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Abstract. The properties of nonlinear electrostatic acoustic rogue waves in a three-
component plasma composed of electron, positron, and relativistic electron beam are
investigated. The reductive perturbation method is used to obtain a Korteweg–de
Vries equation. The dynamics of the modulationally unstable wave packets described
by the Korteweg–de Vries equation gives rise to the formation of rogue pulses that is
described by a nonlinear Schrödinger equation for small wave number. The effects of
physical parameters on the profile of rogue waves are investigated numerically. The
electrostatic rogue waves, as predicted here, may be associated with the nonlinear
structures caused by the interaction of relativistic jets with plasma medium, such as
in the active galactic nuclei and in the magnetosphere of collapsing stars.

1. Introduction

Many types of nonlinear electrostatic structures could
propagate in electron–positron plasmas, such as solitary,
shock, blow-up, and rogue waves (Mahmood and Ur-
Rehman 2009; Moslem et al. 2009; El-Tantawy et al.
2011; Moslem 2011; El-Tantawy et al. 2012). The rogue
waves are observed experimentally in plasma physics
(Bailung et al. 2011), in ocean (Kharif et al. 2009), in
optical waves (Solli et al. 2007), in superfluid helium
(Ganshin et al. 2008), in Bose–Einstein condensates
(Bludov et al. 2009; Bludov et al. 2010), in atmosphere
(Stenflo and Marklund 2010), and in plasmonics (Maier
2007). In plasma physics, the investigation of rogue
waves has been conducted by solving the nonlinear
Schrödinger (NLS) equation. El-Labany et al. (2011)
studied the nonlinear ion-acoustic (IA) rogue waves in
a plasma composed of positive ions, negative ions, and
isothermal electrons as predicted in Titan’s atmosphere.
They found that the waves exist only for a specific
range of the negative ion masses. Lareder et al. (2011)
investigated the rogue waves in the Alfvén wave (AW)
turbulence regime that is described by the randomly
driven derivative NLS equation in the presence of a
weak dissipation. They found that as the dissipation
is reduced, rogue waves form less frequently but reach
larger amplitudes. The surface plasma rogue waves arise
due to a complied electromagnetic and electrostatic field
near the plasma–vacuum interface (Moslem et al. 2011b).
Moreover, dusty plasma is expected to support rogue
waves (Moslem et al. 2011a).

Recently, the interaction of an electron beam with
plasmas has been the subject of many investigations,
because of their importance in various applications of
laboratory experiment and technology. For example,
ranging from non-destructive testing of materials to
the acceleration of charged particles and in an inertial
confinement fusion scheme: fast ignition. Moreover, the
applications of an electron jet/beam plasma are con-
sidered as promising tools for producing products and
materials with unique biological properties that can be
used for biomedical applications (Vasilieva et al. 2010).
Several theoretical attempts have been made to explain
the observed electron beam in different regions of Earth’s
magnetosphere, as reported by satellite missions, e.g. the
FAST mission at the auroral region, the S3-3, Viking,
and the GEOTAIL and POLAR missions (Moslem et al.
2012). The presence of an electron beam in plasmas is
known to be associated with various interesting effects,
including nonlinear wave amplification, and it could
modify the properties and the existence conditions of the
nonlinear excitations. The problem of generating relativ-
istic and subrelativistic electron beams is among most
challenging problems. An important scientific problem
in future accelerators is the generation of extremely
short relativistic electron bunches. Recently, linear ac-
celerators that produce relativistic electron beams are
down to a size that allows them to be flown on space-
craft and sounding rockets. This opens the window to
new opportunities for atmospheric/ionospheric modi-
fication experiments where the mesosphere and lower
thermosphere regions can be perturbed down to 40 km
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altitude (Neubert and Gilchrist 2004). Recently, Moslem
et al. (2012) studied the propagation of electrostatic
solitary waves (ESWs) in three-dimensional (3D) plasma
composed of an electron–positron plasma with the re-
lativistic electron beam. For this purpose, the
Kadomtsev–Petviashvili (KP) equation is derived by
employing the perturbation method and they studied
the effects of relevant physical parameters on the solitary
wave profile. In view of the crucial importance of the
electron–positron plasmas with the relativistic electron
beam, there is a need for investigating the nonlinear
electrostatic rogue/rational waves that may propagate in
a 1D electron–positron–electron beam (e–p–b) plasmas.
To the best of authors’ knowledge, the effect of the
relativistic electron beam on the rogue waves in electron–
positron plasmas has not been discussed yet. Here we
are mainly interested in the propagation of the rogue
waves in 1D plasma with the relativistic electron beam.

This paper is organized as follows. In Sec. 2, we
present the basic set of fluid equations describing the
dynamics of the nonlinear electrostatic structures in the
e–p–b plasma. In Sec. 3, we use the reductive perturb-
ation method to derive the Korteweg–de Vries (KdV)
equation. When the frequency of the carrier wave is
much smaller than the electron plasma frequency, then
the KdV equation can be transformed to the NLS
equation. An analytical solution of the NLS equation
along with the numerical analysis is also presented.
Finally, the results are summarized in Sec. 4.

2. Basic equations
Let us consider a 1D, weakly relativistic, unmagnet-
ized, collisionless three-component plasma consisting of
electron beams, electrons, and positrons. The nonlinear
dynamics of the ESWs are governed by the electron
beam fluid equations

∂nb

∂t
+

∂(nbub)

∂x
= 0, (1)

∂γub

∂t
+ ub

∂γub

∂x
=

∂φ

∂x
− 3σnb

∂nb

∂x
, (2)

and the electron/positron fluid equations

∂ne,p

∂t
+

∂(ne,pue,p)

∂x
= 0, (3)

∂ue,p

∂t
+ ue,p

∂ue,p

∂x
∓ ∂φ

∂x
+ 3ρne,p

∂ne,p

∂x
= 0. (4)

The system is closed by the Poisson equation

∂2φ

∂x2
= ne + nb − np, (5)

where nj(j = b, e, and p) is the electron beam/electron/
positron number density, uj(j = b, e and p) is the
electron beam/electron/positron fluid velocity, and φ

is the electrostatic potential. Here, γ = (1 − u2
b/c

2)−1/2 �
1+u2

b/2c
2 is the relativistic factor for the electron beam,

σ = Tb/Te is the electron beam-to-electron temperature

ratio, and ρ = Tp/Te is the positron-to-electron temper-
ature ratio. The variables appearing in (1)–(5) have been
appropriately normalized. Thus, nj is normalized by the
unperturbed electron density ne0, uj is normalized by the
electron thermal speed Vte = (Te/m)1/2, and φ is normal-
ized by Te/e. The space and time variables are in units of
the electron Debye radius λDe = (Te/4πe

2ne0)
1/2 and the

inverse of the plasma frequency ω−1
pe = (m/4πe2ne0)

1/2,
respectively, e the magnitude of the electron charge, m
the electron mass, and c the speed of light in vacuum.
The quasi-neutrality condition at equilibrium β = 1 + δ,
where β = np0/ne0 and δ = nb0/ne0 (the index 0 denotes
the unperturbed density states).

3. Derivation of the evolution equations and
numerical analysis

To investigate the nonlinear propagation of the ESWs,
we shall employ the reductive perturbation method
(Washimi and Taniuti 1966). According to this method,
the independent variables can be detailed as

X = ε1/2(x − λt) and T = ε3/2t, (6)

where ε is a small dimensionless expansion parameter
which characterizes the strength of nonlinearity and λ

the phase velocity of the wave and normalized by Vte.
The dependent variables are expanded as

F = F0 +

∞∑
m=1

εmFm, (7)

where F = [nb, ne, np, ub, ue, up, φ]T and F0 = [δ, 1, β, ub0,
0, 0, 0]T . Employing the stretching (6) and the expansions
(7) into (1)–(5), we can isolate distinct orders in ε. The
lowest order in ε yields

n
(1)
b = − δ

λ̃2γ̃ − 3σδ2
φ(1), u

(1)
b = − λ̃

λ̃2γ̃ − 3σδ2
φ(1), (8)

n(1)
e = − 1

λ2 − 3
φ(1), u(1)

e = − λ

λ2 − 3
φ(1), (9)

n(1)
p =

β

λ2 − 3ρβ2
φ(1), u(1)

p =
λ

λ2 − 3ρβ2
φ(1), (10)

where

λ̃ = (λ − ub0) and γ̃ =

(
1 +

3u2
b0

2c2

)
.

The Poisson equation gives the compatibility condition
as

1

λ2 − 3
+

δ

λ̃2γ̃ − 3σδ2
+

β

λ2 − 3ρβ2
= 0. (11)

The next order in ε gives a system of equations in
the second-order perturbed quantities. Eliminating the
latter and making use of the first-order results, we finally
obtain the KdV equation

∂φ(1)

∂T
+ Aφ(1) ∂φ

(1)

∂X
+ B

∂3φ(1)

∂X3
= 0, (12)
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Figure 1. (Colour online) (a) The absolute value of the rogue wave profile |Ψ | and (b) the contour plot of the rogue wave
potential |Ψ | are depicted against ζ and η, with ρ = k = 0.9, σ = 1, δ = 0.1, and ub0/c = 0.06.

where

A= −3B

[ (
λ2 + 1

)
(λ2 − 3)3

+
δ

(
λ̃2

(
γ̃ − ub0

c2 λ̃
)

+ σδ2
)

(
γ̃λ̃2 − 3σδ2

)3

+
β

(
λ2 + ρβ2

)
(
λ2 − 3ρβ2

)3

]
,

and

B =
1

2

[
λ

(λ2 − 3)2
+

δγ̃λ̃(
γ̃λ̃2 − 3σδ2

)2
+

βλ(
λ2 − 3ρβ2

)2

]−1

.

Now, we will study the modulational instability of a
weakly nonlinear wave packet described by the KdV
equation (12). Note that when the frequency of the

carrier wave is much smaller than the ion plasma fre-
quency, then the KdV equation is also used to study the
nonlinear evolution of modulationally unstable modified
ion-acoustic wave packets through the derivation of the
NLS equation. Therefore, we consider the solution of
(12) in the form of a weakly modulated sinusoidal wave
by expanding φ as (El-Labany et al. 2007; Abdelsalam
et al. 2011)

φ =

∞∑
n=1

εn
n∑

l=−n

φ
(n)
l (ζ, η) exp[il(kX − ωT )] . (14)

Here, k and ω are real variables representing the fun-
damental (carrier) wave number and frequency, respect-
ively, of the nonlinear electrostatic waves. The stretched
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variables ζ and η given by

ζ = ε(X + vgT ) and η = ε2T , (15)

where vg is the envelope group velocity to be determined
later.

Assume that all perturbed states depend on the fast
scales via the phase (kX − ωT ) only, while the slow
scales (ζ, η) enter the arguments of the lth harmonic
amplitude φ

(n)
l . Since φ

(n)
l must be real, the coefficients

in (14) have to satisfy the condition φ
(n)
−l = φ

(n)∗
l , where

the asterisk indicates the complex conjugate. The first-
order approximation (n = 1) with (l = 1) provides
the electrostatic waves dispersion relation ω = −Bk3.
The second-order approximation (n = 2) with the first
harmonic (l = 1) yields vg = 3Bk2. The annihilation
of secular terms at the third harmonic modes (n =
3 and l = 1) yields the NLS equation

i
∂Ψ

∂η
+

1

2
P
∂2Ψ

∂ζ2
+ QΨ | Ψ |2= 0. (16)

For simplicity, we have assumed φ
(1)
1 ≡ Ψ. The disper-

sion and nonlinear coefficients, respectively, are given
by

P = 6Bk (17)

and

Q =
A2

P
. (18)

The NLS equation (16) describes the nonlinear evolution
of a modulated amplitude electrostatic acoustic wave
carrier. It can also be derived directly from the system
of (1)–(5) by using the derivative expansion method.
In this case, the derivation of the NLS equation has
been carried out for an arbitrary frequency of the
carrier wave. If we use a similar approach to derive the
NLS equation from (1)–(5), then we obtain after long
derivations the NLS equation with very complicated
expressions for the nonlinear and dispersion coefficients
Q and P . The derivation of the NLS equation should,
in principle, reduce to (16) in the limit of the low wave
frequency, i.e. when the frequency of the carrier wave is
much smaller than the ion plasma frequency. Actually,
the derivation of the NLS equation for an arbitrary
frequency is more general and gives us information
about the stability (instability) of the propagating carrier
wave, but in our case we have three fluid equations,
which are very difficult to be combined to derive the
NLS equation for an arbitrary frequency. So, we used
the limit of the low wave frequency as a special case to
study the rogue waves.

Equation (16) has a rational solution that is located
on a non-zero background and localized both in the ζ

and η directions as (Kibler et al. 2010; Abdelsalam et al.
2011)

Ψ (η, ζ) =
P

A

[
4(1 + 2iPη)

1 + 4P 2η2 + 4ζ2
− 1

]
exp(iPη). (19)
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Figure 2. (Colour online) The maximum value of the rogue
wave amplitude Ψ0 is depicted against (a) ub0/c for different
values of σ with ρ = k = 0.9 and δ = 0.1 and (b) δ for different
values of ρ with σ = k = 0.9 and ub0/c = 0.06.

The solution (19) represents the profile of the rogue wave
within the modulational unstable region, as depicted in
Fig. 1. Note that the light color corresponds to the
high amplitude region, which concentrates a significant
amount of energy into a relatively small area in space,
and therefore the rogue waves generate in our plasma.
This property of the nonlinear solution may serve as the
basis for the explanation of the electrostatic rogue wave
(ERW) in electron beam–electron–positron plasmas. The
rogue wave is usually an envelope of a carrier wave
with a wavelength smaller than the central region of
the envelope. It is straightforward to see that a negative
sign for PQ is required for wave amplitude modulational
stability. On the other hand, a positive sign of PQ allows
for a random perturbation of the amplitude to grow and
thus the ERWs could be created. It is clear from (17)
and (18) that P and Q have always the positive polarity.

Now, we numerically analyze the wave envelope Ψ

and investigate how the electron beam-to-electron tem-
perature ratio σ, the positron-to-electron temperature
ratio ρ, the electron beam-to-electron density ratio δ,
and electron beam velocity relativistic ub0/c change the
profile of the rogue wave envelope Ψ . It is seen from
Fig. 2(a) that increasing σ and ub0/c would lead to
decrease the amplitude of the rogue waves. Moreover,
the rogue pulses amplitude enhances with the increase
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Figure 3. (Colour online) The nonlinear coefficient A is
depicted against (a) σ − ub0/c, where ρ = k = 0.9 and δ = 0.1,
and (b) ρ − δ, where σ = k = 0.9 and ub0/c = 0.06.

of ρ, while the amplitude increases with δ for small
values, but it reduces lingeringly for larger values of
δ, as depicted in Fig. 2(b). Physically, it is evident from
Fig. 3 that increasing σ and ub0/c would lead to enhance
the nonlinear coefficient A and then dissipating the
energy from the system would make the pulses shorter,
but the increase of ρ leads to reduce A, concentrating
a significant amount of energy which makes the pulses
taller (because Ψ (0, 0) ∝ 1/A).

4. Summary
To summarize, the properties of the nonlinear elec-
trostatic acoustic rogue waves in a three-component
plasma composed of electron, positron, and relativistic
electron beam are investigated. It is found that in cer-
tain conditions modulated electrostatic acoustic wave
packets appear in the form of ERWs. The effects of
physical parameters on the rogue wave profiles are
examined numerically. It is found that the electron
beam velocity reduces the rogue waves amplitude. Fi-
nally, the present results may help in understanding the
electrostatic acoustic rogue waves associated with the
electron–positron–electron beam plasmas that could be
at the active galactic nuclei and the collapsing stars
magnetosphere.
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