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This paper theoretically investigates the initial up-flow of a vertical turbulent fountain
(round or plane) in a linearly stratified environment. Conservation equations (volume,
momentum and buoyancy) are written under the Boussinesq approximation assuming an
entrainment proportional to the vertical velocity of the fountain. Analytical integration
leads to exact values of both density and flow rate at the maximal height reached by
the fountain. This maximal height is expressed as a function of the release conditions
and the stratification strength and plotted from a numerical integration in order to
exhibit overall behaviour. Then, analytical expressions for the maximal height are derived
from asymptotic analysis and compared to experimental correlations available for forced
fountains. For weak fountains, these analytical expressions constitute a new theoretical
model. Finally, modified expressions are also proposed in the singular case of an initially
non-buoyant vertical release.

Key words: plumes/thermals

1. Introduction
A jet with negative buoyancy, also called a fountain, occurs when a fluid is

injected into another one, in such a way that the buoyancy of the release opposes its
momentum. One of the pioneering investigations on this topic was by Turner (1966)
for a turbulent fountain. From experiments, he had observed that such a fountain
extends in its environment as a jet to a maximal height and then falls and forms a
down-flow core around the up-flow. The fountain then stabilizes at a final (or steady)
height lower than the maximal height due to a modification of the entrainment. From
dimensional analysis, he has also suggested that the behaviour of a turbulent fountain
is fully governed by the ratio between its initial buoyancy and momentum, i.e. by its
initial Froude number.

Fountains are widely met, not only in the laboratory but also in environmental
problems and in many industrial applications,such as for instance, explosive volcanic
jets (Kaminski, Tait & Carazzo 2005), air conditioning (Baines, Turner & Campbell
1990; Williamson, Armfield & Lin 2011), replenishment of magma chambers
(Bloomfield & Kerr 1999). For these reasons, in the literature many studies can
be found which consider fountains in different configurations (plane or round, free
or close to a wall). Also different kinds of fountains have been studied such
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as immiscible fountains (water in air, Villermaux 1994; Clanet 1998) and laminar
miscible fountains (saltwater weakly injected into freshwater, Phillipe et al. 2005;
Williamson et al. 2008). However, most of the studies focus on turbulent miscible
fountains (Abraham 1967; McDougall 1981; Mizushina et al. 1982; Zhang & Baddour
1998; Pantzlaff & Lueptow 1999; Bloomfield & Kerr 2000; Kaye & Hunt 2006) since
they are the most often encountered.

For a round fountain, experiments by Williamson et al. (2008) have shown that the
flow is fully turbulent as soon as the fountain initial Reynolds number (based on the
initial radius) is greater than 2000. Viscous effects then become negligible and the
fountain is only governed by its initial buoyancy and momentum. In particular, both
maximal and final heights of the fountain can be correlated with the initial Froude
number.

Usually, for large Froude number values (release initially dominated by its
momentum), the fountain is called a forced fountain, whereas for low Froude number
values (release initially dominated by its buoyancy) the fountain is called a weak
fountain. However, in contrast with turbulent plumes where two regimes (namely
forced and lazy) are strictly separated by a given value of the Froude number
(Michaux & Vauquelin 2008), there does not exist any Froude number value which
allows separation of forced and weak regimes for fountains.

The modelling of turbulent miscible fountains is generally based on the theory of
plumes due to Morton, Taylor & Turner (1956) which assumes that the velocity of
the ambient fluid entrained at the edge of the plume (or the fountain) is proportional
to the local vertical velocity. The plume is then described by mass, momentum and
buoyancy-flux conservation equations with a one-dimensional formalism where viscous
effects are neglected. By inverting the sign of the gravitational acceleration, this plume
model can be immediately applied to describe the fountain up-flow. Many theoretical
contributions based on this theory of plumes can be found in the case of a fountain
in an homogeneous environment, from Abraham (1967) to Kaye & Hunt (2006).
However, in some situations, fountains develop in stratified environments as in oceans,
atmosphere or in large buildings, for instances. In this area, we can refer to some
recent papers (Bloomfield & Kerr 1998, 2000; Lin & Armfield 2002; Papanicolaou,
Papakonstantis & Christodoulou 2008) based on both theoretical and experimental
investigations.

In this study, we investigate theoretically the up-flow of a fountain which develops
in a linearly stable stratified environment under the Boussinesq approximation. From
an analytical approach, we aim to determine the fountain maximal height and the
characteristics of the fountain at this height as a function of the release conditions
and the stratification strength. When possible, these analytical results will be compared
with the correlations available in the literature.

2. Governing equations

The conservation equations for the starting up-flow of a round fountain are based
on the classical approach developed by Morton, Taylor & Turner (1956) for turbulent
plumes. Accordingly, interactions between up-flow and down-flow are not taken into
account as in the works of Bloomfield & Kerr (1998) or Papanicolaou et al. (2008).

As illustrated in figure 1, we consider a fluid of density ρi vertically released
with the velocity ui from a circular opening of radius bi, in a stratified environment
whose density ρ0(z) varies linearly with respect to the vertical coordinate z. The
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FIGURE 1. Schematic illustration of a round fountain in a stratified environment.

variables b(z), u(z) and ρ(z) denote, respectively, the local radius, the velocity and the
density of the fountain. The maximal height reached by the fountain is denoted zm.

The stratification is quantified by the following constant:

N2=− 1
ρ1

dρ0

dz
, (2.1)

where ρ1 is a reference density, namely the density of the ambient fluid at the
source level (i.e. z= 0). Note that by multiplying this constant with the gravitational
acceleration g we obtain the classical Brunt–Väisälä frequency.

Under the Boussinesq approximation and for top-hat profiles, the conservation
equations for volume, momentum and buoyancy flux can be expressed as

d(ub2)

dz
= 2αbu,

d(u2b2)

dz
=−gηb2,

d(ηub2)

dz
= b2uN2, (2.2)

where the variable η= (ρ−ρ0)/ρ1 introduced can be interpreted as the density deficit.
Analytical studies by Hunt & Kaye (2005) in the Boussinesq case, and Michaux &
Vauquelin (2008) in the non-Boussinesq case (see also Van den Bremer & Hunt 2010),
have shown that these equations can be rewritten in terms of a local dimensionless
function defined as follows:

Γ (z)= 5gηb

8αu2
, (2.3)

which considerably simplifies their integration.
In order to account for the stratified environment, another independent dimensionless

function has to be introduced. For later convenience, this function is expressed as

σ(z)= u2N2

gη2
. (2.4)

From the dimensionless functions Γ and σ and (2.2), governing equations for the
fountain primary variables u, b and η can be written as follows:

db

dz
= 4α

5

(
5
2
+Γ

)
,

du

dz
=−8

5
αu

b

(
5
4
+Γ

)
,

dη
dz
= 2αη

b

(
4
5
Γ σ −1

)
.

(2.5a,b,c)
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In addition, from their definitions, two differential equations for Γ (z) and σ(z) can
be established as

dΓ
dz
= 4αΓ

b

[
1+
(

1+ 2
5
σ

)
Γ

]
and

dσ
dz
=−16

5
ασΓ

b
(σ +1). (2.6a,b)

Let us note that when the fountain reaches its maximal height (z→ zm) it turns out
that u(z)→ 0 and accordingly Γ (z)→∞ whereas σ(z)→ 0.

3. Analytical integration
The objective is to obtain analytical expressions for the fountain maximal height and

the values of the fountain variables at this location.
In a first step, by combining the two equations of (2.6a,b), we get

dΓ
dσ
=−5

4
1

σ (σ +1)
− 1

4
5+2σ
σ (σ +1)

Γ. (3.1)

After integration, this equation provides us with an explicit relation between Γ and σ
which is

Γ =
[

I(σ )− I(σi)+ Γiσ
5/4
i

(σi+1)3/4

]
(σ +1)3/4

σ 5/4
(3.2)

where

I(σ )=
∫ σ

0
−5

4
t1/4

(t+1)7/4
dt. (3.3)

In a second step, the primary variables are expressed in terms of σ and Γ . For
instance if we combine (2.5a) with (2.6a), we obtain

db

dΓ
= b

5

5
2

1
Γ
−

3
2
+σ

1+
(

1+ 2
5
σ

)
Γ

. (3.4)

According to (3.1), (3.4) can be re-expressed as

db

b
= 1

2
dΓ
Γ
+ 3

8
dσ
σ
− 1

8
dσ
σ +1

, (3.5)

and after integration, it becomes

b

bi
=
(
Γ

Γi

)1/2(
σ

σi

)3/8(
σi+1
σ +1

)1/8

. (3.6)

For the other primary variables u and η, similar calculations lead to

u

ui
=
(
Γi

Γ

)1/2(σi

σ

)1/8
(
σi+1
σ +1

)1/8

and
η

ηi
=
(
Γi

Γ

)1/2(σi

σ

)5/8
(
σi+1
σ +1

)1/8

.

(3.7a,b)
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FIGURE 2. (a) Numerical solutions of (3.9) as a function of σi and for different values of Γi.
(b) Numerical solutions of (3.9) as a function of Γi and for different values of σi.

In a third step, b(σ,Γ ) which is given by (3.6) and then Γ (σ) which is given by
(3.3) are substituted in (2.6b) in order to get a differential equation for σ(z):

dσ
dz
=−Λi

bi

[
I(σ )− I(σi)+Γi

σ
5/4
i

(σi+1)3/4

]1/2

(σ +1)3/2, (3.8)

where the dimensionless constant Λi= (16α/5)Γ 1/2
i σ

3/8
i /(σi+1)1/8 is introduced for

the sake of simplicity.
Equation (3.8) governs the evolution of σ with respect to the coordinate z and since

the variables u, b, η and Γ depend only on σ , one could find their vertical evolution
in the fountain by solving numerically this equation.

3.1. Fountain maximal height
Equation (3.8) can also be used to determine the expression for the fountain maximal
height (i.e. zm). Indeed, this maximal height corresponds to the location where the
velocity is null, or identically where σ = 0. By introducing the dimensionless quantity
H = zm/bi, we have

H = 1
Λi

∫ σi

0

[
I(σ )− I(σi)+Γi

σ
5/4
i

(σi+1)3/4

]−1/2

(σ +1)−3/2 dσ. (3.9)

Equation (3.9) is first solved numerically. Figure 2(a,b) shows the evolution of H
as a function of σi and Γi respectively. It can be seen on figure 2(a) that when
σi� 1, H is almost unaffected by the stratification and then mainly depends on the
source conditions, i.e. on the value of Γi. On the contrary, when σi� 1, H clearly
decreases with σi with a slope that increases with Γi. This indicates that the vertical
development of a weak fountain is much more affected by the stratification than a
forced one. A possible explanation for this phenomenon lies in the fact that according
to the high initial velocity of a forced fountain, the entrainment process tends to reduce
(at least initially) the density deficit and then the buoyancy that opposes the fountain
development. In contrast, according to its low initial velocity, a weak fountain does
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not entrain very much. As a result, its density deficit, which mainly depends in this
case on the ambient stratification, increases with respect to the vertical coordinate,
enhancing the buoyancy effect. Note that more formally, these considerations can
be recovered by analysing (2.5c). For instance this equation shows that for a given
(moderate) value of σi the density deficit η initially decreases if Γiσi� 5/4 and this
condition is only met in the case of a forced fountain.

Figure 2(b) shows that H monotonically decreases with Γi, exhibiting a slope
which is significantly stronger for weak fountains (Γi� 1) than for forced fountains
(Γi� 1). Such a behaviour is observed whatever the value of σi and can be again
explained by the fact that a weak fountain entrains much less than a forced one.

In § 4, analytical expressions for H are proposed in these limit cases by means of
asymptotic analysis.

3.2. Fountain variables at the maximal height

Whatever the values of σi and Γi, the previous theoretical development allows the
fountain variables to be analytically expressed at the maximal height zm reached by
the fountain. Indeed, from (3.3) and (3.6b), it can be shown that the density deficit ηm

at this height is

ηm= ηi
(σi+1)1/2[

1− I(σi)(σi+1)3/4

Γiσ
5/4
i

]1/2 . (3.10)

Moreover, even if the radius and the velocity tend respectively towards ∞ and 0, both
the volume flux (Q= ub2) and the buoyancy flux (B= ηub2) have finite values which
can be expressed as follows:

Qm=Qi

[
1− I(σi)(σi+1)3/4

Γiσ
5/4
i

]1/2

, Bm=Bi(σi+1)1/2. (3.11)

These latter results are useful to investigate the fountain down-flow problem, since
ηm, Qm and Bm correspond to its initial condition.

4. Asymptotic behaviour
We now consider the asymptotic behaviour of H given by (3.9), for low and strong

values of both σi and Γi.
The case σi� 1 corresponds to a low stratification and/or low velocity. In this

situation, (3.9) becomes

H ≈ (1+Γi)
3/10

4αΓ 1/2
i

β
[
(Γi+1)−1, 1

2 ,
4
5

]
, (4.1)

where β [x,a,b]= ∫ x
0 (1− t)a−1 tb−1dt is the classical incomplete beta function. It can

be observed that σi vanishes in this leading-order term which only depends on Γi.
This result has been previously observed in figure 2 and is also in agreement with
the experimental observations of Bloomfield & Kerr (1998) who noticed that for low
values of σi, the maximal height is only dependent on the initial Froude number Fr
(with 1/Fr = 8αΓi/5).
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In the case of a forced fountain (Γi� 1) (4.1) can be further simplified as follows:

H ≈ β
[
1, 1

2 ,
4
5

]
4αΓ 1/2

i

≈ 0.57
α
Γ
−1/2

i , (4.2)

where β [1,1/2,4/5]≈ 2.299.
This latter relation is in agreement with the experimental results obtained by

Bloomfield & Kerr (2000) who found H = (8.37±0.29)Γ −1/2
i . According to this

result, the value for the entrainment coefficient in (4.2) can be estimated: α= 0.068±
0.002. This value is lower than, but not significantly different from, the one proposed
by Fischer et al. (1979) for a jet (0.076±0.004). This corroborates that for a forced
fountain αfountain .αjet <αplume as mentioned and discussed on the basis of physical
arguments by Kaye (2008).

In the case of a weak fountain (Γi� 1) we obtain from (4.1)

H = 5
16αΓi

. (4.3)

By substituting Γi by its expression (2.3) taken for z=0, we observe that H becomes
independent from the entrainment coefficient α, as already mentioned by Kaye & Hunt
(2006) in a theoretical study performed for fountains in a homogeneous environment.

Finally, for σi� 1, the results confirm that a low stratification does not affect the
maximal height of a turbulent fountain. This has already been observed by Bloomfield
& Kerr (1998) for forced fountains, but it can now be theoretically extended for weak
fountains.

The case σi� 1 corresponds to a strong stratification and/or high velocity and/or a
low density deficit. A similar asymptotic analysis as previously can be performed. The
relations giving the maximal height tend respectively for Γi� 1 and Γi� 1 to

H ≈ 5A

16α
Γ
−1/2

i σ
−1/4
i and H ≈ 5

8α
Γ −1

i σ
−1/2
i , (4.4a,b)

where A = ∫∞0 (I(σ )+(5/4)β [1,1/2,5/4])−1/2(σ +1)−3/2 dσ ≈ 2.5563.
In both cases, if we replace σi and Γi by their expressions, it is observed that

H does not depend on the deficit of density at the injection ηi. This has already
been observed by Bloomfield & Kerr (1998) from experiments carried out for forced
fountains (Γi� 1). They have also proposed a correlation similar to (4.4a) with a
constant of proportionality equal to 11.73±0.63. This experimental value allows the
entrainment coefficient to be estimated in (4.4a) and here again we recover α=
0.068±0.004. As a result it seems that a highly forced fountain tends to behave like
a jet even in a significantly stratified environment.

Finally, let us mention that the results derived in this section (as well as those
derived the previous section) cannot be used immediately in the present form to deal
with the singular case of a non-buoyant release for which ηi= 0 and σi and Γi tend
respectively to ∞ and 0. This particular situation is investigated in the next section.

5. Initially non-buoyant fountain
In the particular case of an initially non-buoyant fountain, the released density ρi is

equal to the ambient density at the source level, similarly to a pure jet. However, due
to the decrease of the surrounding density with height, this jet immediately becomes a
fountain.
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FIGURE 3. Comparison of numerical solution of (5.2) (solid line) and asymptotic behaviour
(5.4): ∆i� 1 (dotted line) and ∆i� 1 (dash-dotted line).

In order to get around the singularity mentioned at the end of § 4, we introduce the
function ∆(z)=Γ (z)2σ(z), which has a finite value at z= 0 since

∆i= g

(
5biN

8αui

)2

. (5.1)

Indeed, it turns out that this function systematically appears by taking the limit as
ηi→0 in the results obtained for the general buoyant release case. In particular, it can
be shown that the maximal fountain height is now

H = 5
16α

∆
−1/4
i

∫ ∞
0

(
I(σ )+∆1/2

i +
5
4
β

[
1,

1
2
,
5
4

])−1/2

(σ +1)−3/2 dσ. (5.2)

At this height, the density deficit, the buoyancy flux and the volume flux are given as
follows:

ηm

uiNg−1/2
= ∆

1/4
i(

∆
1/2
i + 5

4β
[
1, 1

2 ,
5
4

])1/2 ,

Qm

Qi
=
(
∆

1/2
i + 5

4β
[
1, 1

2 ,
5
4

])1/2

∆
1/4
i

,

Bm= uiN

g1/2
Qi.


(5.3)

It can be observed that these quantities, as well as the fountain maximal height now
only depend on one parameter (i.e. ∆i) instead of two as previously.

Figure 3 shows the numerical solution of (5.2). We observe that the initial height
varies monotonically with respect to ∆i. Though the initial height decreases with ∆i,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.487


Turbulent fountains in a linearly stratified environment 495

the slope of the curve changes depending on whether the value of ∆i is small or large.
This can be confirmed by performing an asymptotical analysis based on the values
taken by ∆i. For ∆i� 1 and ∆i� 1, (5.2) tends respectively to

H ≈ 5A

16α
∆
−1/4
i and H ≈ 5

8α
∆
−1/2
i , (5.4)

where A is the constant already defined in (4.4a,b).
These relations (plotted in figure 3) are similar to those obtained in (4.4a,b)

for σi� 1, as expected since a non-buoyant release is an asymptotic case when
σi→∞.

6. Conclusion
This paper provides an analytical approach based on the model of entrainment of

Morton et al. (1956) to investigate the initial up-flow of a turbulent fountain growing
in a linearly stratified environment under the Boussinesq approximation. It has been
shown that the fountain maximal height can be written in the form of an integral
which depends on two parameters Γi and σi. Also, the asymptotic behaviour of the
maximal height have been investigated. The main fountain variables at the maximal
height have been analytically expressed, which is a significant result useful to tackle
the down-flow problem.

As important new physical understanding, it was shown that:

(a) For a low stratification and/or a low initial velocity (σi� 1), H does not depend
on σi. This indicates that the fountain maximal height is only function of the
release conditions in this case.

(b) For weak fountains (Γi� 1) it was shown that H does not depend on the
entrainment coefficient, whatever the value of σi. This result suggests that a
criterion for discriminating weak fountains from forced fountains could be based
on this independence.

(c) For a non-buoyant release (fountain with zero buoyancy flux at the source), it has
been shown that the whole set of relations can be reformulated by using only one
initial parameter, ∆i, which is a function of the initial momentum flux and of the
ambient stratification.

(d) In the particular case of a forced fountain (Γi� 1), it has been observed that
whatever the strength of stratification (σi� 1 or σi� 1), the relations for the
maximal height are in agreement with the scaling laws of Bloomfield & Kerr
(1998, 2000) obtained from experiments. By comparison with these experimental
results, it has been deduced that the value of the entrainment coefficient α should
be around 0.068, independently of the strength of stratification.

(e) The entrainment coefficient for a highly forced fountain was found to be close to
that of a jet. Consequently, a highly forced fountain exhibits a similar entrainment
process to a turbulent jet even for a strong stratification.

All the results obtained for the fountain’s maximal height are summarized in table 1.
Even though the formalism developed here has been applied only to round fountains, it
can be quite straightforwardly extended to plane fountains. Details of calculations are
not developed in this paper but, as an extension, the main results obtained for plane
fountains are given in table 2.
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Initially buoyant release Γi� 1 Γi� 1

σi� 1 H ≈ (β [1,1/2,4/5]/4α)Γ −1/2
i H ≈ (5/16α)Γ −1

i

σi� 1 H ≈ (5A /16α)Γ −1/2
i σ

−1/4
i H ≈ (5/8α)Γ −1

i σ
−1/2
i

Initially non-buoyant release ∆i� 1 ∆i� 1

H ≈ (5A /16α)∆−1/4
i H ≈ (5/8α)∆−1/2

i

TABLE 1. Asymptotic behaviour for round fountains. Γi= 5gηibi/8αu2
i , σi= u2

i N2/gη2
i and

∆i= 52gb2
i N2/82α2u2

i with β [1,1/2,4/5]≈ 2.3 and A ≈ 2.56. Note that Fr = 5/(8αΓi).

Initially buoyant release Γi� 1 Γi� 1

σi� 1 H ≈ (β[1,2/3,2/3]/3α)Γ −2/3
i H ≈ (1/2α)Γ −1

i

σi� 1 H ≈ (B/2α)Γ −2/3
i σ

−1/3
i H ≈ (1/α)Γ −1

i σ
−1/2
i

Initially non-buoyant release ∆i� 1 ∆i� 1

H ≈ (B/2α)∆−1/3
i H ≈ (1/α)∆−1/2

i

TABLE 2. Asymptotic behaviour for plane fountains. Γi= gηibi/αu2
i , σi= u2

i N2/gη2
i and

∆i= gb2
i N2/α2u2

i with B≈ 2.12 and β [1,2/3,2/3]≈ 2.05. Note that Fr = 1/(αΓi).
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