and water poten-
tial, both species achieved rapid germination, but white clover
germination rate declined rapidly for temperatures above and
below optimum temperature, and as water potentials decreased
progressively down to −0.95 MPa (Fig. 1). In contrast again, the
germination rate for sub clover was more rapid and more resilient
to varying temperatures and water potential conditions than for
white clover.

HTT model of germination

The HTT models provided reasonably accurate descriptions of in
vitro germination behaviour of both sub and white clover (Fig. 1),
although model fit was less accurate for germination under
extreme conditions. The parameter estimates assuming Gaussian
and Weibull distribution for the base water potential are shown
in Tables 1 and 2, respectively. For the nls model, the estimators
are based on non-linear least squares and for the survival model,
the parameter estimates are based on maximum likelihood. The
standard errors for these two methods are based on jackknife
resampling. For the Bayesian model, posterior means and stand-
ard deviations are reported. It should be noted that the parameter
estimates are similar between the models. Table 3 shows that the
root mean squared errors (RMSEs) for the models are similar as
well, with the nls performing the best. However, it should be
remembered that the RMSEs are based on comparing predicted
values at observation times to the values observed without taking
into account the censoring and the interval nature of observation.
The lower RMSE for the nls may simply reflect the fact that the
nls does not take these factors into account.

For the Bayesian framework, in order to decide whether
Gaussian distribution is more appropriate than the Weibull distri-
bution, we have used DIC to compare the models. For the white
clover, the DICs for the Gaussian and Weibull distributions were
12071.62 and 12,270.43, respectively, indicating a very strong
preference for the Gaussian (ΔDIC = 198.81). For the sub clover,
the DICs for the Gaussian and Weibull distributions were
16,836.21 and 16,726.35, respectively, indicating a very strong
preference for the Weibull distribution model (ΔDIC = 109.86).

To perform a comparison between the species within the
Bayesian framework, DIC can be used to compare the model fit-
ted with the same set of parameters for both species to the model
fitted with species-specific parameters. For the Gaussian case, the
corresponding values of DIC are 28,944.4 and 28,907.8, respect-
ively, indicating that the species-specific model is more accurate
(ΔDIC = 36.57). The plots of posterior distribution densities
for the individual HTT parameters are shown in Fig. 2. The
two species differed markedly in terms of Tb, μΨ, and Td, but
not in terms of other parameters. For the Weibull model (not
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Fig. 1. Germination time courses of white clover (WC)
seeds and sub clover (SC) for all temperature treat-
ments, at water potentials = 0, −0.37 and −0.63 MPa.
The black symbols are observed data, the red lines
are the time courses predicted by the Bayesian
Gaussian (for WC) and Weibull (for SC) HTT model
and the shaded areas show the 95% credible envel-
opes on the HTT model predictions. For each germin-
ation time course graph, the y-axis (Germination %)
encompasses the range 0–100%. HTT models are
not plotted for treatments where no germination
occurred.

Table 1. The estimators (non-linear least squares, maximum likelihood estimators and posterior means for the nls, survival and Bayesian models respectively) and
the associated standard errors ( jackknife for nls and survival models and posterior standard deviation for the Bayesian model respectively) for white clover (WC)
and subterranean clover (SC) assuming the Gaussian distribution for base water potential

θHT Tb Ψb50 σΨb k Td

Gaussian nls model WC Mean 9.68 3.43 −0.45 0.23 0.026 16.30

SD 1.12 0.19 0.04 0.02 0.005 2.10

SC Mean 10.59 2.13 −0.73 0.22 0.028 25.71

SD 0.58 0.23 0.03 0.01 0.008 1.95

Gaussian Survival model WC Mean 9.83 2.90 −0.40 0.24 0.025 18.14

SD 0.80 0.26 0.03 0.02 0.005 3.17

SC Mean 10.78 1.99 −0.71 0.24 0.029 27.00

SD 0.50 0.11 0.02 0.01 0.007 1.59

Gaussian Bayesian model WC Mean 10.03 2.43 −0.37 0.22 0.026 19.17

SD 0.54 0.14 0.02 0.01 0.004 1.36

SC Mean 10.25 1.70 −0.67 0.21 0.034 27.40

SD 0.39 0.13 0.02 0.01 0.032 2.22
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shown), there was also a clear difference in terms of the σΨb par-
ameter. In addition, the posterior means for the skewness par-
ameter (η) were 2.85 and 2.15 for the white clover and the sub
clover, respectively, with the corresponding 95% CI of (2.57,
3.15) and (2.01,2.31), respectively, demonstrating a clear differ-
ence between the species.

The posterior estimates for the dish-specific random effects
[Ψb(50)]j based on the Gaussian model are shown in Fig. 3.
The between-dish variation (inverse precision) was on average
slightly higher for the white clover than for the sub clover. For
the white clover, the posterior mean estimated precision was
101.1 (95% CI: 66.4, 143.9), whereas for the sub clover, the pos-
terior mean estimated precision was 102.6 (95% CI 69.4, 147.0).
However, as the high degree of overlap between the 95% credible
intervals implies, the difference is not substantial.

Discussion and conclusion

We have applied a Bayesian modelling framework to the problem
of estimating the parameters of the HTT model and compared the
process and the results with some of the previously reported
approaches (nls and the survival model). We have found no dif-
ferences in fit accuracy (which is somewhat expected given that
the same model is fitted to the same data), but we have found
the Bayesian approach computationally faster, especially when
applied to the case of the non-differentiable HTT model.

In general, the Bayesian framework is often preferred when
dealing with complex multi-parameter models drawing on data
from multiple experiments. There are many reasons for this: the
Bayesian approach is very flexible in terms of model specification;
it allows the inclusion of information from experts or previous
experiments via the prior distribution, leading to seamless
sequential updating of the state of knowledge; it can deal with a
large number of parameters (in some cases, in their thousands)
and it allows for model comparison via DIC. Because our
model set-up was based on the survival analysis principles and
allowed for random effects, it used more information by model-
ling the number of germinated seeds rather than the proportion
alone and accounted explicitly for the various aspects of the
data generating mechanism such as censoring, interval observa-
tion, within-dish autocorrelation and between-dish variation.

The estimation process, i.e. convergence and the speed thereof,
is not impacted by the use of a non-differentiable function within
the HTT model. It should also be noted that the jackknife resam-
pling method used to obtain uncertainty for the estimators in the
non-linear regression model and the maximum likelihood-based
survival model requires the parameters to be re-estimated as
many times as there are dishes in the experiment. The computa-
tional time required is thus linearly dependent on the number of
dishes. This is not the case for the Bayesian model estimating
algorithm, where the proposed dish-specific random effects are
drawn all at once, and their number has little effect on computa-
tional efficiency.

Finally, the Bayesian modelling framework also allows for easy
comparison of HTT models (for example, using Gaussian versus
Weibull frequency distributions for modelling the seed popula-
tion’s base water potential distribution). It also makes it easy to
differentiate or group species according to their HTT model para-
meters. There is now an extensive literature comparing seed ger-
mination traits of different species in response to differences in
seedbed temperature and water potential. In some studies, these
germination traits of species are specified as HTT parameters
which are then modelled as functions of life history, taxonomic
or functional classification, or edaphic or climatic conditions
within their natural, cultivated or adventive range (e.g. Allen

Table 2. The estimators (non-linear least squares, maximum likelihood estimators and posterior means for the nls, survival and Bayesian models respectively) and
the associated standard errors ( jackknife for nls and survival models and posterior standard deviation for the Bayesian model, respectively) for white clover (WC)
and subterranean clover (SC) assuming the Weibull distribution for base water potential

θHT Tb Ψb50 σΨb k Td η

Weibull nls model WC Mean 9.72 3.43 −1.09 0.72 0.026 16.39 3.09

SD 1.16 0.19 0.14 0.15 0.005 2.08 1.00

SC Mean 10.63 2.09 −1.14 0.48 0.029 25.92 2.00

SD 0.63 0.23 0.05 0.06 0.008 2.04 0.29

Weibull Survival model WC Mean 8.33 2.56 −1.07 0.80 0.022 18.47 3.84

SD 17.50 7.75 0.83 0.72 0.023 2.09 0.80

SC Mean 10.61 1.91 −1.26 0.65 0.029 27.94 2.38

SD 12.43 4.07 0.52 0.59 0.091 3.73 0.39

Weibull Bayesian model WC Mean 10.26 3.01 −1.01 0.70 0.026 19.12 2.84

SD 0.49 0.10 0.03 0.03 0.003 1.25 0.15

SC Mean 11.45 1.53 −1.17 0.54 0.050 30.01 2.15

SD 0.36 0.12 0.02 0.02 0.035 1.93 0.08

Table 3. RMSE statistics for the performance Gaussian and Weibull models
fitted within the nls, survival and Bayesian frameworks for white clover (WC)
and subterranean clover (SC)

WC SC

Gaussian Weibull Gaussian Weibull

nls model 0.1019 0.1013 0.1099 0.1088

Survival model 0.1048 0.1105 0.1118 0.1142

Bayesian model 0.1095 0.1062 0.1202 0.1144

Seed Science Research 69

https://doi.org/10.1017/S0960258520000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258520000082


et al., 2000; Köchy and Tielbörger, 2007; Kos and Poschlod, 2008;
Dürr et al., 2015; Tribouillois et al., 2016).

In this study HTT models that accounted for a species effect
(sub versus white clover) were superior to those that did not
account for species. Inspection of credibility intervals and esti-
mated posterior distributions for the Bayesian model (Tables 2
and 3, Fig. 2) shows that it is credible that Tb, Td, mu.Ψb50,
and the skewness of the distribution for mu.Ψb are different for
the two species, whereas θHT, σΨb and k are not. This allows
the following inferences: under similar conditions, the two species
will germinate at approximately the same speed (θHT), and
thermo-inhibition will increase with supra-optimal temperatures
at the same rate (k). However, sub clover will germinate more rap-
idly than white clover at cooler temperatures (Tb = 1.72 versus
2.46°C) or under drier soil conditions (mu.Ψb50 = −0.67 versus
−0.38 MPa), and thermo-inhibition will not commence until
much higher temperatures (Td = 27.4 versus 18.9°C) so that ger-
mination will be more resilient to dry conditions at supra-optimal
temperatures. Finally, although both species have a similar

frequency distribution of base water potential (σΨb) for the
Gaussian model, using a Weibull model shows that the frequency
distribution for sub clover is right skewed so that a larger propor-
tion of the sub clover population will have base water potentials
lower than the mean. This implies that sub clover will have a
higher proportion of fast-germinating seeds than white clover
under any specific conditions of T and Ψ.

Figure 1 shows that the HTT model fit was less accurate for
germination under extreme conditions. Due to considerations of
space, we only show the results for the Bayesian method, but
the results for the non-linear regression and the survival analysis
are similar (as can also be seen from the Table 3). The HTT model
is a parsimonious description of germination behaviour across the
whole range of temperature and water potentials where germin-
ation is possible. Inspection of plots for published HTT models
shows that they are often less accurate for more extreme condi-
tions of temperature and water potential, and most accurate at
near-optimal conditions. It is thus a feature of the HTT model,
rather than the model estimation technique. While the model

Fig. 2. Estimated posterior distributions for the parameters of the Bayesian Gaussian HTT model for the white clover (WC) and sub clover (SC). Posterior prob-
abilities of the SC-parameter being greater than the WC-parameter are listed. Values closer to either 0 or 1 indicate a high degree of confidence in the parameters
being distinct.
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fit can be improved by breaking the data into subsets and fitting
separate models to each of the subsets (e.g. Mesgaran et al., 2013;
Hardegree et al., 2015, 2017), such improved accuracy is achieved
at the cost of generality and parsimony.

The germination traits we have found are consistent with the
characteristics of the two species as pastoral crop species. Sub clo-
ver is a winter annual species of Mediterranean origin. It is used
predominantly to provide feed through autumn, winter and early
spring in Australasian pastures. Under these circumstances, the
germination and growth of sub clover commence with autumn
rainfall and it remains in a vegetative rosette until increasing
day lengths in spring promote flowering before it sets seed to
avoid dry summer conditions. In contrast, white clover is the
most widely used temperate perennial legume used to provide
high-quality feed in dairy and sheep pastures where consistent
rainfall or irrigation allows it to grow through summer.
Ecologically and agronomically, germination under a wide range
of conditions is more important for sub clover which must
re-establish from seed each year compared with white clover
which also relies on stolon fragments to perennate.

This study used germination data for white clover ‘Nomad’
and sub clover ‘Napier’ DM32Ø45RC, therefore results and con-
clusions from this study may not apply to other cultivars since
these are species that are widely distributed within their natural
and adventive ranges and have recognized cultivars, ecotypes or
subspecies that differ in their adaptation to climatic and edaphic
conditions (Burdon, 1983; Teixeira et al., 2015). Having said that
differences in germination behaviour among cultivars and

subspecies would be amenable to the same analysis using the
HTT model, as the present comparison between one cultivar
each of two clover species.

Supplementary material. To view supplementary material for this article,
please visit : https://doi.org/10.1017/S0960258520000082
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