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A colouring of a graph G is called distinguishing if its stabilizer in AutG is trivial. It

has been conjectured that, if every automorphism of a locally finite graph moves infinitely

many vertices, then there is a distinguishing 2-colouring. We study properties of random

2-colourings of locally finite graphs and show that the stabilizer of such a colouring is

almost surely nowhere dense in AutG and a null set with respect to the Haar measure

on the automorphism group. We also investigate random 2-colourings in several classes of

locally finite graphs where the existence of a distinguishing 2-colouring has already been

established. It turns out that in all of these cases a random 2-colouring is almost surely

distinguishing.

2010 Mathematics subject classification: Primary 05E18

Secondary 20B27, 05C63

1. Introduction

A colouring of the vertices of a graph G is called distinguishing if it is not preserved

by any non-trivial automorphism of G. The notion was introduced by Albertson and

Collins [1], but problems involving distinguishing colourings have been around much

longer. A classic example is Rubin’s key problem [13], in which a blind professor wants

to distinguish his keys by the shape of their handles.

While a distinguishing colouring clearly exists for every graph (simply colour every

vertex with a different colour), finding a distinguishing colouring with the minimum

number of colours can be challenging.

In this paper we focus on infinite, locally finite graphs. For this class of graphs one of

the most intriguing questions is whether or not the following conjecture of Tucker [17] is

true, which generalizes a result on finite graphs due to Russel and Sundaram [15].
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Conjecture 1.1. Let G be an infinite, connected, locally finite graph with infinite motion.

Then there is a distinguishing 2-colouring of G.

The conjecture is known to be true for many classes of infinite graphs including trees

[18], tree-like graphs [7], and graphs with countable automorphism group [8]. In [16]

it is shown that graphs satisfying the so-called distinct spheres condition have infinite

motion as well as distinguishing number two. Examples of such graphs include leafless

trees, graphs with infinite diameter and primitive automorphism group, vertex-transitive

graphs of connectivity 1, and Cartesian products of graphs where at least two factors

have infinite diameter. It is also known that Conjecture 1.1 is true for graphs fulfilling

certain growth conditions [10].

All the results mentioned above were attained by deterministically colouring vertices

in order to break certain automorphisms. In the present paper we pursue a different

approach. We investigate how random colourings behave with respect to automorphism

breaking. The idea suggests itself, especially since the result of Russel and Sundaram can

be proved using the probabilistic method. As it turns out, in all of the above examples

a random colouring will be almost surely distinguishing, which leads to the following

conjecture.

Conjecture 1.2. Let G be a locally finite graph with infinite motion; then a random colouring

of G is almost surely distinguishing.

While we are not able to prove this conjecture, we will show that a random colouring

is ‘almost’ distinguishing, in the following sense.

There is a rather natural topology on the automorphism group of a graph (or more

generally, on any group of permutations of a countable set) called the permutation

topology. Using this topology and a corresponding Haar measure on the automorphism

group we show that the stabilizer of a random colouring is almost surely sparse in at

least two ways:

• it will almost surely be nowhere dense, and

• it will almost surely be a null set with respect to the Haar measure.

These properties can also be observed in the slightly more general setting of closed,

subdegree finite permutation groups of a countable set.

The rest of the paper is structured as follows. Section 2 contains all necessary notions

and notations. We then define a family of ultrametrics on a group of permutations of a

countable set. The induced topology of each member of this family will be the permutation

topology mentioned earlier, hence by studying those metrics we will gain some insight into

properties of this topology. We are particularly interested in properties of subdegree finite

permutation groups which are generalizations of automorphism groups of locally finite

graphs and will be the topic of Sections 4 and 5. In Section 4 we will study topological

properties of stabilizers of colourings, partial colourings, and subsets of the set on which

the permutation group acts. In Section 5 we investigate properties of the stabilizer of a

random colouring. This section also contains the proofs of the sparsity results mentioned
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above. Finally, in Section 6, we turn to random colourings of locally finite graphs. We

verify Conjecture 1.2 for many classes of graphs and show that the requirement of local

finiteness is necessary by giving a non-locally finite counterexample.

2. Notions and notations

Throughout most of this paper we will use Greek letters for group-related variables while

the Latin alphabet will be reserved for sets on which the group acts. Furthermore, these

sets will usually be countable, although one could possibly extend some of the results to

uncountable sets as well.

Let S be a set and let Γ be a group acting on S from the left (all definitions apply

analogously to right actions). The image of a point s ∈ S under an element γ ∈ Γ is

denoted by γs. If Δ is a subset of Γ, we denote by Δs = {γs | γ ∈ Δ} the orbit of s under

Δ. If Δ is a subgroup of Γ, it is well known that s ∈ Δt if and only if t ∈ Δs.

For a point s ∈ S the stabilizer of s in Γ is defined as Γs = {γ ∈ Γ | γs = s}, and it is

well known that this is a subgroup of Γ. We say that Γ is subdegree finite if, for every

s ∈ S , all orbits under Γs are finite. If S ′ ⊆ S then we denote by ΓS ′ the setwise stabilizer

of S ′ in Γ, that is, ΓS ′ = {γ ∈ Γ | ∀s ∈ S ′ : γs ∈ S ′}. The pointwise stabilizer of S in Γ is the

set Γ(S ′) =
⋂
s∈S ′ Γs.

The action of Γ is faithful if different group elements act by different permutations on

S . In this case we will not distinguish between γ ∈ Γ and the corresponding permutation

of S . Hence we will view Γ as a group of permutations of S , that is, Γ is seen as a

subgroup of the group ΠS of all bijections S → S .

For the rest of this section let S be a countable set and let Γ be a group of permutations

of S . We say that Γ is closed if it is a closed subgroup of ΠS in the topology of pointwise

convergence where S is equipped with the discrete topology. This topology coincides with

the permutation topology which we will introduce in the next section.

The motion of an element γ ∈ Γ is the number of elements of S which are not fixed

by γ. The motion of the group Γ is the minimal motion of a non-trivial element of Γ.

Similarly, define the motion of a subset Δ ⊆ Γ. Notice that the motion is not necessarily

finite; in fact we will mostly be concerned with groups with infinite motion. Usually S will

be the vertex set of a locally finite graph. In this case we define the motion of the graph

G as the motion of Γ = AutG acting on the vertex set.

Let C be a set. A C-colouring of S is a map c : S → C . A partial C-colouring of S is a

map c′ : S ′ → C where S ′ ⊂ S . The set C is referred to as the set of colours. Usually C will

be the set {0, 1}. In this case we will speak of a 2-colouring of S . By a (partial ) C-colouring

of a graph G we mean a (partial) C-colouring of the vertices of G. We denote by C(S, C)

the set of all C-colourings of S and by C(S ′, C) the set of all partial C-colourings with

domain S ′. Furthermore, let C(S) = C(S, {0, 1}) and C(S ′) = C(S ′, {0, 1}).
There is a natural (right) action of a group Γ of permutations of S on the set of C-

colourings of S defined by (cγ)(s) = c(γs). Notice that even if the action on S is assumed

to be faithful this need not necessarily hold for the action on C(S, C).

Given a colouring c and γ ∈ Γ we say that γ preserves c if γ lies in the stabilizer

subgroup Γc = {γ ∈ Γ | cγ = c}. We say that γ preserves a partial colouring c′ : S ′ → C if

https://doi.org/10.1017/S0963548313000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000382


888 F. Lehner

there are colourings c1 and c2 such that c1(s) = c2(s) = c′(s) for every s ∈ S ′ and c1γ = c2.

Notice that in general c1 	= c2. The stabilizer Γc′ of a partial colouring c′ consists of all

permutations γ ∈ Γ which preserve c′. Observe that the stabilizer of a partial colouring

need not necessarily be a subgroup of Γ. If γ does not preserve a (partial) colouring c

then we say that c breaks γ. We say that c breaks Δ ⊆ Γ if it breaks every non-trivial

element of Δ. A (partial) colouring c which breaks Δ is called Δ-distinguishing. A (partial)

colouring of a graph G is called distinguishing if it is (AutG)-distinguishing. Finally we

say that a (partial) colouring c fixes a set S ′ ⊆ S setwise if Γc ⊆ ΓS ′ and that it fixes S ′

pointwise if Γc ⊆ Γ(S ′).

3. A metric on the automorphism group

In this section we will describe a family of metrics on a group Γ of permutations of a

countable set S and discuss some of the properties the induced topology has. The way

the metrics are constructed will seem familiar to many readers. In fact, the construction is

similar to the construction of the p-adic norm and a similar approach can also be used to

equip the end space of a locally finite graph with a metric. It turns out that every metric

in this family induces the same topology on Γ, the so-called permutation topology. This

topology was first studied in the 1950s by Karass and Solitar [9] and Maurer [11] and

is a rather natural topology for groups of permutations. As mentioned earlier, another

way of introducing the same topology is to equip the set S with the discrete topology

and consider the topology of pointwise convergence on Γ. The paper [12] by Möller gives

a good overview on the permutation topology on closed, subdegree finite permutation

groups.

For the construction of the metric, let S be a countable set and let Γ be a group of

permutations of S . Let (Si)i∈N be a sequence of finite subsets of S such that Si ⊂ Si+1 and

limi→∞ Si = S . For two permutations γ1, γ2 ∈ Γ define the confluent of γ1 and γ2 as

conf(γ1, γ2) = min{i ∈ N | ∃s ∈ Si : γ1γ
−1
2 s 	= s} − 1,

that is, the confluent is the maximum i such that γ1 and γ2 coincide on Si and it is zero

if they differ on S1. Notice that the value of conf(γ1, γ2) clearly depends on the choice of

the sequence Si.

Now define the distance between γ1 and γ2 as

δ(γ1, γ2) =

{
0 if γ1 = γ2,

2− conf(γ1 ,γ2) otherwise.

The following proposition shows that the term distance is justified. In fact, δ even satisfies

an ultrametric triangle inequality. As we mentioned earlier, the topology induced by δ

does not depend on the choice of the sequence Si.

Proposition 3.1. The function δ as defined above is an ultrametric on Γ. All such metrics

induce the same topology on Γ, which makes Γ a topological group.
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Proof. It is readily verified that δ(γ1, γ2) is symmetric, non-negative, and zero if and only

if γ1 = γ2. Furthermore, if r = min{conf(γ1, γ2), conf(γ2, γ3)}, then both γ1γ
−1
2 and γ2γ

−1
3 fix

Sr pointwise and hence so does γ1γ
−1
2 γ2γ

−1
3 = γ1γ

−1
3 . Thus

δ(γ1, γ3) � 2−r = max{δ(γ1, γ2), δ(γ2, γ3)},

so δ is an ultrametric.

Clearly, every sequence Si induces a different metric on Γ but we claim that all of them

induce the same topology.

Indeed, let Δ be an open neighbourhood of a permutation γ ∈ Γ in the topology which

comes from the distance δ defined using the sequence (Si)i∈N. Then there is a natural

number n such that Δ contains a δ-ball with centre γ and radius 2−n. This implies that Δ

contains all automorphisms γ′ such that γγ′−1 fixes Sn pointwise.

Now consider a different sequence (S ′
i )i∈N of finite subsets of S whose limit is S and

use this sequence to define another metric δ′. Then there is an index m such that Sn ⊂ S ′
m.

So if a permutation γ′ fulfils δ′(γ, γ′) � 2−m then it certainly holds that δ(γ, γ′) � 2−n. In

other words, Δ contains a δ′-ball with centre γ and radius 2−m.

So we have proved that an open set with respect to the metric δ is also open with

respect to the metric δ′. Since the converse can be shown in a completely analogous way

we conclude that the respective topologies must coincide.

Finally, it is easy to see that this topology makes Γ a topological group. Simply notice

that left and right multiplication as well as taking inverses are isometries.

It is a well-known fact that in an ultrametric space distinct balls are disjoint. From

this it follows that for any ball Δ with radius �, subballs of Δ with radius �′ < � form

a partition of Δ. The following lemma states that this partition will be countable if we

partition the whole space, and finite if Γ is subdegree finite and Δ is a strict subset of Γ.

Lemma 3.2. There are only countably many distinct balls of radius � < 1 in Γ. If Γ is

subdegree finite, then each ball of radius � < 1 only has finitely many distinct subballs of

radius �′ < �.

Proof. By the definition of δ, balls of radius � are exactly the cosets with respect to the

pointwise stabilizer of Si, where i is the unique natural number such that 2−i+1 > � � 2−i.

Since Si is finite there are only countably many possibilities for choosing the image of Si.

So the set of cosets – and hence also the set of balls with radius � – is at most countable.

Now let Δ ⊆ Γ be a ball of radius � < 1. Since multiplication by a group element is an

isometry we may without loss of generality assume that the centre of Δ is id. This implies

that Δ is the pointwise stabilizer of Si, where 2−i+1 > � � 2−i.

A subball of Δ with radius �′ is a coset of Δ with respect to the stabilizer of Sj , where

j is the unique natural number such that 2−j+1 > �′ � 2−j . Hence it suffices to show that

there is only a finite number of such cosets.

To see that this is the case notice that every automorphism in Δ fixes S1. Furthermore

note that Γ is subdegree finite, hence the orbit of each s ∈ S under Δ is finite. Since Sj is

finite there are only finitely many possibilities for choosing an image of Sj .

https://doi.org/10.1017/S0963548313000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000382


890 F. Lehner

Now we can use the previous lemma to show that small balls in a closed, subdegree

finite permutation group Γ are compact. From this result we can derive a multitude of

topological properties of Γ.

Lemma 3.3. If Γ is closed and subdegree finite then Γ is locally compact, more specifically,

balls of radius � < 1 are compact.

Proof. Since in a metric space compactness and sequential compactness are equivalent,

it suffices to show that every sequence has a convergent subsequence. So assume we have

a sequence (γi)i∈N of pairwise different permutations, all of which lie inside a ball Δ of

radius � < 1.

Let k0 ∈ N such that 2−k0 < �. Then, by Lemma 3.2, Δ has only finitely many subballs

of radius 2−k0 and hence we can find an infinite subsequence of γi which is completely

contained in one of the subballs Δ0, say.

The ball Δ0 again has only finitely many subballs of radius 2−k0−1, so we can find a

sub-subsequence which lies completely in a subball Δ1 of Δ0. Proceeding inductively we

obtain a sequence of nested balls (Δk)k∈N in Γ where the radius of Δk is 2−k0−k .

Now we define a permutation γ as follows: to determine γs for s ∈ Sk0+k look at the

coset Δk . All permutations in this coset map s to the same vertex t. Choose γs = t. Since

the sets Δk are nested, γ is well defined.

It follows easily from subdegree finiteness that γ is bijective and hence a permutation.

Simply observe that if γi and γj are in Δk then γis = γjs, and hence γ−1
i γjs = s for every

s ∈ S0. By subdegree finiteness there are only finitely many possible values for γ−1
i γjt

for every t ∈ S , and hence there are only finitely many values for γ−1
i u (recall that γj is

bijective) for every u ∈ S . Now choose k such that all of the possible values are contained

in Sk0+k . Then all permutations in Δk will map the same vertex to u and hence u has a

pre-image under γ.

If we can find a subsequence of γi which converges to γ in the set ΠS of all permutations

of S , then it follows that γ ∈ Γ since Γ is closed in ΠS . Furthermore, in this case we have

found a convergent subsequence of γi, which completes the proof of the lemma.

To construct such a subsequence choose ik such that ik > ik−1 and γik ∈ Δk . Since γ

coincides with γik on Sk+i0 it follows that δ(γik , γ) → 0 as k → ∞, so γik converges to γ.

We conclude this section with a list of topological properties of Γ which follow from

the above results by well-known theorems from topology. Let Γ be a closed, subdegree

finite group of permutations of a set S . Then each of the following holds.

• Γ is σ-compact because there are only countably many distinct balls of radius r < 1,

and those balls are compact.

• Γ is Lindelöf because every σ-compact space is Lindelöf.

• Γ is separable and second countable because in a metric space these properties are

equivalent to the Lindelöf property.

• Γ is totally disconnected because in an ultrametric space balls are both open and

closed.
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• Γ is locally compact because small balls are compact.

• Γ is complete and hence Polish because small balls are compact and every Cauchy

sequence will eventually stay within a small ball.

4. Properties of stabilizer subgroups

In this section we outline some basic properties of stabilizer subgroups of colourings,

partial colourings, and subsets of S . We start with a well-known result about the stabilizer

of a single element s of S .

Lemma 4.1. Let Γ be a closed, subdegree finite group of permutations of a countable set

S . Then for every s ∈ S the stabilizer Γs is a compact subgroup of Γ.

Proof. It is clear that the stabilizer must be a subgroup of Γ so we only need to show

that it is compact. In the construction of the metric choose S1 = {s}. Then Γs is the ball

centred at id with radius � = 1
2
. Hence it is compact by Lemma 3.3.

A similar result can also be obtained for the setwise stabilizer of a finite subset S ′ ⊆ S .

In fact, the following lemma exactly tells us when a closed and subdegree finite group of

permutations of a countable set is compact.

Lemma 4.2. Let Γ be a closed, subdegree finite group of permutations of a countable set

S . Then the following are equivalent.

(1) Γ is compact.

(2) Γ stabilizes some finite subset S ′ of S setwise.

(3) The orbit of some element s ∈ S is finite.

(4) All orbits under the action of Γ are finite.

Proof. Clearly (4) ⇒ (3). The implication (3) ⇒ (2) follows from the fact that Γ stabilizes

every orbit setwise. The converse implication follows from the fact that the orbit of s ∈ S ′

must be contained in S ′ if the set is setwise stabilized. So we only need to show the

implications (3) ⇒ (1) ⇒ (4) in order to prove the equivalence of the statements.

First assume that there is some s ∈ S such that the orbit Γs is finite. Clearly Γ is the

union of the (finitely many) cosets with respect to the stabilizer Γs. All of the cosets are

compact because the stabilizer is compact by Lemma 4.1. Hence we have decomposed Γ

into finitely many compact sets and thus Γ itself must be compact.

To see that (1) ⇒ (4), let Γ be compact and assume that there is some s ∈ S whose

orbit is infinite. Then we can find an infinite sequence (γi)i∈N of permutations in Γ such

that no two permutations map s to the same point. Since Γ is compact this sequence

must have a convergent subsequence, which is impossible because no two permutations

coincide on s, which gives a lower bound on their distance.

Next we would like to turn to stabilizers of colourings of S . In general such a stabilizer

will not be compact, but we can show that it is always a closed subgroup of Γ.
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Lemma 4.3. Let Γ be a group of permutations of a countable set S . Then the stabilizer Γc
of a colouring c of S is a closed subgroup of Γ.

Proof. Again it is clear that the stabilizer of c is a subgroup of γ since cγ = c ◦ γ defines

a right action of Γ on the set C(S) of colourings of S . Hence we only need to show that

it is closed.

Consider a permutation γ /∈ Γc. There must be some s ∈ S such that c(s) 	= c(γs). This

point is contained in some set Si, where (Si)i∈N is the non-decreasing sequence of finite

subsets of S , which was used to construct the metric in Section 3. Now, every permutation

γ′ with δ(γ′, γ) < 2−i coincides with γ on Si. This implies that no permutation in the ball

Bγ(2
−i) is contained in Γc. So γ has an open neighbourhood which is disjoint to Γc and

hence the complement of Γc is open.

What happens if we consider partial colourings instead of colourings? It is readily

verified that the stabilizer of a partial colouring c′ is in general not a subgroup of Γ, so

we cannot hope for a verbatim extension of Lemma 4.3 to partial colourings. But it turns

out that apart from the group property everything generalizes nicely. If the domain of the

partial colouring is finite we even get a better result: in this case the stabilizer will be a

set that is both closed and open in the permutation topology.

Lemma 4.4. Let Γ be a group of permutations of a countable set S and let c′ be a partial

colouring of S . Then the stabilizer of c′ is closed. If the domain of c′ is finite then the

stabilizer is also open.

Proof. Denote by S ′ the domain of c′. Clearly, a permutation γ ∈ Γ preserves c′ if and

only if there is a colouring c′′ of the set

T = S ′ ∪ γ−1S ′

such that for every s ∈ S ′ it holds that c′′(γs) = c′′(s) = c′(s).

If S ′ is finite then so is T , and hence T is contained in Si for some i ∈ N. Consider a

permutation γ′ such that δ(γ, γ′) < 2−i. It follows from the definition of δ that γ′s = γs

for every s ∈ T . Hence a colouring of T with the above property exists for γ if and only

if it exists for γ′. It follows that if γ ∈ Γc′ then the ball with centre γ and radius 2−i is

completely contained in the stabilizer of c′, showing that the stabilizer is open. Conversely,

if γ /∈ Γc′ then this ball will be completely contained in the complement of the stabilizer,

proving that the complement is open as well.

Now let us turn to the case where S ′ is infinite. In this case choose a sequence S ′
i of

finite subsets of S ′ such that S ′
i ⊆ S ′

i+1 and limi→∞ S
′
i = S ′. Let c′

i be the colouring with

domain S ′
i which coincides with c′ on S ′

i . We know that Γc′
i
is closed because of the first

part of the proof. If we can show that Γc′ =
⋂
i∈N

Γc′
i
then it is closed, because it is the

intersection of closed sets.

But this is easy. If a permutation is contained in Γc′ then it is clearly contained in

every Γc′
i
(simply use the same colourings to extend c′ and c′

i). If a permutation γ is not

contained in Γc′ then this means that there is no partial colouring with domain T such
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that c′′(γs) = c′′(s) for each s ∈ S ′. Since we can colour every s ∈ T \ S ′ arbitrarily, this

implies that there are two elements s, t ∈ S ′ with different colours such that γs = t. Now

choose i large enough that s, t ∈ S ′
i . Clearly γ /∈ Γc′

i
and hence γ is not contained in the

intersection.

5. Random colourings

In this section we investigate properties of random colourings with respect to permutation

breaking. By a random colouring we mean a 2-colouring of the set S where the colour

of every element s ∈ S is chosen independently and uniformly. The probability space that

we obtain in this way is {0, 1}|V | with the product probability measure denoted by P.

The motivation to use random colourings comes from the following lemma due to Russel

and Sundaram [15], or more precisely from its proof, which uses random colourings to

obtain a distinguishing colouring for a finite graph with large motion.

Lemma 5.1. Let G be a graph with motion m and assume that 2
m
2 � | AutG|. Then there

is a distinguishing 2-colouring of G.

Proof. As we mentioned before, this fact can be shown using random colourings. Let

ϕ ∈ AutG \ {id}. We know that ϕ moves at least m vertices, which implies that there

are at most m
2

cycles of length � 2 and (n− m) singleton cycles in the corresponding

permutation. For a random colouring c we have

P[cϕ = c] = P[all cycles are monochromatic]

� 1

2n
(
2n− m

2

)
= 2− m

2 .

Summing up those estimates for ϕ ∈ AutG \ {id}, we get that

P[∃ϕ : cϕ = c] �
∑

ϕ∈AutG\{id}

P[cϕ = c]

�
∑

ϕ∈AutG\{id}

2− m
2

�
(
2
m
2 − 1

)
2− m

2

< 1.

So a random colouring has a positive probability of being distinguishing, and hence there

must be such a colouring.

Notice that the proof does not use the graph structure or group structure in any way.

Hence we can apply the same arguments to prove the following (stronger) statement.
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Lemma 5.2. Let S be a set and let Δ be a set of permutations of S with motion m. Assume

that 2
m
2 < |Δ|. Then there is a distinguishing 2-colouring.

For locally finite graphs with infinite motion the inequality in the statement of

the previous lemma (seen as an inequality of infinite cardinals) is always fulfilled. So

Conjecture 1.1 can be seen as an infinite analogue to Lemma 5.1. Hence it is only natural

to ask whether a similar proof can be used in the locally finite case. If the inequality is

strict then the following theorem of Halin [5], which is independent from the continuum

hypothesis, tells us that the automorphism group must be countable.

Theorem 5.3. Let G be a locally finite graph. Then | AutG| < 2|N| if and only if there is a

finite subset of V whose pointwise stabilizer is trivial.

Clearly, if there is such a set then an automorphism is uniquely determined by the

image of this set. Since there are only countably many possibilities for mapping a finite

set to a countable set, the automorphism group can be at most countable.

A similar thing holds – again independently from the continuum hypothesis – for closed

permutation groups by the following result of Evans [4].

Theorem 5.4. If Γ and Δ are closed permutation groups on a countable set S and Δ ⊆ Γ,

then either |Γ : Δ| = 2ℵ0 or Δ contains the pointwise stabilizer of some finite set in Γ.

Taking Δ = {id} in the above theorem, we obtain that a closed permutation group Γ

either has cardinality 2ℵ0 , or there is some finite subset of S whose pointwise stabilizer

is trivial. In particular, Theorem 5.3 and all of its implications remain true in the more

general setting of closed permutation groups.

It is known that a countable group of permutations with infinite motion of a countable

set admits a distinguishing 2-colouring [8]. The following theorem shows that almost every

2-colouring has this property, and its proof is basically a copy of the proof of Lemma 5.1.

Theorem 5.5. Let Γ be a countable group of permutations with infinite motion of a countable

set S and let c be a random colouring of S . Then c is almost surely Γ-distinguishing.

Proof. Clearly, for any given permutation γ ∈ Γ it follows from infinite motion that

there are infinitely many disjoint pairs (si, γsi) ∈ S × S . If we would like γ to preserve the

colouring it is necessary that all of those pairs are monochromatic. However, for each

pair this only happens with probability 1
2
. So there is almost surely a pair (si, γsi) carrying

different colours and hence γ is almost surely broken by c.

In order to see that c is almost surely distinguishing we use σ-subadditivity of the

probability measure P:

P[∃γ : cγ = c] �
∑
γ∈Γ

P[cγ = c] = 0

because every summand is 0.
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Just like Lemma 5.1, the proof of the above result is easily seen to be independent of

the group structure of Γ.

The argument fails when Γ is uncountable because summation is no longer possible.

However, we know that a closed, subdegree finite group of permutations is always

separable. Applying our argument to a dense countable subset yields the following.

Theorem 5.6. Let Γ be a separable group of permutations of a countable set S with infinite

motion and let c be a random colouring of S . Then Γc is almost surely nowhere dense in Γ.

Proof. Choose a dense countable subset of Γ. By the same arguments as before, the

random colouring c almost surely breaks every automorphism in this subset. By Lemma 4.3

the stabilizer of c is a closed subgroup, hence its complement is almost surely an open

dense set. This implies that the stabilizer must be almost surely nowhere dense in Γ.

In [8] it is shown that every closed permutation group has a dense subgroup for

which there is a distinguishing 2-colouring. Observing that the subgroup generated by a

countable set is again countable, we get the same result for every separable permutation

group.

So far we have shown that, if Γ is closed and subdegree finite, then the stabilizer

subgroup of a random colouring is almost surely topologically sparse, which was more or

less a direct consequence of separability. But it turns out that under suitable conditions

the set of unbroken permutations is small in at least one more way: it almost surely has

Haar measure 0. The basic proof ideas come again from the proof of Theorem 5.5, the

main difference being that we replace the sum by an integral with respect to the Haar

measure. In the proof we will need the following version of Fubini’s theorem which can,

for example, be found in [14].

Theorem 5.7. Let (X,X , μ) and (Y ,Y , ν) be σ-finite measure spaces and let f : X × Y → R

be a non-negative, (X × Y)-measurable function. Then∫
X

(∫
Y

f(x, y) dν(y)

)
dμ(x) =

∫
Y

(∫
X

f(x, y) dμ(x)

)
dν(y).

Having stated this theorem we are now ready to prove the following.

Theorem 5.8. Let Γ be a closed, subdegree finite group of permutations of a countable set

S and assume that the motion of Γ is infinite. Then a random colouring c almost surely

breaks almost every (with respect to the Haar measure) element of Γ.

Proof. First of all recall that Γ is locally compact by arguments in Section 3. So we can

define a Haar measure H on Γ.

We now claim that for a random colouring c the expected value of H(Γc) is 0. Since

H(Γc) is a non-negative random variable this implies that H(Γc) = 0 almost surely, which

proves the lemma.
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To see that the expected value is indeed 0, we calculate

E(H(Γc)) =

∫
C(S )

H(Γc) dP(c)

=

∫
C(S )

∫
Γ

I[cγ=c] dH(γ) dP(c)

Since Γ is the union of countably many compact balls by Lemma 3.2 and Lemma 3.3,

it is a σ-compact space. Compact sets have finite Haar measure, hence the Haar measure

on Γ is σ-finite.

In order to be able to apply Theorem 5.7, we still need to show that the function which

we would like to integrate is measurable. Since it is the indicator function of the set

U = {(c, γ) ∈ C(S) × Γ | cγ = c},

it suffices to show that U is measurable. For this purpose let (Si)i∈N be a sequence of finite

subsets of S such that limi→∞ Si = S . For each partial colouring c′ with domain Si, define

Ui(c
′) = {(c, γ) ∈ C(S) × Γc′ | ∀s ∈ Si : c(s) = c′(s)}.

Observe that C = {c ∈ C(S) | ∀s ∈ Si : c(s) = c′(s)} is a cylinder set and Γc′ is open and

closed by Lemma 4.4. Since Ui(c
′) = C × Γc′ , it is clearly contained in the product σ-

algebra.

Now let

Ui =
⋃

c′∈C(Si)

Ui(c
′).

This set is measurable because it is the finite union of measurable sets. We claim that

U =
⋂
i∈N

Ui.

To see that this is indeed the case consider (c, γ) ∈ U. Clearly c coincides with some partial

colouring c′ on Si and γ preserves this partial colouring because it preserves c. Hence (c, γ)

is contained in every Ui and thus also in the intersection.

Conversely, let (c, γ) ∈
⋂
i∈N

Ui. Assume that γ does not preserve c. Then there exists

s ∈ S such that c(s) 	= c(γs). Take i large enough that s and γs are contained in Si. Clearly,

γ does not preserve the partial colouring c′ which coincides with c on Si. Hence (c, γ) /∈ Ui,

a contradiction to (c, γ) ∈
⋂
i∈N

Ui.

Altogether we have shown that U can be written as a countable intersection of

measurable sets. So it is measurable itself and hence the indicator function IU = I[cγ=c] is

measurable as well.

This implies that we can apply Fubini’s theorem to the iterated integral above and

obtain

E(H(Γc)) =

∫
Γ

∫
C(S )

I[cγ=c] dP(c) dH(γ)

=

∫
Γ

P[cγ = c] dH(γ).
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We already observed earlier that the probability that a given permutation preserves

a random colouring is 0, hence we integrate over the constant 0-function and thus the

integral evaluates to 0.

We conclude this section with a result which will be useful in the next section. In

order to state this result we need the following equivalence relation, which is closely

linked to the distinct spheres condition, introduced in [16] as a sufficient condition for

2-distinguishability. We will see later (Theorem 6.6) that for locally finite graphs satisfying

this condition, a random 2-colouring is almost surely distinguishing.

Let S be a countable set and let Γ be a subdegree finite group of permutations of

S with infinite motion. Define an equivalence relation ∼Γ on the set S as follows. Two

points s, t ∈ S are called Γ-equivalent if the following holds:

• there is a permutation ϕ ∈ Γ such that ϕs = t, and

• for all but finitely many x ∈ S the orbits Γsx and ϕΓsx coincide.

Notice that the latter requirement is true for ϕ if and only if it is true for every γ such that

γs = t, because in this case γ = ϕγs for a suitable γs ∈ Γs. Hence, the second condition

does not depend on the choice of ϕ.

Proposition 5.9. The relation ∼Γ is indeed an equivalence relation.

Proof. To show reflexivity simply choose ϕ = id.

For symmetry assume that s ∼Γ t and let ϕ ∈ Γ such that ϕs = t. Notice that Γs =

ϕ−1Γtϕ, so for Γsx = ϕΓsx we have

Γtϕx = ϕΓsx = Γsx = ϕ−1Γtϕx.

This implies that Γty = ϕ−1Γty for all but finitely many values of y = ϕx, that is, t ∼Γ s.

Finally, we need to show transitivity. Assume that s ∼Γ t and that t ∼Γ u, and let ϕ and

ψ be the corresponding permutations. By definition, this implies that for all but finitely

many x ∈ S it holds that ϕΓsx = Γsx and ψΓtϕx = Γtϕx. Using the fact that ϕΓs = Γtϕ,

we obtain

ψϕΓsx = ψΓtϕx = Γtϕx = ϕΓsx = Γsx

for all but finitely many x ∈ S .

We denote the equivalence class of s ∈ S with respect to ∼Γ by [s]Γ. With the above

notation we have the following lemma, which constitutes a generalization of a result in

[16], as we will see in Section 6.

Lemma 5.10. Let S , Γ, and ∼Γ be defined as above. Assume that Γ has infinite motion and

let c be a random colouring of S . Then c almost surely fixes every equivalence class with

respect to ∼Γ, that is,

Γc ⊆
⋂
s∈S

Γ[s]Γ ,

where Γ[s]Γ denotes the setwise stabilizer of [s]Γ.

https://doi.org/10.1017/S0963548313000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000382


898 F. Lehner

Proof. For t �Γ s and u ∈ S consider the event

Astu = [∃ϕ ∈ Γc : ϕs = t, ϕt = u].

If we can show that the probability of Astu is 0 we are done, because

P[∃s �Γ t, ϕ ∈ Γ: ϕs = t] = P

⎛
⎜⎝⋃
s∈S

⋃
t∈S
s�Γt

⋃
u∈S

Astu

⎞
⎟⎠ �

∑
s∈S

∑
t∈S
t�Γs

∑
u∈S

P(Astu) = 0.

So let us take a closer look at P(Astu). If there is no permutation in Γ which maps s to

t and t to u, then this probability clearly is 0. So assume that there is such a permutation

ϕ. Let v ∈ S . Since s is mapped to t the set Γsv must be mapped to the set ϕΓsv. Notice

that the set ϕΓsv does not depend on the particular choice of ϕ, that is, it is the same for

every ϕ ∈ Γ with ϕs = t. In particular this implies that if the set Γsv \ ϕΓsv is non-empty,

then it will be mapped to the disjoint set ϕΓsv \ ϕ2Γsv by every automorphism which

maps s to t. The set ϕ2Γsv depends only on u, that is, the image of s under ϕ2 and not on

the particular choice of ϕ.

There are infinitely many points v for which these difference sets are non-empty because

s �Γ t and each of the sets is finite because of subdegree finiteness. Hence we can choose

infinite sequences of non-empty, disjoint sets Pi := Γsvi \ ϕΓsvi and Qi = ϕΓsvi \ ϕ2Γsvi
such that all of the Pi and Qj are also pairwise disjoint for all i, j ∈ N.

Now assume that there is a colour-preserving permutation which maps s to t. This can

only happen if the sets Pi and Qi contain the same number of vertices of each colour for

every i. Let ni := |Pi| = |Qi| and denote by pi and qi the number of elements of Pi and Qi
with colour 0 respectively. Then the probability that the colour distributions on Pi and Qi
coincide can be expressed as

P[pi = qi] =

ni∑
j=1

P[pi = j | qi = j] P[qi = j]

=

ni∑
j=1

P[pi = j] P[qi = j]

=

ni∑
j=1

(
ni

j

)
2−ni

(
ni

j

)
2−ni ,

where the second equality follows from the fact that Pi and Qi are disjoint and hence their

colourings are independent. To get an estimate for the last sum observe that(
ni

j

)
2−ni � 1

2
,

and hence

P[pi = qi] � 1

2

ni∑
j=1

(
ni

j

)
2−ni � 1

2
.

Recall that in order to have an automorphism which maps s to t we need pi = qi for

every i ∈ N. These events will be independent because all of the sets are disjoint. Hence
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we have

P[∃ϕ ∈ Γc | ϕs = t, ϕt = u] �
∏
i∈N

P[pi = qi] = 0.

Remark. Notice that Lemma 5.10 can be iterated as follows. Let Γ0 = Γ and denote by

∼0 the relation ∼Γ0 . Inductively, for i � 0 define

Γi+1 =
⋂
v∈V

Γi[v]i ,

where [v]i is the equivalence class of v with respect to ∼i and Γi[v]i is its setwise stabilizer.

Define ∼i+1=∼Γi+1 .

Let c be a random colouring of S . Inductively applying Lemma 5.10, we obtain that

almost surely Γc ⊆ Γi for each i ∈ N0. This implies that almost surely

Γc ⊆ Γ∞ = lim
i→∞

Γi =
⋂
i∈N0

Γi.

Remark. The set of permutations in Γ that fix all equivalence classes with respect to ∼Γ

setwise is a group. Denote it by Δ. If there is a finite equivalence class then Lemma 4.2

implies that Δ is compact, and hence the stabilizer of a random colouring is almost surely

compact.

But even if it is not compact Δ is the limit of a sequence of compact subgroups. Simply

notice that for a fixed s ∈ S every permutation ϕ ∈ Δ must fix all but finitely many

suborbits Δsx setwise. Let Δsxi be an enumeration of all suborbits and define

Δi = {ϕ ∈ Δ | ∀j > i : ϕΔsxj = Δsxj}.

Then Δi is compact by Lemma 4.2 because the Δi-orbit of xj is contained in the finite

suborbit Δsxj for j > i. Clearly the sequence Δi is non-decreasing and every ϕ ∈ Δ is

contained in some Δi. Thus

Δ = lim
i→∞

Δi =
⋃
i∈N0

Δi.

The above remark also tells us that in order to prove Conjecture 1.2 it suffices to

consider compact groups. More precisely we have the following.

Corollary 5.11. Assume that for every compact, subdegree finite permutation group with

infinite motion a random colouring is almost surely distinguishing. Then the same is true for

every subdegree finite permutation group with infinite motion.

Proof. With the above notation every non-trivial permutation will be contained in some

Δi. Since Δi is compact the stabilizer in Δi of a random colouring c will almost surely be
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trivial. By σ-subadditivity of the probability measure we get

P[Γc is not trivial] �
∞∑
i=1

P[(Δi)c is not trivial] = 0.

6. Random graph colourings

The last section of this paper is devoted to random colourings of graphs. First of all note

that the automorphism group of a locally finite graph is always a closed, subdegree finite

group of permutations on the vertex set. Hence all results from the previous section apply

to automorphism groups of locally finite graphs as well.

Theorem 6.1. Let G be a locally finite graph with infinite motion and let c be a random

colouring of G. Then (AutG)c is almost surely a nowhere dense, closed subgroup with Haar

measure 0.

If instead of colouring all vertices randomly we first colour part of the vertices

deterministically, we can even make the stabilizer subgroup of the resulting colouring

compact, as the following theorem shows.

Theorem 6.2. Let G be a locally finite graph with infinite motion. Then there is a colouring

of G which is only stabilized by a nowhere dense, compact subgroup with measure 0 of AutG.

In order to prove this theorem we first need the following auxiliary result from [2].

Lemma 6.3. Let G = (V , E) be an infinite, locally finite, connected graph with infinite

motion, v0 ∈ V . For every δ > 0 there is a partial colouring c′ of the vertices of G with

the following properties:

(1) c′ is A-distinguishing for A = {ϕ ∈ AutG | ϕv0 	= v0},
(2) there is a k0 such that less than δk of the spheres Sv0 (m+ 1), . . . , Sv0 (m+ k) are coloured

for every k > k0 and every m ∈ N.

Proof of Theorem 6.2. First apply Lemma 6.3 in order to break all automorphisms

which move a given vertex v0. This gives a partial colouring c′ of the graph which is

by Lemma 4.4 only preserved by a closed subset of AutG. Γc′ is compact because it is

completely contained in (AutG)v0 , which is compact by Lemma 4.1.

It is easy to see that Γc′ has infinite motion on the set of yet uncoloured vertices. Now

let c be the colouring obtained by randomly colouring all vertices that have not yet been

coloured. We can apply Theorem 5.8 to show that c almost surely breaks almost every

remaining automorphism of G.

Γc forms a closed and hence compact subgroup of (AutG)v0 . Since it has measure 0

in (AutG)v0 it must also have measure 0 in AutG. The property of being nowhere dense

also carries over from (AutG)v0 to AutG.
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In the rest of this paper we will show that there are many classes of locally finite graphs

for which Conjecture 1.2 can be verified. Before doing so, however, we would like to point

out that the requirement of local finiteness is necessary. Otherwise the conjecture fails

even for trees, as the following theorem shows.

Theorem 6.4. Denote by T∞ the regular tree with countably infinite degree and let c be

a random colouring of T∞ with finitely many colours. Then there is almost surely an auto-

morphism of T∞ which preserves c.

Proof. First of all notice that in a random colouring every vertex has infinitely many

neighbours of each colour. Hence it suffices to find a non-trivial automorphism preserving

a colouring with this property.

Let c be such a colouring and choose a vertex v0 of T∞. Define ϕv0 = v0. Next choose

an arbitrary colour-preserving permutation π of the neighbours of v0 and define ϕv = πv

for every neighbour v of v0.

Now assume that ϕ has already been defined for all vertices v with d(v, v0) � n. For

a vertex v with d(v, v0) = n, let (w(v,j)
i )i∈N be an enumeration of the neighbours of v with

colour j which lie further away from v0 than v. Recall that there are always countably

many such neighbours, hence the sequence will be infinite.

Now define ϕw(v,j)
i = w

(ϕv,j)
i . Clearly this assignment is bijective if the assignment on

Sv0 (n) is bijective. Notice that this is the case since we started with a permutation for

n = 1. It is also straightforward to check that it preserves adjacency and colours.

Proceeding inductively we obtain the desired automorphism.

In the remainder of this section we will focus on examples of graphs where a

random colouring is almost surely distinguishing. The following lemma, which is a direct

consequence of Lemma 5.10, will be of great use.

Define the sphere around v0 with radius n by Sv0 (n) = {v ∈ V | d(v0, v) = n}. We call two

vertices u and v sphere-equivalent (u ∼S v) if there is an automorphism of G which maps

u to v and an integer n0 ∈ N such that Su(n) = Sv(n) for every n � n0. It is easy to verify

that this is indeed an equivalence relation.

Lemma 6.5. Let G be a locally finite graph with infinite motion. A random colouring almost

surely fixes all equivalence classes with respect to ∼S setwise.

Proof. Recall that the automorphism group of a locally finite graph is always subdegree

finite. For Γ = AutG the relation ∼Γ defined in Section 5 is finer than ∼S . Since by

Lemma 5.10 a random colouring almost surely fixes every equivalence class with respect

to ∼Γ, it also almost surely fixes every equivalence class with respect to ∼S .

6.1. The distinct spheres condition

The distinct spheres condition (DSC) was introduced in [16] as a sufficient condition for

2-distinguishability of graphs. It is also shown that such a graph has infinite motion and

hence supports Conjecture 1.1. In this subsection we show that if a locally finite graph
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satisfies DSC, then it also supports Conjecture 1.2, that is, a random colouring is almost

surely distinguishing.

First, let us define the condition. A graph G = (V , E) is said to satisfy DSC if there is a

vertex v0 ∈ V such that for any pair x, y of distinct vertices, d(v0, x) = d(v0, y) implies that

Sx(n) 	= Sy(n) for infinitely many (or equivalently, all but finitely many) n ∈ N. Clearly this

implies that if d(v0, x) = d(v0, y) then x �S y, and we can deduce the following result.

Theorem 6.6. If a locally finite graph G = (V , E) satisfies DSC, then a random 2-colouring

c is almost surely distinguishing.

Proof. By Lemma 6.5 it suffices to show that an automorphism contained in the setwise

stabilizer of each equivalence class with respect to ∼S is necessarily the identity.

Let ϕ be a non-trivial automorphism of G. If ϕv0 �S v0 then ϕ is not contained in the

setwise stabilizer of all equivalence classes with respect to ∼S .

So assume ϕv0 ∼S v0. If ϕv0 = v0 then ϕ stabilizes all spheres with centre v0 setwise.

Since ϕ 	= id there must be some n ∈ N such that ϕ acts non-trivially on Sv0 (n).

If ϕv0 	= v0 but ϕv0 ∼S v0, then there is some n0 ∈ N such that ϕ stabilizes Sv0 (n) for

n > n0. Since ϕ acts non-trivially on Bv0 (n) it must also act non-trivially on the boundary

Sv0 (n).

Since x �S y for any two vertices x, y ∈ Sv0 (n), we can conclude that ϕ again is not

contained in the setwise stabilizer of all equivalence classes with respect to ∼S .

Hence for every non-trivial automorphism of G there is an equivalence class with

respect to ∼S which is not setwise stabilized by ϕ.

Corollary 6.7. Let G be an infinite, locally finite graph. Then each of the following proper-

ties implies that a random 2-colouring is almost surely distinguishing:

• G is a leafless tree,

• G can be written as a product of two infinite factors,

• the automorphism group of G acts primitively on the vertex set,

• G is vertex-transitive and has connectivity 1.

Proof. All of these graphs satisfy DSC by [16].

6.2. Graphs with a global tree structure

Trees are probably the most elementary example of a family of graphs that is known

to satisfy Conjecture 1.1. As we have seen, leafless trees also satisfy Conjecture 1.2. The

following corollary to Theorem 6.6 shows that the same holds true for arbitrary trees with

infinite motion.

Corollary 6.8. A random colouring of a locally finite tree with infinite motion is almost

surely distinguishing.

Proof. Since we assume infinite motion we can ignore finite subtrees and consider

the subgraph induced by those vertices whose removal results in at least two infinite
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components. On this set the relation ∼S is easily seen to be trivial. Alternatively one could

note that the resulting graph is a leafless tree and hence satisfies the DSC.

Tree-like graphs are graphs with the following property: there is a vertex v0 ∈ V such

that every vertex v ∈ V has a neighbour w such that v lies on every shortest w-v0-path. It

is readily verified that this class of graphs again satisfies DSC.

Corollary 6.9. A random colouring of a locally finite, tree-like graph is almost surely dis-

tinguishing.

It is a well-known fact that every graph has an end faithful spanning tree [3], that

is, the ends of a graph can be seen as the ends of a spanning tree of the same graph.

We now show that this large-scale tree structure is also almost surely preserved by every

automorphism that preserves a random colouring. First of all we show that if G has more

than one end, then Γc is almost surely compact and hence by Lemma 4.2 stabilizes a finite

set which plays the role of a root. Hence translations can only happen on a small scale.

Then we show that such an automorphism almost surely fixes every end. Both of these

results are again consequences of Lemma 6.5.

Lemma 6.10. Let c be a random colouring of a locally finite graph with at least two ends.

Then (AutG)c is almost surely compact.

Proof. By Lemma 4.2 it suffices to show that there is a finite orbit, which is the case if

the equivalence class of some vertex v with respect to ∼S is finite.

So let v ∈ V . There is a ball Bv(n0) such that G \ Bv(n0) has at least two infinite

components. Assume that there is a vertex w ∼S v such that d(v, w) � 2n0 + 1, and assume

that Sv(n) = Sw(n) for every n > N.

Now notice that if u lies in a different component of G \ Bv(n) than w, then every path

from w to u has to pass through Bv(n0). But this implies that d(v, u) < d(w, u), since a

shortest path from v to u takes n0 steps before exiting Bv(n0) while a shortest w-u-path

takes n0 + 1 steps to reach Bv(n0).

So all vertices that are equivalent to v must lie within the ball Bv(2n0), which is finite.

Lemma 6.11. Let c be a random colouring of a locally finite graph. Then (AutG)c almost

surely only contains automorphisms which fix the set of ends of G pointwise.

Proof. For one-ended graphs there is nothing to show, so we may assume that G has at

least two ends. A random colouring is almost surely only preserved by automorphisms

which stabilize the equivalence classes with respect to ∼S setwise. Hence it suffices to show

that every such automorphism also fixes the set Ω of ends of G pointwise.

Assume that ϕ is contained in the setwise stabilizer of each equivalence class and that

ϕω 	= ω for some end ω of G. Let (vi)i∈N be a sequence of vertices converging to ω. The

sequence (ϕvi)i∈N will converge to ϕω, and hence vi and ϕvi will lie in different infinite
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components of G \ Bv0 (n) for large enough n and i. By arguments similar to the proof of

the previous theorem this implies that vi �S ϕvi for large values of i.

So ϕ does not stabilize the equivalence classes with respect to ∼S setwise, a contradiction.

6.3. Cartesian products

Another class of graphs where 2-distinguishability results are known are Cartesian

products. The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the

graph G = (V , E), where V = V1 × V2 and two vertices (v1, v2) and (w1, w2) are adjacent if

v1w1 ∈ E1 and v2 = w2 or v1 = w1 and v2w2 ∈ E2. In this case we write G = G1 � G2.

The Cartesian product of finitely many factors is obtained by iterating this construction.

One has to be a bit more careful when considering products with infinitely many factors.

However, it can be shown that a locally finite, connected graph cannot be such a product.

In particular, since all graphs in this subsection are locally finite and connected, we do

not need to deal with the difficulties that arise when dealing with product graphs with

infinitely many factors.

It is easy to see that the Cartesian product is associative and commutative, that is,

the graphs obtained by changing the order in which Cartesian products are taken are

isomorphic. We will use this fact throughout this section without explicitly mentioning it.

A G1-layer of G = G1 � G2 is the subgraph of G induced by the set {(v, v2) | v ∈ V1}
where v2 ∈ V2 is fixed. Analogously define a G2-layer.

Throughout this section we will state some well-known facts about Cartesian products

of graphs without proving them. All of the results and their proofs can be found in [6].

The first fact we will need is that the distance between two vertices in a Cartesian

product is the sum of the distances of the projections to the factors. Hence a composition

of shortest paths in the factors is a shortest path in the Cartesian product.

Lemma 6.12. Let G be a locally finite, connected graph with infinite motion which is not

prime with respect to the Cartesian product. Choose a decomposition G = G1 � G2 such that

G1 is infinite. Let c be a random colouring of G. Then c almost surely fixes every G1-layer

setwise.

Proof. Once again we would like to use Lemma 6.5. So assume that there are two

sphere-equivalent vertices v ∼S w of G which lie in different G1-layers.

Let R = (v = v0v1v2v3 . . .) be a geodesic ray (that is, d(v0, vi) = i) starting in v which

remains inside the same G1-layer forever. Denote by R′ = (v′
0v

′
1v

′
2v

′
3 . . .) the ray in the layer

of w which is obtained from R by only changing the G2-coordinates.

Then d(w, vi) < d(w, v′
i) while d(v, vi) > d(v, v′

i) for every i ∈ N. The spheres Sv(r) and

Sw(r) are assumed to be equal for r � r0, which implies that d(v, vr) = d(w, vr) and d(v, v′
r) =

d(w, v′
r) for large enough values of r. But then we would have

d(v, v′
r) > d(v, vr) = d(w, vr) > d(w, v′

r) = d(v, v′
r).
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It is known that each graph G has a unique decomposition into prime graphs with

respect to the Cartesian product. It is easy to see that if G is locally finite then it only has

finitely many factors. Hence an infinite, locally finite graph must have at least one infinite

prime factor. If there is more than one infinite prime factor then G can be decomposed

into two infinite factors, and in this case G will be 2-distinguishable by Corollary 6.7.

However, this fact can also be seen as a corollary to Lemma 6.12.

Corollary 6.13. Let G be a locally finite, connected graph with more than one infinite prime

factor. Then a random colouring of G is almost surely distinguishing.

Proof. If G has two infinite prime factors then it can be written as G = G1 � G2, where

both G1 and G2 are infinite. Now every vertex is uniquely defined by its G1-layer and its

G2-layer. Both of these layers are almost surely fixed by a random colouring. Hence, for

every vertex v, the probability that the stabilizer of a random colouring is contained in

the stabilizer of v is 1.

Since there are only countably many vertices this implies that the stabilizer of a random

colouring is almost surely trivial.

As a direct consequence we get the following result about powers of locally finite

graphs.

Corollary 6.14. Let G be a locally finite Cartesian power of an infinite, locally finite,

connected graph. Then a random colouring of G is almost surely distinguishing.

Finally, the following result states that if we would like to prove Conjecture 1.2 it

suffices to consider prime graphs.

Corollary 6.15. If a random colouring is almost surely distinguishing for every locally finite,

connected, prime graph with infinite motion, then it is almost surely distinguishing for every

locally finite, connected graph with infinite motion.

Proof. By Corollary 6.13 it suffices to consider graphs with only one infinite prime factor.

Let G = G1 � G2 be a factorization of such a graph where G1 is the unique infinite prime

factor, and let c be a random colouring of G.

By Lemma 6.12 all G1-layers are almost surely setwise fixed by every automorphism in

(AutG)c. By assumption c is almost surely distinguishing for G1 because G1 is an infinite

prime graph. Hence c almost surely fixes every G1-layer pointwise.

6.4. Growth bounds

In the last part of this paper we will be concerned with growth bounds. We say that a

graph has growth f(n) if there is a vertex v0 and a constant c such that the ball Bv0 (n)

has at most cardinality cf(n) for every n ∈ N. Notice that f(n) is independent of the

choice of v0. Furthermore, recall that the sphere around v0 with radius n is defined as
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Sv0 (n) = {v ∈ V | d(v0, v) = n}. Since Bv0 (n) =
⋃n
k=0 Sv0 (k) it is clear that |Sv0 (n)| fulfils the

same growth bound as |Bv0 (n)|.
We will now show the following extension of a result in [10] stating that a graph

fulfilling certain growth bounds is 2-distinguishable. Once again, our contribution is to

show that for such graphs a random colouring is almost surely distinguishing.

Theorem 6.16. Let G be a graph with infinite motion and growth O(2( 1
2 −ε)

√
n). Then a

random colouring of G is almost surely distinguishing.

In order to prove this result we need two auxiliary lemmas. First, we will use the

following refinement of Lemma 5.1. The proof stated in Section 5 also works for this

result.

Lemma 6.17. Let S be a finite set and let Δ be a set of non-trivial permutations of S with

motion � m. Let c be a random colouring of S . Then

P[∃γ ∈ Δ: cϕ = c] � |Δ| 2− m
2 .

The second auxiliary lemma we will use can be found in [10], although the implications

stated below have been known before; see for example [2], where they play a crucial role

in the proof of one of the main results.

Lemma 6.18. Let G be a graph with infinite motion and let ϕ be an automorphism of G.

Let V ′ be the set of vertices moved by ϕ. Then the subgraph of G induced by V ′ only has

infinite components.

In particular, the above lemma implies that:

• if an automorphism acts non-trivially on a finite set, it also acts non-trivially on its

boundary,

• if an automorphism fixes the boundary of a finite set pointwise, it fixes the whole set

pointwise, and

• if two automorphisms coincide on the boundary of a finite set, they coincide on the

whole set.

Now we are ready to prove Theorem 6.16.

Proof of Theorem 6.16. Let c be a random colouring of G and choose a vertex v0 ∈ V .

For every v ∈ V let Δvv0 be the set of automorphisms which map v0 to v. Clearly, (Δvv0 )v∈V is

a countable decomposition of AutG. Hence we only need to show that Δvv0 almost surely

contains no automorphism ϕ such that ϕc = c.

For v �S v0 this follows from Lemma 6.5. If v ∼S v0 then it follows from the following

claim:

(∗) Let Δk be the set of automorphisms that fix Sv0 (i) setwise but not pointwise for every

i � k. Then a random colouring almost surely breaks every automorphism in Δk .
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Assume that (∗) is true and let ϕ ∈ Δvv0 for some v ∼S V0. Since for every v ∼S v0 there

is some index i such that Sv0 (i) = Sv(i), those spheres are fixed setwise for i large enough.

Furthermore, since G has infinite motion, ϕ has to act non-trivially on infinitely many of

the spheres. If it acts non-trivially on some sphere Sv0 (k) then it also acts non-trivially on

Sv0 (i) for each i > k. Hence ϕ is contained in some set Δk .

By (∗) a random colouring c almost surely breaks all of Δk and there are only countably

many values for k. Hence c almost surely breaks every automorphism in the union of the

Δk . This implies that a random colouring almost surely breaks all of Δvv0 , which completes

the proof of the theorem.

So we only need to show that (∗) holds for every k. Let n > k. Because of the growth

condition on the graph we know that there is some constant c such that

|Bv0 (n2)| � c 2( 1
2 −ε)n.

This in particular implies that the same upper bound holds for the size of each sphere

Sv0 (i) for i < n2. For 1 � j � n− 1 define

Rj = Bv0 ((j + 1)n) \ Bv0 (jn),
Λ′
j = {ϕ ∈ Δk | ϕ moves at most 2jvertices in some Sv0 (i) for i > (j + 1)n},

Λj = Λ′
j \ Λ′

j−1.

Let Πj be the set of different permutations induced by Λj on Rj .

The next step is to estimate the probability that a random colouring of Rj breaks all

automorphisms in Λj or, equivalently, all permutations in Πj . Since we would like to use

Lemma 6.17 we need to establish estimates for the cardinality of Πj and the motion of

Πj on Rj .

To estimate the number of different permutations observe that two automorphisms

that coincide on Si for some i > (j + 1)n also have to coincide on Rj . Hence it suffices to

estimate the number of permutations on Si which move less than 2j vertices and add those

estimates up. Since the size of Si is bounded by 2( 1
2 −ε)n, the number of such permutations

will be bounded by

(
c 2( 1

2 −ε)n

2j

)
(2j)! � 22j ( 1

2 −ε)n+2j log c

(2j)!
(2j)! = 22j ( 1

2 −ε)n+2j log c.

Adding those estimates up for (j + 1)n � i � n2, we obtain

|Πj | � n222j ( 1
2 −ε)n+2j log c.

In order to estimate the motion m of Πj on Rj observe that an element of Λj moves at

least 2j−1 vertices in every sphere Si for jn < i < (j + 1)n. Otherwise it would be contained

in Λ′
j−1. Adding those estimates up, we get

m � n2j−1.
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Let Xj denote the event that there is a permutation π ∈ Πj that preserves a random

colouring c of Rj . Plugging the estimates from above into Lemma 6.17 we obtain

log P[Xj] � log |Πj | − m

2

� 2 log n+ 2j
(

1

2
− ε

)
n+ 2j log c− 2j−1n

= −ε2jn+ 2j log c+ 2 log n.

If we choose n large enough this implies that

log P[Xj] � −ε2j−1n � −εn.

The probability that for every j a random colouring of Rj breaks Πj is now given by

n−1∏
j=1

(1 − P[Xj]) � (1 − 2−εn)n,

which tends to 1 as n goes to infinity. Finally, observe that if n is large enough then

Δk =

n−1⋃
j=1

Λj ,

because the motion on Bv0 (n
2) is bounded by the number of vertices in Bv0 (n

2). The set

Λ′
j contains all automorphisms whose motion is at most 2j , hence for n large enough and

j � n
2

it will be true that Δk = Λ′
j .
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[12] Möller, R. G. (2010) Graphs, permutations and topological groups.

arXiv.org/pdf/1008.3062v2.pdf

https://doi.org/10.1017/S0963548313000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000382


Random Colourings and Automorphism Breaking in Locally Finite Graphs 909

[13] Rubin, F. (1979) Problem 729. J. Recreational Math. 11 128. Solution in 12 (1980).

[14] Rudin, W. (1987) Real and Complex Analysis, third edition, McGraw-Hill.

[15] Russell, A. and Sundaram, R. (1998) A note on the asymptotics and computational complexity

of graph distinguishability. Electron. J. Combin. 5 R23.

[16] Smith, S. M., Tucker, T. W. and Watkins, M. E. (2012) Distinguishability of infinite groups and

graphs. Electron. J. Combin. 19 R27.

[17] Tucker, T. W. (2011) Distinguishing maps. Electron. J. Combin. 18 #50.

[18] Watkins, M. E. and Zhou, X. (2007) Distinguishability of locally finite trees. Electron. J. Combin.

14 R29.

https://doi.org/10.1017/S0963548313000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000382

