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The near wakes of flows past single- and multi-scale arrays of bars are studied by
means of planar laser induced fluorescence (PLIF) and particle image velocimetry
(PIV). The aim of this research is to better understand dispersion of passive scalar
downstream of the multi-scale turbulence generator. In particular, the focus is on
plausible manifestations of the space-scale unfolding (SSU) mechanism, which is
often considered in the literature as the reason for the enhancement of the turbulent
scalar flux in flows past fractal grids (i.e. specific multi-scale turbulence generators).
The analysis of qualitative and quantitative PLIF results, as well as the simultaneously
acquired PIV results, confirms the appearance of a physical scenario resembling the
SSU mechanism. Unlike the anticipation of the literature, however, this scenario
applies to some extent also to the flow past the single-scale obstacle. Application of
a triple decomposition technique (which splits the acquired fields into their means, a
number of coherent fluctuations and their stochastic parts) and a conditional-averaging
technique reveals that the SSU mechanism is active in the vicinity of an intersection
point between two adjacent wakes and is driven almost exclusively by coherent
fluctuations associated with the larger of the intersecting wakes. This suggests that
the SSU mechanism is related to the coherent fluctuations embedded in the flow
rather than to the fine-scale turbulence and its underlying integral length scale, as
proposed in previous works.

Key words: turbulent mixing, wakes

1. Introduction
A number of different numerical, experimental or theoretical studies regarding

flows past multi-scale turbulence generators, fractal grids (FGs) in particular, have
been reported to the scientific community over the past decade. Pioneering works, i.e.
Hurst & Vassilicos (2007), Seoud & Vassilicos (2007), Mazellier & Vassilicos (2010),
showed that the properties of the flow fields behind fractal grids deviate from those
observed past regular grids (RGs) in several ways, e.g. a different scaling of turbulent
kinetic energy or the constancy of the ratio between an integral length scale and a
Taylor length scale was observed. Further studies subsequently investigated a wide
range of aspects of these flows, amongst which their stirring and mixing capabilities
are of particular interest for the present work. Note that these two terms are not
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equivalent; mixing should be associated with the decay of a scalar concentration
field’s fluctuations whereas stirring should be associated with a spatial redistribution
of the patches of scalar.

An initial study on fractal turbulence generators was performed by Coffey et al.
(2007). The researchers showed that this kind of geometry can be utilised to
improve static in-line mixer performance substantially. Further, Suzuki et al. (2010)
experimentally compared the spreading rates of scalar mixing layers in turbulent
flows past FGs and RGs (Schmidt number Sc= 2100). The authors showed that the
width of the layer, measured with either the mean concentration or the concentration’s
variance, is greater for FGs at a comparable normalised downstream location (note
that this was normalised with an effective mesh size, being a function of the grid’s
geometry). Laizet & Vassilicos (2012) provided numerical evidence that the transverse
turbulent scalar flux is highly enhanced in the flow past a FG, by up to an order
of magnitude. This was reported in the context of the flow with a constant mean
scalar gradient (Sc = 0.1). The authors suggested a plausible physical scenario that
could explain the observed enhancement, which they referred to as the space-scale
unfolding (SSU) mechanism. The essence of the postulated SSU mechanism is that
by varying the sizes of particular elements of a turbulence generator, intersections of
their corresponding wakes are shifted to different downstream positions (i.e. spatial
unfolding occurs). A fluid element that is initially trapped in one of the smaller wakes
can be easily entrained into a bigger wake once the two intersect. By repeating this
scenario every time a bigger wake is encountered (which is possible due to the
unfolding), the element’s transverse displacement can increase considerably. Results
reported in the cited work were further confirmed by Laizet & Vassilicos (2015)
who performed some numerical simulations in an almost identical configuration
(Sc = 0.1–0.2). Additionally, the authors presented results of particle tracking in
turbulent flows generated by FGs and RGs (note that these were planar simulations).
The variance of the particles’ transverse displacement was considerably higher (by a
factor of 5 at least) for the multi-scale configuration. Importantly from the perspective
of the subsequent discussion, even in the case where the thickness of the RG’s bars
exceeded the thickness of the widest bar of the FG the latter’s stirring performance
was superior to the RG.

Contrastingly, Nedić & Tavoularis (2016) showed experimentally (Sc= 0.7) that the
width of a plume released into a turbulent flow from a line source depends rather
on the thickness of the thickest bar of the turbulence generating grid than on the
grid’s topology. This observation was consistent irrespective of the relative positions
of the grid and the source. The authors noticed that the thickness of the thickest
bar was not preserved between FGs and RGs in most of the previous studies and
thus an apparent superiority of FGs could have been observed. The importance of the
thickest bar is also stressed by Zhou et al. (2014) who compared the performance
of FGs and a corresponding single-square grid (SSG; the thickness of its bars was
set equal to the thickest bar of the FG) in their numerical study. The results of their
numerical experiment suggest that the thickest bars are responsible for the majority of
the FG’s characteristics, especially in the far field. The finer-scale geometrical details
can be considered as a source of additional background turbulence that affects the
development of the largest bar’s wake and enhances turbulent mixing in the near-field
region. Melina et al. (2017) also compared flows past FGs and SSGs and reported
complementary experimental results. The flow field properties past FGs and SSGs
approach each other as the downstream coordinate grows. Furthermore, heat transfer
performance was nearly the same for the SSG and FG (whilst noticeably different for
a RG).
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It follows from this brief literature review that there is a controversy regarding
whether the stirring efficiency of a turbulent flow downstream of a grid is dictated by
the largest forced length scale or the grid’s specific topology. The present experimental
work aims to advance this debate by challenging the SSU mechanism – the concept
which was introduced by Laizet & Vassilicos (2012) and Laizet & Vassilicos (2015)
as a plausible explanation for their observations. Note that, although clear evidence of
different characteristics of stirring behind RGs compared to FGs has been provided
by these authors (i.e. the enhanced turbulent scalar flux), the SSU mechanism has not
been verified up until now. This verification is performed by arranging an experiment
that would mimic the set-up described in the SSU scenario (i.e. a fluid parcel, located
in a relatively small-scale wake, encounters an intersection with progressively larger
wakes) and attempting a visualisation of the process. Note that the description of the
SSU mechanism relies only on the multi-scale nature of the turbulence generation.
Therefore, a relatively simple multi-scale geometry can be utilised in this study, i.e. an
array of bars of non-uniform thickness, as opposed to complex FGs. This should help
to avoid interference with potential secondary effects induced by a complex design
of the turbulence generator, which could complicate interpretation of the observations.
A flow past a single-scale array is considered for comparison in some cases (note
that the SSU description contrasts flows past single- and multi-scale geometries).
The scalar tracer is released into the flow behind the array’s thinnest bar (following
the scenario given by Laizet & Vassilicos (2012)) and further tracked by means of
qualitative and quantitative planar laser induced fluorescence (PLIF measurements).
Some of these results are complemented by simultaneous velocity field measurements,
taken by means of particle image velocimetry (PIV). The experiment is focused
on the near-wake area (intersections of particular wakes occur there), which is
dominated by relatively energetic sheddings from different bars. Therefore, a triple
decomposition is utilised (see Hussain & Reynolds 1970) in the analysis of the
results to distinguish between the importance of particular coherent fluctuations and
the stochastic fluctuation contribution.

The velocity fields in the flows past the same arrays have been investigated recently
by Baj & Buxton (2017). The main reported finding is that multi-scale generated
turbulence is rich in a number of distinctive coherent fluctuations on top of the
quasi-stochastic turbulent fluctuations. Apart from the primary coherent fluctuations
associated with the shedding of particular bars, prominent secondary coherent motions
are observed to arise as a consequence of triadic interactions between the primary
shedding modes. Interestingly, the appearance of the secondary modes is observed in
the vicinity of the wake intersection points, which is reminiscent of the SSU concept.
By making use of the multi-scale triple decomposition described in Baj, Bruce &
Buxton (2015) we will tackle the second objective of this manuscript, namely to
identify the flow physics that underpin the SSU mechanism. As postulated, the SSU
mechanism is related to the varying integral length scales present in multi-scale
generated turbulence. However, in light of the findings of Baj & Buxton (2017) the
significance of both the primary and secondary coherent velocity fluctuations is of
particular interest for the SSU mechanism.

In this manuscript we will try to verify the SSU concept as a physical mechanism
and attempt to reconcile the opposing positions within the literature relating to
the efficacy of multi-scale stirrers, namely that the size of the largest bar is the
only significant factor versus the fact that the multi-scale geometry modifies the
topology of the flow in a favourable sense. We have devised a specific experimental
configuration to directly mimic the original postulation of the SSU mechanism from
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Laizet & Vassilicos (2012). We seed scalar into the wake of the smallest obstacle of
a multi-scale array and compare the (time-dependent) dispersion of this scalar to that
in a single-scale array of similar blockage. Verification of the SSU mechanism will
thus depend on observing ‘bursts’ of scalar being exchanged at, or close to, the wake
intersection points of the various intersecting wakes downstream of the multi-scale
array. However, as shown in Baj & Buxton (2017), large-scale coherent motions
are dominant in the near field of both the single-scale and multi-scale arrays, with
the most energetic motion being that corresponding to the shedding of the largest
obstacle present. By deploying the multi-scale triple decomposition technique of Baj
et al. (2015) we can track all of the coherent motions present in the flow and hence
assess the relative importance of the largest bar versus the combination of different
bars, and hence the multi-scale nature of the geometry, in stirring the scalar. Thus
it may be possible, to some extent, to reconcile the claims of Laizet & Vassilicos
(2015) and Nedić & Tavoularis (2016).

Let us briefly introduce the outline of the paper. Section 2 reports details of the
experimental facility and the experiment’s design. Section 3 presents the details of
the PLIF calibration and quantification technique (a relatively complex quantification
methodology proposed by Baj, Bruce & Buxton (2016) is utilised). Section 4 delivers
the main results: qualitative PLIF observations and quantitative results regarding
concentration and velocity fields. The latter includes some basic statistics as well
as the outcomes of the triple decomposition and conditional averaging. The work is
concluded in § 5. Some specific issues are also discussed in the appendix.

2. Experimental set-up
The experimental campaign was conducted in the hydrodynamics laboratory

of the Department of Aeronautics at Imperial College London. The main set of
measurements utilised an open water channel having a square cross-section whose
side length was H = 600 mm. Additionally, an auxiliary experiment was performed
in a small tank of 350× 250× 400 mm size.

2.1. The main experiments
Flows past a single-scale and a multi-scale array of bars were investigated in the
main experiments. All the measurements were taken at the same inlet velocity U∞ =
0.2 mm s−1, yielding a global Reynolds number ReH =U∞H/ν = 120 000 (ν denotes
the kinematic viscosity). The water depth was set to H (the arrays were completely
immersed in water). The turbulence intensity IT , defined in the context of planar two-
dimensional (2-D) velocity data as IT =

√
1/2(u′21 + u′22 )/U∞, of the free stream was

found in a preliminary test not to exceed 1.9 % in the bulk flow (see the profile in
figure 1(b), the transverse coordinate y equals 0 at the flume’s centreline and −H/2
at its floor) and to approach around 12 % in the turbulent boundary layer near the
flume’s floor. The boundary layer thickness, i.e. the distance where 99 % of U∞ is
recovered, reached 65 mm (i.e. 0.11H) at a downstream position where the test section
was located (see the mean streamwise velocity ū profile in figure 1a).

The investigated arrays (see figure 2a,b) consisted of particular bars, which were
held within an outer frame (see figure 2c), whose outer dimension matched the
channel’s cross-section. In order to minimise the frame’s impact, streamlining elements
were attached to the frame’s bars. The blockage was similar for both grids, 27.9 %
and 26.7 % for the single and multi-scale array respectively based on the frame’s
inner cross-sectional area (the total blockage reaches 39.6 % and 38.6 % when the
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FIGURE 1. Characterisation of the free stream at the channel’s centreplane: (a) the mean
streamwise velocity profile, (b) the turbulence intensity profile.

frame is also taken into account). The multi-scale array was composed of a big bar,
located centrally, and medium and small bars distributed symmetrically about the big
one. The bar thicknesses ti were equal to 76.2 mm, 25.4 mm and 9.6 mm (0.127H,
0.042H, 0.016H) for the big, the medium and the small bars respectively (they are
referred to as bars I, II and III hereafter). The thickness based Reynolds numbers
Rei

t = U∞ti/ν fell into an interval 1900–15 000. The streamwise depth of the bars
was equal to 15 mm. The gaps between the adjacent bars were equal to 70.1 mm
between the big and the medium bars (0.12H = 0.92tI) and 60.4 mm between the
medium and the small bars (0.10H= 2.38tII). Spacing between the outer bars (i.e. the
farthest most from the centreline) and the frame was set to 71.0 mm, which translates
into a distance from the channel’s floor/water surface of 96.4 mm (0.16H). Note that
this means that the small bar was not submerged in the boundary layer. This specific
configuration of the multi-scale array was picked to ensure: (i) the blockage level
is comparable to the blockage of FGs considered by Laizet & Vassilicos (2015),
(ii) a similar thickness ratio between consecutive scales, (iii) the streamwise position
of the intersection of the small and medium wakes is closer to the origin than the
intersection of the medium and big wakes (following the description of the SSU
mechanism proposed by Laizet & Vassilicos (2012)). The single-scale array was
composed of six equidistant medium bars at a spacing of 65.8 mm (0.11H = 2.59tII).
The gap between the outer bars and the channel’s floor/water was set to 72.0 mm
(0.12H). Note that this configuration of the single-scale array yields a similar blockage
and wetted perimeter to the multi-scale case (these two parameters being matched by
Laizet & Vassilicos (2012, 2015) for comparisons between FGs and RGs).

Three separate sets of experiments were performed: (i) qualitative PLIF and
two-dimensional two-components (2D-2C) PIV measurements, (ii) a quantitative PLIF
measurement and (iii) a simultaneous quantitative PLIF and 2D-2C PIV measurement
(referred to respectively as experiments 1, 2 and 3 hereafter). Sketches of the
set-ups are presented in figure 3. Experiments 1 and 3 focused on the mid-plane
of the channel whilst in the case of experiment 2 a cross-stream plane (i.e. plane
perpendicular to the flow direction) was monitored. In each case the camera and the
optics were fixed at the same position (4.5 m downstream of the channel’s entrance),
whilst the array was mounted to a traverse allowing adjustments to its relative
upstream position. The differences of the initial conditions that arose at different
positions of the array were negligible, i.e. the boundary layer thickness varied by less
than 10 % along the measured streamwise extent (figure 1 refers to the farthest most
position).
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(a) (b) (c)

FIGURE 2. (Colour online) (a) Multi-scale grid, (b) single-scale grid, (c) the outer frame.
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FIGURE 3. (Colour online) Schematic of the experimental set-up: (a) experiments 1 and
3, (b) experiment 2.

Experiment 1 consisted of a single measurement station. Two cameras working
simultaneously in a side-by-side arrangement were utilised in this case. The stitched
field of view (FOV) size was equal to ∆FOV

x /H × ∆FOV
y /H = 0.78 × 0.65. Its exact

location is indicated in figure 4. Experiment 2 consisted of three measurement stations
centred on x/H = {0.21, 0.33, 0.45}. The cross-stream concentration distribution
was monitored within a FOV having size ∆FOV

y /H × ∆FOV
z /H = 0.23 × 0.11 and

located in the middle between the channel’s side walls. Experiment 3 focused on six
consecutive measurement stations starting at x/H = {0.12, 0.18, 0.24, 0.30, 0.36, 0.42}.
Its corresponding FOV size was ∆FOV

x /H × ∆FOV
y /H = 0.07 × 0.28. Note that the

PLIF frames are acquired in the middle between the associated first and second
PIV exposures (i.e. the PIV exposures are centred about the related PLIF exposure).
The laser sheet’s thickness was estimated to be approximately 0.7 mm (i.e. its full
width at half-maximum; see § 2.4 for further details of the laser illumination). Basic
information about particular experiments is summarised in table 2.
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FIGURE 4. (Colour online) Locations of the fields of view of particular measurements.

Exp. 1 Exp. 2 Exp. 3

x/H n/a 0.21 0.33 0.45 0.12 0.18 0.24 0.30 0.36 0.42
c0 (µmol l−1) 207 173 322 489 52 96 140 184 228 271

TABLE 1. Concentrations of dye solutions released during particular measurements.

PLIF measurements utilised rhodamine 6G as the passive scalar. Its water solution
was released into the flow from the point source located at the rear face of a
particular bar (the piping conveying the dye was mounted internally). The diameter
of the point source equalled 3.6 mm (the point source was set at the centre of the
bars spanwise extent). In the case of the multi-scale array, the dye was released
from the smallest bar (following the SSU scenario), whilst it was released from the
second bar above the floor in the single-scale case. The initial concentration of the
dye solution varied across experiments and measurement stations. The exact values
are summarised in table 1. The mass flow rates utilised in particular experiments
are summarised in table 2 (this was controlled by a micro pump, see § 2.4). Given
the diameter of the source point, the release velocity was negligible and equal to
approximately 0.02U∞. A preliminary PIV study showed that the velocity field is
hardly altered by the dye release (i.e. no difference in the velocity field was noticed
between the micro-pump being switched on or off). Thus it is assumed that the dye
was introduced isokinetically into the flow.

In the case of experiments 1 and 3 the flow was seeded with polyamide particles
(specific gravity equals 1.1) having an average diameter of 7 µm. The Stokes flow
based approximation of the particle response time τp was 3 µs. Making a conservative
assumption that the Kolmogorov length scale in the considered flow is equal to
0.1 mm (Baj & Buxton (2017) report values of the order of 0.10–0.13 mm depending
on the location within the flow field), one can evaluate the Kolmogorov time scale τη
to be 10 ms. The resultant particle Stokes number Stp = τpτ

−1
η = 3× 10−4

� 1. This
indicates that the particles followed the smallest scales of fluid motion.

A commercial PIV software (DaVis, LaVision) was used in the course of the PIV
data postprocessing for the evaluation of the instantaneous velocity fields. A multipass
correlation method was applied. Details regarding the final interrogation window size
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Experiment 1 Experiment 2 Experiment 3

Type Qualitative PLIF Quantitative PLIF Quantitative PLIF
2D-2C PIV Simultaneous 2D-2C PIV

Camera 2×Phantom v641 Phantom v641 2×Phantom v641
2×Nikkor 105 mm f /2.8 Nikkor 105 mm f /2.8 2×Nikkor 105 mm f /2.8

Filters 2×bandpass longpass >550 nm longpass >550 nm
568± 10 nm (PLIF) bandpass

532± 5 nm (PIV)
faq (Hz) 16 50 50
Taq (s) 125 80 80
Naq (-) 2000 4000 4000
q̇ (mg s−1) 50 25 25
δt (ms) 4.6 n/a 4.0
IW (px) 24 n/a 24
Overlap (%) 75 n/a 50

FOV size 0.78× 0.65 0.11× 0.23 0.07× 0.28
(∆FOV

x /H ×∆FOV
y /H) (∆FOV

z /H ×∆FOV
y /H) (∆FOV

x /H ×∆FOV
y /H)

∆ (mm) 0.15 (PLIF), 3.6 (PIV) 0.05 0.07 (PLIF), 1.80 (PIV)

TABLE 2. Summary of the experimental parameters ( faq, Taq, Naq, q̇, δt, IW, ∆ denote
respectively acquisition frequency, acquisition time, number of image pairs, mass flow rate
of the dye, time delay between consecutive frames, final interrogation window size and
spatial resolution).

x/H 0.00–0.15 0.15–0.30 0.30–0.45 0.45–0.60 0.60–0.75

e′rms (px)
Exp. 1 0.08–0.25 0.08–0.12 0.09–0.16 0.06–0.14 0.06–0.14
Exp. 3 0.10–0.16 0.11–0.19 0.10–0.13 0.09–0.11 —

e′rms/u
′

rms (%)
Exp. 1 4–16 4–19 5–15 4–15 4–17
Exp. 3 2–5 3–6 3–5 3–4 —

TABLE 3. Relative measurement error e′rms/u
′

rms (%). For experiments 1 and 2: bounds of
the error within the respective fields of view.

and the overlap in particular experiments are presenter in table 2. A sliding median
filter was applied to the resultant velocity fields to identify spurious vectors. The
missing vectors were subsequently interpolated (i.e. cubic interpolation was used). In
all cases the number of replaced vectors was less than 3 % of the total number.

A cumulative error e′ of a particular PIV measurement can be conservatively
quantified by comparing its single-point velocity variance s2

0 with the extrapolation
of the velocity correlation evaluated at zero displacement s2

c (see Romano, Antonia
& Zhou 1999). Its root-mean-square (r.m.s.) value, evaluated as e′rms =

√
s2

0 − s2
c , is

calculated for both PIV experiments at all the considered downstream locations. The
results are presented in table 3. Note that the time separation between PIV exposures
was optimised to resolve the wake area, hence the non-uniformity of the relative error
field (the lowest relative error is observed in the wake areas whereas the largest in
areas of relatively fast flow). Contrastingly, the absolute error reaches a maximum in
the vicinities of the wakes, where high instantaneous velocity gradients are present.
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x/H 0.00–0.15 0.15–0.30 0.30–0.45 0.45–0.60 0.60–0.75

Taq/T0

Exp. 1 717 484 374 312 318
Exp. 3 642 571 358 401 —

∆ūi

/√
u′i

2 (%)

Exp. 1 7.3 8.9 10.1 11.1 11.0
Exp. 3 7.7 8.2 10.4 9.8 —

∆

√
u′i

2
/√

u′i
2 (%)

Exp. 1 5.2 6.3 7.2 7.8 7.8
Exp. 3 5.5 5.8 7.3 6.9 —

∆

√
(∂u′i/∂xk)2

/√
u′i

2
/∆2

x (%)

Exp. 1 10.4 12.6 14.4 15.8 15.6
Exp. 3 11.1 11.6 14.7 13.9 —

TABLE 4. Number of independent measurements (i.e. Taq/T0) and widths of 95 %
confidence intervals for basic velocity statistics (the critical values observed in particular
FOVs are presented; the half-width of the confidence interval of an arbitrary quantity a is
denoted as 1a).

Quantification of the convergence of velocity statistics requires an estimation of the
number of independent snapshots acquired in each measurement. It was assumed that
the latter can be approximated by Taq/T0, where T0 is the integral time scale, i.e. an
integral of the temporal correlations of streamwise velocity. T0 was calculated for each
experiment at all the considered downstream locations; its values are summarised in
table 4. Note that in each case Taq/T0 is sufficiently high, which allows usage of the
central limit theorem (the commonly used threshold is 30, see e.g. Dinov, Christou
& Sanchez (2008)) for evaluating uncertainty of the velocity statistics. Formulae
given in Benedict & Gould (1996) were utilised for this purpose. The half-widths of
95 % confidence intervals for the most important velocity statistics, i.e. ūi, u′i

2 and
(∂u′i/∂xk)2, are reported in table 4 (the critical values observed in particular FOVs
are presented; the half-width of the confidence interval of an arbitrary quantity a is
denoted as 1a).

Quantification of uncertainty of quantitative PLIF results is more complicated; a
general approach to PLIF uncertainty analysis is still missing (although there are
many works considering its different aspects, e.g. Walker (1987), Crimaldi (2008),
Vanderwel & Tavoularis (2014)). The overall uncertainty can be estimated based on
a comparison between the PLIF-measured scalar mass flow rate against its known
value released into the flow. This global assessment, however, requires introduction of
the exact PLIF quantification methodology which is given in § 3. The mass balance
presented in figure 8 is the ultimate result of the aforementioned section.

2.2. Tank experiment
The tank experiment was an auxiliary measurement whose purpose was to gather
the data necessary for the PLIF experiment calibration, which is discussed in § 3.
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The exact same arrangement of optics was used as in the case of the main experiments.
The tank was placed inside the channel at the location of the FOV with its side walls
parallel/perpendicular to the channel’s side walls. It was filled with a uniform dye
solution and the flume was filled with water to the same level (to ensure the optical
path’s properties were preserved; the solution in the tank was seeded with PIV
particles to account for their presence in the actual measurements).

Independent calibrations were performed for each of the main experiments 2 and 3.
In the first case 20 different concentration levels, in the range 0.00–0.49 µmol l−1,
were tested (100 PLIF images were captured at each instant). Thirty three consecutive
concentration levels were probed in the case of the main experiment 3 calibration,
in the range 0.00–0.18 µmol l−1. The solution concentration was measured with 3 %
tolerance.

2.3. The dye solution
Rhodamine 6G (CAS: 989-38-8, 95 % purity, Sigma-Aldrich Company Ltd.) was used
in this study as the fluorescent dye for the PLIF experiments. Its molar mass equals
479 g mol−1 and its solubility in water is 20 g l−1. The Schmidt number, i.e. the ratio
between viscous diffusivity and molecular diffusivity, reaches approximately a value of
2500 (see e.g. Vanderwel & Tavoularis 2014), however, data in the literature are highly
scattered. The dye’s absorption and emission peaks are located at 525 nm and 557 nm
respectively. These may vary with different parameters (e.g. Bindhu et al. (1999) show
a concentration dependence) but the changes are neglected in this study.

Rhodamine 6G is a popular PLIF tracer due to its convenient properties (there
is a number of studies using this dye, i.e. Shan, Lang & Dimotakis (2004), Sarathi
et al. (2012) and Vanderwel & Tavoularis (2014)). Its absorption peak coincides with
the second harmonic of Nd:YLF laser light (527 nm) and is also a good match
for the Nd:YAG laser light (532 nm). This dye is characterised by a relatively high
quantum efficiency, above 0.9 (see Penzkofer & Leupacher 1987) within a wide
range of concentration levels of its aqueous solutions. Effects of pH and temperature
are negligible, as reported by Zhu & Mullins (1992). Rhodamine 6G is also highly
resistant to photobleaching as shown by Crimaldi (1997).

An important matter that has to be noted is an effect of water chlorination. Residual
chlorine was observed in previous studies (e.g. Vanderwel & Tavoularis 2014) to cause
decay of rhodamine 6G concentration. In order to minimise this effect in the initial
dye solution sodium thiosulfate was added to the water used as the solvent to remove
any residual chlorine. On the other hand, it was not added to the working fluid in
the open water channel. This was because the facility works in a closed loop and
the bleaching effect slows the process of build up of the background concentration of
rhodamine (note that each time the background fluorescence exceeded a certain level,
the water was replaced with fresh water). The residual chlorine level was measured
with a commercial test strip to be approximately 30–40 µmol l−1. In an auxiliary
study it was found that the corresponding rhodamine half-life time is of the order of
several hours, which is negligible from the perspective of a single acquisition (which
typically lasted for one minute).

2.4. Instrumentation
A Litron LDY304 Nd:YLF laser was used as the illumination source in the
experimental campaign. It provided 25 mJ of energy per pulse on average, with
a standard deviation of approximately 0.5 %, during measurements of experiment 1
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and 15 mJ during experiments 2 and 3. A divergent laser sheet was formed in the
experimental area by means of a set of lenses and mirrors. It was set either parallel to
the free stream in experiments 1 and 3 or perpendicular in the case of experiment 2
(see figure 3). A S-Link energy meter fitted with a QE12SP-S-MT sensor (both
manufactured by Gentec-EO Inc.) was utilised to monitor the pulse-to-pulse energy
level. These read outs were further used to normalise the corresponding PLIF images.

Vision Research Phantom v641 cameras were utilized in the present study
(providing 12 bit images), whose quantum efficiency for the rhodamine emission
peak wavelength equals 0.58. In the case of experiment 1 two such cameras, working
simultaneously in a side-by-side arrangement, were fitted with 105 mm f /2 Nikkor
lenses and bandpass optical filters, whose bands are centred at 568 nm and spans over
20 nm. Images with 2560× 1600 px resolution were captured. Only a single camera
was used in experiment 2, providing images with 2560× 1200 px resolution. It was
also fitted with the same Nikkor lens, however, a longpass optical filter was used
with a 550 nm cutoff wavelength. The camera was set at an angle θ to the normal
of the channel’s side wall (see figure 3b) equal to 45◦. An auxiliary water prism
was mounted in front of the camera to ensure the optical axis was perpendicular to
the air–water interface. Additionally, the Scheimpflug deflection angle was applied
between the camera and the lens in order to achieve focused images. Two cameras
were used in experiment 3, one dedicated to PIV and the other to PLIF measurement.
These were located on opposite sides of the flume, in front of each other. Images
with 2560 × 600 px resolution were captured. Both cameras were fitted with the
Nikkor lenses. The PLIF camera utilised the longpass optical filter (the same as in
experiment 2) whilst the PIV camera used a bandpass filter with the band centred at
532 nm with a width of 10 nm.

A Bürkert Micro Dosing Unit 7615 was adopted for the dye releasing system.
It allows a precise dosing (5 µl level) at a frequency up to 40 Hz. Although this
micro-pump works in a discrete manner, a long elastic pipe (2 m) attached between
the dosing unit and the dye release point effectively evens out the release mass flux
fluctuations.

3. PLIF quantification

PLIF quantification is usually performed under the linearity assumption, i.e. the
observed intensity of the fluorescent light is considered proportional to the local
PLIF tracer concentration. There are a number of successful studies that used these
assumptions (e.g. Walker (1987) or Crimaldi (2008)). Nevertheless, this approach
can be unsatisfactory if very high local concentrations of the tracer occur or if the
illumination light attenuation is strong. Since these particular conditions are present
in this study due to high initial rhodamine concentration released into the flow (this
was necessary given the particularly high dispersion rate in the vicinity of the frame)
a nonlinear quantification technique is required. A suitable technique, that is followed
in the present study, was proposed by Baj et al. (2016).

H = h
(

Const ·
γQcφ(c)

rχ
exp

(
−ε

∫ r

r0

c dζ
))

. (3.1)

The PLIF measurement model proposed in Baj et al. (2016) is given by equation
(3.1) where the particular variables stand for: H – the acquired image, h – the
camera’s transfer function, γ – the illumination energy profile, Q – the optics transfer
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rate, c – local concentration level, φ – quantum yield, r – the radial coordinate
(of the polar coordinate system whose origin coincides with the laser sheet’s origin;
r0 stands for the coordinate of the flume’s floor, see figure 6), χ – the secondary
fluorescence contribution and ε – extinction coefficient (i.e. the rate of illumination
attenuation). Note that all of these quantities (except for ε) are actually functions
of spatial position. Additionally, the local read-out H depends on the concentration’s
integral along the radial coordinate (which coincides with the illumination ray).

The secondary fluorescence concept was initially proposed by Vanderwel &
Tavoularis (2014) and further discussed in Baj et al. (2016). Generally, it assumes
that, on top of the original laser illumination, a patch of dye is further excited by
the fluorescent light emitted in its vicinity. This causes a non-local self-amplification
effect that significantly alters PLIF measurements in areas of high concentration
gradients which can easily be visualised as a ‘halo’ surrounding localised regions
of high concentration. It is proposed by Baj et al. (2016) to model this additional
illumination with a convolution of the primary fluorescence intensity field (i.e. the
fluorescence intensity that would have been observed if no self-amplification was
present) with a spatial kernel that decays as x−a (where x is a spatial coordinate and
a is a positive constant).

Equation (3.1) can be solved for c given h, φ, a and ε are known. Additionally, a
background image Hb is required, i.e. a PLIF image of a uniform dye concentration
field cb, taken with the exact same optical set-up. The tank experiment’s purpose was
to extract these required characteristics and to provide Hb. One also needs to make
the following assumptions:

(i) The camera’s transfer function h is a monotonic increasing function that satisfies
h(0)= 0.

(ii) h, γ and Q are time invariant parameters of the particular set-up.
(iii) φ is a concentration function specific to the experimental conditions, that can be

approximated with b1(c− b2)
b3/c (bi being real parameters, see Baj et al. (2016)).

(iv) ε and ai are constant and specific to the experimental conditions.

The exact solution method is complex and multi-step and thus is not described
here. All the details can be found in Baj et al. (2016). Nevertheless, let us present
the characteristics inferred from the tank experiments. Figure 5(a,b) shows functions
h evaluated for experiments 2 and 3 respectively. These two are nearly the same
(which could have been expected given similar experimental conditions). The
transfer functions deviate from linearity by less than 10 % for the argument values
larger than approximately 1100 pixel intensity counts above zero. Figure 5(c)
presents the quantum yield dependency on the concentration value. Almost identical
characteristics are observed in both quantitative experiments. Figure 5(d) shows the
illumination intensity profiles γ . These are plotted against the angular coordinate
of the polar coordinate system originating at the laser sheet’s origin (see figure 6).
The exponent a of the secondary fluorescence kernel spans an interval 1.13–1.27,
depending on the experiment and the measurement station. Note that this coefficient
is evaluated separately for each downstream position, unlike the remaining quantities.
Finally, the extinction coefficient is found to be equal to 8520 l (mm mol)−1 and
7950 l (mm mol)−1 for experiments 2 and 3 respectively.

Equation (3.1) allows evaluation of a concentration field based on the image but
it can also be used in a reversed manner, i.e. the image can be reconstructed given
the known concentration field. It is particularly easy for the calibration images as
the concentration fields are uniform. Figure 7 presents the original calibration images
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FIGURE 5. (Colour online) Camera transfer functions resolved in (a) experiment 2,
(b) experiment 3, (c) quantum yield – concentration dependence, (d) profiles of illum-
ination intensity.
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FIGURE 6. (Colour online) Schematic showing the position of the polar coordinate system
associated with the laser sheet.

compared to the reconstructed ones for a number of different concentrations levels. As
can be seen, the corresponding images are nearly identical. Close inspection reveals
that the differences do not exceed 4 % and 2 % for experiments 2 and 3 respectively.
This indicates that the quantification is successful.

The ultimate test of the quantification quality would be evaluation of the scalar’s
mass flow rate q̇m and comparison against its known value of q̇ (see table 2).
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FIGURE 7. (Colour online) Original (a) and reconstructed (b) calibration images for
different concentration values: (a) experiment 2, (b) experiment 3.

Simultaneous information about velocity and concentration fields at a cross-stream
plane is required for this purpose. This is not available in the present work, however,
one can make a reasonable approximation of the mass flow rate by making some
assumptions. First, let us assume that the mean streamwise velocity is constant
along the spanwise directions around the channel’s mid-plane (within the FOV
of experiment 2, i.e. z/H = ±0.06). This can be justified by the fact that the
aspect ratios of the bars are high (the aspect ratio of the big bar equals 7.6). The
mass flow rate can now be approximated by integrating a product of the mean
concentration field captured in experiment 2 (these are shown explicitly in § 4) and
the transverse mean velocity profiles resolved in experiment 3. Note that this neglects
the contribution from the fluctuations’ product, however, these are believed to be
negligible (the approximation based on experiment 2 suggests its relative contribution
does not exceed 2 %). Further, in order to approximate the mass flow rate based
on the concentration results of experiment 3, one can assume that the shape of the
cross-stream distribution of the mean concentration changes linearly between the
downstream positions surveyed in experiment 2. By scaling this shape according to
the concentration transverse profiles measured in experiment 3, the mass flow rate
can be resolved. Figure 8 provides the results of these described calculations.

Experiment 2 shows a systematic decrease of the recovered mass flow rate. This
is mainly due to the limited size of its FOV (a considerable part of non-zero mean
concentration distribution exceeds the FOV’s boundaries). Experiment 3, on the other
hand, had a larger FOV (see table 2) and thus the mass flow rate is better recovered,
q̇m/q̇ is roughly constant and equals 0.88 on average. The deviation from unity can
also be attributed to approximations and assumptions taken during the mass flow rate’s
evaluation as well as to different sources of uncertainty (e.g. PLIF uncertainty, PIV
uncertainty, laser energy measurement uncertainty, initial concentration uncertainty
etc.). This is not the perfect result, however, it is an improvement in comparison
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FIGURE 8. (Colour online) PLIF based estimation of the scalar’s mass flow rate based
on experiments 2 and 3 (the label ‘no s.f.’ denotes results neglecting the contribution of
secondary fluorescence).

to Vanderwel & Tavoularis (2014), who reported values of the order of 0.7 at a
comparable position downstream of the scalar point source (i.e. normalised with
the channel cross-section size). It is worth noting that by considering the secondary
fluorescence correction the mass flow rate approximation has improved considerably
(see figure 8). If no secondary fluorescence correction was introduced, q̇m/q̇ averaged
would reach a value of 0.60 (based on experiment 3).

4. Results

Let us start with an overview of some general characteristics of our considered
flows. Figure 9 shows the basic single point statistics of the velocity fields resolved in
experiment 1 for the multi- and single-scale cases. The mean streamwise velocity field
ū1 is highly inhomogeneous, as can be seen in figure 9(a). A prolonged recirculation
area can be distinguished behind the largest bar that reaches almost 5tI , whilst
significantly shorter recirculations are present behind the remaining two. A sizable
deflection of the smaller wakes is present, outwards from the centreline (outwards
and inwards directions are understood hereafter as pointing towards the centreline
and towards the floor respectively). Figure 9(b) shows the associated turbulence
intensity field IT =

√
0.5(u′21 + u′22 )/U∞. Again, there is a qualitative difference

between the appearances of the biggest wake and the remaining wakes. In the latter
case the local maxima are located closely downstream of particular bars, whereas
in the big bar’s case the peak is postponed to significantly downstream relative to
the expected position for a single comparable bar (see Okajima 1982). The cross
marks denote adjacent wake intersection points. Following Baj & Buxton (2017),
these are defined as points located between two neighbouring wakes, where spatial
gradients of the turbulence intensity field vanish. Note that this definition does not
exactly match the wake intersection definition postulated in Mazellier & Vassilicos
(2010) which was given in the context of the grid’s geometry rather than the actual
velocity field topology. The exact locations of the recognised intersection points are
(x/H, y/H) = {(0.22, −0.33), (0.57, −0.25)}. The shedding frequencies of particular
bars are evaluated to be 0.4 Hz, 2.4 Hz, 5.9 Hz for the largest to smallest bars (they
are referred to as f I , f II , f III respectively); the shedding frequencies are evaluated based
on locations of spectral peaks in power density spectra of the velocity field resolved
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FIGURE 9. (Colour online) Mean streamwise velocity ū1 and turbulence intensity IT in
flows past (a,b) the multi-scale array and (c,d) the single-scale array. The cross marks
indicate the wake intersection points (based on experiment 1).

from experiment 1 (the Welch method, see Welch (1967), with Hann windowing
used). The affiliated Strouhal numbers are 0.16, 0.30, 0.28 (note that U∞ is used as
the velocity scale when evaluating Strouhal numbers).

The flow past the single-scale array is illustrated by figure 9(c,d). Despite using
the same bars across the uniform array, the resultant wakes are not strictly similar.
In particular, the bottom wake’s behaviour deviates from the others. One can
speculate that this is due to the boundary layer vicinity or maybe a Coandă effect
induced by the streamlining element attached to the outer frame. Nevertheless, the
remaining three wakes are quite similar, as one might expect in the single-scale
arrangement, and the present work focuses on these. Generally speaking, the resultant
mean streamwise velocity and the turbulence intensity fields recover homogeneity
quicker compared to the multi-scale case. The turbulence intensity peaks just past
the bars (except for the bottom one). The wake intersection points are located
at (x/H, y/H) = {(0.16, −0.01), (0.17, −0.14), (0.28, −0.27)}. In agreement with
Laizet & Vassilicos (2012), intersections of similar wakes occur at roughly the same
downstream location. The shedding frequencies of the particular bars are evaluated to
be 1.1 Hz, 1.9 Hz, 1.8 Hz, 1.8 Hz for the bottom to the top bars (these are calculated
in a similar manner as in the multi-scale case). The respective St are 0.14, 0.23, 0.22,
0.22. Transient periods of synchronisation between sheddings from neighbouring bars
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FIGURE 10. (Colour online) Phase lags ∆ϕ between vorticity signals measured at the
centres of adjacent wakes of the single-scale array at various downstream locations (based
on experiment 1).

are observed. This can be illustrated with a probability density function (PDF) of a
phase lag ∆ϕ between vorticity signals measured at the centres of adjacent wakes
of the single-scale array shown in figure 10. Note that anti-phase synchronisation
(∆ϕ = π) is preferred over in-phase synchronisation (∆ϕ = 0), although this tendency
is stronger farthest upstream and its weakening is particularly evident at the farthest
checked downstream location.

All the above observations are consistent with the previous findings reported in
Baj & Buxton (2017). Since the cited work provides a thorough discussion of these
results, let us skip further interrogation of the velocity field. Still, it is worth noting
that the observed differences between single- and multi-scale arrays are qualitatively
similar to some of those seen between FGs and RGs (see Laizet & Vassilicos
2012; Melina, Bruce & Vassilicos 2016). In particular, the turbulence intensity’s
streamwise decay is much more rapid in the multi-scale array case (i.e. in the
sense of the transverse-averaged turbulence intensity’s slope when plotted against the
streamwise coordinate x), homogeneity recovery is slower and the wake intersection
point streamwise positions are scattered. Preservation of these characteristics provides
some confidence in extrapolation of the qualitative findings reported in the present
work onto cases with more complex multi-scale geometry.

4.1. Qualitative PLIF results
The PLIF measurements of experiment 1 provide initial, qualitative insight into the
scalar behaviour when released into the studied flows. In general, scalar tends to
accumulate around the shed vortices and is convected downstream along with them.
Nevertheless, the further downstream the more chaotic the concentration field gets and
the wider it spreads. This could have been expected as similar qualitative observations
were reported by e.g. Williamson (1985) and Sumner (2010). Interestingly, however,
quasi-periodic scalar transport events were spotted in the flows. These events can be
described as transverse-elongated, large-scale scalar structures which emerge from a
scalar-containing wake. These will be referred to as scalar bursts/bursting hereafter.
A representative sequence of PLIF images acquired in the flow past the multi-scale
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FIGURE 11. (Colour online) Sequences of consecutive qualitative PLIF images acquired at
times t downstream of (a) the multi-scale array (b,c) the single-scale array on top of the
turbulence intensity isolines (black contour). Blue arrows highlight positions of transverse
scalar bursts (based on experiment 1, the related animations are uploaded as supplementary
material is available online at https://doi.org/10.1017/jfm.2019.11).

array is shown in figure 11(a) on top of the turbulence intensity isolines, indicating
the wake positions. Three consecutive bursts are highlighted with arrows. It appears
from an analysis of these qualitative data that these surges start to emerge from
the small wake roughly at x/H = 0.2. This coincides with the wakes’ intersection
point between the medium and small wakes (see figure 9b). The scalar is lifted
quasi-periodically and seems to be entrained into the adjacent wake, judging by the
turbulence intensity contours. It is worth noting that this matches the SSU concept
almost exactly.

Figure 11(b,c) shows PLIF image sequences corresponding to the flow past the
single-scale array. Unlike previously, one could recognise relatively long time intervals
when no bursting occurs (figure 11b) as well as those when bursting is present
(figure 11(c); bursts are highlighted with arrows). The transverse extent of the
bursts depicted in figure 11(c) is even larger than in the multi-scale flow. Also in
this case the burst’s initiation seems to coincide with wake intersection. Note that
during the bursting suppression period the dye appears to be trapped inside the
bounds of its original wake. The local PLIF image intensity at the spatial position
marked with a blue cross on the right-hand figure 11(c) can be utilised to identify
burst occurrence. Although the selection of this particular spatial spot is highly
arbitrary, it still gives us some indication of how often bursting occurs. The temporal
evolution of the signal is shown in figure 12(a). Each of the present peaks can be
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FIGURE 12. (Colour online) Temporal evolution of the PLIF intensity signal recorded in
the flow past: (a) the single-scale array, (b) the multi-scale array. The signals are probed
at the spatial positions indicated by blue cross marks respectively in figure 11(c,a) (the
last image of the sequence, based on experiment 1).

associated with a single burst event. Fifty flips between bursting/suppression were
recognised within the studied dataset. The mean duration of the bursting period equals
1tf II

= 2.76, whilst the mean duration of the suppression period can be estimated as
1tf II

= 3.46. Unfortunately, the sample is not large enough to reliably investigate the
underlying distributions of the durations of the bursting/suppresion events (although
the data seemed to be relatively well fitted with an exponential distribution). Note
that suppression is dominant over bursting in this case, as opposed to the stable
bursting observed past the multi-scale array depicted in figure 12(b) (the signal
probing location is indicated with a blue cross in the on the right-hand figure 11a).
This bi-stable behaviour of the single-scale flow is not accounted for by the original
SSU description.

The key concept of the SSU mechanism is that the fluid exchange between wakes
is intensified at each intersection occurrence. Figure 11 provides examples of dye
transfers spotted in the vicinity of the closest downstream intersection point. A similar
behaviour can be noticed around the second intersection point in the multi-scale case
(i.e. x/H = 0.57), which is presented in figure 13. It is quite clear that some dye
patches are entrained into the biggest wake area (designated by the turbulence intensity
contours). A closer inspection of the gathered qualitative data shows that a dye patch
which first entered the medium wake around x/H= 0.2 is often lifted further towards
the big wake past x/H = 0.5. Alternatively, a burst can go directly from the smallest
to the biggest wake, however, this is seen less frequently and also seems to happen
further downstream (although it is hard to identify any precise position based on the
considered dataset). It is intuitively consistent that given a larger separation between
the smallest and biggest wake (compared to the medium–biggest separation), the
bursting is postponed downstream.
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FIGURE 13. (Colour online) A qualitative PLIF image acquired in the flow past the multi-
scale array on top of the turbulence intensity isolines (black contour). The blue arrow
indicates a transverse burst occurring between the medium and the big wake.

On the other hand, in the single-scale case it was hardly possible to recognise
any subsequent transverse bursts past the intersection point at x/H = 0.16–0.17.
The general impression created by considering the instantaneous concentration field
behaviour downstream of the intersection point is that the scalar tracer is simply
convected at scales comparable with the size of the bursts. As a consequence, the
bursts are observable at all the following downstream positions. However, their
transverse transport seems inhibited in comparison to the multi-scale case.

Summarising the qualitative results, it seems that the SSU idea is a quite accurate
description of the observed phenomenology. Indeed, a fluid particle which is initiated
in a certain wake is likely to be engulfed into another larger wake when these two
intersect. Moreover, a series of consecutive inter-wake transfers is present when the
intersections of different wakes occur at various streamwise locations, i.e. unfold in
space. On the other hand, Laizet & Vassilicos (2012) did not foresee that the inter-
wake transfer of scalar can be transiently suppressed in the case of same-size wakes
interaction.

4.2. Quantitative PLIF results

Let us now focus on the quantitative results of experiments 2 and 3, which focus on
the area around the near-downstream wake intersection point (i.e. x/H= 0.22). These
enable quantitative assessment of basic statistics of the scalar dispersion in the flow
past the multi-scale array (in the context of which the SSU mechanism is postulated).
The impact of the bursting on concentration mean and r.m.s. fields (denoted as c̄ and
crms respectively) can be assessed from figure 14. The statistics are evaluated at three
different cross-stream planes. The transverse profiles (i.e. along the y direction) are
noticeably skewed towards positive values of y, except for the closest downstream case
which stays roughly symmetric against the point of maximum value. This inclination,
however, is an anticipated consequence of the observed bursting. The skewness of an
arbitrary transverse profile c(y) can by quantified with the parameter γc defined as (yc
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FIGURE 14. (Colour online) Mean concentration fields at x/H = (a) 0.21, (b) 0.33,
(c) 0.45 and concentration fluctuation r.m.s. field at x/H= (d) 0.21, (e) 0.33, ( f ) 0.45 in
the flow past the multi-scale array (based on experiment 2).

and σc represent the profile’s centre position and width measure respectively):

γc =

∫ H/2

−H/2
c(y)(y− yc)

3 dy

σ 3
c

∫ H/2

−H/2
c(y) dy

, yc =

∫ H/2

−H/2
c(y)y dy∫ H/2

−H/2
c(y) dy

, σc =

√√√√√√√√
∫ H/2

−H/2
c(y)(y− yc)

2 dy∫ H/2

−H/2
c(y) dy

.

(4.1a−c)

The values of γc̄ equal 0.16, 0.59 and 0.61 for x/H= 0.21, 0.33, 0.45. The values of
γcrms , on the other hand, are found to be approximately 0.21, 0.37, 0.41 respectively.
The spanwise profiles are hardly affected by the bursting and stay almost exactly
Gaussian at all the considered locations.

Note that the area of non-zero mean concentration exceeds the FOV’s boundaries
downstream of the first downstream station as shown in figure 14. This is mainly due
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FIGURE 15. (Colour online) Statistics of the flow past the multi-scale array: (a) mean
concentration field, (b) concentration fluctuation r.m.s. field, (c) centres of the statistics
transverse profiles yc, (d) skewness of the statistics transverse profiles γc and (e) ratio of
widths of the statistics transverse profiles σcrms/σc̄ (based on experiment 2).

to the positive transverse skewness but also due to spanwise growth. The shapes of
these transverse mean concentration distributions were used to estimate the scalar’s
mass flow rate shown in figure 8. The under prediction of the flow rate to some extent
might be the result of some scalar being transported beyond the confines of the limited
FOV size, evident from figure 14. Areas of non-zero r.m.s. values are even broader,
in particular they extend to below the lower FOV’s edge as well as exceed the side
edges. This could have affected the quantification of experiment 2 to some extent as
whatever attenuation occurred below the FOV, it is not accounted for in the utilised
quantification routine.

Figure 15 provides counterpart results of experiment 3. In this case the FOV’s
transverse extent is large enough to cover the entire non-zero areas of the mean
and r.m.s. concentration fields. The transverse widths of the statistics profiles (i.e.
6σ ) grow linearly with the streamwise position, starting from 0.10H and 0.12H
at x/H = 0.12 up to 0.31H and 0.39H at x/H = 0.48 respectively for c̄ and crms.
The inwards shift (i.e. towards the centre-line) of the statistics is also very clear in
figure 15. In order to quantify this tendency, let us consider the streamwise behaviour
of the profile parameters. Figure 15(c) presents yc for the mean and r.m.s. fields. In
both cases, quite abrupt change can be seen at around x/H = 0.2–0.25. Upstream of
this spot the centre locations move outwards (i.e. away from the centreline) whilst
they start to move inwards downstream of this point. Note that the spatial location of
this change coincides with the position of the wakes’ intersection point. This indicates
that the bursting events are triggered by the wakes intersection. Similar observations
can be made in the context of γc. Initially, the values grow from 0 to settle at a level
of 0.6 and 0.4 for c̄ and crms roughly past the intersection point. Finally, although
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FIGURE 16. (Colour online) (a) The absolute value of the transverse turbulent scalar
flux and (b) correlation between the transverse velocity fluctuations and concentration
fluctuations.

the growths of the profile widths σc is linear, as mentioned before, the ratio σcrms/σc̄
peaks at x/H = 0.26, which again coincides with the wake intersection position.

The transverse turbulent scalar flux c′u′2 is observed by Laizet & Vassilicos (2012)
to be highly enhanced in flows past fractal (multi-scale) grids compared to regular
(single-scale) grids. Let us, therefore, examine c′u′2 in our considered case, which
is presented in figure 16. The inwards transport is noticeably more intense, even at
initial downstream locations. Initially only 28 % of the transverse integral of c′u′2
is directed outwards. This value decays to approximately 12 % at x/H = 0.33 and
downstream of this point it stays constant. The correlation between the concentration
and velocity fluctuations is initially higher (in an absolute sense) in the outer branch
of the wake, its absolute value exceeds 0.4. However, the maximum correlation value
within the outer branch decreases along the streamwise direction, reaching a value
of −0.25 at the final station. On the other hand, the maximum correlation observed
in the inner part is roughly constant along the streamwise extent and equal to 0.32.
An equal correlation level between two branches is reached roughly at x/H = 0.22.
These correlation levels can be compared against corresponding results provided by
Matsumura & Antonia (1993) in the context of a flow past a circular heated cylinder
at the diameter-based Reynolds number of 5830. The authors reported anti-symmetric
profiles of c′u′2 with the maximum absolute correlation level increasing from roughly
10 % to 25 % at the initial and final downstream locations of the present work. On
the other hand, results of a Large Eddy Simulation (LES) of a flow past a rectangular
prism, with a point-wise scalar release located half a diameter past the rear prism’s
face, reported by Lodato & Rossi (2013) suggests a correlation of the order of
35 % even upstream of the initial section of the present work. In the case of both
studies, however, the flux was not directed towards any particular side (i.e. inwards
or outwards) as opposed to the current work. Zhou, Zhang & Yiu (2002) reports a
qualitatively similar bias of the transverse scalar flux in the case of a flow past two
circular cylinders operating in the two-frequency regime (i.e. vortices are shed from
particular bars at different frequencies despite identical diameters; Re= 5800).

Finally, the spectral content of the concentration fluctuations is shown in figure 17.
Different spectral peaks are observed at different downstream positions, however, those
located at f II and f III are usually dominant. Except for those, there are also noticeable
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FIGURE 17. (Colour online) Power spectral densities (PSDs) of concentration fluctuations
in the flow past the multi-scale array evaluated at x/H= (a) 0.12, (b) 0.18, (c) 0.24, (d)
0.30, (e) 0.36, ( f ) 0.42. Arrows indicate the positions of prominent spectral peaks (based
on experiment 3).

contributions from their harmonics at a few downstream locations. Interestingly, the
peak at f II appears within the wake of the small bar (although this is the shedding
frequency of the medium bar). At the initial position it coexists within the inner
wake’s half with the peak at f III (figure 17a) but downstream of x/H = 0.30, the
peak f III is absent from the inner wake’s part. At the same time the outer part is still
characterised by frequency f III exclusively. These spectral properties suggest that the
bursting occurs at the shedding frequency of the medium bar. The limited transverse
extent of the peak f II indicates that the bursting involves only the inner part of the
wake. The rapid extinction of the f III peak coincides with the wakes’ intersection
point location (i.e. x/H = 0.22).

Similar spectral analysis regarding the velocity field is reported by Baj & Buxton
(2017). Relatively strong secondary peaks residing at f III

± f II were recognised
by the authors in addition to the primary shedding frequencies f II and f III . The
associated secondary coherent motions were at their most energetic in the vicinities
of the wake intersection points. The interrogation of the triple-decomposed energy
budget performed by Baj & Buxton (2017) showed that these secondary coherent
motions are products of triadic interactions between the primary shedding motions.
In particular, the low-frequency secondary fluctuations drain energy mostly from the
high-frequency primary motion. It was speculated that this is the reason why the
latter is observed to be less spatially persistent than the low-frequency secondary
coherent motion. Contrastingly, the primary shedding motions are driven by the mean
flow. Nothing similar can be seen in the case of the concentration PSD, i.e. at least
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not at a comparable level. This suggests that the energetic secondary coherent velocity
motions are not directly important to the scalar transport. Nevertheless, they might
be indirectly meaningful due to their mutual interactions with the primary shedding
structures (in the context of the velocity field) since the latter are of the primary
importance to the scalar transport.

4.3. Triple decomposition
Further insight into the studied flow’s physics can by brought by introducing the
triple decomposition, as originally suggested by Hussain & Reynolds (1970). This
is fully justified in the context of the present flow, as particularly strong coherent
fluctuations (manifesting themselves as spectral peaks in the PSDs) coexist with
stochastic turbulent fluctuations. Let us, therefore, decompose an arbitrary field
a(x, τ ) into its temporal mean ā, a number of coherent contributions associated with
particular spectral peaks ãl and the residual stochastic part a′′ (x stands for a spatial
coordinate and τ represents time). This can be written as equation (4.2).

a(x, τ )= ā(x)+ a′(x, τ )= ā(x)+
∑

l

ãl(x, τ )+ a′′(x, τ ). (4.2)

The implementation of triple decomposition is not trivial and there are a number
of different methods for performing it (e.g. Hosseini, Martinuzzi & Noack 2016).
A method introduced by Baj et al. (2015) and further extended in Baj & Buxton
(2017) is utilised in the present study (this decomposition technique allows an efficient
segregation of fluctuations associated with particular wakes despite pronounced
differences in energy levels). It relies on the optimal mode decomposition (OMD, see
Wynn et al. (2013)), i.e. the complex OMD modes Φ that link to particular coherent
fluctuations are recognised. Further, by projecting fluctuations onto the basis spanned
by the selected modes, a set of complex projection coefficients is yielded. Their
arguments can be interpreted as the instantaneous phase signal φl associated with the
corresponding coherent mode, whereas their magnitudes represent the instantaneous
modulation Al. Ultimately, coherent fluctuations ãl can be represented as equation (4.3)
(a represents the complex conjugate of a).

ãl(x, τ )= Al(τ )(Φ(x) exp(iφl(τ ))+Φ(x) exp(−iφl(τ ))). (4.3)

The stochastic fluctuations are evaluated simply as the residual of the total fluctuations
once the coherent parts are subtracted (they should not be confused for some kind of
uncorrelated random signal). Some further details of the utilised triple-decomposition
technique are introduced in appendix A along with some example decompositions.
More extensive characterisation can be found in the original work of Baj et al. (2015).

Let us start with an overview of the extracted coherent modes Φ. Figure 18
presents the normalised energy and variance associated with the resolved velocity
and concentration modes. Following Baj & Buxton (2017), primary and secondary
coherent modes are recognised. The velocity modes are unsurprisingly similar to
those reported in the cited work. The counterpart concentration modes are relatively
clearly defined in the case of the primary coherent motions (figure 18b, f ), whereas
they are less defined in the secondary coherent motion cases (figure 18d,h). This
can be explained by the fact that the energy content of the secondary coherent
fluctuations is negligible, as reported in table 5. The maximum local contribution
to the total concentration variance does not exceed 1 % within the FOV. Therefore,
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FIGURE 18. (Colour online) Energies of normalised coherent velocity modes associated
with frequencies (a) f II , (c) f III

− f II , (e) f III , (g) f III
+ f II and variances of normalised

coherent concentration modes associated with frequencies (b) f II , (d) f III
− f II , ( f ) f III , (h)

f III
+ f II .

the secondary coherent modes are likely polluted with relatively intense noise and
so the appearance of the normalised modes is rather vague. Additionally, it follows
from table 5 that the extracted modes are in general much more representative of
the velocity field than of the concentration field. Similar conclusions are reached
by Matsumura & Antonia (1993), Lodato & Rossi (2013) who also performed a
triple decomposition of concentration and velocity fields in the near wake of a bar.
In both cases the authors observed the contribution of the coherent fluctuations to the
total concentration variance to be approximately 20 % of the relative level. On the
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f II f III−II f III f III+II

(ũ1
2
+ ũ2

2
)/(u′1

2
+ u′2

2
) (%) 92.3 25.8 45.4 6.9

c̃2/c′2 (%) 16.2 <1 9.9 <1

TABLE 5. Maximum local contributions of coherent velocity fluctuations to the total
energy and maximum local contributions of coherent concentration fluctuations to the
concentration variance (based on experiment 3).

other hand, the contribution of coherent fluctuations to the variance of the transverse
velocity fluctuations reached beyond 70 % in the study of Matsumura & Antonia
(1993). Although this is not an exact match with the present results (which in any
case is unexpected), similar tendencies are observed between the current results and
these previous findings.

The shape of the concentration mode associated with f III consists of two separate
branches. Until approximately x/H=0.17 the branches are of equal strength. However,
the inwards part starts vanishing rapidly downstream of this streamwise position and
diminishes below 0.01 (in the sense of the normalised mode’s local value) roughly
at the wake intersection point. The outwards branch, on the other hand, reaches the
same magnitude level around x/H = 0.30. The mode associated with f II consists of
a singular branch only. Its edge at the inner side coincides with the small wake’s
centreline, which is consistent with the previously presented PSDs (i.e. the peak f II

does not extend into the outer half of the small wake).
Having decomposed the fluctuations into coherent and stochastic parts, it is possible

to study their influence on the total transverse scalar flux. The most significant
contributions are depicted in figure 19 (note that the secondary coherent modes are
omitted as their magnitudes are negligible). The primary coherent motions are, on the
other hand, of the primary importance. Figure 19(d) presents a metric quantifying the
contributions of the recognised fluctuation components to the total flux (i.e. the ratio
between transverse integrals of the absolute value of the total flux and that of the
components). The fluctuations associated with f II are responsible for the majority of
the scalar flux roughly past the wakes’ intersection point. Spatially, their contribution
is restricted to the inwards side of the small wake (see figure 19a). The contribution
from f III oscillates around 10 % upstream of the wakes’ intersection point, whilst it
gradually decays past this point. In this case the outwards branch is mostly affected
(see figure 19b). The importance of the stochastic fluctuations is retained throughout
the streamwise extent at a relatively high level (above 40 %). Matsumura & Antonia
(1993) reported similar statistics. The contribution from the coherent fluctuations
was reported to decrease from 68 % down to 43 % at the downstream locations
comparable to the initial and the final downstream stations of the present work. The
share of roughly 50 % can be inferred from the data shown in Lodato & Rossi
(2013) (at the comparable downstream positions). This indicates that the present
results are in reasonable agreement with previously reported results. Note that in
the present data the major part of the scalar flux within one wake is induced by
the coherent fluctuations associated with another wake (unlike in the cited works).
A similar situation, however, is observed by Zhou et al. (2002) in the case of the
two-frequency regime. Nevertheless, the coherent contribution to the total transverse
scalar flux reported in this study is also comparable to the results of the present
work (the share reaches 56.2 % at the position corresponding to the final downstream
location considered in this work).
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FIGURE 19. (Colour online) The absolute value of transverse scalar flux induced by (a)
coherent fluctuations associated with frequency f II , (b) coherent fluctuations associated
with frequency f III , (c) stochastic fluctuations and (d) ratio between transverse integrals
of the particular flux components and the total flux.

4.4. Conditional averaging
The previous paragraph investigated the triple decomposition, which identified a
number of coherent fluctuations which contribute to the total fluctuations of the
velocity and concentration fields. Now, let us evaluate and consider conditional
averages of both fields based on the appearance of bursting events. This would
enable an assessment of the mean topology of the velocity and concentration fields
at different stages of bursting as well as the importance of particular coherent modes
for the bursting phenomenon.

A relatively simple indicator of burst occurrence based on the recorded PLIF images
is utilised in the present work. Transverse profiles of instantaneous concentration field,
located at an arbitrary downstream position within the FOV, are joined into a single
spatio-temporal representation of the flow (i.e. as if a Taylor hypothesis was applied),
as shown in figure 20(a). Next, the resolved field is filtered with a Gaussian filter
with a relatively large standard deviation and normalised with local positional maxima
at every time instant to form the filtered field presented in figure 20(b). Ultimately,
the isoline corresponding to a value of 0.1 located at the inwards side is analysed
to identify its local maxima and minima (highlighted with arrows in figure 20b). It
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FIGURE 20. (Colour online) (a) Temporal evolution of an instantaneous concentration
transverse profile (at an arbitrary streamwise position), (b) the Gaussian filtered version
of figure 20(a) normalised with the local maximum (arrows indicate position of extrema
of the 0.1 isoline at the inwards side) and (c) the resultant bursting phase signal.

is assumed that the maxima indicate a phase value of 0 whilst the minima occurs
at a phase of π. The reference phase signal φ̂ is linearly interpolated between the
extrema to resolve phase values at every time instant as presented in figure 20(c).
A bin-averaging process was executed based on the latter, i.e. all the snapshots
were split into 64 phase bins and averaged, yielding the bursting–locked conditional
average of the concentration and velocity field (denoted as ĉ and û respectively). It
is important to note that the sensitivity of the phase signal to the chosen Gaussian
filter’s standard deviation and the isoline level is negligible in the neighbourhood
of their selected values. The frequency associated with φ̂ was almost exactly equal
to f II , which is hardly surprising given the spectral and triple decomposition results
presented previously.

Figure 21 shows the phase evolution of the resolved conditional average. The initial
phase is picked arbitrarily and the presented concentration field is normalised with
the local transverse mean. It is very clear that the transverse bursts are correlated
with the vortical structures that are shed from the medium bar. A positive velocity
is induced between two consecutive vortices when the upstream vortex rotates anti-
clockwise and the proceeding vortex rotates clockwise. This gust engulfs the dye from
the smallest wake into the medium wake. Additionally, the vortical structures alter the
streamwise distribution of the dye inside the small wake by transporting the scalar
towards the induced gusts. It is hard to distinguish where the bursts begin to form
based on the appearance of the conditional average. When the averaged burst arrives
at the wakes’ intersection point, which is visible in figure 21(b), it already exists.
Arguably, it already exists in figure 21(a).

The transverse profiles of the conditionally averaged concentration field at several
downstream locations are presented in figure 22(a). The profile having the widest
width is referred to as the burst profile whilst the one having the narrowest width
is referred to as the waist profile (there are also profiles of the global temporal
mean plotted in figure 22a). The waist profiles are roughly symmetric around their
maximum value, whereas the burst profiles, and so the resultant mean profiles, are
skewed towards the medium wake. The maximum concentration magnitude of the
burst profile is increased with respect to the mean (and decreased for the waist). This
can be caused by the streamwise transport performed by the vortical structures of
the medium wake. Figure 22(b,c) presents the downstream evolution of the profile
centres yĉ and widths 6σĉ. Centres of the bursts are shifted inwards in comparison to
waists. The discrepancy between the two grows roughly linearly between x/H = 0.1
and x/H = 0.3 and stays constant (i.e. 0.04H) past this downstream position. Both
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FIGURE 21. (Colour online) Conditionally averaged concentration fields, normalised with
local maxima, on top of the associated velocity field evaluated for phase values φ̂= (a) 0,
(b) 0.5π, (c) π, (d) 1.5π (based on experiment 3).

the width of the burst and the width of the waist seem to grow linearly with the
streamline coordinate. At the very beginning the difference between the two is
negligible. They diverge further downstream as the width of bursts increases more
quickly. The extreme ratio between the two equals 1.8.

Let us finally consider the contributions of the previously recognised coherent
fluctuations to the conditionally averaged bursts. This can be done by applying
the conditional averaging procedure to the previously isolated coherent fluctuations.
Figure 23 provides a comparison of the energy and scalar variance of the conditionally
averaged coherent modes. In both cases the statistics are similar, the coherent
fluctuations associated with f II are definitely dominant. Their contribution does
not drop below 50 % along the entire streamwise extent. The remaining coherent
modes seem negligible in comparison. The other important factor is the contribution
from stochastic fluctuations. They are responsible for 10–50 % of the total. Note
that harmonics of the primary shedding are also considered stochastic fluctuations
here, however, their contribution was checked to be of negligible importance (even
in the first downstream station where they might be relatively energetic judging by
figure 17).

5. Conclusions
The analysis of passive scalar dispersion in the near wakes of single and multi-scale

arrays of bars reported in the present work provides new information regarding the
space-scale unfolding (SSU) mechanism postulated by Laizet & Vassilicos (2012).
Indeed, a behaviour that resembles the SSU scenario described in the cited work
is observed in the case of the flow past the multi-scale array for the first time.
Numerous bursts of scalar are seen to emerge from the wake into which the scalar
is initially released in the vicinity of the wake intersection points, as expected by
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FIGURE 22. (Colour online) (a) Normalised transverse profiles of conditionally averaged
concentration, (b) streamwise evolution of the transverse coordinate of the conditionally
averaged concentration profile centres yĉ and (c) streamwise evolution of the conditionally
averaged concentration profile widths 6σĉ (based on experiment 3).
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FIGURE 23. (Colour online) Contribution of coherent fluctuations and stochastic
fluctuations to (a) energy of the conditionally averaged velocity fluctuations and (b)
variance of the conditionally averaged concentration fluctuations (based on experiment 3).

Laizet & Vassilicos (2012). Moreover, a cascade of consecutive bursts also seems to
exist. Scalar that was engulfed into the medium wake around the intersection with
the small wake is observed to be conveyed into the big wake through another burst
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that occurs around the intersection of the medium and the big wake, demonstrating
the spatial unfolding.

Inter-wake bursting is also observed around the respective wakes’ intersection point
in the case of the single-scale array. Unlike in the multi-scale case, there is no burst
cascade, which was actually foreseen by Laizet & Vassilicos (2012). Interestingly,
there are prolonged periods of time where no bursting is observed. A plausible
explanation for this observation can be a transient anti-phase locking between the
wakes of similar sizes, which is observed in the flow past the single-scale array.
As shown by e.g. Williamson (1985), if two wakes are locked in an anti-phase,
the scalar transfer between them becomes limited. On the other hand, if an in-phase
synchronisation occurs, the scalar transfer is highly enhanced. Note that the occurrence
of the phase locking effect is probably very sensitive to the initial conditions, e.g.
spacing between the adjacent bars or Reynolds number (sensitivity of a flow past
two side-by-side cylinders to Reynolds number was demonstrated by Xu, Zhou & So
(2003)). However, for a single-scale array with a given blockage the bar spacing is
fixed and, therefore, our result should be representative for single-scale arrays/grids
with blockage similar to ours. Transient periods of in- and anti-phase locking in
cases of flows past two uniform side-by-side rectangular and circular cylinders were
reported respectively by Alam, Bai & Zhou (2016) and Hu & Zhou (2008a). In
both studies the anti-phase locking dominated over the in-phase locking (this is
also observed in the present work), however, the ratio of times over which these two
scenarios were observed varied considerably with the bar spacing. In the case of Alam
et al. (2016) the locking effect was seen for non-dimensional separations above 2.7
(this parameter was set to 2.6 for our considered single-scale array). Note also, that
the appearance of the locking effect might be limited in its streamwise extent as well.
However, as depicted in figure 10, the anti-phase locking is dominant considerably far
past the wakes’ intersection point and thus the impact of the decay of the anti-phase
locking farther downstream on the SSU mechanism is likely minimal. On the other
hand, synchronisation between wakes is hardly possible in the multi-scale case due
to pronounced differences in their various shedding frequencies. This can be the
reason why the bursting suppression only occurs in the single-scale case. Note that
it might be important in some applications to ensure relatively constant (or at least
predictable) transient mixedness level within a limited mixing zone. In such a case
the reported bi-stable behaviour associated with the single-scale arrangement might
have negative consequences.

Scalar bursts similar to those observed in this present work have been reported in
the literature in the contexts of flows past two circular or rectangular cylinders. Song
et al. (2015) presented qualitative PLIF images of flow past two side-by-side cylinders
of diameter ratio 2 and normalised separation 1.25 (the bigger diameter was used for
the normalisation) showing transverse scalar bursts transferring the fluorescent dye
from the wake of the smaller bar towards the other. This was not the case for the
lower cylinder separation considered by these authors (equal to 0.75). Note that the
non-dimensional bar separations of our multi-scale array are equal to 0.91 and 2.38.
A similar scalar transfer phenomenon was also observed by Hu & Zhou (2008a), this
time in the context of uniform circular bars in a staggered arrangement. The authors
identified a zone in the parameter space (i.e. the bar non-dimensional spacing and the
stagger angle between a line connecting the bar centres and the free-stream direction),
where such a flow pattern, referred to as mode T-I, is present (i.e. the spacing should
be greater than 2.5 and the stagger angle within 20◦–88◦, 90◦ being a side-by-side
set-up). Except for the specific scalar transfer, the authors characterise mode T-I as
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the flow state, where two wakes of different widths are present (despite the cylinders
being of the same size), which do not merge and preserve their distinctive frequencies.
This resembles the flow past our considered multi-scale array to an extent. Moreover,
Hu & Zhou (2008b) observed an intense interaction between the inner rows of shed
vortex streets, which eventually led to complete decay of the inner row of vortices
associated with the narrow wake. Additionally, a strong cross-stream vorticity flux
between the inner rows of vortices was identified by the same authors. Alam et al.
(2016) recognised a similar flow pattern in flows past two uniform square cylinders.
In this case, however, mode T-I is also recognised for the side-by-side arrangement
(for non-dimensional bar spacing ranging from 1.8 to 2.7). Unfortunately, these
authors do not publish any scalar field visualisation showing bursting similar to the
ones considered in the present work. Nevertheless, vigorous interactions between
vortex streets in flow mode T-I, recognised by Hu & Zhou (2008b), form a strong
clue in favour of the occurrence of such bursts. It is worth noting that the anti-phase
locking present in the flow past the single-scale array is associated with another flow
mode identified by Alam et al. (2016), i.e. mode T-IIa. It seems, therefore, that flows
past single- and multi-scale arrays studied in the present work could be classified to
different flow regimes specified by Alam et al. (2016). Nevertheless, although certain
qualitative similarities are observed between our present results and data gathered in
the contexts of flows past two cylinders, it has to be emphasised that one needs to
be very careful when extrapolating these former findings over e.g. our considered
specific geometries. Wake flows are known to be very sensitive to initial conditions
(see e.g. Wygnanski, Champagne & Marasli (1986)). Flows past two side-by-side
cylinders, for instance, might exhibit different topologies depending on the Reynolds
number, as demonstrated by Xu et al. (2003) for relatively small gaps (i.e. gaps
below 0.6 cylinder diameter). More importantly, however, set-ups of multiple bars are
known to produce complex, multi-stable patterns (see e.g. Hayashi, Sakurai & Ohya
1986; Guillaume & LaRue 2000).

The reported quantitative results are focused in the zone where bursts occur between
the small and the medium wakes. The bursts sizeably alter the mean concentration
distribution and the associated r.m.s. field, stretching the two towards the bigger
wake. This effect becomes important past the intersection point as the centre of the
averaged concentration profile starts to move towards the bigger wake downstream of
this point. The spectral characteristics show that the bursting frequency is equal to
the shedding frequency of the medium bar. This respective spectral peak is present
in the small wake’s spatial domain even at the closest downstream location. There is
a prominent difference in the characteristics of the inner and the outer halves of the
small bar’s wake. The former gets dominated by the medium bar’s shedding frequency
soon past the intersection point (initially two peaks coexist in the inner part), whilst
the small bar’s shedding frequency is dominant in the outer part throughout. In fact
the medium bar’s shedding peak does not appear in the outer part at any of the
monitored downstream positions. Unlike in the velocity spectra reported by Baj &
Buxton (2017), no prominent secondary peaks are present in the concentration spectra
except for the main shedding harmonics. The minor importance of the secondary
coherent modes is further confirmed by the triple decomposition results. Generally
speaking, the extracted coherent concentration modes are far less representative of
the total concentration fluctuation variance than in the case of the velocity modes.
On the other hand, the medium bar’s shedding mode plays the dominant role in
the transverse scalar flux. It accounts for the majority of the transfer at the inner
part of the small wake, i.e. where the bursting occurs. Stochastic fluctuations play a
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comparable role in the absolute sense, however they appear to be more symmetrical
around the small wake’s centreline. The conditional averaging based on the burst
appearance confirms the dominant role of the medium bar’s shedding for the bursting
phenomenon. The appearance of the conditionally averaged velocity and concentration
fields shows that the bursts are caused by the positive transverse gusts induced by
the vortical structures shed from the medium bar. The gusts convey the scalar from
the smaller wake and engulfs it into the medium wake. This effectively increases
the width of the concentration profile. Concerning the open debate referenced in
the introduction, results reported in the present work mitigate the divergence of the
two extreme positions. On the one hand, the nature of the SSU mechanism seems
to be different than that proposed by Laizet & Vassilicos (2012); the driving factor
responsible for the fluid exchange between neighbouring wakes is the shedding of
the bigger of the interacting wakes (i.e. the respective coherent fluctuations). The
dominant role of the bigger wake (which usually corresponds to the bigger bar) is
in line with the findings of Zhou et al. (2014), Nedić & Tavoularis (2016), Melina
et al. (2017). Indeed one can expect that once the medium wake of our considered
flow intersects the big wake, the latter will become dominant and will dictate the
farther downstream evolution. Transverse scalar flux caused by the turbulence (i.e.
the stochastic component), although favouring transport towards the bigger wake, is
much more symmetric around the smallest wake’s centreline. The Gaussian shape of
the scalar mean profile observed by Nedić & Tavoularis (2016) in a flow past FG
also seems consistent with the present results. Note that the scalar source considered
by Nedić & Tavoularis (2016) was placed at the grid symmetry axes so no averaged
transverse convection should be expected. On the other hand, the SSU mechanism can
be seen as a relatively sophisticated stirring protocol which is present in flows past
both single- and multi-scale arrays. However, during considerably long time periods its
activity is suppressed in the case of the single-scale array, whereas such suppression
is prevented in the multi-scale case. This is done by varying the thicknesses of the
bars in the multi-scale array and, thereby, disabling instantaneous anti-phase locking
of adjacent wakes, which is likely the cause of the bursting suppression in flows
past the single-scale array. As a result, the net effect of the SSU mechanism is
favourable for multi-scale objects, in line with the findings of, e.g. Coffey et al.
(2007) and Laizet & Vassilicos (2015). All of this indicates that the SSU mechanism
should be defined in the context of coherent fluctuations as opposed to turbulent eddy
length scales (which rather associate with the stochastic fluctuations, as argued in
appendix A) suggested by Laizet & Vassilicos (2012). This corresponds with other
studies highlighting the importance of coherent fluctuations for scalar dispersion, e.g.
in the context of uniformly sheared flows (see Vanderwel & Tavoularis 2016) or
various environmental flows (see e.g. Huang, Katul & Albertson 2013). Let us note,
that it can be speculated based on the works of Hu & Zhou (2008a) and Alam
et al. (2016), that the SSU mechanism can also be continuously active in flows past
a single-scale array. The required condition would be for the non-dimensional bar
separations to be sufficiently small (i.e. within the range of the mode T-I). This,
however, would require grids with very high blockage.

As a final remark let us highlight that the PLIF quantification method proposed by
Baj et al. (2016) and utilised in the present work has proved invaluable. In particular,
recognition of the secondary fluorescence effect appeared to be crucial, as confirmed
by the hugely improved mass flow rate recovery.
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Appendix A. Triple-decomposition basis
The fluctuations of concentration and velocity of the considered flow consist of

strong coherent components as well as of the stochastic parts. Therefore a triple
decomposition can be used instead of the Reynolds decomposition, i.e. the fluctuating
quantities can be expressed as equation (4.3). The technique proposed by Baj et al.
(2015) is utilised in the present work to extract coherent fluctuations associated with
particular sheddings. The method is closely linked to optimal mode decomposition
(OMD, see Wynn et al. (2013) for a complete description), a snapshot-based technique
for identification of an optimal linear approximation of the system’s dynamics. It is
assumed in OMD that two consecutive measurements in a time-resolved sequence, qh

and qh+1, are approximately linked via linear equation (A 1), where D denotes a time
invariant matrix governing the system’s evolution (m is the measurement’s size). This
system is effectively described by the eigenvalues and eigenvectors of D and OMD is
simply a method for approximating these properties. Note that a single measurement
qh is considered here as a vector consisting of all the velocity and concentration
measurements acquired within an FOV at the time step h.

qh+1
' D · qh

D ∈Rm×m, qh
∈Rm×1.

}
(A 1)

The evolution matrix is considered constant during the acquisition time and thus an
optimal D can be found that would minimise the error of this approximation across
all the pairs qh and qh+1. This optimisation problem is expressed by equation (A 2)
(n is the total number of snapshots).

min
D
‖[q2, . . . , qn

] − D · [q1, . . . , qn−1
]‖2. (A 2)

The biggest practical problem behind solving this problem is the number of
unknowns m2 is usually larger than the number of constraints. However, even if
the system was defined, its size would likely make it intractable. OMD provides an
idea for approximating the original D with a matrix L · M · LT of an arbitrary rank
r < n, which turns the original problem into equation (A 3). Here both M and L are
considered independent optimisation variables. The algorithm for solving this problem
is proposed in Wynn et al. (2013).

minL,M ‖[q2, . . . , qn
] − L · M · LT · [q1, . . . , qn−1

]‖2
LT · L= I, L ∈Rm×r,M ∈Rr×r

}
. (A 3)

In the case of the current study q is composed of different physical quantities,
i.e. concentration and velocity fluctuations. Their exact numerical values might be
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of different orders, depending on the physical units utilised to express them (i.e.
m s−1 or mol l−1). Note that this discrepancy has a direct effect on the solution
of equation (A 3) as the contribution from the quantity whose numerical values
are relatively small is not equally influential on this optimisation problem as is
the contribution from the other quantity. In order to balance this situation, the
concentration and velocity fields are normalised before any OMD calculations are
conducted (i.e. the vector q is formed out of normalised quantities). In the case of the
concentration field the standard deviation of the concentration fluctuations, averaged
across the FOV, is used. On the other hand, the velocity field is normalised with the
square-root of the velocity fluctuation energy (also averaged across the FOV; both
velocity components are normalised with the same energy value).

After equation (A 3) is solved one can approximate the dominant eigenvalues and
associated eigenvectors of the evolution matrix D with so-called OMD eigenvalues
ξ l

OMD and OMD modes Φ l
OMD. These are defined by (A 4) and (A 5) respectively (ξ l

M
and zl are the eigenvalues and eigenvectors of M , whereas ∆τ stands for the temporal
spacing of consecutive measurements).

ξ l
OMD =

ln ξ l
M

∆τ

(A 4)

Φ l
OMD = L · zl. (A 5)

Some of the recovered OMD modes can be linked to particular primary spectral
peaks (i.e. shedding peaks) and thus to the affiliated coherent fluctuations. These
modes are recognised based on eigenvalues, i.e. they share their frequency with the
PSD peaks and exhibit locally minimal damping (i.e. real part of the eigenvalue).
The selected modes are then used as a basis onto which the fluctuations are projected
(i.e. the basis contains the selected modes and their conjugates). Arguments of the
projection coefficients are interpreted as the instantaneous phase signals φl associated
with the corresponding coherent modes. Their magnitudes represent respective
modulations Al.

OMD is not capable of recognising the secondary coherent modes in our considered
flow, as reported by Baj & Buxton (2017). Therefore, following the cited work, a
phase-averaging technique is utilised to extract these modes. As their characteristic
frequencies are equal to the sum and difference of the primary shedding frequencies,
one can use linear combinations of phase signals of the primary shedding modes φl

and φm, i.e. φl
±φm, as their phase reference signals. The phase average 〈a′〉(φ) of an

arbitrary fluctuating quantify a′(τ ) can be evaluated for a given phase value φ0 as:

〈a′〉(φ0)= mean
φl(τ )±φm(τ )∈G0

a′(τ ), (A 6)

where G0 represents a phase bin centred around φ0 and having certain width of
∆φ . Therefore the snapshots are divided into a number of phase bins based on the
reference signal and averaged across those. In the case of the present study 64 bins
were used.

One more step has to be taken in order to yield similar representation of the OMD
based results and the phase-averaging results. Note that currently the OMD result is a
set of complex modes affiliated to the primary shedding spectral peaks and the phase-
averaging result is a set of discrete functions of φ affiliated to the secondary spectral
peaks. Therefore one can expect that the majority of energy of these phase averages
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FIGURE 24. (Colour online) Example of the triple decomposition: (a) total, coherent and
stochastic velocity fluctuation signals, (b) respective autocorrelation functions, (c) PDFs of
the respective fluctuation components (based on experiment 3).

is associated with waves having wavelength of 2π. By evaluating the second Fourier
modes of 〈a′〉(φ) (i.e. the second coefficients of the Fourier transform evaluated at
each spatial location, which expresses the local amplitudes and phases of waves having
wavelength of 2π), this contribution can be expressed in the form of a single complex
mode, similarly to the OMD case. These Fourier modes of the phase-averaged results
are considered equivalent to OMD modes in the present work and referred to as Φ in
the main text without any distinction. Such an approach was used in Baj & Buxton
(2017) to successfully identify these secondary coherent modes.

Figure 24(a) presents a typical example of the velocity signal decomposition
(this signal was acquired near the wake of the medium bar). The total fluctuations
comprise large-scale fluctuations, which are well approximated by the established
coherent velocity signal. The residual stochastic fluctuations appear to be decoupled
from their affiliated large-scale fluctuations. It should be noted that the amplitude
of the coherent fluctuations changes in time (by ca. 50 % within the presented
example). If this was not accounted for, the resultant stochastic fluctuations would
still carry a prominent imprint of the coherent motion. Autocorrelations of particular
velocity signals are depicted in 24(b). The cases of the total and coherent fluctuations
are very similar except the latter stays even more coherent. It has to be noted
that their cumulative integrals do not converge to fixed values despite a relatively
long integration period (intense oscillations are present throughout). On the other
hand, the autocorrelation of the stochastic signal retains the classical shape of an
autocorrelation of a turbulent velocity. Importantly, its cumulative integral converges
to a fixed value, allowing, thereby, evaluation of its integral length scale, unlike in
the other two cases. This indicates that one should look at the stochastic part of the
velocity signal when considering correlation time/distances of the energy-containing
eddies within the underlying turbulence. Underlying turbulence, in this sense, refers
to the constituent part of the turbulence that resembles that described by the model
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spectrum of Pope (2001), i.e. turbulence without any discernible spectral peaks
present that may, for example, be produced sufficiently far downstream of a standard
turbulence-generating grid. The probability density functions (PDFs) of the velocity
fluctuations shown in figure 24(c) are also clearly affected by the decomposition. The
quasi-Gaussian PDF of the stochastic fluctuations is considerably different from the
M-shaped PDF of the total and coherent fluctuations (characteristic for flows with
prominent vortex shedding). This example qualitatively demonstrates the differences
between the coherent and stochastic fluctuations as well as the efficiency of the
utilised decomposition.

For more in-depth discussion of the utilised triple decomposition please refer to Baj
et al. (2015) and Baj & Buxton (2017).
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