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Operator valued analogues of
multidimensional Bohr’s inequality

Vasudevarao Allu and Himadri Halder

Abstract. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. In
this paper, we first establish several sharp improved and refined versions of the Bohr’s inequality for
the functions in the class H∞(D,B(H)) of bounded analytic functions from the unit disk D ∶= {z ∈
C ∶ ∣z∣ < 1} into B(H). For the complete circular domain Q ⊂ Cn , we prove the multidimensional
analogues of the operator valued Bohr-type inequality which can be viewed as a special case of
the result by G. Popescu [Adv. Math. 347 (2019), 1002–1053] for free holomorphic functions on
polyballs. Finally, we establish the multidimensional analogues of several improved Bohr’s inequalities
for operator valued functions in Q.

1 Introduction and some basic questions

Let H∞(D, X) be the space of bounded analytic functions from the unit disk D ∶=
{z ∈ C ∶ ∣z∣ < 1} into a complex Banach space X with ∥ f ∥H∞(D,X) ∶= sup∣z∣<1 ∥ f (z)∥.
Let B(D, X) be the class of functions f in H∞(D, X) with ∥ f ∥H∞(D,X) ≤ 1. The Bohr
radius R(X) for the class B(D, X) is defined by (see [12])

R(X) ∶= sup{r ∈ (0, 1) ∶ Mr( f ) ≤ 1 for all f (z) =
∞
∑
k=0

xk zk ∈ B(D, X), z ∈ D} ,

where Mr( f ) = ∑∞k=0 ∥xk∥ rk is the associated majorant series of f ∈ H∞(D, X). The
remarkable theorem of Harald Bohr [14] (in improved form) states that R(X) = 1/3
for X = C, where the norm of X is the usual modulus of complex numbers. The
interest in the Bohr’s theorem has been revived when Dixon [18] used it to answer
a long-standing question on the characterization of the Banach algebras satisfying
the nonunital von Neumann inequality. For the last two decades, there has been
an extensive research carried out to the extensions of analytic functions of several
complex variables, to planar harmonic mappings, to polynomials, to solutions of
elliptic partial differential equations, and to more abstract settings. In 1997, Boas and
Khavinson [13] introduced the n-dimensional Bohr radius Kn for the Hardy space
of bounded analytic functions on the unit polydisk, and obtained the upper and
lower bounds of Kn . In 2006, an improved version of the lower estimate of Kn was
obtained by Defant and Frerick [16]. Further estimation of Kn has been obtained by
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Operator valued analogues of multidimensional Bohr’s inequality 1021

Defant et al. [17] by using the hypercontractivity of the polynomial Bohnenblust-Hille
inequality. In 2014, Bayart et al. [9] obtained the exact asymptotic behaviour of Kn .
In 2019, Popescu [25] extended the Bohr inequality for free holomorphic functions to
polyballs. For more interesting aspects and generalization of multidimensional Bohr’s
inequality, we refer to [3–5, 8, 19, 22]. In 2004, Paulsen and Singh [24] extended Bohr’s
theorem to Banach algebras by finding a general version of Bohr inequality which is
valid in the context of uniform algebras. In 2021, Bhowmik and Das [11] extensively
studied Bohr inequality for operator valued functions. Further results on Bohr radius,
we refer to [10, 21].

For p ∈ [1,∞), let H p(D, X) be the space of analytic functions from D into a
complex Banach space X such that

∥ f ∥H p(D,X) = sup 0<r<1 (∫
2π

0
∥ f (re i t)∥p dt

2π
)

1/p
< ∞.(1.1)

In [10], Bénéteau et al. have shown that there is no Bohr phenomenon in the Hardy
spaces ∥ f ∥H p(D,C) for 1 ≤ p < ∞. In fact, they have shown that there is no Bohr
phenomenon in complex valued Hardy spaces Hq for q ∈ (0,∞). In [19], Djakov and
Ramanujan have extensively studied the p-Bohr inequality for the power series of
the form ∑∞k=0 ∣ak ∣prk for p ∈ [1,∞), where f (z) = ∑∞k=0 ak zk is a bounded analytic
function in D. In [19], the notion of p-Bohr inequality has been extended to the
analytic functions of several variables.

1.1 Bohr theorem for operator valued analytic function

One of the main aims of the present paper is to study Bohr inequality in the setting of
operator valued analytic functions in the unit diskD, to be more specific, for functions
in H∞(D, X), where X = B(H) is the algebra of all bounded linear operators on a
complex Hilbert space H. For the rest of our discussion on this, we need to fix some
basic notations. For T ∈ B(H), ∥T∥ denotes the operator norm of T. The adjoint
operator T∗ ∶H →H of T is defined by ⟨Tx , y⟩ = ⟨x , T∗y⟩ for all x , y ∈H. The
operator T is said to be normal if T∗T = TT∗, self-adjoint if T∗ = T , and positive
if ⟨Tx , x⟩ ≥ 0 for all x ∈H. The absolute value of T is defined by ∣T ∣ ∶= (T∗T)1/2,
while S1/2 denotes the unique positive square root of a positive operator S. Let I be the
identity operator on H. Let f ∈ H∞(D,B(H)) be a bounded analytic function with
the expansion

f (z) =
∞
∑
k=0

Ak zk for z ∈ D,(1.2)

where Ak ∈ B(H) for all k ∈ N ∪ {0}. For each f ∈ H∞(D,B(H)) of the form (1.2),
the function r ↦ Mr( f ) is an increasing function in [0, 1) with M0( f ) = ∥A0∥ ≤ 1,
where Mr( f ) is the associated majorant series of f defined by Mr( f ) = ∑∞k=0 ∥Ak∥ rk

for r ∈ [0, 1). For each fixed z ∈ D, we denote Gz ∶= { f (z) = ∑∞k=0 Ak zk ∶ f ∈ H∞
(D,B(H))} . In [6], Allu and Halder have proved that the space Gz with norm
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1022 V. Allu and H. Halder

Mr constitutes a Banach algebra and have shown that functions in Gz satisfy a von
Neumann type inequality. Set χ = B(D,B(H)). By the similar definition as in [15]
for the complex valued functions, we define

m(χ, r) ∶= sup
f ∈χ

Mr( f ) for r ∈ [0, 1).(1.3)

Clearly, m(χ, 0) = 1. It is worth mentioning that m(χ, r) is an increasing function of
r and hence m(χ, r) ≥ 1 for r ∈ [0, 1). For the arbitrary functions f in H∞(D,B(H)),
not necessarily ∥ f ∥H∞(D,B(H)) ≤ 1, we have m(χ, r) ≤ Mr( f ) ∥ f ∥H∞(D,B(H)). Thus,
finding or estimating m(χ, r), it is relevance to know ∥ f (z)∥ i.e., to understand the
rate of the growth of functions in H∞(D,B(H)). However, a precise value for m(χ, r)
is not known for all r ∈ [0, 1). But we can estimate the bounds for m(χ, r). In [15],
Bombieri has obtained upper bounds and lower bounds for m(χ, r) for complex
valued bounded analytic functions.

We now generalize the notion of Bohr radius for the class zχ = {z f ∶ f ∈ χ}, i.e.,
for the class of functions f ∈ χ with f (0) = 0. The Bohr radius for the class zχ is the
largest radius R1 such that (a) Mr( f ) = ∑∞k=0 ∥Ak∥ rk+1 ≤ 1 for r ∈ [0, R1] and for all
f (z) = ∑∞k=0 Ak zk+1 ∈ zχ, (b) when r ∈ (R1 , 1), there is a function f ∈ zχ such that
Mr( f ) > 1. In view of (1.3), it is easy to see that R1 is the unique root of

r m(χ, r) = 1.(1.4)

Since m(χ, r) is strictly increasing, the function r ↦ r m(χ, r) is also strictly increas-
ing in r ∈ [0, 1), which shows that (1.4) has the unique root in (0, 1). Bombieri [15] has
proved that R1 = 1/

√
2 for the complex valued bounded functions in D. Later, Paulsen

et al. [23] have extensively studied the radius R1 for complex valued functions. In
the present paper, we obtain R1 for operator valued functions in χ = B(D,B(H)) in
Lemma 3.3.

In 2019, Popescu [25] proved the following interesting result, which is an analogue
of the classical theorem of Bohr for operator valued bounded analytic functions
in D.

Theorem A [25] Let f ∈ H∞(D,B(H)) be an operator valued bounded holomorphic
function with the expansion (1.2) such that A0 = a0I, a0 ∈ C. Then

∞
∑
n=0

∥An∥ rn ≤ ∥ f ∥H∞(D,B(H)) for ∣z∣ = r ≤ 1
3

(1.5)

and 1/3 is the best possible constant. Moreover, the inequality is strict unless f is a
constant.

The proof of Theorem A relies on the bound of the norm of coefficients ∥An∥,
which may be obtained as an application of the operator counterpart of the Schwarz-
Pick inequality.
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Lemma 1.6 [7] (counterpart of Schwarz-Pick inequality) Let B(z) be an analytic
function with values in B(H) and satisfying ∥B(z)∥ ≤ 1 on D. Then

(1 − ∣a∣)n−1 ∥B(n)(a)
n!

∥ ≤ ∥I − B(a)∗B(a)∥1/2 ∥I − B(a)B(a)∗∥1/2

1 − ∣a∣2

for each a ∈ D and n = 1, 2, . . ..

We note that for f ∈ B(D,B(H)) of the form (1.2) with A0 = a0I, ∣a0∣ < 1. Without
loss of generality, assume that ∥ f ∥H∞(D,B(H)) ≤ 1. Then, by the virtue of Lemma 1.6,
putting a = 0, we obtain

∥An∥ ≤ ∥I − ∣A0∣2∥ = 1 − ∣a0∣2 for n ∈ N.(1.7)

In view of (1.7), the proof of Theorem A follows immediately. For the sharpness of the
constant 1/3, we consider the following function

ψa(z) = ( a − z
1 − az

) I = A0 +
∞
∑
k=1

Ak zk z ∈ D,(1.8)

where A0 = aI, Ak = −(1 − a2)ak−1I and for some a ∈ [0, 1). Then it is easy to see
that Mr( f ) = ∑∞k=0 ∥Ak∥ rk = (a + (1 − 2a2)r)/(1 − ar) > 1 whenever r > 1/(1 + 2a).
Taking a is very close to 1, i.e., a → 1−, we obtain Mr( f ) > 1 for r > 1/3, which shows
that 1/3 is the best possible.

We say that B(D,B(H)) satisfies Bohr phenomenon if all the functions in
B(D,B(H)) satisfies the inequality (1.5) for r ≤ 1/3. It is worth mentioning that the
constant 1/3 does not dependent on the coefficients of functions. In the recent years,
refined versions and improved versions of Bohr inequality in the case of bounded
analytic functions have become central research interest in one and several complex
variables. Several authors have established various refined and improved versions of
Bohr’s inequality (see [1, 5]). We now recall some of them. Let f ∈ H∞(D,C) be of
the form

f (z) =
∞
∑
k=0

ak zk for z ∈ D.(1.9)

Let Sr be the area of the image of the subdisk Dr = {z ∶ ∣z∣ < r} under the map f given
by (1.9). Then it is known that Sr/π = ∑∞k=1 k∣ak ∣2r2k (see [20]).

Theorem B Let f ∈ B(D,C) of the form (1.9). Then

(a) ∑∞k=0 ∣ak ∣rk + ( 1
1+∣a0 ∣ +

r
1−r )∑

∞
k=1 ∣ak ∣2r2k ≤ 1 for ∣z∣ = r ≤ 1/3. The constant 1/3 is

the best possible.
(b) ∑∞k=0 ∣ak ∣rk + 8

9 (
Sr
π ) ≤ 1 for r ≤ 1/3. The bound 8/9 and the constant 1/3 cannot

be replaced by a larger quantity.
(c) ∣ f (z)∣ + ∑∞k=N ∣ak ∣ rk ≤ 1 for ∣z∣ = r ≤ RN ,1 , where RN ,1 is the unique root in

(0, 1) of 2(1 + r)rN − (1 − r)2 = 0. The constant RN ,1 is the best possible.
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It is important to note that the proof of the part (a) and part (b) can be obtained
by putting γ = 0 in [20, Theorem 2] and [20, Theorem 1] respectively. The proof of the
part (c) can be obtained by putting γ = 0 in [1, Theorem 2.7].

Like the quantity Sr/π = ∑∞k=1 k∣ak ∣2r2k for the functions f (z) = ∑∞k=0 ak zk in
H∞(D,C), we define

S(z) =
∞
∑
k=1

k ∥Ak∥2 r2k , ∣z∣ = r < 1,(1.10)

for the functions f (z) = ∑∞k=0 Ak zk ∈ H∞(D,B(H)). Let G(w) be a polynomial
defined by

G(w) = c1w + c2w2 +⋯+ c l w l for c i ∈ R+, i = 1, 2,⋯, l .(1.11)

1.2 Multidimensional analogues of operator valued Bohr’s inequality

Let α be an n-tuple (α1 , α2 , . . . , αn) of nonnegative integers, ∣α∣ be the sum α1 +⋯+
αn of its components, α! denotes the product α1!α2! . . . αn!, z denotes an n-tuple
(z1 , z2 , . . . , zn) of complex numbers, and zα denotes the product zα1

1 zα2
2 . . . zαn

n . Using
the standard multi-index notation, we write an operator valued n-variable power
series

f (z) = ∑
α

Aα zα , Aα ∈ B(H).(1.12)

Let Dn = {z ∈ Cn ∶ z = (z1 , . . . , zn), ∣z j ∣ < 1, j = 1, 2, . . . , n}. Let Kn(H) be the largest
nonnegative number such that the power series (1.12) converges in D

n and
∥ f ∥H∞(D,B(H)) ≤ 1, then

∑
α
∥Aα∥ ∣zα ∣ ≤ 1 for all z ∈ Kn(H) ⋅Dn .(1.13)

Definition 1.1 A domain D ⊂ C
n is said to be a Reinhardt domain centered at 0 ∈

D if for any z = (z1 , . . . , zn) ∈ D, and for each θk ∈ [0, 2π], k = 1, 2, . . . , n, we have
that (z1e iθ 1 , . . . , zn e iθ n) ∈ D. We say that D ⊂ C

n is a complete Reinhardt domain if
for each z = (z1 , . . . , zn) ∈ D, and for each ∣ξk ∣ ≤ 1, k = 1, 2, . . . , n, we have that ξ.z =
(z1 ξ1 , . . . , zn ξn) ∈ D. A domain Q ⊂ C

n is called a circular domain centered at 0 ∈ Q if
for any z = (z1 , . . . , zn) ∈ Q, and for each θ ∈ [0, 2π], we have that (z1e iθ , . . . , zn e iθ) ∈
Q. We say that Q ⊂ C

n is a complete circular domain if for each z = (z1 , . . . , zn) ∈ Q,
and for each ∣ξ∣ ≤ 1, we have that ξ.z = (z1 ξ1 , . . . , zn ξn) ∈ Q.

For a complete circular domain Q ⊆ C
n centered at 0 ∈ Q, every analytic function

in Q can be expressed into the following homogeneous polynomials

f (z) =
∞
∑
k=0

Pk(z) for z ∈ Q ,(1.14)

where Pk(z) = ∑∣α∣=k Aα zα is a homogeneous polynomial of degree k and P0(z) =
f (0).

It is natural to raise the following question.
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Question 1.15 Can we establish the analogue of Theorem B for the operator valued
functions in B(D,B(H))? If so, then what is the multidimensional analogue of
Theorem B for the functions in B(D,B(H))?

In Theorem B (b), it is worth mentioning that Bohr inequality is improved by
adding one degree polynomial in Sr/π with the majorant series∑∞k=0 ∣ak ∣rk . Therefore,
we have the following question.

Question 1.16 Is it possible to establish an improved version of Theorem B (b)
by adding the polynomial G (Sr/π) with the majorant series ∑∞k=0 ∣∣Ak ∣∣rk for f ∈
B(D,B(H))? If so, then what is the multidimensional analogue of Theorem B for
the functions in B(D,B(H))?

One of the main aims of this paper is to answer Questions 1.15 and 1.16 affirmatively.

2 Main results

Theorem 2.1 If the series (1.14) converges in the domain Q such that the estimate
∥ f (z)∥ < 1 holds in Q and f (0) = a0I, a0 ∈ C, ∣a0∣ < 1, then

∞
∑
k=0

∥Pk(z)∥ < 1(2.1)

in the homothetic domain (1/3)Q. Moreover, if Q is convex, the constant 1/3 is the best
possible.

In particular, if f is complex valued bounded analytic functions in the domain Q, we
can obtain the multidimensional analogues of Bohr’s inequality for complex valued
bounded analytic functions in the domain Q, which has been independently proved
by Aizenberg [2]. We obtain the Bohr radius for the functions f ∈ B(D,B(H)) with
the initial coefficients f (0) = 0 in the following lemma. Recall that R1 is the unique
root of (1.4). In the following lemma, we assume that B(H) is complex Hilbert space.

Lemma 2.2 Let f ∈ χ = B(D,B(H)) with f (0) = 0. Then R1 = 1/
√

2.

If f ∈ B(D,C), then the well known Bombieri [15] result follows from Lemma 2.2.
In the following result, we obtain an multidimensional analogues of Lemma 2.2 by
assuming B(H) is a complex Hilbert space.

Theorem 2.2 If the series (1.14) converges in the domain Q with the estimate ∥ f (z)∥ <
1 holds in Q and f (0) = 0, then

∞
∑
k=1

∥Pk(z)∥ < 1(2.3)

in the homothetic domain (1/
√

2)Q. Moreover, if Q is convex, then the constant 1/
√

2
is the best possible.
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Corollary 2.4 Suppose that the series (1.12) converges in the polydisk D
n such that

f (0) = 0 and ∥ f (z)∥ < 1 in D
n . Then

∞
∑
k=1

""""""""""""
∑
∣α∣=k

Aα zα
""""""""""""
≤ 1

in the polydisk (1/
√

2)Dn . The constant 1/
√

2 is the best possible.

We establish the multidimensional analogues of Theorem B (c) for the operator
valued analytic functions in the complete circular domain Q.

Theorem 2.3 Suppose that Q is a complete circular domain centered at 0 ∈ Q ⊂ C
n . If

the series (1.14) converges in Q such that ∥ f (z)∥ < 1 for all z ∈ Q and f (0) = a0I, a0 ∈ C,
∣a0∣ < 1. Then for p ∈ (0, 1], we have

∥ f (z)∥p +
∞
∑
k=N

∥Pk(z)∥ ≤ 1(2.5)

in the homothetic domain (RN , p)Q, where RN , p is the positive root in (0, 1) of the
equation

2(1 + r)rN − p(1 − r)2 = 0.(2.6)

Moreover, if Q is convex, then the constant RN , p is the best possible.

In the following result, we prove the multidimensional version of Theorem B (a)
for the operator valued analytic functions in the complete circular domain Q.

Theorem 2.4 Assume that the series (1.14) converges in the domain Q such that
∥ f (z)∥ < 1 for all z ∈ Q and f (0) = a0I, a0 ∈ C, ∣a0∣ < 1. Then

∞
∑
k=0

∥Pk(z)∥ + ( 1
1 + ∥ f (0)∥ +

r
1 − r

)
∞
∑
k=1

∥Pk(z)∥2 ≤ 1.(2.7)

holds in the homothetic domain (1/3)Q. Moreover, if Q is convex, then 1/3 is the best
possible.

In the following, we obtain an multidimensional version of Theorem B (b) for the
operator valued analytic functions in the complete circular domain Q.

Theorem 2.5 If the series (1.14) and (1.10) converge in the domain Q such that
∥ f (z)∥ < 1 for all z ∈ Q and f (0) = a0I, a0 ∈ C, ∣a0∣ < 1. If G is given by (1.11),
then

∞
∑
k=0

∥Pk(z)∥ + G (
∞
∑
k=1

k ∥Pk(z)∥2) ≤ 1(2.8)
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holds in the homothetic domain (1/3)Q, where the coefficients of G satisfy

8c1 (
3
8
)

2
+ 24c2 (

3
8
)

4
+⋯+ 8(2l − 1)c l (

3
8
)

2 l
≤ 1.(2.9)

Moreover, if Q is convex, then 1/3 cannot be replaced by a larger quantity.

3 Key lemmas and their proofs

We first obtain the upper and lower bounds of m(χ, r) for functions in B(D,B(H)).

Lemma 3.1 Let B(H) be a complex Hilbert space and f ∈ B(D,B(H)). Then
(a) m(χ, r) ≤ 1/

√
1 − r2 for r ∈ [0, 1) and

(b) m(χ, r) ≥ (3 −
√

8(1 − r2))/(1 − r) for r ∈ [1/3, 1).

Proof Let f (z) = ∑∞k=0 Ak zk , where Ak ∈ B(H) for k ∈ N ∪ {0}.
(a) In view of the Cauchy-Schwarz inequality, we have

Mr( f ) =
∞
∑
k=0

∥Ak∥ rk ≤
&
''*

∞
∑
k=0

∥Ak∥2

&
''*

∞
∑
k=0

r2k for r ∈ [0, 1).(3.2)

From the given assumption that f is in the unit ball of H∞(D,B(H)). That
is, ∥ f ∥H∞(D,B(H)) ≤ 1. In particular, we have ∥ f ∥2

H2(D,B(H)) = ∑
∞
k=0 ∥Ak∥2 ≤ 1.

Then the desired inequality follows from (3.2).
(b) To obtain the lower bound of m(χ, r), we consider the function ψa which is

defined by (1.8). Now, by the well known argument used in proving [21, Lemma
8.1.13], we can easily obtain the lower bound of m(χ, r). Hence, we omit the
details. ∎

In the following result, we establish an operator valued analogues of Theorem B (c)
with the term ∣ f (z)∣ replaced by ∥ f (z)∥p for p ∈ (0, 1] for functions f inB(D,B(H)).

Lemma 3.3 Let f ∶ D→ B(H) be a bounded analytic function of the form (1.2) such
that A0 = a0I, a0 ∈ C, ∣a0∣ < 1. If ∥ f (z)∥ ≤ 1 in D, then for p ∈ (0, 1], we have

∥ f (z)∥p +
∞
∑
k=N

∥Ak∥ rk ≤ 1 for ∣z∣ = r ≤ RN , p ,(3.4)

where RN , p is the unique root in (0, 1) of the equation (2.6). The constant RN , p is the
best possible.

Proof LetB(H) be the set of bounded linear operators on a complex Hilbert space
H. Then B(H) is a complex Banach space with respect to the norm

∥A∥ = sup
h∈H∖{0}

∥Ah∥
∥h∥ = sup

h∈H,∥h∥=1
∥Ah∥ ,
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where A ∈ B(H). Let X∗ be the dual space of B(H). For x ∈ B(H) ∖ {0}, let

T(x) = {lx ∈ X∗ ∶ lx(x) = ∥x∥ and ∥lx∥ = 1}.

By the Hahn-Banach theorem, we have T(x) ≠ ϕ. Fix z ∈ D ∖ {0} and let ν = z/∣z∣ ∈
∂D. Without loss of generality, we assume f (z) ≠ 0. Let τ ∈ B(H) be any fixed point
such that ∥τ∥ = 1. We define the following holomorphic function in D by

g(ρ) = lτ( f (ρν)) for ρ ∈ D,

where lτ ∈ T(τ). Clearly, ∣g(ρ)∣ ≤ 1 in D. By applying the Schwarz-Pick lemma (often
referred to as Lindelöf ’s inequality) (see [5]) to the complex-valued function g, we
obtain

∣g(ρ)∣ ≤ ∣g(0)∣ + ∣ρ∣
1 + ∣g(0)∣∣ρ∣ , ρ ∈ D.(3.5)

It is easy to see that

∣g(0)∣ = ∣lτ( f (0))∣ ≤ ∥lτ∥ ∥ f (0)∥ = ∥ f (0)∥ .(3.6)

Let ∣g(0)∣ = t and ∣ρ∣ = s. Then s ∈ [0, 1) and hence, the right hand side term (t +
s)/(1 + ts) of (3.5) is an increasing function in the variable t ∈ [0,∞). Thus, (3.5) and
(3.6) give

∣lτ( f (ρν))∣ ≤ ∥ f (0)∥ + ∣ρ∣
1 + ∥ f (0)∥ ∣ρ∣ .(3.7)

By choosing ρ = ∣z∣ and τ = f (z)/ ∥ f (z)∥ in (3.7), we obtain

∥ f (z)∥ ≤ ∥ f (0)∥ + ∣z∣
1 + ∥ f (0)∥ ∣z∣ for z ∈ D.(3.8)

Let f (z) = ∑∞k=0 Ak zk be analytic in D such that Ak ∈ B(H) for all k ∈ N ∪ {0} and
A0 = a0I, a0 ∈ C with ∣a0∣ < 1. Then, in view of (1.7) and (3.8), we have

∥ f (z)∥p +
∞
∑
k=N

∥Ak∥ ∣z∣k ≤ (
∣z∣ + ∣a0∣
1 + ∣z∣∣a0∣

)
p

+ (1 − ∣a0∣2)
∣z∣N

1 − ∣z∣ = 1 + ΥN , p(∣a0∣),(3.9)

where

ΥN , p(∣a0∣) = (
r + ∣a0∣
1 + r∣a0∣

)
p

− 1 − r − (1 − ∣a0∣2)rN

1 − r
for ∣z∣ = r

and ∣a0∣ ∈ [0, 1]. Let ∣a0∣ = α. To prove the inequality (3.4), it is enough to show that
ΥN , p(α) ≤ 0 for α ∈ [0, 1]. That is, we have to show that ΦN , p(α) ≤ 0, where

ΦN , p(α) = (1 − r)(r + α)p − (1 + rα)p (1 − r − (1 − α2)rN) .

Clearly, ΦN , p(1) = 0. Therefore, if we show that ΦN , p is an increasing function in α
under the condition (2.6), then we are done. A simple computation shows that

Φ′N , p(α) = p(1 − r)(r + α)p−1 − pr (1 − r − (1 − α2)rN) (1 + rα)p−1 − 2αrN(1 + rα)p
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and

Φ′′N , p(α) = p(p − 1)(1 − r) ((r + α)p−2 − r2(1 + rα)p−2)
+ p(p − 1)r2(1 − α2)rN(1 + rα)p−2 − 2αprN+1(1 + rα)p−1 − 2rN(1 + rα)p .

Note that (r + α)p−2 − r2(1 + rα)p−2 is positive for α ∈ [0, 1] and p ∈ (0, 1], which
shows that the first term in the expression of Φ′′N , p(α) is negative for p ∈ (0, 1].
Since the other terms in the expression of Φ′′N , p(α) are also negative for p ∈ (0, 1], it
follows that Φ′′N , p(α) ≤ 0 for all α ∈ [0, 1] and p ∈ (0, 1]. Thus, Φ′N , p is a monotonically
decreasing function in α ∈ [0, 1] for p ∈ (0, 1], which gives that

Φ′N , p(α) ≥ Φ′N , p(1) = p(1 − r)2 − 2rN(1 + r) ∶= Ψ(r).(3.10)

We observe that Ψ(r) ≥ 0 for r ≤ RN , p , where RN , p is the unique root of Ψ(r) = 0.
Indeed, Ψ′(r) = −2p(1 − r) − 2 (NrN−1 + (N + 1)rN) ≤ 0 implies that Ψ is a decreas-
ing function in r ∈ [0, 1]. On the other hand, since Ψ(0) = p > 0 and Ψ(1) = −4 < 0,
Ψ has the unique root in (0, 1) and let RN , p be that root. Since Ψ is a decreas-
ing function in r, we have Ψ(r) ≥ Ψ(RN , p) = 0 for r ≤ RN , p . Therefore, Φ′N , p(α) ≥
0 for r ≤ RN , p and p ∈ (0, 1]. Thus, ΦN , p is an increasing function in α when-
ever p ∈ (0, 1]. Therefore, ΦN , p(α) ≤ ΦN , p(1) = 0 for r ≤ RN , p for p ∈ (0, 1]. This
shows that ΥN , p(α) ≤ 0 for r ≤ RN , p , p ∈ (0, 1] and hence, the inequality (3.4) follows
from (3.9).

To prove the sharpness of the radius RN , p , we consider the function ψa with
ψa(z) = ∑∞k=0 Ak zk given by (1.8). A simple computation shows that

∥ψa(−r)∥p +
∞
∑
k=N

∥Ak∥ rk = ( r + a
1 + ra

)
p
+ (1 − a2) aN−1rN

1 − ar
(3.11)

= 1 −
(1 − a)BN , p(a, r)
(1 + ar)p(1 − ar) ,

where

BN , p(a, r) = (1 − ar)(1 + ar)p ( 1
1 − a

(1 − ( r + a
1 + ra

)
p
) − ( 1 + a

1 − ar
) aN−1rN) .

We note that the right hand expression of (3.11) is greater than or equals to 1 if, and
only if, BN , p(a, r) ≤ 0. By letting a → 1−, we obtain

lim
a→1−

BN , p(a, r) = (1 − r)(1 + r)p (p( 1 − r
1 + r

) − 2rN

1 − r
) < 0

for r > RN , p . This proves the sharpness of the constant RN , p . This completes the
proof. ∎

In the next result, we prove an operator valued analogues of Theorem B (a).
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Lemma 3.12 Let f ∶ D→ B(H) be a bounded holomorphic function of the form (1.2)
such that A0 = a0I, a0 ∈ C with ∣a0∣ < 1. If ∥ f (z)∥ ≤ 1 in D, then we have

∞
∑
k=0

∥Ak∥ rk + ( 1
1 + ∥ f (0)∥ +

r
1 − r

)
∞
∑
k=1

∥Ak∥2 r2k ≤ 1 for ∣z∣ = r ≤ 1
3

.(3.13)

The constant 1/3 is the best possible.

Proof Let f (z) = ∑∞k=0 Ak zn inDwith ∥ f (z)∥ ≤ 1 inD such that Ak ∈ B(H) for all
k ∈ N ∪ {0} and A0 = a0I, a0 ∈ C. Set ∥A0∥ = ∣a0∣ = b ∈ [0, 1]. Then by (1.7), we obtain

∞
∑
k=0

∥Ak∥ rk + ( 1
1 + ∣a0∣

+ r
1 − r

)
∞
∑
k=1

∥Ak∥2 r2k

≤ b + (1 − b2) ( r
1 − r

) + ( 1
1 + b

+ r
1 − r

)(1 − b2)2 r2

1 − r2 ∶= Ψ2(b).

Clearly, Ψ2 can be expressed as Ψ2(b) = b + α(1 − b2) + β(1 − b)(1 − b2) + γ(1 − b2)2

for b ∈ [0, 1], where

α = r
1 − r

, β = r2

1 − r2 and γ = r3

(1 − r)(1 − r2) .

Clearly, α, β, and γ are non-negative. We note that

Ψ′2(b) = 1 − 2αb + β(3b2 − 2b − 1) + 4γ(b3 − b),
Ψ′′2 (b) = −2α + 2β(3b − 1) + 4γ(3b2 − 1) and Ψ′′′2 (b) = 6βb + 24bγ.

Since β and γ are non-negative, we have Ψ′′′2 (b) > 0 for all b ∈ [0, 1]. That is, Ψ′′2 is an
increasing function of b, which implies that

Ψ′′2 (b) ≤ Ψ′′2 (1) = −2α + 4β + 8γ = 2r
(1 − r)(1 − r2) τ(r),

where τ(r) = 4r2 + 2r(1 − r) − (1 − r2) = (1 + r)(3r − 1). It is easy to see that τ(r) ≤ 0
for r ≤ 1/3. Therefore, Ψ′′2 (b) ≤ 0 for b ∈ [0, 1], which shows that Ψ′2 is a decreasing
function in b ∈ [0, 1]. Thus, for r ≤ 1/3, we obtain

Ψ′2(b) ≥ Ψ′2(1) = 1 − 2α = 1 − 3r
1 − r

.

Clearly, for r ≤ 1/3, we have Ψ′2(1) ≥ 0 and hence Ψ′2(b) ≥ 0 in [0, 1]. This implies that
Ψ2 is an increasing function in [0, 1] and hence, we obtain Ψ2(b) ≤ Ψ2(1) = 1 for r ≤
1/3. This proves the desired inequality (3.13). For the sharpness of the constant 1/3, we
consider the function ψa given by (1.8). A simple computation shows that

∥A0∥ +
∞
∑
k=1

∥Ak∥ rk + ( 1
1 + ∣a0∣

+ r
1 − r

)
∞
∑
k=1

∥Ak∥2 r2k

= a + 1 − a2

a

∞
∑
k=1

anrn + ( 1
1 + a

+ r
1 − r

) 1 − b2

b

∞
∑
k=1

a2k r2k ∶= 1 + (1 − a)u(r) ∶= v(r),
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where

u(r) = (1 + a)r
1 − ar

+ ( 1
1 + a

+ r
1 − r

) (1 + a)(1 − a2)r2

1 − a2r2 − 1.

We note that u is strictly increasing function in (0, 1). Hence, for r > 1/3, we have
u(r) > u(1/3). By letting a very close to 1, we obtain lima→1− u(1/3) = 0. Therefore,
u is strictly positive function for r > 1/3, as a is very close to 1. Hence, v(r) > 1 for
r > 1/3, which shows that the radius 1/3 is the best possible. ∎

In the following result, we establish an operator valued analogues of
Theorem B (b).

Lemma 3.14 Let f be as in Lemma 3.12. If ∥ f (z)∥ ≤ 1 in D, then we have
∞
∑
k=0

∥Ak∥ rk + G(S(z)) ≤ 1 for r ≤ 1
3

,(3.15)

where the coefficients of G(w) are given by (1.11) satisfy (2.9). Furthermore, the constant
1/3 cannot be replaced by a larger quantity. Here S is given by (1.10).

Proof Let ∥A0∥ = ∣a0∣ = b ∈ [0, 1]. Then using the inequality (1.7), we obtain

S(z) ≤ (1 − b2)2
∞
∑
k=1

kr2k = (1 − b2)2 r2

(1 − r2)2 .(3.16)

The inequality (3.16) along with (1.7) gives

∥A0∥ +
∞
∑
k=1

∥Ak∥ rk + U(S(z)) ≤ b + (1 − b2) r
1 − r

+
l
∑
m=1

cm ((1 − b2)r
1 − r2 )

2m

= 1 + H(r),(3.17)

where

H(r) = (1 − b2) r
1 − r

+
l
∑
m=1

cm ((1 − b2)r
1 − r2 )

2m

− (1 − b).(3.18)

It is easy to see that H(r) is an increasing function and hence H(r) ≤ H(1/3) for
r ≤ 1/3. A simple computation shows that

H(1/3) = 1 − b2

2
(1 + 2Fl(b) − 2

1 + b
) ∶= 1 − b2

2
J(b),

where

Fl(b) =
l
∑
m=1

c l(1 − b2)2m−1 (3
8
)

2m
and J(b) = 1 + 2Fl(b) − 2

1 + b
.

To show that H(r) ≤ 0, it is enough to show that J(b) ≤ 0 for b ∈ [0, 1]. Since b ∈ [0, 1],
a simple computation shows that

b(1 + b)2 (3/8)2 ≤ 4 (3/8)2 , . . . , b(1 + b)2(1 − b2)2m−2 (3/8)2 l ≤ 4 (3/8)2 l .
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It is easy to see that

J′(b) = 2
(1 + b)2 (1 − 2c1b(1 + b)2 (3

8
)

2
− 6c2b(1 + b)2(1 − b2)2 (3

8
)

4

−⋯− 2(2l − 1)c l b(1 + b)2(1 − b2)2 l−2 (3
8
)

2 l
)

≥ 2
(1 + b)2 (1 − (8c1 (

3
8
)

2
+ 24c2 (

3
8
)

4
+⋯+ 8(2l − 1)c l (

3
8
)

2 l
))

≥ 0, if 8c1 (
3
8
)

2
+ 24c2 (

3
8
)

4
+⋯+ 8(2l − 1)c l (

3
8
)

2 l
≤ 1.

Therefore, J(b) is an increasing function in [0, 1] if (2.9) holds. Hence, J(b) ≤ J(1) = 0
for all b ∈ [0, 1], which gives the desired inequality (3.15). To show the sharpness of the
constant 1/3, we consider the function ψa given by (1.8). A simple computation using
(1.7) shows that
∞
∑
n=0

∣an ∣rn + U(S(z)) = a + (1 − a2) r
1 − ar

+ c1r2(1 − a2)2

(1 − a2r2)2 +⋯+ cmr2m(1 − a2)2m

(1 − a2r2)2m

∶ = 1 − (1 − a)Φ1(r),

where

Φ1(r) = −(1 + a)r
1 − ar

− c1r2(1 − a)(1 + a)2

(1 − a2r2)2 −⋯− cmr2m(1 − a)2m−1(1 + a)2m

(1 − a2r2)2m + 1.

It is not difficult to show that Φ1(r) is strictly decreasing function of r in (0, 1).
Therefore, for r > 1/3, we have Φ1(r) < Φ1(1/3). A simple computation shows that
lima→1 Φ1(1/3) = 0. Therefore Φ1(r) < 0 for r > 1/3. Hence 1 − (1 − a)Φ1(r) > 1 for
r > 1/3, which shows that 1/3 is the best possible. This completes the proof. ∎

4 Proofs of the main results

Proof of Theorem 2.1 To obtain the inequality (2.1), we convert the multidimen-
sional power series (1.14) into the power series of one complex variable and we want
to make use of Lemma 3.3. Let L = {z = (z1 , . . . , zn) ∶ z j = a j t, j = 1, 2, . . . , n; t ∈ C}
be a complex line. Then, in each section of the domain Q by the line L, the series (1.14)
turns into the following power series of complex variable t:

f (at) =
∞
∑
k=0

Pk(a)tk = f (0) +
∞
∑
k=1

Pk(a)tk .(4.1)

Since ∥ f (at)∥ < 1 for t ∈ D and f (0) = a0I, ∣a0∣ < 1, by Lemma 3.3, we obtain
∞
∑
k=0

∥Pk(a)tk∥ < 1(4.2)

for z in the section L⋂( 1
3 Q). Since L is an arbitrary complex line passing through

the origin, the inequality (4.2) is just (2.1). For the sharpness of the constant 1/3, let
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the domain Q be convex. Then Q is an intersection of half spaces

Q = ⋂ a∈J{z = (z1 , . . . , zn) ∶ Re (a1z1 +⋯+ anzn) < 1}

for some J. Because Q is circular, we obtain

Q = ⋂ a∈J {z = (z1 , . . . , zn) ∶ ∣a1z1 +⋯+ anzn ∣ < 1} .

Therefore, to show the constant 1/3 is the best possible, it is enough to show that 1/3
cannot be improved for each domain Ga = {z = (z1 , . . . , zn) ∶ ∣a1z1 +⋯+ anzn ∣ < 1}.
In view of Theorem A, for some b ∈ [0, 1), there exists a function ψb ∶ D→ B(H)
defined by (1.8) with ∥ψb(ξ)∥ < 1 for ξ ∈ D, but for any ∣ξ∣ = r > 1/3, (2.1) fails to hold
in the disk Dr = {ξ ∶ ∣ξ∣ < r}. On the other hand, consider the function ϕ ∶ Ga → D

defined by ϕ(z) = a1z1 +⋯+ anzn . Thus, the function f (z) = (ψb ○ ϕ)(z) gives the
sharpness of the constant 1/3 for each domain Ga . This completes the proof. ∎

Proof of Lemma 2.2 In view of Lemma 3.1 (a), with r = 1/
√

2, we have m(χ, 1/
√

2)
≤
√

2 and by Lemma 3.1 (b) with r = 1/
√

2, we obtain m(χ, 1/
√

2) ≥
√

2. These
together give (1/

√
2)m(χ, 1/

√
2) = 1. Hence by (1.4), we conclude that

R1 = 1/
√

2. ∎

Proof of Theorem 2.2 In view of Lemma 2.2, by going the similar lines of argument
as in Theorem 2.1, we can easily show that∑∞k=1 ∥Pk(z)∥ < 1 in the homothetic domain
(1/

√
2)Q. To show the constant 1/

√
2 is the best possible, let the domain Q be

convex. Therefore, by the analogues proof of Theorem 2.1, it is enough to prove
that the constant 1/

√
2 cannot be improved in each domain Ga = {z = (z1 , . . . , zn) ∶

∣a1z1 +⋯+ anzn ∣ < 1}. Since 1/
√

2 is the best possible in Lemma 2.2, there exists an
analytic function h ∶ D→ B(H) defined by

h(ξ) = ξ
⎛
⎜
⎝

1√
2
− ξ

1 − ξ√
2

⎞
⎟
⎠

I =
∞
∑
k=1

Ak ξk for ξ ∈ D,

where A1 = 1/
√

2 and Ak = −(1/2)(1/
√

2)k−2 for k ≥ 2 such that ∥h(ξ)∥ < 1 in D and
h(0) = 0. But for any ∣ξ∣ = r > 1/

√
2,

∞
∑
k=1

∥Ak∥ rk = r/
√

2
1 − (r/

√
2)

> 1,

which shows that (2.2) fails to hold in the disk Dr = {z ∶ ∣z∣ < r}. Therefore, the
function f (z) = (h ○ ϕ)(z) gives the sharpness of the constant 1/

√
2 in each domain

Ga , where ϕ ∶ Ga → D defined by ϕ(z) = a1z1 +⋯+ anzn . This completes the
proof. ∎

Proof of Theorem 2.3 In view of Lemma 3.3 and the analogues proof of Theorem
2.1, as well as from (3.4), we can easily obtain the inequality (2.5) in the homothetic
domain (RN , p)Q, where RN , p is the positive root in (0, 1) of the equation (2.6). To
prove the constant RN , p is the best possible whenever Q is convex, in view of the
analogues proof of Theorem 2.1, it is enough to show that RN , p cannot be improved
for each domain Ga = {z = (z1 , . . . , zn) ∶ ∣a1z1 +⋯+ anzn ∣ < 1}. Since RN , p is the best
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possible in Lemma 3.3, there exists an analytic function h ∶ D→ B(H) such that
∥h(ξ)∥ < 1 in D, but (2.5) fails to hold in the disk Dr = {z ∶ ∣z∣ < r} for each ∣ξ∣ = r >
RN , p . Thus, the function f (z) = (h ○ ϕ)(z) gives the sharpness of the constant RN , p
in each domain Ga , where ϕ ∶ Ga → D is defined by ϕ(z) = a1z1 +⋯+ anzn . ∎

Proof of Theorem 2.4 In view of Lemma 3.12 and the analogues proof of Theorem
2.1, as well as from (3.13), we can obtain the inequality (2.7) in the homothetic domain
(1/3)Q. To prove the constant 1/3 is the best possible when Q is convex, in view of the
analogues proof of Theorem 2.1, it is enough to show that 1/3 cannot be improved
for each domain Ga = {z = (z1 , . . . , zn) ∶ ∣a1z1 +⋯+ anzn ∣ < 1}. Thus, the function
f (z) = (h ○ ϕ)(z) gives the sharpness of the constant 1/3 in each domain Ga , where
ϕ ∶ Ga → D is defined by ϕ(z) = a1z1 +⋯+ anzn . ∎

Proof of Theorem 2.5 Using Lemma 3.14 and the analogues proof of Theorem
2.1, from (3.15), we can easily obtain the inequality (2.8) in the homothetic domain
(1/3)Q, where the coefficients of G satisfy (2.9). When Q is convex, to prove the
constant 1/3 is the best possible, in view of the analogues proof of Theorem 2.1, it is
enough to show that 1/3 cannot be improved for each domain Ga = {z = (z1 , . . . , zn) ∶
∣a1z1 +⋯+ anzn ∣ < 1}. Thus, the function f (z) = (h ○ ϕ)(z) gives the sharpness of
the constant 1/3 in each domain Ga , where ϕ ∶ Ga → D defined by ϕ(z) = a1z1 +⋯+
anzn . ∎
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