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ON THE SHARPNESS OF TIAN’S CRITERION FOR K-STABILITY

YUCHEN LIU and ZIQUAN ZHUANG

Abstract. Tian’s criterion for K-stability states that a Fano variety of

dimension n whose alpha invariant is greater than n/(n+1) is K-stable.

We show that this criterion is sharp by constructing n-dimensional singular

Fano varieties with alpha invariants n/(n+1) that are not K-polystable for

sufficiently large n. We also construct K-unstable Fano varieties with alpha

invariants (n−1)/n.

§1. Introduction

Given a complex Fano manifold X, Tian [Tia87] introduced the α-invariant α(X) of

X which measures the integrability of exponentials of plurisubharmonic functions. In the

same paper, Tian proved that X admits a Kähler–Einstein metric if α(X)>n/(n+1) where

n=dimX, known as Tian’s criterion. In this article, we will use the algebraic interpretation

of α-invariants in terms of singularities of pairs due to Demailly [CS08, Appendix A] (see

also [Shi10, Appendix A]).

Definition 1.1. ([Tia87, CS08]) Let X be a Q-Fano variety, that is, X is a normal

projective variety over C, −KX is Q-Cartier and ample, and X has klt singularities. The

α-invariant α(X) is defined as

α(X) := inf{lct(X;D) |D is an effective Q-divisor and D ∼Q −KX}.

Tian’s criterion [Tia87] has been generalized and complemented by Demailly–Kollár

[DK01], Odaka–Sano [OS12] and Fujita [Fuj19a]. The following theorem summarizes their

results in the language of K-stability.

Theorem 1.2. ([Tia87, DK01, OS12, Fuj19a]) Let X be an n-dimensional Q-Fano

variety. Then,

(1) X is K-stable if either α(X)> n/(n+1) or α(X) = n/(n+1), n≥ 2 and X is smooth;

(2) X is K-semistable if α(X)≥ n/(n+1).

The purpose of this article is to study the sharpness of the assumptions in Theorem 1.2.

Our main result goes as follows.

Theorem 1.3. For any n� 0 (more precisely, n= 4 or n≥ 7 for X, and n≥ 14 for Y),

there exist a hypersurface X ⊂ Pn+1 of degree n+1, and a complete intersection Y ⊂ Pn+2

of a hyperquadric and a degree n hypersurface, such that the following properties hold:

(1) Both X and Y are Gorenstein canonical with only one singular point;

(2) α(X) = n/(n+1) and X is not K-polystable;

(3) α(Y ) = (n−1)/n and Y is K-unstable.
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These examples show that the assumptions of Theorem 1.2 are almost sharp. More

precisely, in Theorem 1.2.1, the smoothness assumption cannot be removed, and the lower

bound of α(X) in Theorem 1.2.2 cannot be smaller than (n−1)/n. We remark here that

using different methods, Fujita constructed a log Fano hyperplane arrangement (X,Δ) that

is not K-polystable and α(X,Δ) = n/(n+1) (see [Fuj17, Section 9]).

Our construction is motivated by the work [Fuj19a]. It follows from the argument of

[Fuj19a] that if X is a Q-Fano variety of dimension n such that α(X) = n/(n+1) but X

is not K-stable, then X has a weakly exceptional singularity whose corresponding Kollár

component has log discrepancy n. Candidates of such singularities have been proposed by

Kudryavtsev [Kud01] and Prokhorov [Pro00], although both of their constructions contain a

gap (see Remark 4.12). Therefore, a large part of our argument is devoted to rectifying their

construction, which eventually reduces to estimating the global log canonical thresholds of

general hypersurfaces or complete intersections and relies heavily on Pukhlikov’s technique

of hypertangent divisors (see, e.g., [Puk13, Section §3]). As a consequence of this analysis,

we also prove the following:

Theorem 1.4. Fix ε > 0. Then for n� 0, we have lct(X; |H|Q) = 1 where X ⊆ Pn+1 is

a general hypersurface of degree d≤ (2− ε)n and H is the hyperplane class.

If X is a non-K-stable Q-Fano variety of dimension n with α(X) =n/(n+1), then Fujita’s

characterization [Fuj19a] also implies that X specially degenerates to a K-semistable Q-

Fano variety X0 with α(X0) = 1/(n+1) (see Corollary 3.2). Indeed X0 has the smallest

α-invariant among all K-semistable Q-Fano varieties by [FO18, Theorem 3.5]. These Q-

Fano varieties have been studied by Jiang [Jia17b] where he showed that Pn is the only

K-semistable Fano manifold with the smallest α-invariant. We provide a full characterization

of such Q-Fano varieties to complement Jiang’s results (see Theorem 3.8).

The following result is inspired by the work of Blum and Xu in [BX19] where it is shown

that the moduli functor of uniformly K-stable Q-Fano varieties with fixed dimension and

volume is represented by a separated Deligne–Mumford stack of finite type.

Theorem 1.5. Let n be a positive integer and V be a positive rational number. Then

the moduli functor of Q-Fano varieties X satisfying α(X) > 1
2 of dimension n and volume

V is represented by a separated Deligne–Mumford stack of finite type, which has a coarse

moduli space that is a separated algebraic space. In particular, Aut(X) is finite for a Q-Fano

variety X satisfying α(X)> 1
2 .

We ask the following question about the sharpness of Tian’s criterion and Jiang’s

conjecture [Jia17b, Conjecture 1.6].

Question 1.6. Let n= dimX ≥ 2 be an integer.

(1) Does there exist a K-semistable Q-Fano variety X such that 1/(n+1)< α(X)< 1
n?

(2) Does there exist a K-unstable Q-Fano variety X such that (n−1)/n < α(X) <

n/(n+1)?

This paper is organized as follows. In Section 2, we collect some preliminary materials

on K-stability, weakly exceptional singularities, Kollár components, and orbifold cones.

In Section 3, we recall Fujita’s characterization on non-K-stable Q-Fano varieties X of

dimension n with α(X) = n/(n+1). In Section 3, we prove Theorem 1.5. We also provide
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a generalization of [Jia17b, Theorem 1.2] in Theorem 3.8. In Section 4, we estimate the

global log canonical thresholds of general hypersurfaces or complete intersections based

on Pukhlikov’s work [Puk05, Puk13, Puk18]. Finally in Section 5, we present our main

constructions to prove Theorem 1.3.

§2. Preliminary

2.1 Notation and conventions

We work over the complex numbers. We follow the terminologies in [KM98]. A projective

variety X is Q-Fano if X has klt singularities and −KX is ample. A pair (X,Δ) is log Fano

if X is projective, −KX −Δ is Q-Cartier ample and (X,Δ) is klt. If (X,Δ) is a klt pair,

X is projective and H is an ample Q-divisor on X, then the global log canonical threshold

lct(X,Δ; |H|Q) is defined as the largest t > 0 such that (X,Δ+ tD) is lc for every effective

Q-divisor D ∼Q H. If Δ = 0, we simply write lct(X; |H|Q). The α-invariant of a log Fano

pair (X,Δ) is defined as α(X,Δ) := lct(X,Δ; |−KX −Δ|Q).

2.2 K-stability

Definition 2.1. ([Tia97, Don02, LX14, Li15, OS15]) Let (X,Δ) be an n-dimensional

log Fano pair. Let L be an ample line bundle on X such that L ∼Q −l(KX +Δ) for some

l ∈Q>0.

(1) A normal test configuration (X ,Δtc;L)/A1 of (X,Δ;L) consists of the following data:

• a normal variety X , an effective Q-divisor Δtc on X , together with a flat projective

morphism π : (X ,Supp(Δtc))→ A1;

• a π-ample line bundle L on X ;

• a Gm-action on (X ,Δtc;L) such that π is Gm-equivariant with respect to the standard

action of Gm on A1 via multiplication;

• (X \X0,Δtc|X\X0
;L|X\X0

) is Gm-equivariantly isomorphic to (X,Δ;L)× (A1 \{0}).

A normal test configuration is called a product test configuration if

(X ,Δtc;L)∼= (X×A1,Δ×A1;pr∗1L⊗pr∗2OA1(k ·0))

for some k ∈ Z. A product test configuration is called a trivial test configuration if the

above isomorphism is Gm-equivariant with respect to the trivial Gm-action on X and

the standard Gm-action on A1 via multiplication.

A normal test configuration (X ,Δtc;L) is called a special test configuration if L ∼Q

−l(KX/A1 +Δtc) and (X ,X0 +Δtc) is plt. In this case, we say that (X,Δ) specially

degenerates to (X0,Δtc,0) which is necessarily a log Fano pair.

(2) Assume π : (X ,Δtc;L) → A1 is a normal test configuration of (X,Δ;L). Let π̄ :

(X ,Δtc;L)→ P1 be the natural Gm-equivariant compactification of π. The generalized

Futaki invariant of (X ,Δtc;L) is defined by the intersection formula

Fut(X ,Δtc;L) :=
1

(−KX −Δ)n

(
n

n+1
· (L

n+1
)

ln+1
+

(Ln · (KX/P1 +Δtc))

ln

)
.

(3) • The log Fano pair (X,Δ) is said to be K-semistable if Fut(X ,Δtc;L) ≥ 0 for any

normal test configuration (X ,Δtc;L)/A1 and any l ∈Q>0 such that L is Cartier.
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• The log Fano pair (X,Δ) is said to be K-stable if it is K-semistable and

Fut(X ,Δtc;L) = 0 for a normal test configuration (X ,Δtc;L)/A1 if and only if

it is a trivial test configuration.

• The log Fano pair (X,Δ) is said to be K-polystable if it is K-semistable and

Fut(X ,Δtc;L) = 0 for a normal test configuration (X ,Δtc;L)/A1 if and only if it

is a product test configuration.

• The log Fano pair (X,Δ) is said to be strictly K-semistable if it is K-semistable but

not K-polystable.

• The log Fano pair (X,Δ) is said to be K-unstable if it is not K-semistable.

By the work of Li and Xu [LX14], to test K-(poly/semi)stability of a log Fano pair

(X,Δ) it suffices to test on special test configurations (see [Fuj19b, Section 6] for precise

statements).

Next we recall the valuative criterion of K-stability due to Fujita [Fuj17] and Li [Li17].

Definition 2.2. ([Fuj19b, Definition 1.1 and 1.3]) Let X be a Q-Fano variety of

dimension n. Let F be a prime divisor over X, that is, there exists a projective birational

morphism π : Y →X with Y normal such that F is a prime divisor on Y.

(1) For any t≥ 0, we define volX(−KX − tF ) := volY (−π∗KX − tF ).

(2) The pseudo-effective threshold τ(F ) of F with respect to −KX is defined as

τ(F ) := sup{τ > 0 |volX(−KX − τF )> 0}.

(3) Let AX(F ) be the log discrepancy of F with respect to X. We set

β(F ) :=AX(F ) · ((−KX)n)−
∫ τ(F )

0

volX(−KX − tF )dt.

(4) The prime divisor F over X is said to be dreamy if the Z2
≥0-graded algebra⊕

k,j∈Z≥0

H0(X,OX(−klKX − jF ))

is finitely generated for some l ∈Z>0 with −lKX Cartier. Note that this definition does

not depend on the choice of l.

The following theorem summarizes results from [Fuj19b, Theorems 1.3 and 1.4], [Li17,

Theorem 3.7], and [BX19, Corollary 4.3].

Theorem 2.3. ([Fuj19b, Li17, BX19]) Let X be a Q-Fano variety. Then the following

are equivalent:

(1) X is K-stable (resp. K-semistable);

(2) β(F )> 0 (resp. β(F )≥ 0) holds for every prime divisor F over X;

(3) β(F )> 0 (resp. β(F )≥ 0) holds for every dreamy prime divisor F over X.

2.3 Weakly exceptional singularities and Kollár components

Definition 2.4. Let x ∈ X be a klt singularity. We say that a proper birational

morphism σ : Y →X provides a Kollár component F, if σ is an isomorphism over X \{x}
and σ−1(x) is a prime divisor F on Y such that (Y,F ) is plt and −F is Q-Cartier σ-ample.

We denote by ΔF the different Q-divisor on F, that is, KF +ΔF = (KY +F )|F .
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Definition 2.5. Let X be a Q-Fano variety. Let x ∈ X be a closed point. Suppose

σ : Y →X provides a Kollár component F over x ∈X. Then the Seshadri constant ε(F ) of

F with respect to −KX is defined as

ε(F ) := sup{ε > 0 |σ∗(−KX)− εF is ample}.

The notion of weakly exceptional singularities in the sense of Shokurov is crucial in our

construction.

Definition 2.6. ([Pro00, Definition 4.1]) A klt singularity x ∈X is said to be weakly

exceptional if there exists only one Kollár component over it.

The following criterion connects weakly exceptional singularities with α-invariant of

Kollár components. Its present form first appeared in [CS11, Theorem 3.10] which essentially

follows from [Pro00, Theorem 4.3] and [Kud01, Theorem 2.1].

Theorem 2.7. ([CS11, Theorem 3.10]) A klt singularity x ∈X is weakly exceptional if

and only if there exists a Kollár component F over x ∈X satisfying α(F,ΔF )≥ 1.

2.4 Orbifold cones

Definition 2.8. Let V be a normal projective variety. Let M be an ample Q-Cartier

Q-divisor on V.

(1) The affine orbifold cone Ca(V,M) is defined as

Ca(V,M) := Spec
∞⊕

m=0

H0(V,OV (�mM�)).

(2) The projective orbifold cone Cp(V,M) is defined as

Cp(V,M) := Proj
∞⊕

m=0

∞⊕
i=0

H0(V,OV (�mM�) ·si,

where the grading of H0(V,OV (�mM�)) and s are m and 1, respectively.

For the projective orbifold cone Cp(V,M), we denote the Q-Cartier divisor corresponding

to (s = 0) by V∞. If {M} =
∑k

i=1
ai

bi
Mi for some prime divisors Mi on V and 0 < ai < bi

coprime integers, we denote ΔM :=
∑k

i=1
bi−1
bi

Mi. The pair (V∞,DiffV∞(0)) obtained by

taking adjunction of the pair (Cp(V,M),V∞) is isomorphic to (V,ΔM ).

Let us illustrate some basic properties of orbifold cones from [Kol04] and [LL19, Section

3.3.1].

Proposition 2.9. Let V be a normal projective variety. Let M be an ample Q-Cartier

divisor on V.

(1) Both Ca(V,M) and Cp(V,M) are normal.

(2) The following conditions are equivalent:

(i) Ca(V,M) is klt;

(ii) (Cp(V,M),V∞) is plt;

(iii) (V,ΔM ) is a log Fano pair, and M ∼Q −r−1(KV +ΔM ) for some r ∈Q>0.

(3) If the conditions in (2) are satisfied, then KCp(V,M) ∼Q −(1+ r)V∞.
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The following proposition has appeared in [LX20, Section 2.4]. Here we provide a proof

without using stack constructions.

Proposition 2.10. Let x ∈ (X,Δ) be a klt singularity. Suppose σ : Y →X provides a

Kollár component F over x. Denote by aj := {f ∈ OX,x | ordF (f) ≥ j} for j ∈ Z. Then we

have an isomorphism of graded rings

∞⊕
j=0

aj/aj+1
∼=

∞⊕
j=0

H0(F,OF (�−jF |F �)),

where F |F is the Q-divisor class on F defined in [HLS19, Definition A.4].

Proof. Since X is normal, we have aj = σ∗OY (−jF ). Thus we have the following exact

sequence

0→ aj+1 → aj → σ∗(OY (−jF )/OY (−(j+1)F ))→R1σ∗OY (−(j+1)F ).

Since

−(j+1)F − (KY +σ−1
∗ Δ) =−σ∗(KX +Δ)− (j+A(X,Δ)(ordF ))F,

the divisor −(j+1)F − (KY + σ−1
∗ Δ) is σ-ample whenever j ≥ 0. Hence R1σ∗OY (−(j+

1)F ) = 0 whenever j ≥ 0. Thus for every j ≥ 0 we obtain a canonical isomorphism

aj/aj+1
∼= σ∗(OY (−jF )/OY (−(j+1)F )).

Since (Y,F + σ−1
∗ Δ) is plt and F is Q-Cartier on Y, the sheaf OY (−jF ) is Cohen–

Macaulay by [KM98, Corollary 5.25]. Hence the sheaf OY (−jF )/OY (−(j +1)F ) is also

Cohen–Macaulay whose support is F. By [HLS19, Lemma A.3], we know that over an

open set F ◦ of F with codimFF \ F ◦ ≥ 2, there is a canonical isomorphism between

(OY (−jF )/OY (−(j+1)F ))|F◦ and OF◦(�−jF |F �). Thus this isomorphism extends to a

canonical isomorphism

OY (−jF )/OY (−(j+1)F )∼=OF (�−jF |F �).

This implies aj/aj+1
∼=H0(F,OF (�−jF |F �) for every j ≥ 0. Since all the isomorphisms

above are canonical, they are all compatible with the obvious product structure of the

graded ring. Hence we finish the proof.

The next result is a slight generalization of [LX20, Proposition 5.3] (see [LL19,

Proposition 3.5] for an analogous result in terms of conical Kähler–Einstein metrics).

Proposition 2.11. Let (V,Δ) be an (n− 1)-dimensional log Fano pair where Δ has

standard coefficients, that is, its coefficients belong to {1− 1
m | m ∈ Z>0}. Let M be an

ample Q-Cartier Q-divisor on V satisfying M ∼Q −r−1(KV +Δ) for some 0 < r ≤ n and

ΔM =Δ. Denote by X := Cp(V,M). Then

(1) the pair (X,(1− r
n)V∞) is K-semistable if and only if (V,Δ) is K-semistable;

(2) the pair (X,(1− r
n)V∞) is K-polystable if and only if (V,Δ) is K-polystable.

Proof. For the “if” part of (1), we follow the proof of [LX20, Proposition 5.3]. Let

π : (X ,(1 − r
n)V ;L) → A1 be a special test configuration of (X,(1 − r

n)V∞;L) where
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L∼Q −l(KX +(1− r
n)V∞) is an ample line bundle on X. By definition, we have

Fut(X ,(1− r
n)V ;L) =−

(−KX/P1 − (1− r
n)V)n+1

(n+1)(−KX − (1− r
n)V∞)n

.

Since (1+ r)V∞ ∼Q −KX , we know that there exists k ∈Q such that

(1+ r)V ∼Q −KX/P1 +π∗OP1(k).

Therefore,

Fut(X ,(1− r
n)V ;L) =−

(n+1
n rV −π∗OP1(k))n+1

(n+1)(n+1
n rV∞)n

= k− r(Vn+1
)

n(V n
∞)

.

Denote by Vν and Vν
be the normalization of V and V , respectively. Then by adjunction,

we have (KX/P1 + V)|Vν = KVν
/P1 +ΔVν where ΔVν ≥ 0 is the different. Denote by

ΔVν := ΔVν |Vν . Since (X ,V)×P1 (P1 \{0}) ∼= (X,V )× (P1 \{0}), we know that ΔVν |Vν\Vν
0

corresponds to Δ× (P1 \ {0}). Denote by Δtc the Zariski closure of Δ× (A1 \ {0}) in Vν .

Then clearly ΔVν ≥Δtc and (Vν ,Δtc)/A1 is a normal test configuration of (V,Δ). It is clear

that L|V∞ ∼Q
(n+1)l

n (−KV −Δ). Denote by l′ := (n+1)l
n . Then

Fut(Vν ,Δtc;L|Vν ) =
1

(−KV −Δ)n−1

(
n−1

n
·
(L|nVν )

l′n
+

(L|n−1

Vν · (KVν
/P1 +Δtc))

l′n−1

)

≤ 1

(−KV −Δ)n−1

(
n−1

n
·
(L|nVν )

l′n
+

(L|n−1

Vν · (KVν
/P1 +ΔVν ))

l′n−1

)

=
1

(−KV −Δ)n−1

⎛⎝n−1

n
· (L

n · V)
l′n

+
(Ln−1 · V · (KX/P1 +V))

l′n−1

⎞⎠ .

Since −KX/P1 ∼Q (1+ r)V −π∗OP1(k) and L ∼Q l′rV −π∗OP1(lk), we have

(Ln · V)
l′n

= rn(Vn+1
)− n2

n+1
rn−1(Vn ·π∗OP1(k))

and

(Ln−1 · V · (KX/P1 +V))
l′n−1

=−rn(Vn+1
)+

n2+1

n+1
rn−1(Vn ·π∗OP1(k)).

Since (V n
∞) = (Mn−1) = (−KV −Δ)n−1/rn−1 and (Vn ·OP1(k)) = k(V n

∞), we have

Fut(Vν ,Δtc;L|Vν )≤ 1

rn−1(V n
∞)

(
−rn

n
(Vn+1

)+ rn−1k(V n
∞)

)
= k− r(Vn+1

)

n(V n
∞)

.

In particular, Fut(Vν ,Δtc;L|Vν )≤ Fut(X ,(1− r
n)V ;L) with equality if and only if ΔVν =

Δtc. Thus we finish proving the “if” part of (1).

For the “if” part of (2), let us take the special test configuration (X ,(1− r
n)V);L)/A1

such that (X0,(1− r
n)V0) is K-polystable and Fut(X ,(1− r

n)V ;L) = 0. Such a special test

configuration always exists due to [LWX18, Theorem 1.3]. Since (V,Δ) is K-polystable and

Fut(Vν ,Δtc;L|Vν )≤ Fut(X ,(1− r
n)V ;L), we know that Fut(Vν ,Δtc;L|Vν ) = 0. This implies

that (Vν ,Δtc;L|Vν ) is a product test configuration of (V,Δ) and ΔVν =Δtc. By inversion
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of adjunction, the pair (X ,V) is plt and Vν = V . In particular, (X0,V0) is plt with different

divisor Δtc,0 and (V0,Δtc,0) ∼= (V,Δ). Let us take a Q-Cartier Q-divisor M ∼ V|V on V
whose support does not contain V0 such that M|V\V0

∼=M × (A1 \{0}). Thus M∼=M ×A1

which implies (V0,M0)∼= (V,M), where M0 ∼ V0|V0 . Then by Lemma 2.12, we know that

there exists a special test configuration of (X0,(1− r
n)V0) with central fiber isomorphic

to (X,(1− r
n)V∞) and vanishing generalized Futaki invariant. Since (X0,(1− r

n)V0) is K-

polystable, by definition we have (X0,(1− r
n)V0) ∼= (X,(1− r

n)V∞) which finishes proving

the “if” part of (2).

For the “only if” parts of (1) and (2), suppose (V ,Δtc;LV) is a special test configuration

of (V,Δ). We will construct a special test configuration (X ,(1− r
n)V ;L)/A1 with the same

generalized Futaki invariant. The construction goes as follows. First, let us take M to be

the closure of M × (A1 \{0}) in V . Since V0 is irreducible and Cartier on V , we know that

M is Q-Cartier and Q-linearly equivalent to −r−1(KV/A1 +Δtc). Denote by π : V → A1.

Then let us consider the following variety

X := ProjA1

∞⊕
m=0

∞⊕
i=0

π∗OV(�mM�) ·si,

where the grading of π∗OV(�mM�) and s are m and 1, respectively. We denote the divisor

on X corresponding to (s = 0) by V∞. It is clear that X is normal. We will show that

V∞ ∼= V and X0
∼= Cp(V0,M0).

Since V∞ is defined by (s=0), we have V∞ =ProjA1 ⊕∞
i=0π∗OV(�mM�) ·s0 ∼=V . Consider

{M}=
∑k

j=1
aj

bj
Mj where Mj are distinct prime divisors on V and 0< aj < bj are coprime

integers. Then Δ =ΔM =
∑k

j=1
bj−1
bj

Mj . In particular, all nonzero coefficients of Δ are at

least 1
2 . Let Mj be the Zariski closure of Mj in V . Since (V0,Δtc,0) is klt, we know that

Mj,0 and Mj′,0 do not any have component in common for j �= j′. As a result, we have

�mM�|V0 = �mM0� as Z-divisors on V0. Let us consider the homomorphisms

π∗OV(�mM�)⊗κ(0)
gm−−→H0(V0,OV(�mM�)⊗OV0)

hm−−→H0(V0,OV0(�mM0�)).

Denote the composition by fm := hm ◦ gm. Since M is π-ample, by Serre vanishing

there exists m0 ∈ Z>0 such that gm is an isomorphism for any m ≥ m0. We also know

that OV(�mM�)⊗OV0 and OV0(�mM0�) agree over the smooth locus of V0. Let coherent

sheaves Gm and G′
m on V0 be the kernel and cokernel of the morphism OV(�mM�)⊗OV0 →

OV0(�mM0�). Since V0 is normal, we know that both supports of Gm and G′
m have dimension

at most n−3. Meanwhile, if m1M is Cartier then for any k ∈ Z>0, we have

Gm+km1 = Gm⊗OV0(km1M0), G′
m+km1

= G′
m⊗OV0(km1M0).

Thus we have dimker(fm) = O(mn−3) and dimcoker(fm) = O(mn−3). It is also clear

that fm is an isomorphism whenever m ≥m0 and m1 |m. For simplicity, we may assume

m1 ≥m0.

Next, we show that (fm) induces a morphism φ : Cp(V0,M0) → X0 that is finite,

birational, and isomorphic outside a codimension 2 subset. For simplicity, denote by

Pm := π∗OV(�mM�)⊗κ(0) and P ′
m :=H0(V0,OV0(�mM0�)). Then we know that

X0 = Proj

∞⊕
m=0

∞⊕
i=0

Pm ·si, Cp(V0,M0) = Proj

∞⊕
m=0

∞⊕
i=0

P ′
m ·si.
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Here the gradings of Pm, P ′
m, and s are m, m, and 1, respectively. From the definition

of fm : Pm → P ′
m, we see that it induces ring homomorphism ψ : ⊕(m,i)∈Z2

≥0
Pm · si →

⊕(m,i)∈Z2
≥0
P ′
m ·si which preserves the Z2

≥0-grading. Since fm is an isomorphism for m1 |m,

we see that ψ induces an isomorphism for the subrings graded by {(m,i) ∈ Z2
≥0 : m1 |m}.

This implies that ψ induces a finite morphism φ : Cp(V0,M0) → X0. Moreover, since

both ker(fm) and coker(fm) have dimension O(mn−3), both kernel and cokernel of ψl =

⊕l
m=0fm ·sl−m have dimension O(ln−2). Hence the Hilbert polynomials of both kernel and

cokernel of the structure morphism φ# : OX0 → φ∗OCp(V0,M0) have degree at most n− 2.

This implies that φ is an isomorphism outside a codimension 2 subset. In particular, φ is

birational.

From the above properties of φ, we have that Cp(V0,M0) is the normalization of X0.

Since X0 is Cartier in X and Cp(V0,M0) is klt, by inversion of adjunction we know that

(X ,X0) is plt. But then X0 itself is normal (see, e.g., [KM98, Proposition 5.51]) and hence

φ is an isomorphism. Since V∞,0 is the infinity section of X0, we know that X0 (and hence

X ) is smooth at the generic point of V∞,0. Therefore, the different divisor of V∞ in X
has no component of V∞,0. In particular, (KX/A1 +V∞)|V∞ = KV∞/A1 +Δtc. Hence from

the discussion of the “if” parts, we know Fut(X ,(1− r
n)V∞;L) = Fut(V ,Δtc;LV). Hence

K-semistability (resp. K-polystability) of (X,(1− r
n)V∞) implies K-semistability (resp. K-

polystability) of (V,Δ). We finish the proof.

Lemma 2.12. Let X be an n-dimensional normal projective variety. Let V be a prime

divisor on X. Assume that (X,V ) is plt and −KX ∼Q (1+r)V is ample for some 0< r≤ n.

Let M ∼ V |V be a Q-Cartier Q-divisor on V. Then there exists a special test configuration

(X ,(1− r
n)V ;L) of (X,(1− r

n)V ) such that the central fiber (X0,V0) is isomorphic to

(Cp(V,M),V∞) and Fut(X ,(1− r
n)V ;L) = 0.

Proof. The construction is obtained by degeneration to normal cone. We will use the

filtration language [BX19, Section 2.3] to construct X . Let R :=⊕∞
m=0H

0(X,OX(mV )) be

the graded ring of X. Let Rm be the mth graded piece of R. Consider the N-filtration F of

R defined as

FλRm =H0(X,OX((m−λ)V ))⊂H0(X,OX(mV )) =Rm for any λ ∈ Z≥0.

Note that FλRm = Rm for any nonpositive integer λ. The Rees algebra of F is defined

as

Rees(F) :=
∞⊕

m=0

∞⊕
λ=−∞

t−λFλRm ⊂R[t, t−1].

The associated graded ring of F is defined as

grFR :=
∞⊕

m=0

∞⊕
λ=−∞

grλFRm, where grλFRm :=
FλRm

Fλ+1Rm
.

Note that the gradings of Rees(F) and grFR are both given by m. In our set-up, it is easy

to see that both Rees(F) and grFR are finitely generated. Let X := ProjA1Rees(F). Then

from [BX19, Section 2.3.1] we know that X0
∼=Proj grFR. We will show that X0

∼=Cp(V,M).

When λ≤−1, we know FλRm =Fλ+1Rm =Rm so grλFRm =0. When λ≥m+1, we know

FλRm =Fλ+1Rm = 0 so grλFRm = 0. Let us assume λ ∈ [0,m]∩Z. By Kawamata–Viehweg
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vanishing, we know H1(X,OX((m−λ−1)V )) = 0 since (m−λ−1)V −KX = (m−λ+r)V

is ample. Hence from the proof of Proposition 2.10, we have a canonical isomorphism

grλFRm =H0(X,OX((m−λ)V ))/H0(X,OX((m−λ−1)V ))∼=H0(V,OV (�(m−λ)M�)).

Thus grFR
∼=⊕∞

m=0⊕∞
i=0H

0(V,OV (�mM�)) ·si as graded rings, so X0
∼= Cp(V,M).

So far we have constructed a variety X which provides a special degeneration from X to

X0
∼=Cp(V,M). Let V be the Zariski closure of V ×(A1 \{0}) in X . Denote the graded ideal

of V in X by IV ⊂R. Then it is clear that IV,m =H0(X,OX((m−1)V )). By [BX19, Section

2.3.1], the graded ideal of the scheme-theoretic central fiber V0 is given by the initial ideal

in(IV ) where

in(IV ) :=
∞⊕

m=0

∞⊕
λ=−∞

im(FλRm∩ IV → grλFRm)⊂ grFR.

We may restrict to λ ∈ [0,m]∩Z. Then it is easy to see that

im(FλRm∩ IV → grλFRm) =

{
grλFRm if λ≥ 1,

0 if λ≤ 0.

Thus in(IV ) = ⊕∞
m=0 ⊕m

λ=1 gr
λ
FRm. This implies that V0

∼= V∞ under the isomorphism

X0
∼=Cp(V,M). Therefore, (X ,(1− r

n)V ;L) is a special test configuration of (X,V ;L) where

L :=−l(KX/A1 +(1− r
n)V) is Cartier for some l ∈Z>0. Since the λ-grading on grFR/in(IV )

is trivial, we know that (V ,Δtc;L|V) is a trivial test configuration of (V,Δ;L|V ) where

Δtc is the Zariski closure of Δ× (A1 \ {0}) in V . Since X0 is normal and Cartier in X ,

we know that X is smooth at the generic point of V0. Then by normality of V , we know

(KX/A1 +V)|V =KV/A1 +Δtc. Hence, by exactly the same computation in the proof of “if”

part of Proposition 2.11(1), we know

Fut(X ,(1− r
n)V ;L) = Fut(V ,Δtc;L|V) = 0.

The proof is finished.

§3. Fujita’s characterization

In this section, we make a few observations on the restrictions on Q-Fano varieties X

with α(X) = dim(X)
dim(X)+1 that are not K-stable. We first have the following characterization,

essentially due to Fujita.

Theorem 3.1. (cf. [Fuj19a]) Let X be an n-dimensional Q-Fano variety. Assume that

α(X) = n/(n+1) and X is not K-stable. Then there exists a birational morphism σ : (F ⊂
Y )→ (x∈X) extracting a Kollár component F over x∈X, such that the following properties

hold:

(1) AX(F ) = n, τ(F ) = ε(F ) = n+1.

(2) The divisor σ∗(−KX)− (n+1)F is semiample but not big. The ample model π : Y →Z

of σ∗(−KX)− (n+1)F satisfies that all fibers of π are one-dimensional and a generic

fiber is P1. Moreover, π|F : F → Z is an isomorphism.

(3) α(F,ΔF ) ≥ 1 where ΔF is the different. Moreover, ordF is a minimizer of the

normalized volume function v̂ol on ValX,x.
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In particular, x ∈X is a weakly exceptional singularity.

Proof. Since X is not K-stable, by Theorem 2.3, there exists a dreamy prime divisor

F over X such that β(F ) ≤ 0. Meanwhile, [FO18, Lemma 3.3] implies that AX(F ) ≥
α(X)τ(F ) = n/(n+1)τ(F ). Then by [Fuj19a, Lemma 3.1, Proposition 3.2 and 3.3] we

know that there exists a proper birational morphism σ : Y →X with Y normal such that

F =Exc(σ) is a prime divisor on Y, −F is σ-ample, σ(F ) is a closed point x∈X, and parts

(1) and (2) hold. Moreover, part (3) on α(F,ΔF )≥ 1 implies that (F,ΔF ) is klt, that is, F

is a Kollár component. Thus it suffices to show that part (3) holds.

Finally we prove part (3). From part (2), we know that F ∼= Z are both normal. Denote

by ΔF , the different divisor of F in Y. Let B ∼Q −KF −ΔF be any effective Q-divisor on

F. We denote by BZ := (π|F )∗B. From parts (1) and (2), we know that

(−KY −2F )|F = (σ∗(−KX)− (n+1)F )|F =−(n+1)F |F .

Hence −KF −ΔF = (−KY −F )|F = −nF |F . Since π|F : F → Z is an isomorphism, we

know that

σ∗(−KX)− (n+1)F ∼Q

n+1

n
π∗(π|F )∗(−KF −ΔF )∼Q

n+1

n
π∗BZ .

It is clear that π∗BZ does not contain F as a component. Thus BX := σ∗π
∗BZ satisfies

that BX ∼Q −n/(n+1)KX and ordF (BX) = n. Since α(X) = n/(n+1), the pair (X,BX)

is log canonical. We know

σ∗(KX +BX) =KY − (n−1)F +π∗BZ +nF =KY +F +π∗BZ .

Hence (Y,F +π∗BZ) is log canonical. By adjunction, (F,ΔF +B) is log canonical since

B = (π∗BZ)|F . By choosing B whose support contains a log canonical center of (F,ΔF ), we

see that (F,ΔF ) is klt. Hence inversion of adjunction implies that F is a Kollár component

over x ∈X and α(F,ΔF )≥ 1.

By part (2) we know that

(σ∗(−KX)− (n+1)F )n = (−KX)n− (n+1)n(−1)n−1(Fn) = 0.

It is clear that volX,x(ordF ) = (−1)n−1(Fn). From part (1), we know that AX(F ) =

n. Thus we get (−KX)n = (1+ 1
n)

nv̂olX,x(ordF ). Since α(X) = n/(n+1), Theorem 1.2

implies that X is K-semistable. Hence [Liu18, Theorem 21] implies that ordF is a divisorial

minimizer of the normalized volume function v̂ol on ValX,x. Thus the proof of part (3) is

finished.

A quick consequence of the proof of Theorem 3.1 is that every Q-Fano variety X satisfying

α(X)=n/(n+1) that is not K-stable always specially degenerates to a K-polystableQ-Fano

variety X0 with α(X0) = 1/(n+1).

Corollary 3.2. Let X be an n-dimensional Q-Fano variety. Assume that α(X) =

n/(n+1) and X is not K-stable. Then there exists a special test configuration (X ,L) of X

such that Fut(X ;L) = 0. Moreover, X0 is K-polystable and α(X0) = 1/(n+1). In particular,

if n≥ 2 then X is not K-polystable.

Proof. Denote by aj := {f ∈ OX,x | ordF (f) ≥ j} for j ∈ Z. From the proof of [Liu18,

Lemma 33], we know that there exists a special test configuration (X ;L) such that
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Fut(X ;L) = 0 and X0
∼= Proj(⊕∞

j=0aj/aj+1)[s]. Since F is a Kollár component over x ∈X,

by adjunction of plt pairs we know that F |F is a Q-divisor on F that is well-defined

up to Z-linear equivalence. Moreover, if {F |F } =
∑

i
ai

bi
Bi for ai < bi coprime positive

integers and Bi prime divisors on F, then (using the same notation as in Theorem 3.1)

ΔF = bi−1
bi

Bi (see, e.g., [K+ 92, Section 16]). By [LX20, Section 2.4] or Proposition 2.10,

we know that ⊕∞
j=0aj/aj+1

∼= ⊕∞
m=0H

0(F,OF (�−mF |F �)) as graded rings which implies

X0
∼= Cp(F,(−F )|F ). Since α(F,ΔF ) ≥ 1, Theorem 1.2 implies that (F,ΔF ) is K-stable.

Hence Proposition 2.11 implies that X0 is K-polystable since −KF −ΔF ∼Q −nF |F . To
show α(X0) = 1/(n+1), we notice that α(X0) ≥ 1/(n+1) by [FO18, Theorem 3.5], and

α(X0)≤ 1/(n+1) since −KX0 ∼Q (n+1)F∞. Hence the proof is finished.

The equality α(X)+α(X0) = 1 here is not a coincidence, as can be seen by the following

statement:

Proposition 3.3. Let f : X → C, g : Y → C be two Q-Gorenstein flat families of Q-

Fano varieties (i.e., all geometric fibers are integral, normal and Q-Fano, KX/C and KY/C

are both Q-Cartier) over a smooth pointed curve 0 ∈ C. Let X0 = f−1(0) and Y0 = g−1(0).

Assume that there exists an isomorphism ρ :X\X0

∼=−→ Y \Y0 over the punctured curve C\0
and α(X0)+α(Y0)> 1. Then ρ induces an isomorphism X ∼= Y over C.

Proof. By assumption X is birational to Y over C. Let m be a sufficiently large

and divisible integer and let D1 ∈ |−mKX0 |, D2 ∈ |−mKY0 | be general divisors in the

corresponding linear systems. Choose effective divisors DX,1 ∼Q −mKX , DY,2 ∼Q −mKY

not containing X0 or Y0 such that DX,1|X0 =D1 and DY,2|Y0 =D2. Let DY,1 and DX,2 be

their strict transforms to the other family. Let DX = α(Y0)
α(X0)+α(Y0)

DX,1+
α(X0)

α(X0)+α(Y0)
DX,2

and similarDY = α(Y0)
α(X0)+α(Y0)

DY,1+
α(X0)

α(X0)+α(Y0)
DY,2. ApparentlyDY is the strict transform

of DX . As D1 is a general member of a very ample linear system and DX,2|X0 ∼Q −mKX0 ,

by the definition of alpha invariant we see that (X0,
1
mDX |X0) is klt. Similarly (Y0,

1
mDY |Y0)

is klt. The result then follows from the next lemma.

Lemma 3.4. Let f :X →C, g : Y →C be Q-Gorenstein flat families of Q-Fano varieties

over a smooth pointed curve 0 ∈ C with central fibers X0 and Y0. Let DX ∼Q −KX ,

DY ∼Q −KY be effective Q-divisors not containing X0 or Y0. Assume that there exists

an isomorphism

ρ : (X,DX)×C C◦ ∼= (Y,DY )×C C◦

over C◦ = C\0, that (X0,DX |X0) is klt and (Y0,DY |Y0) is lc. Then ρ extends to an

isomorphism (X,DX)∼= (Y,DY ).

Proof. This follows from the exact same proof of [LWX19, Theorem 5.2] (see also [BX19,

Proposition 3.2]).

Remark 3.5. When the total spaces have terminal singularities, Proposition 3.3 is

proved by Cheltsov [Che09, Theorem 1.5].

Proof of Theorem 1.5. Boundedness follows from [Jia17a]; openness follows from [BL18b,

Theorem B]; separatedness follows from Proposition 3.3; the existence of coarse moduli

space is due to Keel and Mori [KM97].
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We believe such moduli spaces are interesting and deserve further investigation. See

[BX19, Corollary 1.4] for an analogous result on moduli of uniformly K-stable Q-Fano

varieties.

We also give an alternative proof of the finiteness of automorphism group in Theorem

1.5 without using stacks.

Corollary 3.6. Let X be a Q-Fano variety such that α(X)> 1
2 , then Aut(X) is finite.

Proof. Assume that Aut(X) is not finite, then it contains Gm or Ga. Let X1 = X2 =

X ×A1. If Gm ⊆ Aut(X), then it induces an isomorphism X1 ×A1 (A1 \ {0}) ∼−→ X2 ×A1

(A1 \ {0}) =X× (A1 \ {0}) through the diagonal action of Gm. Since α(X) > 1
2 , this map

extends to an isomorphism of X1 and X2 over A1 by Proposition 3.3. Thus the map Gm →
Aut(X) extends to a map A1 → Aut(X), a contradiction. Similarly, if Ga ⊆ Aut(X), then

the inclusion A1 \ {0} ⊆ Ga given by t �→ t−1 induces an automorphism of X × (A1 \ {0})
over A1 \{0} which extends to an automorphism over A1, hence Ga → Aut(X) extends to

a map P1 →Aut(X), again a contradiction.

Another quick consequence of Theorem 3.1 is a refinement of Tian’s criterion in small

dimension. Note that the dimension 2 case was proved by Fujita [Fuj].

Corollary 3.7. Let X be a Q-Fano variety such that α(X) = n/(n+1) where n =

dimX. Assume that either n = 2 or n = 3 and X has terminal singularities. Then X is

K-stable.

Proof. By Theorem 3.1, it suffices to show that under the given assumptions, X cannot

have a weakly exceptional singularity whose corresponding Kollár component has log

discrepancy n. For 3-fold terminal singularities, this follows from [Pro00, Corollary 4.8].

In the surface case, it is well known (and not hard to verify) that a klt surface singularity is

weakly exceptional if and only if the dual graph of the exceptional divisors on the minimal

resolution has a fork, in which case the Kollár component lives on the minimal resolution and

corresponds to the central fork. In particular, the log discrepancy of the Kollár component

is at most 1 and does not satisfy our requirement.

From Corollary 3.2, we see that K-semistable Q-Fano varieties with smallest α-invariant

naturally occur in studying non-K-stable Q-Fano varieties with largest α-invariant. In

[Jia17b, Theorem 1.2], Jiang showed that a K-semistable Fano manifold X with α(X) =
1

dim(X)+1 is isomorphic to projective space. The following result provides a characterization

of possibly singular such X.

Theorem 3.8. Let X be an n-dimensional K-semistable Q-Fano variety satisfying that

α(X)= 1/(n+1). Then there exists an (n−1)-dimensional K-polystable log Fano pair (V,Δ)

where Δ has standard coefficients, and M an ample Q-Cartier Q-divisor on V satisfying

nM ∼Q −KV −Δ and ΔM = Δ, such that Cp(V,M) is the unique K-polystable special

degeneration of X. In addition, α(Cp(V,M)) = 1/(n+1).

Proof. Let X ′ be the unique K-polystable special degeneration of X whose existence

is proved in [LWX18, Theorem 1.3]. Then we have α(X ′) ≤ α(X) = 1/(n+1) by [BL18b,

Theorem B] and α(X ′)≥ 1/(n+1) by [FO18, Theorem 3.5]. Thus α(X ′) = 1/(n+1). Then

by [Jia17b, Proposition 3.1], there exists a prime divisor V on X ′ such that (X ′,V ) is plt

and −KX′ ∼Q (n+1)V . Let M ∼ V |V be a Q-Cartier Q-divisor on V. Thus Lemma 2.12
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implies that there exists a special test configuration (X ′;L′) of X ′ such that the central

fiber X ′
0 is isomorphic to Cp(V,M) and Fut(X ′;L′) = 0. Since X ′ is K-polystable, we have

X ′ ∼=X ′
0
∼=Cp(V,M). Denote Δ :=DiffV (0), then it is clear that Δ has standard coefficients,

Δ =ΔM , and

−KV −Δ= (−KX −V )|V ∼Q nV |V = nM.

Since Cp(V,M) ∼= X ′ is K-polystable, the log Fano pair (V,Δ) is also K-polystable by

Proposition 2.11. Hence we finish the proof.

The next result shows that in Theorem 3.1 the different divisor ΔF never vanishes. Note

that Proposition 3.9 and Lemma 3.10 are not needed in the rest of the paper.

Proposition 3.9. Assume n ≥ 2. Then with the notation of Theorem 3.1, we have

ΔF �= 0.

Proof. Assume to the contrary that ΔF = 0. Then by Theorem 3.1 and Lemma 3.10,

we know that X ∼= Cp(F,OF (−F )) and α(X) ≤ 1/(n+1) which contradicts to α(X) =

n/(n+1).

Lemma 3.10. Let X be a Q-Fano variety of dimension n ≥ 2. Let σ : Y → X be a

proper birational morphism that provides a Kollár component F with x= σ(F ). Assume that

ε(F ) = τ(F )>AX(F ). If OY (F ) is locally free in codimension 2, then X ∼=Cp(F,OF (−F )).

In particular, ε(F ) =AX(F )+1 and α(X)≤ 1
AX(F )+1 .

Proof. Let D := σ∗(−KX)− ε(F ) ·F . By definition we know that D is a nef R-divisor
that is not big. Since ε(F )>AX(F )> 0, −KY −F = σ∗(−KX)−AX(F ) ·F is ample. Hence

the cone theorem implies that NE(Y ) is polyhedral, so ε(F )∈Q. By Shokurov’s basepoint-

free theorem and Kawamata–Viehweg vanishing theorem, the Q-divisor D is semiample and

defines an algebraic fiber space π : Y →Z. Since −KY −F =D+(ε(F )−AX(F ))F is ample,

F is a π-ample Q-Cartier divisor. Following the same argument as in [Fuj19a, Proposition

3.3], the fibers of π are one-dimensional, π is a generic P1-fibration, and π|F : F → Z is an

isomorphism. In particular, −KY −2F has zero intersection number with a generic fiber of

π, hence −KY −2F =D which yields ε(F ) =AX(F )+1.

Let F 0 be the biggest open subset of the smooth locus Freg of F such thatOY (F ) is locally

free along F 0. By assumption we have codimFF \F 0 ≥ 2. Denote by Y 0 := Y \ (F \F 0)

with i : Y 0 ↪→ Y and j : F 0 ↪→ F the open immersions, hence codimY Y \Y 0 ≥ 3. Denote by

Z0 := π(F 0). Since OY (F ) is locally free along F 0, we have the short exact sequence

0→OY 0((m−1)F 0)→OY 0(mF 0)→OF 0(mF 0|F 0)→ 0. (3.1)

By taking i∗, we get an exact sequence

0→ i∗OY 0((m−1)F 0)→ i∗OY 0(mF 0)→ j∗OF 0(mF 0|F 0)→R1i∗OY 0((m−1)F 0). (3.2)

Since Y 0 and F 0 are open subsets of Y and F, respectively, whose complements have

codimension at least 2, we have these natural isomorphisms

i∗OY 0(mF 0)∼=OY (mF ), j∗OF 0(mF 0|F 0)∼=OF (mF |F ).

From the assumption that F is Cartier in codimension 2, we have that OF (mF |F ) is a

well-defined Q-Cartier Weil divisorial sheaf on F satisfying OF (mF |F ) ∼=OF (F |F )[m]. By
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[KM98, Corollary 5.25] we have that OY (mF ) is Cohen–Macaulay for any m ∈ Z. Since
codimY Y \Y 0 ≥ 3, the local cohomology long exact sequence implies that

R1i∗OY 0((m−1)F 0)∼=H2
Y \Y 0(Y,OY ((m−1)F )) = 0.

Hence the exact sequence (3.2) becomes

0→OY ((m−1)F )→OY (mF )→OF (mF |F )→ 0. (3.3)

Let M be a Q-Cartier Weil divisor on F representing OF (−F ), then M |F 0 is Cartier

on F 0. Denote by MZ := (π|F )∗M . After tensoring (3.3) by OY (m ·π∗MZ) and taking the

reflexive hull, we get an exact sequence

0→OY ((m−1)F +m ·π∗MZ))→OY (m(F +π∗MZ))→OF → 0. (3.4)

The reason that (3.4) is exact can be deduced as follows: we first tensor (3.1) by OY 0(m ·
π∗MZ) (since OY 0(m ·π∗MZ) is locally free along F 0, the exactness remains), then taking

i∗ (since π∗MZ is a Q-Cartier Weil divisor on Y, we again use [KM98, Corollary 5.25] to

show that OY ((m−1)F +m ·π∗MZ)) is Cohen–Macaulay); then the argument above works

in a similar way.

Now applying π∗ to the exact sequence (3.4) when m= 1, we get an exact sequence

0→ π∗OY (π
∗MZ)→ π∗OY (F +π∗MZ)→OZ →R1π∗OY (π

∗MZ). (3.5)

It is clear that KY ∼Q,π −2F is π-anti-ample, hence Kawamata–Viehweg vanishing

implies that R1π∗OY (π
∗MZ) = 0. The projection formula yields (π∗OY (π

∗MZ))|Z0
∼=

OZ0(MZ). As abuse of notation we also denote the open immersion Z0 ↪→ Z by j. Hence

π∗OY (π
∗MZ)∼= j∗ ((π∗OY (π

∗MZ))|Z0)∼= j∗OZ0(MZ)∼=OZ(MZ),

where the first equality follows from the fact that OY (π
∗MZ) satisfies S2-condition and π

is flat. As a result, (3.5) becomes

0→OZ(MZ)→ π∗OY (F +π∗MZ)→OZ → 0. (3.6)

Hence π∗OY (F +π∗MZ) is an extension of OZ by OZ(MZ). It is clear that

Ext1(OZ ,OZ(MZ))∼=H1(Z,OZ(MZ))∼=H1(F,OF (M)).

By assumption we have that

KF = (KY +F )|F ∼Q (σ∗KX +AX(F ) ·F )|F =−AX(F ) ·M.

Hence M −KF ∼Q (AX(F )+1)M is ample. Then Kawamata–Viehweg vanishing yields

H1(F,OF (M)) = 0. So the exact sequence (3.6) splits, that is, π∗OY (F + π∗MZ) ∼=
OZ(MZ)⊕OZ . By restricting to Z0, tensoring with OZ0(−MZ) and taking i∗, we have

π∗OY (F )∼=OZ ⊕OZ(−MZ).

Denote by Y ′ := π−1(Z0). From [Fuj19a, Proposition 3.3] and [LZ18, Lemma 5] we know

that π0 = π|Y ′ : Y ′ → Z0 is a smooth P1-fibration. Since π0 admits a section, it is a P1-

bundle. As a consequence,

∞⊕
m=0

(π0)∗OY ′(mF 0)∼=
∞⊕

m=0

Symm
(
(π0)∗OY ′(F 0)

)
. (3.7)
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Applying j∗ to (3.7) yields

∞⊕
m=0

π∗OY (mF )∼=
∞⊕

m=0

j∗ Symm
(
(π0)∗OY ′(F 0)

)
∼=

∞⊕
m=0

j∗

(
m⊕

k=0

OZ0(−kMZ)

)

∼=
∞⊕

m=0

m⊕
k=0

OZ(−kMZ).

Since F is π-ample, we have

Y ∼= ProjZ

∞⊕
m=0

π∗OY (mF )∼= ProjZ

∞⊕
m=0

m⊕
k=0

OZ(−kMZ).

Hence (Y,F ) is isomorphic to the canonical blow-up of the projective orbifold cone

Cp(F,OF (M)) at the vertex, which implies X ∼= Cp(F,OF (M)).

Since−KF ∼Q AX(F ) ·M , we have that−KX ∼Q (AX(F )+1)F∞ where F∞ is the section

of the projective orbifold cone at infinity. Hence α(X)≤ 1
AX(F )+1 .

§4. Log canonical thresholds on general complete intersections

Let r ≥ 1, n≥ 3 and d1, . . . ,dr ≥ 2 be integers. In this section, we study the (global) log

canonical threshold of the hyperplane class H on a general smooth complete intersection

X = F1∩· · ·∩Fr ⊆ Pn+r of codimension r and dimension n, where each Fi is a hypersurface

of degree di. In particular, we construct (Corollary 4.11) weakly exceptional singularities

with the properties described in Theorem 3.1 and also prove Theorem 1.4. First let us

specify the generality condition we will consider. For this we recall the regularity condition

introduced by Pukhlikov (see, e.g., [Puk18] or [Puk13, Section 3.2]). Let x∈X and let fi be

the defining equation of Fi. Choose a system of affine linear coordinates z∗ = (z1, . . . , zn+r)

with origin at x and write fi as

fi = qi,1+ qi,2+ · · ·+ qi,di ,

where qi,j = qi,j(z∗) is homogeneous of degree j. We rearrange the d=
∑r

i=1 di polynomials

qi,j ( 1≤ i≤ r, 1≤ j ≤ di) into a sequence q1, . . . , qd such that qi,j precedes qi′,j′ if and only

if j < j′ or j = j′ and i < i′. In particular, degq1 ≤ ·· · ≤ degqd. Since X is smooth, the linear

subspace Σx = (q1 = · · ·= qr = 0) has codimension r and can be identified with the tangent

space of X at x. By the following lemma, we may assume that d ≥ n+1 throughout the

remaining part of the section.

Lemma 4.1. Let X ⊆ Pn+r be a smooth Fano complete intersection of codimension r,

dimension n and index s(i.e., −KX ∼ sH). Assume that s ≥ r+1, then lct(X; |H|Q) = 1

where H is the hyperplane class.

Proof. The proof is similar to the hypersurface case in [Che01]. Let D ∼Q H be an

effective divisor on X. By [Suz17, Proposition 2.1], there exists a closed subset Z ⊆ X

of dimension at most r− 1 such that multxD ≤ 1 for all x ∈ X\Z. In particular, (X,D)

is lc outside Z. Let W ⊆ X be a linear space section of X of codimension r that is

disjoint from Z. Let H1, . . . ,Hr+1 ⊆X be general hyperplane sections containing W and let
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Δ = (1− ε)D+ r
r+1(H1 + · · ·+Hr+1) where 0 < ε � 1. Then (X,Δ) is klt outside Z ∪W

by construction. As −(KX +Δ) ∼Q (s− r− 1+ ε)H is ample, Nklt(X,Δ) is connected by

Kollár–Shokurov’s connectedness lemma. Since multWΔ≥ r, W is already a non-klt center

of (X,Δ); hence since Z is disjoint from W, we deduce that (X,Δ) is klt along Z and it

follows that (X,(1− ε)D) is also klt along Z. Hence (X,D) is lc and lct(X; |H|Q)≥ 1. The

other direction of the inequality is obvious.

Definition 4.2. Let k = min{d,n+ r− 2}. The complete intersection X is said to be

Pukhlikov regular (or simply P-regular) at x, if for any linear form h = h(z∗) not in the

span of q1, . . . , qr, the sequence h,q1, . . . , qk is a regular sequence in OPn+r,x. We say that X

is P-regular if it is P-regular at every x ∈X.

Note that when X is a Fano complete intersection of index one, this is exactly the P-

regularity condition introduced by Pukhlikov [Puk18]. We now state the generality condition

we need.

Definition 4.3. Let 0≤m< n be an integer. We say that X is m-strongly P-regular

if it is P-regular at x and for any linear form h = h(z∗) not in the span of q1, . . . , qr, the

algebraic set Z = (h= q1 = · · ·= qm = 0)∩X is irreducible and reduced. We say that X is

m- strongly P-regular if it is m-strongly P-regular at every x ∈X.

This can be viewed as a generalization of the conditions introduced in [Puk05, Section

2.1]. Clearly if X is m-strongly P-regular then it is also m′-strongly P-regular for all m′ <m.

Note also that if n≥ 2r+3 and X is P-regular, then X is at least r -strongly P-regular as

by Lefschetz hyperplane theorem, the cycle Z = (h= q1 = · · ·= qr = 0)∩X is automatically

irreducible and reduced.

Assume that the complete intersection X is P-regular at x. Following Pukhlikov, we

further introduce the following setup. For each 1≤ i≤ r and 1≤ j ≤ di, let

fi,j = qi,1+ · · ·+ qi,j

be the truncated equation of the hypersurface Fi at x. Let f̄1, . . . , f̄d be the rearrangement

of all the fi,j corresponding to q1, . . . , qd. Let ei =degqi =deg f̄i. Let 1≤ �≤ k :=min{d,n+
r− 2} be an integer and let u,v be such that q� = qu,v. We define the �th slope β� to be
v+1
v (note that v = e�) if v < du and qu,v+1 belongs to the sequence q1, . . . , qk; otherwise

(including when � > k) we set β� = 1. We also call the linear system of divisors

Λ� =

{ ∑
1≤i≤�,βi>1

f̄isi |si = si(z∗) is homogeneous, degsi = e�−ei

}
⊆ |OX(e�)|

the �th hypertangent linear system of X at x. If L is a hyperplane section of X at x that does

not contain the tangent space Σx of X, we also refer to ΛL,� :=Λ�|L as the �th hypertangent

linear system of L at x. By the P-regularity condition, we have multxΛL,� = e�+1 when

β� > 1 and in this case it is not hard to see that as Bs(ΛL,�) is the intersection of L with all

(qi = 0) for which i≤ � and βi > 1, the tangent cone of Bs(ΛL,�) is a complete intersection

of codimension λ� := #{i ≤ � |βi > 1} in P(L∩Σx). Therefore codimLBs(ΛL,�) = λ� in a

neighborhood of x and

multxBs(ΛL,�) =
∏

1≤i≤�,βi>1

(ei+1) =
∏

1≤i≤�,βi>1

eiβi
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(for more details, see [Puk13, Section §3]). If in addition X is �-strongly P-regular at x,

then we also have Bs(ΛL,�) = L∩ (f̄1 = · · ·= f̄� = 0) and

degBs(ΛL,�) = degX ·
∏

1≤i≤�,βi>1

ei

and hence

multx
deg

Bs(ΛL,�) =
1

degX

∏
1≤i≤�,βi>1

βi =
1

degX

∏
1≤i≤�

βi. (4.1)

It is also clear that λk = k− r.

We can then state the lower bound of log canonical threshold on m-strongly P-regular

complete intersections.

Lemma 4.4. Let m≥ 1 be an integer such that βm > 1 and let X ⊆ Pn+r be an (m−1)-

strongly P-regular complete intersection, then with the above notations, we have

lct(X; |H|Q)≥min

⎧⎨⎩1,
2

degX

∏
i≥1,i 
=m

βi

⎫⎬⎭ .

Proof. The proof is similar to that of [Puk05, Theorem 2], based on the technique of

hypertangent divisors. Denote by c the right hand side of the above inequality. Let D∼Q H

be an effective divisor on X. It suffices to show that (X,cD) is lc. Since c ≤ 1, the non-lc

center of the pair (X,cD) has codimension at least 2. Let x ∈X be a point in the non-lc

center of (X,cD). Let π : X̃ →X be the blowup of x, let E be the exceptional divisor and

let D̃ be the strict transform of D. Then by (the proof of) [Puk13, Section 7, Proposition

2.3] (applied to a general surface section of (X,cD)), there exists a hyperplane Π ⊆E such

that

multx(cD)+multΠ(cD̃)> 2. (4.2)

Let L be the linear system of hyperplane sections of X whose strict transform contains Π

and let L∈L be a general member. Note that L is spanned by the tangent hyperplanes of X

at x and another hyperplane. Thus by the P-regularity condition, Bs(L) has codimension at

least r+1≥ 2 in X and the divisor L ·D⊆L is well defined. By (4.2), we have multx(cD ·L)>
2 or

multx
deg

(D ·L)> 2

c ·degX . (4.3)

Let ΛL,� be the �th hypertangent linear system of L at x. Since X is (m− 1)-strongly

P-regular, the cycle Z� = Bs(ΛL,�) is irreducible and reduced when 1≤ �≤m−1.

By (4.3), there exists an irreducible component W1 of D ·L such that

multx
deg

W1 ≥
multx
deg

(D ·L)> 2

c ·degX ≥ 2

degX

and hence by (4.1) with � = 1, we have W1 �= Z1 (recall that β1 = 2 and indeed we have

β� ≤ 2 for all �). It follows that W1 is not contained in the divisor H1 = ΛL,1 (assuming
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m−1≥ 1) and we have a well-defined codimension 2 cycle W1 ·H1 in L with

multx
deg

(W1 ·H1)≥
2

1
·multx

deg
W1 = β1 ·

multx
deg

W1

as multxH1 = 2 and H1 ∼H. Let W2 be an irreducible component of W1 ·H1 such that

multx
deg

W2 ≥
multx
deg

(W1 ·H1)>
2β1

c ·degX ≥ 2β1

degX
.

Assume that β2 > 1, then by (4.1) again we have W2 �= Z2 (assuming m−1 ≥ 2). Since

W2 is already contained in H1 and L we deduce that W2 is not contained in a general

divisor H2 ∈ ΛL,2, and in this case we get a codimension 3 cycle W3 in L as an irreducible

component of W2 ·H2 with

multx
deg

W3 ≥
multx
deg

(W2 ·H2)≥ β2 ·
multx
deg

W2 >
2β1β2

c ·degX . (4.4)

If β2 = 1, we simply set W3 = W2 and the inequality (4.4) clearly still holds. Iterating

this process, we find an irreducible cycle Wm of codimension λm = λm−1+1 (where λ� :=

#{i≤ � |βi > 1}) in L with

multx
deg

Wm >
2β1β2 · · ·βm−1

c ·degX .

By the P-regularity condition, Z� has codimension λ� in a neighbourhood of x, hence if

βm+1 > 1 (so that λm+1 = λm+1) then Wm is not contained in Bs(ΛL,m+1) and we may

repeat the construction above to get an irreducible cycle Wm+1 (of codimension λm+1 in

L) in the support of Wm ·Hm+1 (where Hm+1 is a general divisor in ΛL,m+1) such that

multx
deg

Wm+1 >
2β1β2 · · ·βm−1βm+1

c ·degX .

If βm+1 = 1 then we simply set Wm+1 = Wm and the above inequality still holds for

obvious reason. Iterate this process again and eventually we obtain an irreducible cycle Wk

(where k =min{d,n+ r−2}) such that

multx
deg

Wk >
2β1β2 · · ·βm−1βm+1 · · ·βk

c ·degX .

But we always have multx
deg W ≤ 1 for any subvarieties Z ⊆X, hence

c >
2

degX

∏
i≥1,i 
=m

βi

(recall that βi = 1 when i > k), a contradiction. Therefore, (X,cD) is lc at every x ∈X.

Our remaining task is to show that a general complete intersection of given degree is

m-strongly P-regular for suitable m so that we can apply Lemma 4.4. First we deal with

the P-regularity condition.

Lemma 4.5. Let r≥ 1, n≥ 2r+3 and d1, . . . ,dr ≥ 2 be integers. Then a general complete

intersection X ⊆ Pn+r of hypersurfaces of degrees d1, . . . ,dr is P-regular.

Proof. This should be well known to experts and is essentially a direct consequence of

the work of Pukhlikov [Puk18, Section 4]. For reader’s convenience we sketch the proof. Let
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P = Pn+r. Let U → B ⊆
∏r

i=1PH
0(P,OP(di)) be the universal family of smooth complete

intersections of given type and U → P be the natural projection. It suffices to show that

for a smooth complete intersection containing x to violate the P-regularity at x imposes at

least n+1 conditions on the coefficients of q1, . . . , qd for any x ∈ P, since then the locus of

irregular points has codimension at least n+1 in U and cannot dominate B. For this we

may fix the coefficients of q1, . . . , qr and further assume that d ≥ n+ r− 2 by introducing

auxiliary terms in the sequence q1, . . . , qd.

Let p1, . . . ,pn−2 be the sequence obtained by restricting qr+1, . . . , qn+r−2 to TxX = (q1 =

· · ·= qr = 0)∩TxP and let mi = degpi ≥ 2. Let Π = P(TxX). Then the P-regularity of X at

x is equivalent to saying that every hyperplane section of W = (p1 = · · · = pn−2 = 0) ⊆Π

is zero dimensional. There are now two cases to consider. If all the pi vanish on a line, it

would require at least

n−2∑
i=1

(mi+1)−2(n−2) =
r∑

i=1

ai(ai+1)

2
− (n+ r−2) (4.5)

conditions on the coefficients of pi (where ai is the largest subscript j such that qi,j appears

in q1, . . . , qn+r−2). As
∑r

i=1ai = n+r−2, an elementary argument shows that if n≥ 2r+3

then this number is ≥ n+1. On the other hand, for a fixed hyperplane Σ ⊆ Π we claim

that for W ∩Σ to contain a component of positive dimension that is not a line would

require at least 2n conditions on the coefficients of pi. As the hyperplane Σ varies in an

(n−1)-dimensional family, this will prove the statement we want.

Let p′i = pi|Σ and let 1 ≤ � ≤ n− 2. To verify the claim, it suffices to consider the case

where p′1, . . . ,p
′
�−1 form a regular sequence and p′�|B = 0 for some component B of (p′1 =

· · ·= p′�−1 = 0)⊆Σ whose linear span 〈B〉 is different from a line. If m� = 2, then �≤ r and

as dimB = n− �−1, we see that (see, e.g., Lemma 4.13) this already imposes at least(
n− �+1

2

)
≥
(
n− r+1

2

)
≥ 2n (4.6)

conditions on p′� (given that n≥ 2r+3). Similarly if m� =3 and �≤ r+1, then the vanishing

of p′� on B imposes at least (
n− �+2

3

)
≥
(
n− r+1

3

)
≥ 2n (4.7)

conditions on p′�. Thus we may assume that either m� ≥ 4 or � ≥ r+2; in particular, this

implies
∑�

i=1mi ≥ 2�+2. Since any nonzero product
∏mi

j=1 �j (where each �j is a linear form

on 〈B〉) does not vanish on B and the set of such products has dimension mi(n−2− b)+1

(where b = codimΣ 〈B〉) in the space of degree mi homogeneous forms on 〈B〉, we deduce

that our assumption on p′1, . . . ,p
′
� imposes at least(

�∑
i=1

mi

)
(n−2− b)+ �−dimGr(b,n−1)≥ (2�+2)(n−2− b)+ �− b(n−1− b) (4.8)

conditions on their coefficients. Since codimB ≤ �−1 and 〈B〉 is not a line, we have b≤ �−1

and b≤ n−4 when �= n−2. Therefore, it is straightforward to check that the right hand

side of (4.8), as a quadratic function in b, in minimized at b = �− 1 when � ≤ n− 3 or at
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b= n−4 when �= n−2. It then follows from another elementary argument that the right

hand side of (4.8) is ≥ 2n.

For later applications we also need the following slightly more general version.

Lemma 4.6. Let n,r ≥ 1, 0≤ s < r and d1, . . . ,dr ≥ 2 be integers such that

n≥ 2r+3+max

{
2

s∑
i=1

di,
1

2

s∑
i=1

di(di+1)

}
.

Let y ∈ Pn+r, let Q1, . . . ,Qs be general hypersurfaces of degrees d1, . . . ,ds with a cone

singularity at y(i.e., multyQi = di) and let Qs+1, . . . ,Qr be general hypersurfaces of degrees

ds+1, . . . ,dr. Then the complete intersection X =Q1∩· · ·∩Qr ⊆ Pn+r is P-regular.

Proof. As before we assume d=
∑r

i=1 di ≥ n+r−2. Since s < r, a general such complete

intersection is smooth and does not contain y. For each x �= y ∈ Pn+r, we may choose affine

linear coordinates z∗ = (z1, . . . , zn+r) with origin at x such that a hypersurface has a cone

singularity at y if and only if its equation only involves the variables z2, . . . , zn+r. After a

further change of variable, we may also assume that TxX (throughout the proof we use

the same notations as in the proof of Lemma 4.5) is defined by the vanishing of some

of the zi’s. As before, it suffices to show that violation of P-regularity condition imposes

at least n+1 conditions on the coefficients of the pi. If z1 vanishes on TxX, then the

restricted expression pi can be an arbitrary degree mi homogeneous polynomial and the

same calculation in Lemma 4.5 applies. If z1 does not vanish on TxX, the only restriction

is that when pi comes from some Qj with j ≤ s, it can only vary among the equations of

(arbitrary) degree mi hypersurfaces with a cone singularity at w = [1 : 0 : · · · : 0] ∈Π.

The proof then proceeds as before. For instance (this is the most complicated case), if

Σ ⊆Π is a hyperplane containing w and B ⊆Σ is a positive dimensional subvariety whose

linear span 〈B〉 also contains w but is different from a line, then requiring p′1, . . . ,p
′
� (m� ≥ 3)

to vanish on B imposes at least(
�∑

i=1

mi

)
(n−2− b)+ �−dimGr(b,n−2)−

∑′
mi ≥ 3n−5−

s∑
i=1

1

2
di(di+1)≥ 2n

conditions on the coefficients of p′1, . . . ,p
′
� (where b is the codimension of 〈B〉 in Σ and

∑′

sums over all 1 ≤ i ≤ � such that pi comes from some Qj with 1 ≤ j ≤ s; clearly
∑′

mi ≤∑s
i=1

1
2di(di+1)). On the other hand, requiring all pi to contain a line passing through w

imposes at least mi+1 (resp. 1) on coefficients of pi if pi comes from the equation of Qj

for some j > s (resp. j ≤ s), and we get a total of at least

r∑
i=s+1

1

2
ai(ai+1)− (r−s)≥

r∑
i=s+1

1

2
ai(ai+1)− r

≥ 2
r∑

i=s+1

ai− r ≥ 2

(
n+ r−2−

s∑
i=1

di

)
− r ≥ n+1

conditions (to see the second inequality, note that
∑r

i=s+1ai ≥ n+r−2−
∑s

i=1 di ≥ 3r and

the quadratic form
∑

ai(ai+1) is minimized when the differences between the ai’s are at
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most 1, hence we may assume ai ≥ 3 for all s+1 ≤ i ≤ r). The remaining cases can be

treated in a similar and easier fashion as in Lemma 4.5.

Recall that a smooth P-regular complete intersection X ⊆ Pn+r of dimension n≥ 2r+3

is automatically r -strongly P-regular, we obtain the following immediate corollary in the

spirit of [Puk18].

Corollary 4.7. Let X ⊆ Pn+r be a smooth Calabi-Yau complete intersection of

dimension n by hypersurfaces of degrees d1 ≤ ·· · ≤ dr. Assume that n ≥ 2r+3, dr ≥ 12

and X is P-regular. Then lct(X; |H|Q) = 1 where H is the hyperplane class.

Proof. Since X is CY, d=
∑r

i=1 di = n+r+1, hence by the definition of βi, the product∏
i≥1βi = β1β2 · · ·βn+r−2 is obtained by removing three smallest factors (and then adding

r factors of 1) from the following expression

2

1
· 3
2
· . . . · d1

d1−1
· 2
1
· . . . · d2

d2−1
· . . . · 2

1
· . . . · dr

dr−1
,

which equals degX = d1d2 · · ·dr. As dr ≥ 12, we get∏
i≥1

βi ≥
dr−3

dr−2
· dr−2

dr−1
· dr−1

dr
·degX ≥ 3

4
degX. (4.9)

By rearranging the sequence q1, . . . , qd we may assume that the first quadratic term qr+1

comes from the degree dr equation and hence βr+1 =
3
2 > 1. As X is r -strongly P-regular

under our assumptions, we have

lct(X; |H|Q)≥min

⎧⎨⎩1,
2

βr+1degX

∏
i≥1

βi

⎫⎬⎭=min

⎧⎨⎩1,
4

3degX

∏
i≥1

βi

⎫⎬⎭≥ 1

by Lemma 4.4 and (4.9).

For the construction of K-unstable Fano varieties, we will need the special case of

codimension 2 complete intersections where one of the defining hypersurfaces has a cone

singularity.

Corollary 4.8. Let e≥ 2, n≥ 8+max{2e, 12e(e+1)} be integers and let f(x0, . . . ,xn)

and g(x0, . . . ,xn+1) be homogeneous polynomials of degrees e and n+2− e, respectively.

Assume that the coefficients of f and g are general and let X = (f = g = 0) ⊆ Pn+1, then

lct(X; |H|Q) = 1 where H is the hyperplane class.

Proof. By Lemma 4.6, X is P-regular. By assumption, n+2− e≥ 12 and X is Calabi–

Yau. Hence the result follows directly from Corollary 4.7.

When the dimension n is not too small, Pukhlikov essentially proves that a general

hypersurface of degree d ≥ n+1 is 2-strongly P-regular. Combining this with Lemma 4.4,

we obtain:

Corollary 4.9. Let n ≥ 5 and let X ⊆ Pn+1 be a general hypersurface of degree d ≥
n+1, then lct(X; |H|Q)≥ n+1

d .

Proof. Consider the following variant of the m-strongly P-regular condition on complete

intersections (we use the same notation as in Definition 4.3):
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(Im) For any linear form h= h(z∗) not in the span of q1, . . . , qr, the algebraic set Z = (h=

q1 = · · ·= qm = 0)∩X is equidimensional and for any irreducible component Zi of Z,

we have

multx
deg

(Z) =
multx
deg

(Zi).

When m = 2 and X is a hypersurface, this condition is implied by the conditions (R1.2)–

(R1.3) of [Puk05, Section §2.1], thus by Lemma 4.5 and [Puk05, Proposition 4], a general

hypersurface of degree d ≥ n+1 is P-regular and satisfies the condition (I2) when n ≥ 5

(although [Puk05, Proposition 4] is only stated for degree n+1 hypersurfaces, the same

proof works in general). It is also not hard to see that the proof of Lemma 4.4 applies without

change to P-regular complete intersections that satisfy (Im−1). In particular, taking m= 3

in Lemma 4.4, we have lct(X; |H|Q)≥ 3(n−1)/2d≥ (n+1)/d as desired.

Again, the case when X is a Calabi–Yau hypersurface is of particular importance in our

construction of weakly exceptional singularities and strictly K-semistable Fano varieties

with largest alpha invariant.

Corollary 4.10. Let X ⊆ Pn−1 be a general hypersurface of degree n where n= 4 or

n≥ 7, then

lct(X; |H|Q)≥
n−1

n
.

Proof. When n = 4, the result follows from [ACS18, Theorem 1.2 and Lemma 3.2]. If

n≥ 7, this is a special case of Corollary 4.9.

Corollary 4.11. Let f = f(x1, . . . ,xn) be a general homogeneous polynomials of degree

n where n= 4 or n≥ 7, then the singularity 0 ∈ (f(x1, . . . ,xn)+xn+1
n+1 = 0)⊆An+1 is weakly

exceptional.

Proof. Denote the given singularity by (0 ∈ X). The weighted blow-up of An+1 with

weights (n+ 1, . . . ,n+ 1,n) induces a plt blow-up π : (E ⊆ Y ) → (0 ∈ X) with Kollár

component E. The corresponding log Fano pair (E,DiffE(0)) is isomorphic to (c.f. [Kud01,

Example 2.4])(
(f(x1, . . . ,xn)+xn+1 = 0)⊆ P(1, . . . ,1,n),

n

n+1
(xn+1 = 0)

)
=

(
Pn−1,

n

n+1
S

)
,

where S ⊆Pn−1 is the hypersurface defined by f(x1, . . . ,xn). By Theorem 2.7, our statement

is equivalent to

α

(
Pn−1,

n

n+1
S

)
≥ 1. (4.10)

To see this, let D ⊆ Pn−1 be an effective divisor such that D ∼Q H ∼Q −n+1
n (KPn−1 +

n/(n+1)S), we need to show that (Pn−1,n/(n+1)(S+D)) is lc. We may assume that D is

irreducible since being lc is preserved under convex linear combinations. If D is supported on

S then D= 1
nS and the result is clear. If D is not supported on S then by Corollary 4.10, the

pair (S,(n−1)/nD|S) is lc, hence by inversion of adjunction, (Pn−1,S+(n−1)/nD) is lc.

Since lct(Pn−1; |H|Q)= 1, the pair (Pn−1,D) is also lc. By taking convex linear combinations,
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we see that (Pn−1,n/(n+1)(S+D)) is lc as well since

n

n+1
(S+D) =

n

n+1

(
S+

n−1

n
D

)
+

1

n+1
D.

This finishes the proof.

Remark 4.12. It is not true that α
(
Pn−1,n/(n+1)S

)
≥ 1 for every smooth hypersur-

face S ⊆ Pn−1 of degree n. For example, let S be a hypersurface with an Eckardt point at

x= [1 : 0 : · · · : 0], for example, S = (x2g(x1, . . . ,xn)+h(x3, . . . ,xn) = 0) (where x1, . . . ,xn are

the homogeneous coordinates of Pn−1) and let D = (x2 = 0), then it is not hard to see that

(Pn−1,n/(n+1)(S+D)) is not lc by considering the weighted blow-up at x with weights

(w2, . . . ,wn) = (n,1, . . . ,1). In particular, the examples of [Kud01, Example 2.4] and [Pro00,

Example 4.19] (which are claimed to be weakly exceptional there) are actually not weakly

exceptional.

Our next goal is to show that a general complete intersection (of given codimension) is

m-strongly P-regular when n � 0 so that we can apply Lemma 4.4 to a larger range of

complete intersections. This intuitively clear result is not needed in the rest of the paper

but might be of independent interest. Readers who are mainly interested in the construction

of strictly K-semistable and K-unstable Fano varieties with suitably large alpha invariants

may skip this part and proceed to the next section.

The proof of m-strong P-regularity is done in several steps, spreading from Lemma 4.13

to 4.16. The idea is to introduce a stronger condition by requiring the complete intersection

(h= q1 = · · ·= qm = q1,d1 = · · ·= qr,dr = 0) (recall that each qi or qi,j is a homogeneous term

of the local expression of one of the defining equations of X ) to be normal (i.e., smooth

in codimension 1). We then show that the number of conditions imposed by the failure of

this property at a given point x ∈ Pn+r is at least quadratic in n, thus since the point x

only varies in an (n+r)-dimensional family, a general complete intersection will satisfy the

strong P-regularity as we want.

Lemma 4.13. Let X ⊆ Pn be a quasi-projective variety of dimension m. Let

S = PH0(Pn,OPn(d))

be the space of all hypersurface of degree d and SX the subset of hypersurfaces containing

X, then

codimS SX ≥
(
m+d

d

)
.

Proof. Clearly SX is a linear subspace of S. Let φ : Pn ��� Pm be a general linear

projection whose restriction to X has dense image, and let N = φ−1|Pm,OPm(d)| ⊆ S, then
by construction none of the hypersurfaces in N contain X, thus N ∩SX = ∅ and we have

codimSSX ≥ dimN +1 =
(
m+d
d

)
.

Lemma 4.14. Let c ≤ q and d1 ≤ ·· · ≤ dq be positive integers. Let X ⊆ An
x1,...,xn

be a

quasi-projective variety (i.e., it’s locally closed in An) of dimension m≥ c and let f1, . . . ,fq
be regular functions on X. Let T be the set of gi ∈ k[x1, . . . ,xn]≤di(i = 1, . . . , q) such that
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Z = Z(f1+g1, . . . ,fq+gq) has codimension at most c in X, then

codimS T ≥
q−c∑
i=1

(
m− c+di

di

)
,

where S =
∏q

i=1 k[x1, . . . ,xn]≤di.

Proof. Let Tj ⊆ S be the set of (gi)1≤i≤q such that Z has codimension exactly j. By

induction on c it suffices to show that

codimS Tc ≥
q−c∑
i=1

(
m− c+di

di

)
. (4.11)

Let σ = (i1, . . . , ic)⊆ {1,2, . . . , q} be an index set and let Tc,σ ⊆ S be the set of (gi) such

that Zσ = ∩i∈σZ(fi+gi) has codimension c in X, then clearly

Tc ⊆
⋃

|σ|=c

Tc,σ. (4.12)

Fix an index set σ = (i1, . . . , ic) and a subsequence (gj)j∈σ such that Zσ = ∩i∈σZ(fi+

gi) has codimension c in X, then (g1, . . . ,gq) ∈ Tc if and only if fi + gi vanishes on some

irreducible component of Zσ for each i �∈ σ. Then set of such (gi)i 
∈σ is either empty or

(after translating by an element in this set) isomorphic to the set of gi that vanishes on

some irreducible component of Zσ. As Zσ is a complete intersection of dimension m− c,

this imposes at least
(
m−c+di

di

)
conditions on gi by Lemma 4.13 (we identify k[x1, . . . ,xn]≤d

with H0(Pn,OPn(d))). Since this holds for every (gj)j∈σ, we get

codimS (Tc,σ ∩Tc)≥
∑
i 
∈σ

(
m− c+di

di

)
.

Combining this with (4.12) and d1 ≤ ·· · ≤ dq, we obtain the desired inequality (4.11).

Lemma 4.15. Given integers m,d,c≥ 1, then for any integer n≥m+c and any smooth

quasi-projective variety X ⊆ Pn of codimension m we have codimS(S\T )≥ p(n), where

p(n) = min

{(
n−m+d

d

)
,

(
n−m−1

2
− c

)(
n−m− c+d−1

d−1

)}
and S = PH0(Pn,OPn(d)) is the space of all hypersurface of degree d and T is the subset of

degree d hypersurfaces D such that X ∩D �X is smooth in codimension c.

Note that p(n) grows like Cnd for some constant C > 0 when n� 0.

Proof. Let x ∈X. Since X is smooth, we can find linear affine coordinates x1, . . . ,xn at

x such that dxi (i =m+1, . . . ,n) generate Ω1
X in a neighbourhood of x. We may cover X

by finitely many open subset with this property and it suffices to prove the lemma for each

of these. Thus we may assume X ⊆ An is locally closed with coordinates x1, . . . ,xn chosen

as above. Note that up to projectivization, S can be identified with k[x1, . . . ,xn]≤d, the

space of degree at most d polynomials. Also note that we may assume n� 0 in proving the

statement. By Lemma 4.13, the set of hypersurfaces D in S that contains X has codimension

at least
(
n−m+d

d

)
≥ p(n). Thus it suffices to find p(t) such that requiringD∩X to be singular

in codimension c imposes at least p(n) conditions on the defining equation of D.
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Now let q = �n−m
2 � and consider

f = f0+

q∑
i=1

xm+igi ∈ k[x1, . . . ,xn]≤d,

where f0 ∈ k[x1, . . . ,xn]≤d and gi ∈ k[xn−q+1, . . . ,xn]≤d−1. If we can show that requiring

Z(f) ∩X to be singular in codimension c imposes at least p(n) conditions on the

(q+ 1)-tuple (f0,g1, . . . ,gq) for some degree d polynomial p, then we are done as then

for each choice of g1, . . . ,gq we would need the same number of ≥ p(n) conditions on f0. For

this it suffices to show that for each f0, requiring Z(f)∩X to be singular in codimension c

imposes at least p(n) conditions on (g1, . . . ,gq).

By the Jacobian criterion, Z(f)∩X is singular at x ∈ X if and only if df(x) = 0 ∈
Ω1

X ⊗ k(x). Since dxi ( i = m+1, . . . ,n) is a global basis of Ω1
X , we may rewrite df =

df0+
∑q

i=1(gidxm+i+xm+idgi) as a linear combinations of dxi ( i=m+1, . . . ,n):

df =

q∑
i=1

(fi+gi)dxm+i+
n∑

j=m+q+1

hjdxj ,

where fi and hj are regular functions on X and as ∂gi
∂xj

=0 when 1≤ i≤ q and 1≤ j ≤m+q,

the fi’s do not depend on gi (they only depend on df0 and the linear relations among dxi).

It then follows that the singular locus of Z(f)∩X is contained in the zero locus of fi+ gi
(i=1, . . . , q), hence Z(f1+g1, . . . ,fq+gq)⊆X would have codimension at most c if Z(f)∩X

is singular in codimension c. By Lemma 4.14, this imposes at least (q− c)
(
n−m−c+d−1

d−1

)
≥(

n−m−1
2 − c

)(
n−m−c+d−1

d−1

)
conditions on (g1, . . . ,gq).

Lemma 4.16. Given integers m,r ≥ 1 and let n� 0. Then for any 2≤ d1 ≤ ·· · ≤ dr, a

general complete intersection X ⊆ Pn+r by hypersurfaces of degrees d1, . . . ,dr is m-strongly

P-regular.

Proof. By Lemma 4.5, a general such complete intersection is P-regular, hence we only

need to verify the irreducibility and reducedness of Z = (h = q1 = · · · = qm = 0)∩X in

Definition 4.3. As noted before, we may assume m> r (otherwise by Lefschetz hyperplane

theorem it suffices to take n ≥ 2r+3). As in the proof of P-regularity, it suffices to show

that for any x ∈ Pn+r and any choice of the linear terms h,q1, . . . , qr, the failure of the

irreducibility or reducedness of Z imposes at least 2n conditions on the coefficients of

the remaining qi. Let p1, . . . ,p� (� ≤m) be the sequence obtained by removing terms that

appear more than once from the sequence qr+1, . . . , qm, q1,d1 , . . . , qr,dr and then restricting

to the linear subspace Σ = (h = q1 = · · · = qr = 0) = (h = 0)∩P(TxX) ∼= Pn−2. Note that

W = (p1 = · · ·= p� = 0)∩Σ can be identified with Z ∩H∞ where H∞ is the hyperplane at

infinity and we may assume that W has codimension � by a similar proof of P-regularity,

hence if W is irreducible and reduced, then the same holds for Z. Therefore, it suffices

to show that for W to be reducible or nonreduced imposes at least 2n conditions on the

coefficients of p1, . . . ,p�. Let mi = degpi ≥ 2.

Assume from now on n� 0. Apply Lemma 4.15 to W0 =Σ, we see that requiring W1 =

W0∩ (p1 = 0) to be singular in codimension m imposes more than 2n conditions on p1 (the

number of conditions is at least a polynomial of degree 2 in n). Fix a choice of p1 such

that W1 is smooth in codimension m. By Lemma 4.15 applied to the smooth locus of W1,

we again need more than 2n conditions on p2 for W2 = W1 ∩ (p2 = 0) to be singular in
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codimension m− 1. Continue in this way, we see that requiring W =Wi (1 ≤ i ≤ �) to be

singular in codimension m+1− i≥ 1 imposes more than 2n conditions on the coefficients of

p1, . . . ,pi. Since each Wi is already a complete intersection, they are also normal if they are

smooth in codimension 1; an easy induction using [Har77, Corollary 7.9] then shows that

all the Wi are connected, normal and therefore integral. In particular, W =W� is integral.

In other words, asking W to be reducible or nonreduced imposed more than 2n conditions

on coefficients of p1, . . . ,p� and we are done.

Combining this with Lemma 4.4 in the hypersurface case, we can now give the proof of

Theorem 1.4.

Proof of Theorem 1.4. When d ≤ n, the result follows from [Che01, Theorem 1.3]. If

d≥ n+1, then choose sufficiently large integer m such that 2(m+1)
(2−ε)(m+2) > 1, by Lemma 4.16

a general hypersurface X ⊆ Pn+1 of degree d is m-strongly P-regular when n� 0, thus by

Lemma 4.4, we have

lct(X; |H|Q)≥min

{
1,
m+1

m+2
· 2(n−1)

d

}
≥min

{
1,

2(m+1)

(2− ε)(m+2)
· n−1

n

}
≥ 1

and the result follows since we always have lct(X; |H|Q)≤ 1.

§5. Main constructions

5.1 Strictly K-semistable example

In this section, we construct singular Fano varieties X of dimension n� 1 that are strictly

K-semistable and α(X) = n/(n+1).

By Theorem 3.1, every such Fano variety has at least one weakly exceptional singularity

x whose corresponding (unique) Kollár component has log discrepancy n. One such weakly

exceptional singularity is given by Corollary 4.11, with corresponding Kollár component

F ∼= Pn−1 and different ΔF = (1− 1/(n+1))S where S = (f(x1, . . . ,xn) = 0) is a general

smooth hypersurface of degree n in Pn−1. We first construct the K-polystable degeneration

as in Corollary 3.2. Let M := n/(n+1)S− (n−1)H be a Q-divisor on Pn−1 where H is a

hyperplane in Pn−1. Let X0 be the projective orbifold cone Cp(Pn−1,M).

Lemma 5.1. Let n= 4 or n≥ 7. Then the projective orbifold cone X0 is a K-polystable

Fano variety. Moreover, X0 is isomorphic to the hypersurface (x0f(x1, . . . ,xn)+xn+1
n+1 = 0)

in Pn+1 and under this isomorphism, Pn−1
∞ can be identified with the locus (x0 = xn+1 = 0).

Proof. Since α(Pn−1,(1−1/(n+1))S)≥ 1 for a general smooth hypersurface S ⊂ Pn−1

of degree n by Corollary 4.11, we know that (Pn−1,(1− 1/(n+1))S) is K-stable. Hence

the K-polystability of X0 = Cp(Pn−1,M) follows from Proposition 2.11 and the fact that

−KPn−1 − (1−1/(n+1))S ∼Q nM . By definition, we have

X0 = Proj

∞⊕
m=0

∞⊕
i=0

H0(Pn−1,OPn−1(�mM�)) ·si.

Denote by Rm,i :=H0(Pn−1,OPn−1(�mM�)) · si and R :=⊕∞
m=0⊕∞

i=0Rm,i. Let L be the

coherent sheaf O(n+1) onX0 with respect to the grading Rm,i �→m+i. Then L∼=OX0((n+

1)Pn−1
∞ ); since (n+1)M is Cartier on Pn−1, we also see that L is an ample line bundle on

X0. We will choose sections s0, s1, . . . , sn+1 of L to obtain the desired embedding from X0

to Pn+1.
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To begin with, let us choose s0 := 1 · sn+1 ∈ R0,n+1. We also fix a generator z of

H0(Pn−1,OPn−1(S−nH)). Since �nM�= (n−1)(S−nH), we choose sn+1 := zn−1 ·s∈Rn,1.

Let us choose sections y1, . . . ,yn ∈ H0(Pn−1,OPn−1(H)) that correspond to projective

coordinates x1, . . . ,xn of Pn−1. Then yiz
n is a section of OPn−1(nS − (n2 − 1)H) =

OPn−1(�(n+1)M�). For each 1≤ i≤ n, we choose si := yiz
n ·1 ∈Rn+1,0.

To prove that [s0 : · · · : sn+1] induces the embedding from X0 to Pn+1, we first show that

the linear system generated by {s0, . . . , sn+1} is base point free. Let I ⊂R be the graded ideal

generated by {s0, . . . , sn+1}. Thus s ∈
√
I since s0 = sn+1 ∈ I. Thus Rm,i = Rm,0 · si ⊂

√
I

whenever i > 0. If m > 0 and i = 0, then any element in R(n+1)m,0 is a polynomial in

s1, . . . , sn. Thus R(n+1)m,0 ⊂ I which implies Rm,0 ⊂
√
I for any m> 0. As a result, the base

point freeness of the linear system generated by {s0, . . . , sn+1} follows from R+ =
√
I. Let

us denote the induced morphism by φ :X0 → Pn+1.

Let X ′
0 be the hypersurface in Pn+1 defined by (x0f(x1, . . . ,xn)+xn+1

n+1 =0). We will show

that the image φ(X0) is contained in X ′
0, that is, s0f(s1, . . . , sn)+sn+1

n+1 = 0. It is clear that

sn+1
n+1 = zn

2−1 ·sn+1, s0f(s1, . . . , sn) = f(y1, . . . ,yn)z
n2 ·sn+1.

Both terms are considered inside Rn(n+1),n =H0(Pn−1,OPn−1(n(n+1)M)) ·sn+1. Mean-

while, zn
2−1 is identified with a section of OPn−1((n+ 1)�nM�) where n(n+ 1)M =

(n+1)�nM�+S. Hence we may assume that −f(y1, . . . ,yn)z is the canonical section of

OPn−1(S) using which the product structure of R is defined. Therefore,

sn+1
n+1 = zn

2−1(−f(y1, . . . ,yn)z) ·sn+1 =−s0f(s1, . . . , sn).

So far we have constructed a morphism φ : X0 → X ′
0. It remains to show that φ is an

isomorphism. Since L is ample, φ is finite. We also know that (OX′
0
(1)n) = n+1 and

(Ln) = (n+1)n(Pn−1
∞ )n = (n+1)n(Mn−1) = n+1,

hence φ is birational. It is easy to check that the singular locus ofX ′
0 is the point [1 : 0 : · · · : 0]

union (x0 = xn+1 = f = 0), hence X ′
0 is normal. Thus the Zariski main theorem implies that

φ is an isomorphism. It is clear from the construction that φ∗(x0 = xn+1 = 0) = Pn−1
∞ as

φ∗(x0 = 0) = (sn+1 = 0) = (n+1)Pn−1
∞ . We finish the proof.

The strictly K-semistable examples as referred to in Theorem 1.3 are now obtained by

deforming the above K-polystable examples.

Proposition 5.2. Let n= 4 or n≥ 7. Let f(x1, . . . ,xn) and g(x1, . . . ,xn+1) be general

homogeneous polynomials of degree n and n + 1, respectively. Let X ⊆ Pn+1 be the

hypersurface defined by the equation (x0f+g = 0). Then α(X) = n/(n+1) and X is strictly

K-semistable. In addition, X has a unique singular point at [1 : 0 : · · · : 0].

Proof. Since f and g are general, X has a unique isolated singularity at x= [1 : 0 : · · · : 0]
and we may assume that the coefficient of xn+1

n+1 is nonzero in g. Using the one parameter

subgroup [x0 : x1 : · · · : xn : xn+1] �→ [x0 : t
n+1x1 : · · · : tn+1xn : tnxn+1] (t∈C∗) of Aut(Pn+1),

it is not hard to see that X specially degenerates to the K-polystable Fano variety X0 as in

Lemma 5.1. Denote by (X ;L) this special test configuration of X. Since X0 is K-polystable,

we know that Fut(X ;L) = 0 (it can be viewed as the Futaki invariant of the induced Gm-

action on X0) and X is K-semistable by [BL18a, Corollary 4]. As X is not isomorphic to

X0, we conclude that X is strictly K-semistable.
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We next show that α(X) ≥ n/(n+1). It then follows from [OS12, Theorem 1.4] and

the above consideration that α(X) = n/(n+1) and X is strictly K-semistable. Let V =

(x0 = xn+1 = 0) ⊆ X0 and let D ∼Q −KX ∼ H be an effective Q-divisor on X (where H

is the hyperplane class). Assume that D degenerates to D0 ⊆X0 under the above special

degeneration of X to X0. Write D0 = tV +D′ where V �⊆ Supp(D′). We now separate into

two cases.

Assume first that t ≤ 1. We claim that (X0,n/(n+1)D0) is lc and it then follows from

inversion of adjunction (or the lower semicontinuity of lct) that (X,n/(n+1)D) is also lc. As

D0 is Gm-invariant by construction, it suffices to check that (X0,n/(n+1)D0) is lc at x and

along V (any non-lc center is Gm-invariant and therefore either contains x or is contained

in V ). Let π : Y0 →X0 be the weighted blowup as above that extracts the Kollár component

F over x. Note that −KX ∼ H and the linear system |π∗H − (n+1)F | is base point free

(its members include the strict transform of (xi = 0) for i = 1, . . . ,n), hence ε(F ) ≥ n+1;

on the other hand, since (π∗H− (n+1)F )n = 0, we also have ε(F ) ≤ τ(F ) ≤ n+1 by the

inequality (
(π∗H− (n+1)F )n−1 · (π∗H− τ(F )F )

)
≥ 0,

hence ε(F ) = τ(F ) = n+ 1. As AX0(F ) = n, we see that a(F ;X0,n/(n+1)D0) ≥ −1,

hence by the following Lemma 5.3, (X0,n/(n+1)D0) is lc at x. Similarly, as KX0 +V +

n/(n+1)D0 ∼Q 0,KV +ΔV +n/(n+1)D′|V =(KX0+V +n/(n+1)D′)|V is anti-nef (where

ΔV is the different), hence since (V,ΔV )∼=(F,ΔF ), the pair (X0,V +n/(n+1)D′) is lc along

V by the exact same proof of Lemma 5.3. Therefore as t ≤ 1, (X0,n/(n+1)D0) is also lc

along V, proving our claim.

On the other hand, if t > 1, then D′ ∼Q cH for some c≤ n/(n+1) and by the argument

above, (X0,D
′) is lc at x. Note that x �∈ V , it follows that (X0,D0) is also lc at x and by

inversion of adjunction (X,D) is lc at x as well. If Z is a positive dimensional non-lc center

of (X,D), then Z is contained in the smooth locus of X and we have multZD> 1 by [Kol97,

3.14.1]. But by [Puk02, Proposition 5], multZD ≤ 1, a contradiction. Thus the non-lc locus

of (X,D) is a union of isolated smooth points. By [Zhu20, Theorem 1.6] (with Δ = L= 0),

we immediately obtain lct(X;D) ≥ n/(n+1). Therefore, in both cases (X,n/(n+1)D) is

lc. As D is arbitrary, our proof is complete.

The following lemma is used in the above proof.

Lemma 5.3. Let (X,D) be pair and x ∈ X a weakly exceptional singularity. Let π :

Y →X be the plt blowup that extracts the unique Kollár component F over x. Assume that

a(F ;X,D)≥−1, then (X,D) is lc at x.

Proof. By assumption, we have KY +Γ +λF = π∗(KX +D) where λ=−a(F ;X,D)≤ 1

and Γ is the strict transform of D. Let ΔF be the different on F. Since x ∈ X is weakly

exceptional we have α(F,ΔF )≥ 1. Therefore as KF +ΔF +Γ |F = (KY +Γ +F )|F ∼Q (1−
λ)F |F is anti-nef, we see that (F,ΔF + Γ |F ) is lc and then by inversion of adjunction

(Y,Γ +F ) is also lc along F. Hence (X,D) is lc at x.

5.2 K-unstable example

Modifying the previous strictly K-semistable example, we can also construct, for each fix

integer e≥ 2, K-unstable Fano varieties Y of dimension n� 0 such that α(Y ) = 1− 1
n+2−e .
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Let e≥ 2 and let f(x0, . . . ,xn), g(x0, . . . ,xn+1), and h(x0, . . . ,xn) be general homogeneous

polynomials of degrees e, n+2−e, and n+1−e, respectively. Let Y ⊆ Pn+2 be the complete

intersection defined by the equation (f = g+xn+2h=0). We now show that Y is K-unstable

with alpha invariant α(Y ) = 1− 1
n+2−e in several steps. Let x= [0 : · · · : 0 : 1] ∈ Pn+2.

Lemma 5.4. Assume that n≥ 11+e. Then with the above notations, x ∈ Y is a weakly

exceptional singularity.

Proof. In local coordinates, x ∈ Y is given by the equation (f = g+h= 0)⊆An+2
x0,...,xn+1

.

Let π :W → Y be the weighted blowup at x with weights (w0, . . . ,wn+1) = (n+2−e, . . . ,n+

2− e,n+1− e) and let F be the exceptional divisor. Also let ΔF be the different. Since g

is general, we may assume that the coefficient of xn+2−e
n+1 is nonzero in g. We then have

F =
(
(f = h+xn+1 = 0)⊆ P(1n+1,n+1−e)

)∼= ((f = 0)⊆ Pn)

and ΔF = (1− 1
n+2−e)S where S = (f = h= 0)⊆ Pn and it suffices to prove that α(F,ΔF )≥

1. To see this, let D ∼Q −(KF +ΔF )∼Q (1− 1
n+2−e)H be an effective divisor on F (where

H is the hyperplane class). Similar to the proof of Corollary 4.11, we may assume that D

is irreducible and not supported on S. Note that S is a Calabi-Yau complete intersection of

codimension 2, hence by Lemma 4.5, Corollary 4.7, and our assumption that n≥ 11+e, we

have (S,D|S) is lc. As (F,D) is lc by [Che01, Theorem 1.3], we see that (F,S+D) is also

lc by inversion of adjunction. It follows that (F,ΔF +D) is lc as well. Since D is arbitrary,

we obtain α(F,ΔF )≥ 1.

Proposition 5.5. Notation as above. Then Y is not K-semistable and α(Y )= 1− 1
n+2−e

when n≥ 10+e2.

Proof. Let π : W → Y be the weighted blowup that extracts the Kollár component F

over x as in the previous proof. It is not hard to see that the linear system |π∗(−KY )−
(n+2− e)F | is base point free (consider strict transforms of the hyperplanes (xi = 0) for

0 ≤ i ≤ n) and (π∗H − (n+2− e)F )n) = 0, hence ε(F ) = τ(F ) = n+2− e by a similar

argument as in Propisition 5.2. We then have volY (−π∗KY − tF ) = ((−KY )
n)+(−t)n(Fn)

for all 0≤ t≤ τ(F ) and a straightforward computation yields

β(F ) =AY (F )− 1

((−KY )n)

∫ τ(F )

0

vol(−π∗KY − tF )dt

= (n+1−e)− n

n+1
· (n+2−e)< 0

as e≥ 2, hence Y is not K-semistable by [Fuj19b, Corollary 1.5] or [Li17, Theorem 3.7].

Let α = 1− 1
n+2−e and assume that n ≥ 10+ e2 > 11+ e. We now show that α(Y ) = α.

Let F be the Kollár component over x. From the previous proof we have τ(F ) = n+2− e

and A(F ) = n+1−e, hence α(Y )≤ α. It remains to show that (Y,αD) is lc for any effective

divisor D ∼Q −KY . For this we may assume that D doesn’t contain the hyperplane section

Z = (xn+2 = 0)∩Y = (f = g = 0) ⊆ Pn+1 in its support (since (Y,Z) is lc and being lc is

preserved under convex linear combination). Since f and g are general and n≥ 10+e2, by

Lemma 4.6 and Corollary 4.8 we have lct(Z; |H|Q) = 1 and in particular, (Z,D|Z) ic lc. By

inversion of adjunction, (Y,Z+D) is lc in a neighbourhood of Z and hence the non-lc center

of (Y,D) is a finite union of isolated point. Therefore by [Zhu20, Theorem 1.6] (with Δ =

L=0) we see that (Y,n/(n+1)D) is lc over the smooth locus of Y. Note that α<n/(n+1),
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so it remains to check that (Y,αD) is lc at x. As AY,αD(Y ) ≥ AY (F )−α · τ(F ) = 0, this

follows from Lemma 5.4 and Lemma 5.3 and we are done.

Remark 5.6. Here we describe a K-polystable replacement of Y. Assume n≥ 20. Let π :

X →C be a family of codimension two complete intersections of Pn+2 of degree (e,n+2−e)

over a smooth pointed curve 0 ∈C, such that the special fiber X0
∼= Y and π is smooth over

C \{0}. Then by [Zhu20, Theorem 1.3] we know that Xt is a K-stable Fano manifold for any

t ∈ C \{0}. Thus by [DS14, CDS15, Tia15], after a finite base change (0′ ∈ C ′)→ (0 ∈ C)

if necessary, there exists a Q-Gorenstein flat projective family X ′
C′ → C ′ such that X ′

0′

is a K-polystable Q-Fano variety and X ′
C′ \X ′

0′
∼= XC′ \X0′ where XC′ := X ×C C ′. Since

X0′
∼= Y is K-unstable, we know that X ′

0′ is not isomorphic to X0′ . Hence Proposition 3.3

and Proposition 5.5 implies that α(X ′
0′)≤ 1−α(X0′) =

1
n+2−e . In particular, when e= 2 we

obtain a K-polystable Q-Fano variety X ′
0′ satisfying α(X ′

0′)≤ 1
n .

Proof of Theorem 1.3. The existence of X follows from Proposition 5.2 and the existence

of Y follows from Proposition 5.5 with e= 2. The fact that X and Y are both Gorenstein

canonical and have a unique singular point follows from a straightforward computation.

We conclude with the following question (cf. [Jia17b, Conjecture 1.6]).

Question 5.7. Let n= dimX ≥ 2 be an integer.

(1) Does there exist a K-semistable Q-Fano variety X such that 1/(n+1)< α(X)< 1
n?

(2) Does there exist a K-unstable Q-Fano variety X such that (n−1)/n < α(X) <

n/(n+1)?
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