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T1 topological rearrangement, i.e. switching of neighbouring bubbles in a liquid
foam, is the elementary process of foam dynamics, and it involves film disappearance
and generation. It has been studied extensively as it is crucial in foam rheology or
foam collapse. T1 dynamics depends mainly on the surfactants used to generate the
foam, and several models taking into account surface viscosity and/or elasticity have
been proposed. By performing experiments in a cubic assembly of films, we go a
step forward in this global analysis and investigate experimentally the mechanism of
formation of the new film. In particular, the flow velocity field is probed by particle
tracking and the film thickness is measured by light absorption and interferometric
measurements. Two limit behaviours for the film are reported: it may (i) undergo an
homogeneous extension, or (ii) resist elongation and remain at rest, new film being
created from liquid exchange with connecting meniscus. Both T1 dynamics and film
thickness are shown to depend on the competition between these two behaviours.
Interestingly, their balance is set by the surfactant solution used, but it is also shown
to vary during a single T1 relaxation process.
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1. Introduction

Liquid foams are concentrated dispersions of gas bubbles in a surfactant solution,
the surfactants being required to ensure their stability. As for other complex systems
characterized by their multiscale structure, foam rheology has been studied extensively
(Tcholakova et al. 2008; Cohen-Addad, Hohler & Pitois 2013) and it is well
described by the Herschel–Bulkley relationship for complex fluids. Different analytical
and numerical models attempt to link local properties of complex liquid to their
macroscopic rheological behaviours (Tcholakova et al. 2008; Cantat 2011; Martens,
Bocquet & Barrat 2012). However, local responses and in particular local timescales
are required to implement modelling and predictions of macroscopic foam rheology.
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In the case of a dry liquid foam, the elementary process associated to foam flow is
a plastic event, the so-called T1 process where neighbouring bubbles switch positions.
This T1 process in a 2D configuration is associated with the disappearance of a liquid
film, the junction of two vertexes then a relaxation toward an equilibrium state through
the creation of a new film. In contrast to suspensions where deformations occur mainly
through the liquid phase, bubbles are highly deformable and we assume here, in the
case of dry foam, that the dynamics of the T1 is characterized by the film switching
dynamics. From a topological point of view, an elementary T1 process in 3D foam
would involve the merging of two vertexes and their dissociation in a film surrounded
by three of them. This configuration also involves the formation of a new film (Hutzler
et al. 2007).

Different experiments probed T1 dynamics in liquid foam. Experiments in 2D
foam (Durand & Stone 2006) and in four-bubble clusters (Biance, Cohen-Addad &
Hohler 2009) have proposed a generic mechanism of T1 relaxation and showed that
its timescale is governed by a balance between a driving force due to surface tension
and a surface dissipation due to viscoelastic properties of the interface. Modifying
surfactant types tunes T1 characteristic time over several orders of magnitude. An
effect of bulk viscosity has been observed (Biance et al. 2009), but it has been
attributed to modifications of surface properties of the surfactant solution. These
studies are accompanied by theoretical work underlying the exact contribution of
elasticity and surface viscosity in the process (Grassia, Oguey & Satomi 2012). As
surface dissipation is the main mechanism driving the T1 dynamics, the thickness of
the film and the structure of its flow is not discussed in these modellings.

These studies appear however controversial with results on macroscopic foam
rheology, where surfactant types modify not only the timescales involved but more
fundamentally the rheological process. Indeed, the Herschel–Bulkley exponent is
strongly affected by the surfactants employed (Tcholakova et al. 2008). Moreover,
recent experiments (Le Merrer, Cohen-Addad & Hohler 2012, 2013) in wet foams
probed the dynamics of rearrangements by diffusive light scattering and showed that
the type of surfactant used alters both the dynamics of T1 and its dependence with
foam internal pressure and bubble radius. Even if foam structure and in particular its
internal pressure is crucial for predicting T1 dynamics, local hydrodynamics of the
freshly formed film is still lacking for predicting the T1 relaxation timescale. These
global experiments suggest that a generic mechanism for T1 dynamics might not be
valid.

Finally, although T1 process analysis is essential to predict foam rheology, it has
also been proven to be a key point for understanding foam stability (Carrier &
Colin 2003; Biance, Delbos & Pitois 2011) and in particular coalescence. Indeed,
experiments show that dynamical events within a foam can generate foam collapse
via film rupture. However, during the T1, the films appear to be thick (colored)
that is far from the point of rupturing observed in a film at rest. Moreover, another
mechanism for film generation based on pulling the film out of its reservoir by
viscous dissipation has been proposed but not experimentally studied.

To disentangle these observations, to define whether a generic mechanism for T1
dynamics is reasonable or not, and to define the conditions for film rupture, it appears
crucial to probe the structure of the film generated during a T1 process. By using a
dedicated soap film assembly to mimic a topological rearrangement in a real foam,
this is the issue which is tackled here.
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FIGURE 1. (Colour online) (a) Picture of the frame with the micrometric screw and the
mirror. (b) Film network created in the frame before the T1 event (left), in the metastable
configuration (middle) and at the end of the rearrangement (right). (c) Image sequence of
the freshly created film. Here Rc is the radius of curvature of the Plateau border and 2L
the length of the film.

2. Experiments
2.1. Experimental configuration

The topological rearrangement T1 is generated through a cubic Plateau’s frame
(Weaire et al. 2007; Barrett et al. 2008), constituted of a cube with two sides of
fixed length Lf and one sliding side of length Ls (figure 1a,b). When the frame, in
a configuration with Ls < Lf , is removed from a foaming solution, an assembly of
eight foam films, joined by eight liquid channels or menisci called Plateau borders
(Cantat et al. 2010) converging at one central vertical film, is formed (picture one
of figure 1b). By increasing Ls quasi-statically via a micrometre screw, the size of
the central film decreases until the central film disappears in a single eight-fold
vertex of Plateau borders. This configuration is unstable, and the network evolves
spontaneously towards its new stable configuration, which includes a freshly created
film orthogonally to the previous one (figure 1b). Three frame lengths Lf are tested
(4, 8 and 16 mm), and a slight asymmetry is added in order to shape a horizontal
film and reduce gravity effects. The frame is lit from above, and a direct image of
the new film is captured with a high-speed camera (Photron SA-4) at up to 2000 f.p.s.
Figure 1(c) shows snapshots of the creation and growth of the new film. The length
of the film L is measured along the x-direction on the symmetry axis of the film, and
the radius of curvature Rc is defined by the projected minimal width of the diagonal
Plateau borders. The error on Rc is ±15 % in absolute value, attributed to variations
obtained through different measurement methods. Rc is varied by withdrawing liquid
from the film assembly with a tissue.

2.2. Velocity profile
The local dynamics of the film expansion, usually inaccessible because the film
is hidden by closed bubbles, is followed by dispersion of Iriodin particles in the
foaming solution, whose diameter is on average 5 µm, at a volume fraction of the
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FIGURE 2. (Colour online) (a) Velocity of the particles 13 ms after the creation of
the fresh film, for a solution of SDS with dye and 40 % of glycerol. (b,c) Thickness
measurement through light absorption 100 ms after the creation of a film of a solution
of SDS containing a dye. The light intensity (b) and the corresponding thickness (c)
are represented. Thickness bars are in micrometres. (d) Thickness measurement through
monochromatic interferences observed 28 ms after the film creation for a solution of SDS
with dye and 10 % of glycerol. (e) Evolution with time of the thickness at the centre of
the new film measured by absorption (black line) and interferometry (red dot) for two
measurements with comparable evolution of film length, with a mixture of SDS (3 g l−1),
dodecanol (0.3 g l−1), dye and 10 % of glycerol. (f ) Thickness profile of the same films
at t= 800 ms.

order of 0.1 % (Merck 111 rutile fine satin). The addition of the particles has been
checked to leave the T1 global dynamics unchanged, and variations of their size
(same material, average diameter below 100 nm) show no influence on the velocity
profiles measured. The flow profile is obtained by carrying on particle tracking with
a Matlab routine developed in house (Geraud, Bocquet & Barentin 2013). In this
analysis, the particles are first detected by the localization of the local intensity
maxima of a filtered image. The individual particles are tracked by minimizing their
global displacement between two pictures. The velocity of the flow is then deduced,
as shown in figure 2(a), by fitting the particle positions obtained from n successive
pictures, spanning between 1.5 and 80 ms depending on the velocity range. The
velocity profile is however not resolved in the film thickness but corresponds to an
averaged value of the velocity at a given position within the film.

2.3. Thickness profile measurements
The local film thickness h(x, y, t) of the liquid film is measured by two techniques,
depending on the range of thicknesses observed. A first method, already described
elsewhere (Lastakowski et al. 2014) is based on light absorption, a dye (Brilliant
Black BN, Sigma, 60 %, No. 211842, 5 g l−1) being added to the solution. Grey
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level intensities of transmitted light It are linked to film thicknesses through the
Beer–Lambert law (figure 2b,c):

It = TI0 exp(−αh) (2.1)

where α arises from the calibration on capillary tubing of controlled thickness
(20, 30 and 50 µm) filled with the solution and diluted solutions (up to 10 times),
T from the transmission coefficient of a colourless liquid film and I0 from the
image of the background. The comparison of thicknesses measured by absorption
and interferometry with a commercial interferometer (oceanoptics) shows a good
agreement, with an error estimated within 1 µm. To reduce the noise, the thickness
is calculated for an average of the intensity on a square of side 3 pixels which gives
a lateral resolution of 19± 1 µm. Finally, when the thickness is shown as a function
of x, the symmetries along the x- and y-axes are also taken into account to reduce
the noise and the mean value between h(x, y), h(x, −y), h(−x, y) and h(−x, −y) is
plotted.

This method however is limited to thick films, because light absorption passes
under the camera sensitivity for film thicknesses lower than 2 µm. Consequently,
an interferometric method has been developed to measure the local thickness of
‘thin’ films. A monochromatic light (sodium lamp associated to a band-pass filter)
of wavelength λ0 = 545 nm is partly reflected by the two interfaces of the new film
with an incident angle θi = 15◦, and transmitted through a stereomicroscope to the
high-speed camera. Fringes of equal thicknesses h(x, y, t) are recorded, as shown in
figure 2(d):

h(x, y, t)= P
4n cos θr

λ0 (2.2)

with P= 2p+ 1 and P= 2p for constructive and destructive interferences respectively,
p the fringe order, n the refractive index of the foaming solution and θr the refraction
angle (verifying sin θi = n sin θr). To measure the absolute value of the thickness,
images are recorded until the appearance of a common black film. As only extrema
of the light intensity are recorded, the incertitude of the measurements is given by
1/8 of the light wavelength, i.e. 60 nm. The spatial incertitude is also 1/4 of the
distance between two extrema. A comparison between the two methods carried on
experiments with the same parameters shows a good agreement, which confirms the
validity of our experimental investigation, as reported in figure 2(e,f ).

2.4. Surfactant solutions
To probe the effect of surface properties and surfactant types, different foaming
solutions are used in the experiments, whose compositions are presented in table 1.
The first class of surfactant solutions consists in a mixture of an anionic surfactant
sodium lauryldioxyethylene sulfate (SLES, product of Stepan Co., Northfield, IL;
commercial name STEOL CS-170), and a zwitterionic surfactant cocoamidopropyl
betaine (CAPB, product of Goldschmidt, Essen, Germany; commercial name Tego
Betaine F50), with the addition of myristic acid (MAc, Fluka, purum g 98.0 GC,
Cat. No. 70082), known to have a high surface dilatational modulus, and thus to
entail rigidity to liquid-gas interfaces (Golemanov et al. 2008). The second class
of surfactant solution contains an anionic surfactant, sodium dodecyl sulfate (SDS,
Sigma, 98.5 %, No. L4509) with various glycerol contents to vary the bulk viscosity.
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SDS SLES CAPB MAc Glycerol Dye η γ

A — 3.3 1.7 0.2 10 5 1.4 24
B — 3.3 1.7 0.2 30 5 2.2 24
C — 3.3 1.7 0.2 40 5 3.4 24
D — 3.3 1.7 0.2 50 5 5.1 24
E 4.8 — — — 10 5 1.4 37
F 4.8 — — — 40 5 3.4 37

TABLE 1. Solutions compositions and properties: concentration of SDS, SLES, CAPB, and
MAc (g l−1), glycerol content (wt%), dye content (g l−1), viscosity η (mPa s) and surface
tension γ (mN m−1) at room temperature (∼23 ◦C).

3. Experimental results
The liquid dynamics inside the freshly formed film has been studied for the different

surfactant solutions reported in table 1, and two behaviours are observed, as depicted
in figure 3.

The first is observed in experiments performed with solutions A–D (table 1). The
velocity V(x, y = 0, t) of the liquid in the film along the x-axis normalized by the
velocity of the surrounding Plateau borders VPB(t)= L̇(t) is reported in figure 3(a).
The origin of time is taken when the vertex is symmetrical (see figure 1). Inside the
film, the velocity is constant and equal to zero (within error bars) on 80 % of the film
length. The zone near the Plateau border region cannot be probed (because of internal
reflexions due to interface curvature preventing light collection), but velocity variations
in this zone are expected. If this profile is fitted by a linear relation, the resulting slope
is equal to 0.1± 0.1, whatever the time at which it is taken, as shown in figure 3(d).
The thickness profile of the film is measured by interferometry, thicknesses reported
varying between 100 and 500 nm, as shown in figure 3(g). It shows a maximum in
the middle of the film and a minimum near the surrounding Plateau borders, both
decreasing when the film length increases.

The second behaviour is observed with solutions E and F (differing only by their
glycerol content). The normalized velocity profiles are represented in figure 3(b,c) for
viscosities of 1.4 and 3.4 mPa s respectively, at a time t= 10 ms. They both show a
linear dependency up to 0.8x/L(t). However, the velocity profiles have slopes k equal
to 0.45 ± 0.2 and 0.75 ± 0.2 for bulk viscosities of 1.4 and 3.4 mPa s, respectively
(figure 3e,f ). A homogeneous extension of the film would lead to k = 1. Moreover,
the slope of the velocity profile is constant with time for the lower viscosity, while it
increases for higher viscosities. Thickness profiles, measured by absorption, show in
figure 3(h,i) a thinning of the entire film during its extension. At a given time, the
thickness is maximal in the middle of the film, and presents a minimum close to the
surrounding Plateau borders. However, the profile is rounded for the lower viscosity,
and almost flat for the higher one. The thickness of the film is of the order of several
micrometers, compared with hundreds of nanometers for solution A–D.

The timescale of the topological rearrangement is also different for the two cases
because of the variations of the relaxation duration. All the results are presented for
the frame of side 8 mm. Similar results for the two other frames have been observed.

To summarize, the observations can be rationalized by considering two limiting
cases.

(a) The first one concerns rigid interfaces, for which the formation of the new film
is made possible by the extraction of liquid from the Plateau borders, acting
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FIGURE 3. (Colour online) (a–c) Velocity V of the particles normalized by the velocity of
the Plateau border VPB, as a function of the position normalized by half of the length of
the film L at time t= 380 ms (a), or at time t= 10 ms (b,c). All of the data are measured
along the x-axis. (d–f ) Evolution of the slope of the normalized velocity profile, calculated
as the mean along the x- and y-directions, with time. (g–i) Thickness profiles of the liquid
film during the rearrangement. (a–d) are obtained for solutions A (first column); (b–e) and
(c–f ) for solutions E and F, respectively (viscosities of 1.4 and 3.4 mPa s). These results
are obtained with Rc=280 µm. (a,d,g) Solution A, large interfacial rigidity η=1.4 mPa s.
(b,e,h) Solution E, low interfacial rigidity η= 1.4 mPa s. (c,f,i) Solution F, low interfacial
rigidity η= 3.4 mPa s.

as reservoirs during their movement. Indeed, the liquid inside the new film is
initially in the Plateau borders, and stays at rest after its creation. It corresponds
to k = 0. This process of film pulling from the Plateau border is sketched in
figure 4(a), and has been proposed before (Buzza, Lu & Cates 1995; Biance
et al. 2011; Seiwert et al. 2013). It corresponds fairly to the case experimentally
observed in figure 3(d), with k= 0.1.

(b) In the case of highly mobile interfaces, the film is stretched and has no
interaction with the Plateau borders. The flow is purely elongational, and the
slope of the velocity profile is k = 1. The results observed in figure 3(f ) with
k= 0.75 corresponds approximately to this second case.

Between these two cases, figure 3(e) shows an intermediate slope near 0.5
(k = 0.45), which suggests a competition between the two mechanisms. In the next
section, these behaviours are studied in more details.
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FIGURE 4. (Colour online) Two limit cases of film formation, with the state at t
represented on the left, and the state at t+dt represented on the right. The colour indicates
different volumes of fluid, followed during their deformation and motion. (a) Pulling: the
thin film at t (in grey) is not deformed and some of the fluid present in the Plateau border
at t goes into the film at t+ dt. The velocity in the thin film is 0, so k= 0. (b) Stretching:
there is no volume exchange between the film and the Plateau border. The thin film of
length 2L at t (in grey) is stretched at t+ dt to reached the length 2L+ 2L̇dt. The velocity
in the film is Vx = L̇x/L, corresponding to k= 1. Actual deformation is a combination of
these two limit cases, leading to 0 6 k 6 1.

4. Discussion
4.1. Stretching or pulling: dimensional analysis

We observed two mechanisms of film formation during topological rearrangements.
The first consists of the pulling of the film from the Plateau border whereas the
second is an elongation of the film. In our experiments, both effects contribute as we
do not recover a purely elongation velocity profile in the case of mobile interfaces and
a strictly zero velocity profile in the case of rigid interfaces. The relative contribution
of these two mechanisms can be estimated from mechanical bulk and interfacial
rheological properties by scaling laws, considering that the less-dissipative mechanism
of extension will be selected. Stretching is associated with surface elongation and
therefore dissipation by surface viscosity whereas pulling is associated with shear
and bulk viscous dissipation. Whereas the driving force for T1 relaxation process is
mainly surface tension (f ∼ γ ) up to geometrical factors, the drag force (per unit
length) associated to surface elongation is mainly related to the surface viscosity η∗s
(Durand & Stone 2006; Biance et al. 2009): fe ∼ η∗s L̇/L. The drag force associated
to film pulling reads fp ∼ γ (ηL̇/γ )2/3 (Cantat 2013). Both contributions are of the
same order of magnitude when the length of the film is Lc ∼ η∗s /η, which is in
fact the Boussinesq length. For L< Lc, pulling is dominant as for L> Lc, stretching
contribution is larger. This scaling analysis underlines different points and captures
qualitatively our observations.

(a) When surface viscosity is dominant, stretching dissipation becomes larger than
pulling dissipation, and this last mechanism of film formation is selected, as
observed in the case of rigid interfaces.

(b) When bulk viscosity is dominant, stretching of the film will be more favourable
as observed for the more viscous films where the elongation process is more
robust.

(c) During the process, as L is increasing, the ratio of both contributions varies, the
pulling being predominant for small L (short times) then replaced by elongation
as the film grows in size. Thus, the slope of the velocity profile is expected to
increase with time, as observed in figure 3(f ).
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One can note that this sequence of events (pulling followed by extensional flow)
differs with experiments reported recently on the elongation of an already formed
soap film on a frame (Seiwert et al. 2013), where an extensional flow, attributed to
Marangoni stress establishment, is followed by a pulling mechanism. However, in this
case, the film is stretched from an already formed film with a non-negligible size L
at a prescribed rate. These different initial conditions are crucial to understanding the
physical mechanism at stake during the film generation. Indeed, to ensure pulling of a
Frankel’s film, an interfacial stress gradient (a Marangoni stress) must be established
at the film surface to balance bulk viscous stresses (Cantat 2013). This necessary
stress is very low and can have different origins. One of them, an inhomogeneous
repartition of surfactants on the film surface, requires a small extension (L/L0) of the
film at the beginning of the process of less than 1 % (Seiwert et al. 2013). In the
case of a topological relaxation, the initial size L0 of the film is very small and this
critical elongation is instantaneously reached during the vertex dissociation, and cannot
be captured experimentally. Then, the pulling mechanism is established, until surface
elongation requires less dissipation, i.e. when the elongation rate is decreased (lower
velocity, larger films). During this last step of film elongation, rheological properties
of the interface due to so-called Marangoni effects must be taken into account. For
simplicity, the effect of surface elasticity has been neglected as only a dependency of
the stress with elongation rate, through surface viscosity, has been taken into account.
A careful study of full interfacial rheological properties would be needed to conclude
on this point, which is not in the scope of this study.

4.2. Pulling: the case of liquid extracted from Plateau borders
In the case of solutions A–D (table 1), film generation and film thickness profile
are mainly governed by exchange between the film and its adjacent meniscus (PB).
In this type of exchange, the film thickness is given by a balance between capillary
suction and viscous entrainment, as in the common well-known Frankel’s situation
(Mysels & Frankel 1978) of a film withdrawn at constant velocity from a bath.
The thickness of the entrained film is predicted to linearly depend on the radius
of curvature of the meniscus and to depend on the entrainment velocity through a
capillary number h ∼ RcCa2/3. Similarly to this approach, we plot in figure 5 the
local minimal thickness normalized by the radius of curvature of the Plateau border,
participating to capillary suction, versus the instantaneous capillary number based
on Plateau border velocity measured through L (Ca = ηL̇/γ ). We performed the
experiments for different liquid viscosities and different radii of curvature of the
Plateau border. All of the curves appear to collapse on a master curve, the thickness
of the film being in good agreement with the capillary number at the power 2/3.
However, the obtained prefactor is 4.5± 1.2, whereas the value predicted by Frankel’s
theory is 2.68. This discrepancy can be attributed to several factors.

4.2.1. Steady-state approximation and finite size of the film
Frankel’s law describes the pulling of an infinite flat film at a constant velocity.

The assumptions rely on steady-state approximation, stating that the velocity is not
varying with time and that the pulled film is flat far from the meniscus. In our
cases, velocity variations indeed induce film thickness variations and this steady-state
approximation can be discussed. Low Reynolds number (Re < 1) and slender slope
approximation (∂h/∂x � 1/100) allow us to use Stokes equation and to recover
unsteady-state thin-film equation evolution (Cormier et al. 2012; Seiwert et al. 2013),
described below (4.5).
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10–3

10–510–6

(a) (b)

FIGURE 5. (Colour online) (a) Minimal thickness of the film normalized by the radius
of curvature of the Plateau border, as a function of the capillary number Ca= ηV/γ . The
curve gather measurements for the frame of side 8 mm with η = 1.4 mPa s and 240 <
Rc < 320 µm (×), η= 1.4 mPa s and 160< Rc < 240 µm (A), η= 1.4 mPa s and 110<
Rc < 160 µm (?), η= 2.2 mPa s and 240< Rc < 320 µm (∗), η= 2.2 mPa s and 110<
Rc < 160 µm (+), η= 3.4 mPa s and 240< Rc < 320 µm (@), η= 5.1 mPa s and 240<
Rc < 320 µm (C), and for the frame of side 4 mm with η= 1.4 mPa s (E). The dashed
line corresponds to Frankel’s law h/Rc = 2.68Ca2/3 and the straight line corresponds to
a fit of the data with h/Rc = 4.5Ca2/3. (b) Scheme representing Plateau border radius of
curvature variations due to out-of-equilibrium shape of film assembly, the angle varying
between π/2 at the beginning of the relaxation process to 2π/3.

Unsteady effect could thus be a priori non-negligible. However, comparing the
experimental data to the unsteady solution obtained by the numerical resolution of
(4.5) does not lead to a better agreement, thus excluding such possibility.

4.2.2. Out-of-equilibrium Plateau border shape and radius of curvature
During the topological rearrangement, the Plateau border is out of equilibrium and

its shape can be therefore distorted, as depicted in figure 5(b). This shape distortion
should result in a variation of Plateau border radius of curvature. A simple geometric
analysis shows that for angles of the two adjacent films varying between π/2 and
2π/3, the radius of curvature can increase up to 40 %. Taking this effect into account,
the discrepancy with Frankel’s law is a factor of about 1.4, instead of the factor of
1.8 obtained from our experimental observations.

4.3. Elongation of the film
4.3.1. Self-similarity

To check that particles act as passive tracers and that the velocity profile proposed
is valid, we test volume conservation through self-similarity in the elongated part
of the film. Because the interference pattern appears circular (figure 2d), the
analysis proposed in the following is performed in axisymmetric geometry. A direct
comparison of the radial velocity V obtained in the modelling will be performed
with experimental velocity V measured on the x-axis. For the two experiments with
solutions E and F (table 1), the flow is assumed to be almost plug like within the
film, and the velocity to follow a partial elongational profile as observed before:

V(r, t)= k
r

L(t)
∂L(t)
∂t

(4.1)
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FIGURE 6. (Colour online) (a,b) Self-similarity of thickness profiles measured by
absorption for solutions of SDS and dye at viscosities of 1.4 (a) and 3.4 mPa s (b) with
Rc = 280 µm (from figure 3h,i). Here k is adjusted to superimpose the thickness profiles,
and is here equal to 0.36 and 0.95 for 1.4 and 3.4 mPa s, respectively.

where k is the slope of the velocity profile. The 2D liquid volume conservation within
the film implies, assuming an axisymmetric film:

r
∂h
∂t
(r, t)+ ∂Vhr

∂r
(r, t)= 0. (4.2)

The combination of (4.1) and (4.2) gives

∂h
∂t
(r, t)=−k

L̇(t)
L(t)

(
2h(r, t)+ r

∂h
∂r
(r, t)

)
. (4.3)

One solution satisfying this equation reads

h(r, t)= 1
L(t)2k

f
(

r
L(t)k

)
. (4.4)

The function f is an arbitrary function, which is the shape of the film conserved
during the elongation.

The thickness profiles, multiplied by L(t)2k, taken at different times, are represented
as a function of x/L(t)k in figure 6(a) for a viscosity of 1.4 mPa s. It shows a good
self-similarity between the thickness profiles, which confirms that particles follow the
liquid flow inside the film. The value of k used to adjust the profiles is 0.36± 0.06
for a viscosity of 1.4 mPa s. A shown in figure 6(b), results are similar for a higher
viscosity of 3.4 mPa s, as we observe again a self-similarity with a factor k= 0.95±
0.25 for times higher than 10 ms. However, the first profiles do not superimpose,
which is attributed to the increase of the slope of the velocity profile with time for
the higher viscosity, as represented in figure 3( f ). For the two viscosities, the factors
k= 0.36 and k= 0.95 are compatible with the slope of the velocity profiles obtained
on figure 3(b,c), k= 0.45 and k= 0.75, respectively. It allows us to verify the volume
conservation and thus the validity of the velocity profiles measured.
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Moreover, the thickness profiles shown in figure 6 exclude the 100 µm adjoining
the meniscus. In fact, the profile wings do not superimpose through the law of volume
conservation, which is consistent with a slope of the velocity profile lower than 1 and
liquid exchange between the Plateau borders and the film.

4.3.2. Limitation of the self-similarity
At the beginning of the T1, when the film is not created yet, the shape of the

liquid meniscus at the eight-fold vertex point is almost circular and at first order well
described by a parabolic shape. The minimal thickness of liquid is observed in the
middle of the vertex at r = 0. Then during the film formation process, a bump in
the middle of the film appears, reminiscent to dimples observed during film drainage
(Chan, Klaseboer & Manica 2010). The thickness becomes maximal in the middle
of the film and minimal near the Plateau borders (see figure 3h), so the curvature
of the liquid interfaces at the point r = 0 is positive initially and negative at later
times. Moreover, the profiles obtained at the two different viscosities do not have
the same shape, the higher viscosity corresponding to a flatter profile. The curvature
inversion occurs at early time and is not visible on figure 6. It cannot be predicted
with the elongational model discussed in § 4.3, as it does not respect the self-similarity
associated with this simple model. Moreover, the elongational model of § 4.3 does not
predict nor explain the value of the parameter k, which is an adjustable parameter of
this first approach. In the case of the higher viscosity (3.4 mPa s), the slope of the
velocity profile is near 1, which is the expected value for a purely extensional process
(see figure 4). However, in the case of the lower viscosity (1.3 mPa s), the slope of the
velocity profile is near 0.5 and the contribution of the pulling process can no longer
be neglected. In the complex dynamics involving both processes the central part of the
film is elongated and the shape is thus self-similar, but new film is extracted from the
Plateau border, with a thinner thickness. This is consistent with the observation made
on figure 6(a): the central part is self-similar, but the film length, even in rescaled
units, increases with time. The value of k, the curvature inversion at short time, and
more generally the prediction of the whole film shape are not captured by the simple
elongation model discussed in 4.3 and required a more detailed modelling proposed
in the following.

4.4. Combination of the two mechanisms
4.4.1. Unsteady lubrication model

The Frankel’s theory assumes an infinite viscosity at the interface (or equivalently
an infinite Gibbs elasticity), that is Marangoni effects which are so strong that the
interfacial extension is of negligible amplitude; this leads to the prediction used
in § 4.2 for the film thickness. In contrast the stretching case proposed in § 4.3 is
only possible if the interfacial stress is negligible. In order to combine these two
limiting cases in a more complete theory, we need to take into account the interfacial
rheology. Both the viscous and elastic properties of the film should in principle be
considered. For sake of simplicity, we only consider viscous aspect here. We thus
define the surface viscosity η∗s = ηs + κs, with ηs the shear interface viscosity and κs

the dilatational interface viscosity.
The time evolution of the film is obtained from the lubrication equations, which

take into account the capillary suction of the meniscus and the Marangoni flow
induced by the interfacial stress gradients. Two equations, detailed in appendix A,
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govern the coupling between the interfacial velocity vs and the film thickness h(r, t),
in axisymmetric geometry:

ht =−1
r
∂r

[
γ

3η
rh3

(
hrrr + ∂r

(
hr

r

))
+ rvsh

]
(4.5)

where the surface velocity is set by stress balance at the interface (see appendix A):

vs,rr + ∂r

(vs

r

)
=− γ

η∗s
h
(

hrrr + ∂r

(
hr

r

))
. (4.6)

These equations require different boundary conditions. The solution must match
asymptotically a static meniscus with a constant given mean curvature c0 = 1/Rc

whose profile is described by:

hasymptotic = hl + c0r0(t)2

2
ln
(

r
rl

)
+ c0

4
(r2 − r2

l ). (4.7)

This shape reaches a minimum value at r = r0(t) and its mean curvature is c0

everywhere. Here rl is an arbitrary reference point, and the thickness at this point
is hl. This point rl will be chosen much larger than r0 and will be used as the
matching point between the dynamical solution determined numerically and the static
meniscus. The experimental velocity of the meniscus is taken into account in the
simulation to impose the boundary condition at r = rl. Indeed, the value of r0 is
modified at each time step according to this experimental velocity, and the thickness
derivatives at r = rl are obtained with (4.7). Symmetry conditions are applied at
r = 0. The initial thickness profile h(r, 0) is calculated from an initial experimental
thickness profile hexp(x, 0). The only adjustable parameter is the dimensionless
parameter λ = (3ηRc)/η

∗
s . The numerical resolution of (4.5) and (4.6) is performed

using a standard implicit method as in Kondic (2003).

4.4.2. Comparison with experimental results
A comparison between the experimental and integrated profiles is shown in

figure 7(a) for the lower viscosity, and in figure 7(d) for the higher viscosity. The
initial profile is the initial condition for the simulation. In both cases, the same value
of λ is kept at all time steps and allows the profile evolution to be captured.

Indeed, the evolution of the experimental thickness is represented as a function
of the integrated thickness in the middle hmid (figure 7b,e) and at the border of the
film hmin (figure 7c, f ): the relations are almost linear, with slopes close to 1. The
comparison of hmin with the thickness predicted by the Frankel’s law highlights the
unsteady property of the T1 dynamics, whereas the introduction of λ in simulations
and the variations of the middle thickness with time highlights the elongation of the
film.

The values obtained for the parameter λ are 0.025 ± 0.005 and 0.07 ± 0.005 for
viscosities of 1.3 and 3.4 mPa s, respectively, which corresponds to surface viscosities
of 0.08± 0.04 and 0.04± 0.03 mPa m s. These measurements are 10 times smaller
than values reported in the literature (Liu & Duncan 2003). Discrepancies can be
attributed to the presence of the dye in the solution or to the non-Newtonian properties
of the interfaces, probed at larger deformation rate and shorter timescales than usually.
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FIGURE 7. (Colour online) (a–d) Experimental thickness profiles (continuous lines)
compared with simulated thickness profiles obtained from integration of (4.5) and (4.6)
(dashed lines). The light dashed line is the initial profile for the simulation, calculated
from the corresponding experimental profile as a continuous trace. Thicknesses are
reported in dimensionless units H = h/(Rc(3Ca)2/3), as a function of the dimensionless
position X = x/(Rc(3Ca)1/3). (b–e) Experimental thickness in the middle of the film as a
function of the simulated central thickness, corresponding to X= 0 on figures (a,d). (c–f )
Experimental minimal thickness as a function of the minimal thickness obtained with our
simulation (o), and as a function of the Frankel’s prediction (♦). The measurements (a–c)
correspond to the low viscous case (1.3 mPa s) with a radius of curvature of 250 µm
and λ= 0.02, and (d–f ) to the high viscous case (3.4 mPa s) with a radius of curvature
of 224 µm and λ= 0.07. Lines correspond to a linear fit, whose slopes are close to one
(0.97, 1.14, 0.98 and 1.13 for (b,c,e,f ) respectively). Results are obtained for solution F
(top line) and G (bottom line).

5. Conclusion
These new experiments underline that film generation during a topological

rearrangement is a complex process. Depending on the nature of the surfactants
used, and therefore on the rheological properties of the liquid and interfaces,
different mechanisms of film formation are found. For very dissipative interfaces,
a pulling mechanism from the adjacent Plateau border is observed, the film nourished
throughout the extraction process. In contrast, for almost stress-free interfaces, a
self-similar elongation and subsequent thinning of the central film is observed,
connection with Plateau borders taking place only on the edge of the films. By
numerically solving unsteady thin-film equation, the film profile can be recovered
and therefore the surface viscosity of the interfaces can be deduced. These results
underly that a general mode of dissipation during a T1 process is not valid, and are
a new starting point for T1 dynamic studies in these various cases, as well as for
defining conditions for film rupture during these dynamical events (Carrier & Colin
2003; Biance et al. 2011).
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Appendix A
This appendix establishes the set of coupled partial differential equations governing

the time evolution of the film thickness h(r, t) and of the interfacial velocity vs(r, t).
The radial velocity in the film v(r, z, t) is governed by the lubrication equations in
an axisymmetric geometry. The pressure P(r, t) only depends on the radial coordinate
r and is fixed by the Laplace pressure jump at the interface. In the following, the
subscript r, z or t denotes a partial derivative with respect to the corresponding
variable.

P=−γ
(

hrr + hr

r

)
. (A 1)

The Stokes equation Pr=ηvzz is integrated three times with respect of the transverse
coordinate z to compute the radial flux Q at the position r:

Q= 2πr
γ

3η
h3

(
hrrr + ∂r

(
hr

r

))
+ 2πrhvs. (A 2)

The integration constants are given by the symmetry conditions vr(r, 0) = 0 and by
the relation v(r, h)= vs(r).

The mass conservation imposes

ht =−1
r
∂r

[
γ

3η
rh3

(
hrrr + ∂r

(
hr

r

))
+ rvsh

]
. (A 3)

The problem is closed with the Marangoni relation, i.e. the condition of tangential
stress continuity at the interface:

ηvz(r, h)= η∗s
(
vs,rr + ∂r

(vs

r

))
(A 4)

which leads to

vs,rr + ∂r

(vs

r

)
=− γ

η∗s
h
(

hrrr + ∂r

(
hr

r

))
. (A 5)

Equations (A 3) and (A 5) are solved numerically, with appropriate conditions at
t= 0, r= 0 and r→∞, as discussed in the text.

REFERENCES

BARRETT, D. G. T., KELLY, S., DALY, E. J., DOLAN, M. J., DRENCKHAN, W., WEAIRE, D. &
HUTZLER, S. 2008 Taking Plateau into microgravity: the formation of an eightfold vertex in
a system of soap films. Microgravity Sci. Technol. 20 (1), 17–22.

BIANCE, A.-L., COHEN-ADDAD, S. & HOHLER, R. 2009 Topological transition dynamics in a
strained bubble cluster. Soft Matter 5, 4672–4679.

BIANCE, A.-L., DELBOS, A. & PITOIS, O. 2011 How topological rearrangements and liquid fraction
control liquid foam stability. Phys. Rev. Lett. 106, 068301.

BUZZA, D. M. A., LU, C. Y. D. & CATES, M. E. 1995 Linear shear rheology of incompressible
foams. J. Phys. (Paris) 5 (1), 37–52.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.662


On the generation of a foam film during a topological rearrangement 301

CANTAT, I. 2011 Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical
simulation. Soft Matter 7 (2), 448–455.

CANTAT, I. 2013 Liquid meniscus friction on a wet plate: bubbles, lamellae, and foams. Phys. Fluids
25 (3), 031303.

CANTAT, I., COHEN-ADDAD, S., ELIAS, F., GRANER, F., HÖHLER, R., PITOIS, O., ROUYER, F. &
SAINT-JALMES, A. 2010 Les mousses: structure et dynamique. Belin.

CARRIER, V. & COLIN, A. 2003 Coalescence in draining foams. Langmuir 19 (11), 4535–4538.
CHAN, D. Y. C., KLASEBOER, E. & MANICA, R. 2010 Dynamic interactions between deformable

drops in the Hele-Shaw geometry. Soft Matter 6 (8), 1809–1815.
COHEN-ADDAD, S., HOHLER, R. & PITOIS, O. 2013 Flow in foams and flowing foams. Annu. Rev.

Fluid Mech. 45, 241–267.
CORMIER, S. L., MCGRAW, J. D., SALEZ, T., RAPHAEL, E. & DALNOKI-VERESS, K. 2012 Beyond

Tanner’s law: crossover between spreading regimes of a viscous droplet on an identical film.
Phys. Rev. Lett. 109 (15), 154501.

DURAND, M. & STONE, H. A. 2006 Relaxation time of the topological T1 process in a two-
dimensional foam. Phys. Rev. Lett. 97, 226101.

GERAUD, B., BOCQUET, L. & BARENTIN, C. 2013 Confined flows of a polymer microgel. Eur. Phys.
J. E 36 (3), 30.

GOLEMANOV, K., DENKOV, N. D., TCHOLAKOVA, S., VETHAMUTHU, M. & LIPS, A. 2008 Surfactant
mixtures for control of bubble surface mobility in foam studies. Langmuir 24 (18), 9956–9961.

GRASSIA, P., OGUEY, C. & SATOMI, R. 2012 Relaxation of the topological T1 process in a two-
dimensional foam. Eur. Phys. J. E 35 (7), 64.

HUTZLER, S., WEAIRE, D., COX, S. J., VAN DER NET, A. & JANIAUD, E. 2007 Pre-empting plateau:
the nature of topological transitions in foam. Europhys. Lett. 77 (2), 28002.

KONDIC, L. 2003 Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45 (1), 95–115.
LASTAKOWSKI, H., BOYER, F., BIANCE, A.-L., PIRAT, C. & YBERT, C. 2014 Bridging local to

global dynamics of drop impact onto solid substrates. J. Fluid Mech. 747, 103–118.
LE MERRER, M., COHEN-ADDAD, S. & HOHLER, R. 2012 Bubble rearrangement duration in foams

near the jamming point. Phys. Rev. Lett. 108 (18), 188301.
LE MERRER, M., COHEN-ADDAD, S. & HOHLER, R. 2013 Duration of bubble rearrangements in a

coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial
rigidity. Phys. Rev. E 88 (2), 022303.

LIU, X. N. & DUNCAN, J. H. 2003 The effects of surfactants on spilling breaking waves. Nature
421 (6922), 520–523.

MARTENS, K., BOCQUET, L. & BARRAT, J. L. 2012 Spontaneous formation of permanent shear
bands in a mesoscopic model of flowing disordered matter. Soft Matter 8 (15), 4197–4205.

MYSELS, K. J. & FRANKEL, S. P. 1978 Effect of a surface-induced gradual viscosity increase upon
thickness of entrained liquid-films and flow in narrow channels. J. Colloid Interface Sci. 66
(1), 166–172.

SEIWERT, J., MONLOUBOU, M., DOLLET, B. & CANTAT, I. 2013 Extension of a suspended soap
film: a homogeneous dilatation followed by new film extraction. Phys. Rev. Lett. 111 (9),
094501.

TCHOLAKOVA, S., DENKOV, N. D., GOLEMANOV, K., ANANTHAPADMANABHAN, K. P. & LIPS, A.
2008 Theoretical model of viscous friction inside steadily sheared foams and concentrated
emulsions. Phys. Rev. E 78 (1), 011405.

WEAIRE, D., VAZ, M. F., TEIXEIRA, P. I. C. & FORTES, M. A. 2007 Instabilities in liquid foams.
Soft Matter 3 (1), 47–57.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.662

	On the generation of a foam film during a topological rearrangement
	Introduction
	Experiments
	Experimental configuration
	Velocity profile
	Thickness profile measurements
	Surfactant solutions

	Experimental results
	Discussion
	Stretching or pulling: dimensional analysis
	Pulling: the case of liquid extracted from Plateau borders
	Steady-state approximation and finite size of the film
	Out-of-equilibrium Plateau border shape and radius of curvature

	Elongation of the film
	Self-similarity
	Limitation of the self-similarity

	Combination of the two mechanisms
	Unsteady lubrication model
	Comparison with experimental results


	Conclusion
	Acknowledgements
	Appendix A 
	References




