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Abstract

The linear complexity and the error linear complexity are two important security measures for stream
ciphers. We construct periodic sequences from function fields and show that the error linear complexity
of these periodic sequences is large. We also give a lower bound for the error linear complexity of a class
of nonperiodic sequences.
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1. Introduction

A necessary condition for the security of a stream cipher is that it has large linear
complexity to thwart an attack by the Berlekamp–Massey algorithm. For stability, the
linear complexity of a sequence should not decrease significantly if a few terms are
changed. For this purpose, Ding et al. [2] introduced the concept of sphere complexity
in 1991 and Stamp and Martin [13] introduced the k-error linear complexity in 1993.
The k-error linear complexity has proved to be a useful measure of the stability of a
pseudorandom sequence (see [1, 5, 7–9, 12, 15, 16]).

We consider periodic sequences from function fields, based on the constructions
in [4, 10, 16], and we obtain improved lower bounds for the linear complexity and
new lower bounds for the error linear complexity. We also analyse the error linear
complexity of a class of nonperiodic sequences. This use of algebraic function fields
in sequence construction is not new (see [4, 10, 15–18]).

In this paper, we focus on the linear complexity and error linear complexity. While
large linear complexity is a necessary condition for cryptographic security, it is not
sufficient. The sequences we consider have some nonrandom properties.

The paper is organised as follows. The next section presents some basic notation
and definitions for linear complexity and error linear complexity and basic results on
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the function fields that we will use. Section 3 deals with the error linear complexity of
periodic sequences. Section 4 gives a lower bound for the error linear complexity of
the nonperiodic sequences constructed in [17].

2. Preliminaries

Throughout this paper, Fq denotes the finite field with q elements.

2.1. Linear complexity. We first introduce some basic definitions about linear
complexity and error linear complexity of sequences.

Definition 2.1.
(1) Let s = (s0, s1, s2, . . .) be an infinite sequence of elements of Fq and let n

be a positive integer. The nth linear complexity of s, denoted by Ln(s), is the
smallest positive integer l such that there exist l + 1 elements λ0, λ1, . . . , λl ∈ Fq with
λ0 , 0, λl = 1 satisfying

∑l
i=0 λisi+v = 0 for 0 ≤ v ≤ n − l − 1.

(2) Let S = (s0, s1, s2, . . .) be an N-periodic sequence of elements of Fq. The linear
complexity of S, denoted by L(S), is the smallest positive integer l such that there exist
l + 1 elements λ0, λ1, . . . , λl ∈ Fq with λ0 , 0, λl = 1 satisfying

∑l
i=0 λisi+v = 0 for all v.

It is well known that the linear complexity of nonperiodic infinite sequences cannot
exceed 1

2 n. This is the basis for the following definition [11].

Definition 2.2. An infinite sequence s = {s0, s1, s2 . . .} of elements of Fq is called
d-perfect for a positive integer d if Ln(s) ≥ 1

2 (n + 1 − d) for all n ≥ 1.

For the stability of the keystream, changing a few terms of the sequence should not
cause a significant decrease in the linear complexity. According to this requirement, a
new measure of complexity was proposed by Stamp and Martin in [13].

Definition 2.3.
(1) Let S be an N-periodic sequence of elements of Fq. For an integer k with

0 ≤ k ≤ N − 1, the k-error linear complexity of S is

Lk(S) := min
T

L(T),

where the minimum is taken over all N-periodic sequences T obtained from S by
changing k or fewer terms in one period.

(2) Let s be an infinite sequence of elements of Fq. For integers k and n with
0 ≤ k ≤ n − 1, the nth k-error linear complexity of s is

Ln,k(s) := min
t

Ln(t),

where the minimum is taken over all infinite sequences t obtained from s by changing
k or fewer terms in the first n positions.
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2.2. Function fields. Now we recall some properties of function fields (see [14] for
more details). Let F/Fq be a global function field with genus g. Denote by PF the set
of all places of F and by P(1)

F the set of all rational places of F. Let R ∈ P(1)
F and t ∈ F

be a local parameter of R. For a given nonzero function f ∈ F, there exist an integer
v = v(R) and an infinite sequence {ar}

∞
r=v over Fq such that

f =

∞∑
r=v

artr.

The above equation is called the local expansion of f at R.
For a divisor G, we define the Riemann–Roch space

L(G) = { f | f ∈ F\{0}, div( f ) + G ≥ 0} ∪ {0}.

Then L(G) is a finite-dimensional vector space over Fq. Moreover, by the Riemann–
Roch theorem, dimFq L(G) ≥ deg(G) + 1 − g and equality holds if deg(G) ≥ 2g − 1.

Let Aut(F/Fq) denote the Fq-automorphism group of F. The following properties
of automorphisms can be found in [14].

Lemma 2.4. Let σ ∈ Aut(F/Fq), P ∈ PF and f ∈ F. Then:

(1) σ(P) is also a place of F with deg(σ(P)) = deg(P);
(2) νσ(P)(σ( f )) = νP( f );
(3) σ( f )(σ(P)) = f (P) if νP( f ) ≥ 0.

3. k-error linear complexity for periodic sequences
In this section, we present a construction of periodic sequences from function fields

and calculate the k-error linear complexity for these sequences. We will show that both
the linear complexity and the error linear complexity are large.

We fix the following notation for this section:

• F—a global function field over Fq with genus g;
• σ—an Fq-automorphism of F/Fq;
• P—a rational place of F;
• N—the least positive integer satisfying σN(P) = P;
• D—a positive divisor of F fixed by σ with deg(D) = d.

Let Q ∈ PF \ {P, σ(P), . . . , σN−1(P)} be a place of F with degree d′ such that
Q, σ(Q), . . . , σN−1(Q) are pairwise distinct. Choose the positive divisor D such that

L(D + Q) \ L(D) , ∅.

Then there is a function f ∈ L(D + Q) such that ( f )∞ = D′ + Q for some positive
divisor D′ ≤ D. We define a sequence S( f ) over Fq by

S( f ) := ( f (σ j(P)))∞j=0.

Obviously, the period of the sequence S( f ) is at most N.

Theorem 3.1. With the above notation, if d < N − 2d′, then the period of S( f ) is N.
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Proof. Suppose that the period u of S( f ) is less than N. Consider the function

z = f − σ−u( f ).

Note that Q and σ−u(Q) are the poles of z, so that z is a nonzero element. Moreover,
z ∈ L(D + Q + σ−u(Q)). Since σ−u( f )(σi(P)) = σ−u( f )(σ−u(σi+u(P))) = f (σi+u(P)) by
Lemma 2.4(3),

z(σi(P)) = ( f − σ−u( f ))(σi(P)) = f (σi(P)) − f (σi+u(P)) = 0

for all i ≥ 0, that is, P, σ(P), . . . , σn−1(P) are zeros of z. Thus,

0 , z ∈ L
(
D + Q + σ−u(Q) −

N−1∑
i=0

σi(P)
)
.

This holds only if

deg
(
D + Q + σ−u(Q) −

N−1∑
i=0

σi(P)
)
≥ 0,

that is,
d ≥ N − 2d′.

This contradicts our condition. Hence, the period of S( f ) is N. �

Now we consider the linear complexity of the sequence.

Theorem 3.2. If d < N − 2d′, then the linear complexity of the sequence S( f ) satisfies

L(S( f )) ≥
N − d − d′

d′
.

Proof. Set l = L(S( f )). If l = N, we have nothing to prove. Hence, we may assume that
l < N. Then there exist l + 1 elements λ0, λ1, . . . , λl ∈ Fq with λ0 , 0, λl = 1 satisfying

l∑
i=0

λi f (σi+v(P)) = 0

for all v ≥ 0. This is equivalent to( l∑
i=0

λiσ
−i( f )

)
(σv(P)) = 0. (3.1)

Put

z =

l∑
i=0

λiσ
−i( f ).

We claim that z =
∑l

i=0 λiσ
−i( f ) is nonzero. This follows from the facts:

(1) σ−i(Q) are distinct for i = 0, 1, . . . , l;
(2) σ j(Q) is a pole of σi( f ) if and only if i = j for 0 ≤ i, j ≤ l;
(3) σl(Q) is a pole of

∑l
i=0 λiσ

−i( f ).
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So,

0 , z ∈ L
(
D +

l∑
i=0

aσ−i(Q)
)
.

By (3.1),

0 , z ∈ L
(
D + a

l∑
i=0

σ−i(Q) −
N−1∑
v=0

σv(P)
)
.

This can only happen when

deg
(
D +

l∑
i=0

σ−i(Q) −
N−1∑
v=0

σv(P)
)
≥ 0,

that is,
d + (l + 1)d′ ≥ N.

Our result follows. �

Remark 3.3.
(1) The above theorem indicates that the linear complexity of S( f ) is good if d′ and

d are as small as possible.
(2) For the construction of D satisfying L(D + Q) \ L(D) , ∅, we often choose

d ≥ 2g − 1, because then, by the Riemann–Roch theorem,

dim(L(D + Q)) − dim(L(D)) = deg(Q) > 0.

The following theorem gives the lower bound of the error linear complexity.

Theorem 3.4. Let k be a positive integer with 0 ≤ k ≤ N − 1. If d < N − 2d′, then the
k-error linear complexity of S( f ) satisfies

Lk(S( f )) ≥
N − d − d′ − k

d′ + k
.

Proof. Let S1 be a periodic sequence of period N obtained from S( f ) by changing r
(0 ≤ r ≤ k) positions in the first period of length N and then continuing the changes
periodically. Suppose that the linear complexity of S1 is l. Then there are l + 1
elements λ0, λ1, . . . , λl ∈ Fq with λ0 , 0, λl = 1 satisfying

l∑
i=0

λisi+v = 0 for 0 ≤ v ≤ N − 1. (3.2)

Substitute S( f ) into (3.2). Since every term of S( f ) occurs in at most l + 1 equations,
(3.2) is true for S( f ) for at least N − r(l + 1) values of v. This means that z =∑l

i=0 λiσ
−i( f ) has at least N − r(l + 1) zeros amongst P, σ(P), . . . , σN−1(P); denote

these zeros by P1, . . . , PN−r(l+1). Thus,

0 , z ∈ L
(
D +

l∑
i=0

σ−i(Q) −
N−r(l+1)∑

j=1

P j

)
.
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This can only happen when

deg
(
D +

l∑
i=0

σ−i(Q) −
N−r(l+1)∑

j=1

P j

)
≥ 0,

that is,
d + (l + 1)d′ ≥ N − r(l + 1) ≥ N − k(l + 1).

Our result follows. �

Now we present some specific examples of this construction.

Example 3.5 (Rational function field). Let F = Fq(x) be a rational function field over
Fq with q odd and let ζ be a primitive element of Fq. Let P(1)

F be the set of all rational
places of F, so that #P(1)

F = q + 1. Let P1 be the unique zero of x − ζ and P2 the unique
zero of x − ζ2. Let P0 and P∞ be the zero and pole of x, respectively.

Let φ be the automorphism of F/Fq defined by φ(x) = ζx and set σ = φ2. The action
of σ on P(1)

F \ {P0, P∞} gives two orbits of length N = 1
2 (q − 1), which we label

{σ j(P1) | 0 ≤ j ≤ N − 1}; {σ j(P2) | 0 ≤ j ≤ N − 1}.

Now we can take D = 0,Q = P2. Since g(F) = 0, the Riemann–Roch theorem gives
L(Q) \ L(0) , ∅. Let f ∈ L(Q) \ Fq. Our construction gives a periodic sequence

S( f ) = ( f (P1), . . . , f (σN−1(P1)))∞.

Then d = 0, d′ = 1 and, by Theorems 3.1, 3.2 and 3.4, respectively:

(1) the period of S( f ) is N;
(2) the linear complexity of S( f ) satisfies L(S( f )) ≥ N − 1;
(3) the k-error linear complexity of S( f ) satisfies Lk(S( f )) ≥ (N − 1 − k)/(k + 1).

Remark 3.6. The lower bound for the linear complexity of this sequence improves the
estimate given in [10], namely

L(S( f )) ≥ min
{2N − 1

3
,

q − 3
4

}
.

While the linear complexity is large, the sequence is cryptographically weak because
the parameters can be computed from any three consecutive terms.

For the next example we need the following lemma.

Lemma 3.7 [6]. Let F be the cyclic function field over Fq with N = 1 + q + t rational
places. Let R be a generator of P(1)

F and Q a place of degree d. If gcd(N, d) = 1, then
σi(Q), . . . , σi+N−1(Q) are pairwise distinct and σi+N(Q) = σi(Q) for any i ∈ Z.
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Example 3.8 (Elliptic function field). Let F be the cyclic function field over Fq with
N = 1 + q + t rational places, that is, the set of rational places, P(1)

F , is a cyclic group
and −2

√
q ≤ t ≤ 2

√
q. Let R be a generator of P(1)

F , that is, P(1)
F = {[i]R | 0 ≤ i ≤ N − 1}.

From [3], there is a unique σR ∈ Aut(F/Fq) such that σR([i]R) = [i + 1]R. Let σ = σR.
The action of σ on all the rational places forms an orbit of length n, which we label as

{σ j(R) | j = 0, 1, . . . ,N − 1} = P(1)
F .

Now suppose that n is an odd number. Take D = 0 and Q a place of degree
two. Since g(F) = 1, the Riemann–Roch theorem gives L(Q) \ L(0) , ∅. Let f ∈
L(D + [2]R) \ L(D). Our construction gives a periodic sequence

S( f ) = ( f (σ0(R)), . . . , f (σN−1(R)))∞.

Then d = 0, d′ = 2 and, by Theorems 3.1, 3.2 and 3.4, respectively:

(1) the period of S( f ) is N;
(2) the linear complexity of S( f ) satisfies (S( f )) ≥ (N − 2)/2;
(3) the k-error linear complexity of S( f ) satisfies Lk(S( f )) ≥ (N − 2 − k)/(k + 2).

Remark 3.9. The sequence in Example 3.8 is a special case of [4]. The lower bound
for the linear complexity improves the estimate L(S( f )) ≥ N/3 given in [4].

Finally we give an example over a Hermitian function field. This construction was
used to define a multisequence in [16], but the lower bound for the linear complexity
in [16] is not valid for a single sequence.

Example 3.10 (Hermitian function field). Let q > 3 be a prime power. The Hermitian
function field over Fq2 is the function field Fq2 (x, y), where x, y are two variables over
Fq2 satisfying

yq + y = xq+1.

This is a nonsingular plane curve with genus g = 1
2 (q + 1 − 1)(q + 1 − 2) = 1

2 q(q − 1).
Let ε be a primitive element of Fq2 . Then the automorphism φ = σε,0,0 is of order

q2 − 1, where σa,b,c represents the automorphism

σa,b,c(x) = ax + b, σa,b,c(y) = aq+1y + abqx + c.

Moreover, we have the following properties from [16]:

(1) φ(P∞) = P∞, where P∞ is the unique common pole of x and y;
(2) the action of φ on all rational places , P∞, P(0,0) gives rise to q + 1 orbits among

which one contains q − 1 elements and each of the others contains exactly q2 − 1
elements.

Take two rational places R,Q generating orbits of length N = q2 − 1 in P(1)
F and label

them as

{σ j(R) | j = 0, 1, . . . ,N − 1} and {σ j(Q) | j = 0, 1, . . . ,N − 1},

where deg(R) = 1, deg(Q) = d′ = 1.
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Let D = (2g − 1)P∞. Then D is fixed by φ and d = deg(D) = 2g − 1 = q2 − q − 1.
By the Riemann–Roch theorem, dim(L(D + Q)) − dim(L(D)) = deg(Q) = 1. Choose
f ∈ L(D + Q) \ L(D) and generate a periodic sequence S( f ) = ( f (φi(R)))∞i=0. Then
d = q2 − q − 1 < q2 − 1 − 2 = N − 2d′ and, by Theorems 3.1, 3.2 and 3.4, respectively:

(1) the period of S( f ) is q2 − 1;
(2) the linear complexity of S( f ) satisfies L(S( f )) ≥ q − 1;
(3) the k-error linear complexity of S( f ) satisfies Lk(S( f )) ≥ (q − 1 − k)/(k + 1).

4. k-error linear complexity for a nonperiodic sequence

In this section, we calculate the k-error linear complexity for a nonperiodic infinite
sequence constructed by Xing and Lam in [17]. We first recall the construction of [17].
We fix the following notation for this section:

• F—global function field with full constant field Fq;
• P—a rational place of F;
• t—a local parameter at P with deg((t)∞) = 2;
• f —a function in F \ Fq(t).

Choose f ∈ F with νP( f ) ≥ 0. Let f =
∑∞

n=0 antn be the local expansion of f at P,
where an ∈ Fq, and define the sequence s( f ) by

s( f ) = (a1, a2, a3, . . .).

Lemma 4.1 [17]. If d ≥ deg(( f )∞) and νP( f ) ≥ 0, then the sequence s( f ) constructed
above is d-perfect, that is, Ln(s( f )) ≥ 1

2 (n + 1 − d) for all n ≥ 1.

The sequence constructed above retains its linear complexity profile if a limited
number of terms are changed.

Lemma 4.2 [18]. If d ≥ deg(( f )∞) and νP( f ) ≥ 0, then any sequence s obtained by
changing the first k terms of s( f ) is (d + 2k)-perfect. Moreover, if the divisor (t)∞
satisfies k(t)∞ ≤ ( f )∞, then s is still d-perfect.

Now we consider k-error linear complexity of s( f ) for arbitrary k.

Proposition 4.3. Let k be a positive integer. If d ≥ deg(( f )∞) and νP( f ) ≥ 0, then the
nth k-error linear complexity of s( f ) satisfies

Ln,k(s( f )) ≥
n + (2k+1 − 1) − (2k+1 − 1)d

2(2k+1 − 1)
.

Proof. By Lemma 4.1, the sequence s( f ) is d-perfect. For any positive integer n, let sn

be the sequence of length n formed by the first n terms of the sequence s. It is easy to
see that Ln(s) = Ln(sn) and Ln(s) ≤ Ln′(s) when n ≤ n′.
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Let s be a sequence obtained from s( f ) by changing k of the first n terms. We prove
the proposition by induction on k. When k = 0, the result follows by Lemma 4.1.
Assume that the result is true for any integer less than k, that is, for 1 ≤ t < k,

Ln,t(s( f )) ≥
n + (2t+1 − 1) − (2t+1 − 1)d

2(2t+1 − 1)

for all n ≥ t. Let λ ∈ [0, 1] be a rational number.

Case 1: all k errors appear in the first λn terms. By Lemma 4.2, the linear complexity
of s satisfies

Ln(s) ≥
n + 1 − d − 2λn

2
,

that is,

Ln,k(s( f )) ≥
n + 1 − d − 2λn

2
.

Case 2: all k errors appear in the last (1 − λ)n terms. Since the first λn terms of s
and s( f ) are same,

Ln(s) ≥ Lλn(s) = Lλn(s( f )).

However, s( f ) is d-perfect, so that

Lλn(s( f )) ≥
λn + 1 − d

2
,

that is,

Ln,k(s( f )) ≥
λn + 1 − d

2
.

Case 3: r errors appear in the first λn terms with r ≤ k − 1. Now

Ln(s)Lλn(s) ≥ Lλn,r(s( f )) ≥ Lλn,k−1(s( f )).

By induction,

Lλn,k−1(s( f )) ≥
λn + (2k − 1) − (2k − 1)d

2(2k − 1)
.

Thus,

Lλn,k(s( f )) ≥
λn + (2k − 1) − (2k − 1)d

2(2k − 1)
.

Summarising these three cases,

Ln,k(s( f )) ≥ min
{n + 1 − d − 2λn

2
,
λn + 1 − d

2
,
λn + (2k − 1) − (2k − 1)d

2(2k − 1)

}
. (4.1)

The second of the three terms in (4.1) is never less than the third, so the maximum of
the right-hand side of (4.1) occurs when

n + 1 − d − 2λn
2

=
λn + (2k − 1) − (2k − 1)d

2(2k − 1)
. (4.2)

https://doi.org/10.1017/S0004972719001321 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719001321


[10] Linear complexity of sequences from function fields 351

Solving (4.2) gives λ = (2k − 1)/(2k+1 − 1) and substituting λ in (4.1) gives

Ln,k(s( f )) ≥
n + (2k+1 − 1) − (2k+1 − 1)d

2(2k+1 − 1)
.

Our result follows. �

Remark 4.4. From Proposition 4.3, when the error k is much smaller than the
length n, the sequence s( f ) has both large linear complexity and large error linear
complexity. However, the sequence is an example of an automatic sequence and has
weak randomness properties.
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