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Different theories of expectation formation and learning usually yield different outcomes
for realized market prices in dynamic models. The purpose of this paper is to investigate
expectation formation and learning in a controlled experimental environment. Subjects are
asked to predict the next period’s aggregate price in a dynamic commodity market model
with feedback from individual expectations. Subjects have no information about
underlying market equilibrium equations, but can learn by observing past price
realizations and predictions. We conduct a stable, an unstable, and a strongly unstable
treatment. In the stable treatment, rational expectations (RE) yield a good description of
observed aggregate price fluctuations: prices remain close to the RE steady state. In the
unstable treatments, prices exhibit large fluctuations around the RE steady state. Although
the sample mean of realized prices is close to the RE steady state, the amplitude of the
price fluctuations as measured by the variance is significantly larger than the amplitude
under RE, implying persistent excess volatility. However, agents’ forecasts are boundedly
rational in the sense that fluctuations in aggregate prices are unpredictable and exhibit no
forecastable structure that could easily be exploited.
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1. INTRODUCTION

The question whether “expectations matter” and may cause excess price volatility,
above and beyond volatility driven by news about underlying economic funda-
mentals, has been a matter of heavy debate among economists for many decades
already. In a pioneering paper, Shiller (1981), for example, argued that stock prices
are excessively volatile. The present paper may be viewed as an experimental test-
ing of expectation formation and learning in a dynamic market setting. We employ
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LEARNING IN COBWEB EXPERIMENTS 9

the simplest of all dynamic economic market models, the classical cobweb or “hog
cycle” model, to investigate whether agents learn the unique steady state rational
expectations equilibrium (REE) or whether excess price volatility is a persistent
phenomenon.

In modeling price movements in real markets, the expectations hypothesis is
a key assumption. Any dynamic economic model has a self-referential or ex-
pectations feedback structure, where expectations about future variables affect
realizations of actual variables and new realizations in turn lead to new expec-
tations. In modeling dynamic markets this interaction is repeated ad infinitum,
and the underlying expectations hypothesis is thus crucial in determining dynamic
market equilibrium. Since the pioneering work of Muth (1961) and Lucas (1972),
the rational expectations hypothesis (REH) has become (and currently still is) the
dominant paradigm in expectation formation in economics and finance. According
to the REH, agents use all available information and their subjective expectation
equals the mathematical expectation conditional upon this information. In imple-
menting the REH in economic modeling, it is usually assumed that agents have
perfect knowledge about market equilibrium equations. The agents in the model
use these equations to compute their optimal predictions for future variables. In
a rational expectations equilibrium, forecasts coincide (on average) with reali-
zations.

Until the sixties, before the rational expectations (RE) revolution, it was com-
mon practice to use simple habitual rule-of-thumb predictors for agents’ expecta-
tions in dynamic market models. The best-known textbook example is probably
the cobweb market equilibrium model or “hog cycle” model with a one-period
production lag. Ezekiel (1938) investigated the price dynamics in the cobweb
model under naive expectations, where the expected price for tomorrow equals
today’s price. Nerlove (1958) studied price fluctuations under adaptive expecta-
tions, where the expected price is adapted by a constant factor in the direction
of the latest observed market price. Under naive or adaptive price expectations,
price fluctuations in the (linear) cobweb model are characterized by up and down
oscillations around the market equilibrium steady state, either converging or di-
verging from the steady state price. The rational expectations argument against
these mechanical forecasting rules is well known. Agents make systematic fore-
casting errors along the “hog cycles,” and rational agents would learn from these
forecasting errors and revise expectations accordingly. In the cobweb model, the
only forecast without systematic errors is the prediction that the price will be at its
steady state value where demand and supply intersect. This rational expectations
equilibrium is unique and can be derived easily when demand and supply curves
are known to the agents.

There seems to be general agreement among economists that the REH assumes
too much knowledge on the part of the agents. In particular, the assumption that
agents have perfect knowledge of underlying market equilibrium equations is at
odds with practice in real markets. In the last decade, much theoretical work
has been done on bounded rationality, in an attempt to back off from rational
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expectations. Instead, in the bounded rationality framework, agents are assumed
to form expectations based upon time series observations. Recent surveys on
bounded rationality in expectation formation include Sargent (1993, 1999), Evans
and Honkapohja (1999, 2001), and Marimon (1997). Boundedly rational agents
have some simple model of the world, the perceived law of motion, and try to learn
or optimize the parameters of their perceived law of motion, e.g., by an econo-
metric technique such as ordinary least squares as additional observations become
available. An important question in the bounded rationality work is whether or not
adaptive learning schemes converge to a RE steady state. If convergence occurs,
REE will be an accurate description of the realized market equilibrium outcome, at
least in the long run, and this REE outcome can be attained without any knowledge
of market equilibrium equations.

For the cobweb model, indeed, a number of papers have argued that simple
learning rules based upon time series observations enforce convergence to the
unique RE steady state. For example, Bray and Savin (1986) show that if agents
employ ordinary least squares learning, prices converge to the REE steady state.
Arifovic (1994) shows that convergence to the RE equilibrium occurs when agents
use genetic algorithm learning. Finally, Hommes and Sorger (1998) have recently
shown that, if agents learn the sample mean and the first-order sample autocor-
relation from observed past prices and use these in their linear forecasting rule,
convergence to the RE steady state occurs. These theoretical papers suggest that,
in the cobweb model, learning of simple forecasting rules may stabilize price
fluctuations and enforce convergence to the RE steady state, even when market
equilibrium equations are unknown. In contrast, however, Chiarella (1988) and
Hommes (1994) show that the cobweb model with adaptive expectations need
not converge to the RE steady state, but periodic or even chaotic price fluc-
tuations around an unstable steady state can arise. Brock and Hommes (1997)
study the cobweb model with heterogeneous expectations and show that under
evolutionary learning prices need not converge to the RE steady state. See also
Grandmont (1998) and Grandmont and Laroque (1991) for a general discus-
sion of how learning may lead to instability, and Guesnerie (1992, 2002) for a
discussion of eductive learning and coordination on rational expectations equi-
libria. The main conclusion from this theoretical work is that different theories
of expectation formation and learning yield contradictory results concerning the
stability or instability of the (unique) RE steady state equilibrium in the cobweb
framework.

Unfortunately, it is hard to test the expectations hypothesis empirically and to
infer the way people form expectations from economic or financial data. Survey
data research, as for example by Frankel and Froot (1987) on inflation expectations
and by Shiller (1989, 2000) on stock market expectations, yields useful insights
on expectation formation but also has its limitations, for example, because of
changing underlying economic fundamentals. Controlled laboratory experiments
seem to be well suited to investigate which expectation formation hypothesis is
most accurate in describing human forecasting behavior and observed aggregate
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market outcomes in particular situations. As noted, e.g., by Sunder (1995), it
is remarkable that, despite an explosion of interest in experimental economics,
relatively few contributions have focused on expectation formation and learning
in dynamic experimental markets with expectations feedback. Some exceptions
are the well-known “bubble experiments” of Smith et al. (1988) in an experimental
asset market, the experimental work by Marimon et al. (1993) on the role of price
expectations in an inflationary overlapping-generations economy, and the exper-
iments by Marimon and Sunder (1993) on hyperinflation. These studies cannot
be viewed, however, as pure experimental testing of the expectations hypothesis,
everything else being constant, because in all these cases dynamic market equilib-
rium is affected not only by expectations feedback but also by other types of human
behavior, such as trading behavior. Two other related papers, by Hey (1994) and
Kelley and Friedman (2002), focus exclusively on expectation formation on time
series generated by stationary stochastic processes. Hey (1994) studies forecasting
of a first-order autoregressive process and finds that “subjects are trying to behave
rationally, but frequently in a way that appears adaptively.” Kelley and Friedman
(2002) consider learning in orange juice futures price forecasting experiments,
where prices are driven by a linear stochastic process with two exogenous vari-
ables (weather and competing supply). They find that learning is slow but quite
consistent, in the sense that estimated coefficients slowly converge to the true
values. In these papers, the stochastic process is exogenous, however, so that there
is no expectations feedback, as in dynamic market equilibrium models. The key
difference with our experiments is the self-referential structure in our setting.

The present paper may be viewed as experimental testing of the expectations
hypothesis in what is perhaps the simplest of all dynamic models, the cobweb
model. A convenient feature of the cobweb model is that it has a unique REE.
Market equilibrium equations are controlled and fixed during the experiment
(although they are subject to small demand shocks). Subjects are asked to predict
prices and their earnings are inversely related to their quadratic forecasting errors.
Price realizations only depend upon subjects’ price expectations. In all treatments
the experimental environment is stationary and the RE steady state is fixed and
constant over time. All experiments are conducted in the CREED Experimental
Laboratory of the University of Amsterdam.

There have been a number of earlier “cobweb experiments” related to our work.
Holt and Villamil (1986) and Hommes et al. (2000) conducted individual cobweb
experiments, where price fluctuations are induced by decisions of a single indi-
vidual. Carlson (1967) conducted hand-run experiments with subjects as cobweb
suppliers. Wellford (1989) conducted several computerized cobweb experiments,
where market prices were determined by subjects’ quantity decisions. A distin-
guishing feature of our approach is that market prices are completely determined
by forecasts made by a group of individuals, everyting else being constant (only
subject to small noise).

Using aggregate realized market prices from our experimental cobweb economy,
three important questions can be addressed:
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1. Are subjects in the experiments “on average” able to learn the unique RE steady state
price, or can realized market prices be significantly upward or downward biased?

2. Is there evidence of excess price volatility, that is, is the price volatility (as measured
by the variance) in the experiments significantly higher than the price volatility under
RE?

3. If prices do not converge to RE, is there still forecastable structure in realized market
prices that could be exploited by “smart” agents?

The paper is organized as follows. Section 2 describes the design of the experi-
ment. Section 3 briefly recalls some benchmark expectation and learning models in
the cobweb framework. Section 4 presents the main experimental results, includ-
ing statistics such as sample mean, sample variance, and sample autocorrelations.
Concluding remarks are given in Section 5.

2. EXPERIMENTAL DESIGN

The well-known cobweb or “hog cycle” model describes price fluctuations in an
independent market for a perishable consumption good, such as corn or hogs,
that takes one unit of time to produce. Producers thus have to forecast the market
price one period ahead. In our cobweb experiments, subjects have to predict
the next period’s price of a certain unspecified good. The subjects have limited
information about this market. Subjects are told that they are advisors to producers
of an unspecified good and that the price is determined by market clearing, that
is, equality of demand and supply. Subjects are also informed that there is some
uncertainty with respect to the demand and/or supply of the good due to market
uncertainties, for example, a possibly bad harvest because of extreme weather
conditions. Subjects do not know market equilibrium equations, nor are they
informed about the distributions of any exogenous shocks to demand and/or supply.
Based upon this limited information, we ask the subjects to predict next periods
market price for 50 consecutive periods. The predicted price always has to be
between 0 and 10 and the realized price is also always between 0 and 10.

The subjects are also informed that their earnings are inversely related to their
prediction error: the better their forecast, the higher their earnings. They can earn
a maximum of 1300 points per period. The payment in each period is based upon
the quadratic payoff function

�i,t = max
{
1300 − 260

(
pt − pe

i,t

)2
, 0

}
, (1)

where pe
i,t is subject i’s prediction of the market price in period t , 1 ≤ t ≤ 50, and

pt is the realized market price in that period. The expected value of this function
is maximized by pe

i,t = Ept . Negative payoffs are not possible; earnings are 0 if
(pt − pe

i,t )
2 > 5. At the end of the experiment the points are exchanged for Dutch

guilders at a rate of 1300 points = 1 guilder (≈0.45 Euro).
After every period, the subjects are informed about the realized price in the

experiment. Also, time series of the subjects’ own past predictions and a time
series of the past realized prices are shown on the screen, as illustrated in Figure 1.
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FIGURE 1. Typical computer screen of a subject during the experiment. Time series of
predictions and realized values were plotted in different colors on the computer screen.

At the beginning of each session, the subjects are asked to read the instructions
carefully. Two control questions are put into the instructions to make sure the
subjects understand the experiment and the calculation of their earnings. Each
session lasts for 50 periods. In each period, the aggregate realized market price
depends upon the individual expectations of 6 participants. A small random shock
is added to the market equilibrium equation in each period. The composition of the
groups remains the same during the entire experiment. Subjects are not informed
about the identity of other group members, the size of the group, or the market
equilibrium equation. Participants are not informed that the realized price depends
upon their forecast of the price and/or upon other forecasts and they are not allowed
to communicate. In total there were 108 subjects participating, divided over three
different treatments, a stable, an unstable, and a strongly unstable treatment, as dis-
cussed below. Each of the three treatments had 36 participants. Each market of 50
periods consists of a fixed group of 6 subjects; for each treatment six markets were
run. Subjects (mostly undergraduates in economics, chemistry, and psychology)
were recruited by means of announcements on information boards in univer-
sity buildings. Subjects earned on average FL.26.—(≈12 Euro) in approximately
75 minutes.

Subjects in the experiments thus have very little information about the price-
generating process. The information in the experiment is similar to the information
assumption underlying much of the theoretical bounded rationality literature,
namely that individuals form expectations based upon time series observations.

The realized market price pt in the experiment is determined by the cobweb
market equilibrium equation in which demand equals total supply; that is,

D(pt) =
K∑

i=1

S
(
pe

i,t

)
, (2)
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where D(pt) is the demand for the good at price pt , K is the size of the group,
S(·) denotes the supply curve, and pe

i,t is the prediction of the price in period t ,
made at date t − 1 by subject i. In our experiment the number of subjects in one
market is fixed at K = 6. Solving (2) for the market equilibrium price yields

pt = D−1

(
K∑

i=1

S
(
pe

i,t

))
. (3)

In the experiment the demand curve is fixed and simply linear,

D(pt) = a − bpt + ηt , a, b > 0, (4)

where ηt is a normally distributed random series representing a small demand
shock in period t . In all treatments, the parameters have been fixed to a = 13.8
and b = 1.5. For the supply curve, we use the nonlinear specification

S
(
pe

i,t

) = tanh
(
λ
(
pe

i,t − 6
)) + 1, λ > 0. (5)

Supply is nonlinear, but increasing in producers’ expected price. It should be
stressed that because supply is increasing, it is consistent with producers’ profit
maximization with a convex cost function. The parameter λ tunes the nonlinearity
of the supply curve and the stability of the underlying cobweb model. Each of the
three treatments corresponds to a different value of the parameter λ. A convenient
feature of a nonlinear supply curve is that, under naive or adaptive expectations,
prices may diverge from the unstable steady state, but remain bounded and con-
verge to a (unique) stable 2-cycle, as will be discussed below.

Given the (unknown) demand curve (4), the (unknown) supply curve (5), and
the individual forecasts of the market price by all participants, the realized market
equilibrium price is determined by

pt = a − ∑K
i=1 S

(
pe

i,t

)
b

+ εt , (6)

where εt = ηt/b is a (small) noise term proportional to the demand shock ηt .
The shocks εt may thus be interpreted as intrinsic uncertainty about economic
fundamentals. The shocks εt are normally distributed with variance σ 2

ε = 0.25;
the 50 realizations εt of the random series were the same for each market.

We conducted three different treatments, a stable, an unstable, and a strongly
unstable treatment, depending upon the value of the parameter λ tuning the nonlin-
earity of the supply curve, as summarized in Table 1. Each of the three treatments
represents a stationary experimental environment with a fixed and constant RE
steady state p∗. Learning this constant RE steady state over 50 time periods is
made more difficult by the (small) noise terms. Notice also that due to the different
values of λ, each treatment has a different RE steady state price p∗.

The parameter λ affects the stability of the cobweb model. According to the
classical cobweb theorem [e.g., Ezekiel (1938)], under naive expectations the
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TABLE 1. Design of the experiments for the three different
treatmentsa

Treatment

Stable Unstable Strongly unstable

Parameter λ λ = 0.22 λ = 0.5 λ = 2
RE-price p∗ 5.57 5.73 5.91
σ = S ′(p∗)/D′(p∗) −0.87 −1.96 −7.75
# participants 36 36 36

a The parameter λ tunes the nonlinearity of the supply curve. The RE steady state
price p∗ changes slightly with λ. The coefficient σ = S′(p∗)/D′(p∗) determines the
(local) stability of the cobweb model. As λ increases, the cobweb model becomes
more unstable. The number of subjects participating in each treatment was 36.

steady state p∗ is (locally) stable if the ratio σ = S ′(p∗)/D′(p∗) of marginal
supply to marginal demand at the steady state is between −1 and 1. For our choice
of the demand and supply curves the stability condition becomes

−1 <
−16λe2λ(p∗−6)(
1 + e2λ(p∗−6)

)2 < 1.

The experimental designs for the three different treatments are summarized in
Table 1.

3. BENCHMARK MODELS OF EXPECTATIONS AND LEARNING

This section briefly summarizes aggregate price fluctuations in the cobweb model
under some benchmark models of expectations and learning, including ratio-
nal expectations, naive expectations, adaptive expectations, and various adaptive
learning schemes. In the simulations, demand and supply curves are the same as
in the strongly unstable treatment of our cobweb experiments. In Section 4 we
will compare our experimental results with the benchmark cases to test which
expectations hypothesis fits our experiments best.

Figure 2 shows realized market prices for the benchmarks of rational expecta-
tions (RE), naive expectations (Naive), adaptive expectations (w = 0.2), “learn-
ing by average,” and sample autocorrelation (SAC) learning, as discussed below.
Figure 3 shows the autocorrelations of realized market prices for each of these
benchmark cases.

Recall that under RE, producers forecast the price to be equal to the steady
state at which demand and supply curves intersect; that is, pe

t = p∗. Given that all
producers use the RE forecast, realized market prices in (6) are given by

pt = p∗ + εt . (7)
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FIGURE 2. Time series of realized prices for some benchmark cases in the strongly unstable
treatment: (a) rational expectations, (b) naive expectations, (c) adaptive expectations (w =
0.2), (d) learning by sample average, and (e) SAC-learning.
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FIGURE 3. Autocorrelation plots (with Bartlett 5% significance bands) for the benchmark
cases of RE, Naive, AE, learning by average, and SAC-learning in the strongly unstable
treatment, over the full sample of 50 periods.
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Hence, under RE, realized market prices fluctuate randomly around the RE price
p∗ with small amplitude determined by the variance of the noise term (σ 2

ε = 0.25),
as illustrated in Figure 2a. The autocorrelation plot under RE in Figure 3a shows
that price fluctuations are indeed uncorrelated and do not exhibit unexploited
(linear) predictable structure.

Naive expectations means that all producers use the latest observed price as
their forecast; that is, pe

t = pt−1. Figure 2b shows realized market prices un-
der naive expectations. This is the familiar “hog cycle,” with prices fluctuating
up and down with large amplitude over the entire admissable interval [0, 10].
Figure 3b shows the corresponding autocorrelation plot, exhibiting the regular
(−,+,−,+, . . .) autocorrelation pattern that is typical for regular up and down
cobweb “hog-cycles,” with the first 13 lags being strongly significant. Not only do
naive producers make large forecasting errors, but these errors are also systematic,
because when their forecast pe

t = pt−1 is low (high), the realized market price pt

is high (low).
Adaptive expectations (AE) means that all producers use the forecast

pe
t = pe

t−1 + w
(
pt−1 − pe

t−1

);
that is, producers adapt their forecast in the direction of the latest observed market
price with a constant fraction w. Adaptive expectations is therefore sometimes
also called constant gain error learning. Notice that w = 1 corresponds to naive
expectations. Figure 2c shows realized market prices under adaptive expectations
for a small adaptive coefficient, w = 0.2. The amplitude of the price fluctuations
is much smaller than under naive expectations, but clearly larger than under RE.
Due to the noise term εt , the price pattern is somewhat irregular, but on the
other hand, e.g., between periods 25 and 40, prices still exhibit fairly regular up-
and-down oscillations. Figure 3c shows the corresponding autocorrelation plot of
realized market prices under AE. The autocorrelations are not as strong as under
naive expectations, but still exhibit the regular (−,+,−,+, . . .) pattern, with the
first seven lags being significant. As for naive producers, adaptive expectations
producers are thus irrational in the sense that observable forecastable structure in
market prices is left unexploited.

Another simple forecasting strategy is by the sample mean, that is, pe
t = p̄,

where

p̄ = 1

t

t−1∑
i=0

pi

is the sample mean of all previously observed prices. We will refer to this simple
rule as learning by average. This forecasting rule is equivalent to running an
ordinary least squares (OLS) regression of prices on a constant, as studied in
the cobweb context by Bray and Savin (1986). Figure 2d shows realized market
prices under learning by average. The amplitude of the price oscillations quickly
decreases, and prices seem to converge to RE, with random fluctuations around

https://doi.org/10.1017/S1365100507060208 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060208


LEARNING IN COBWEB EXPERIMENTS 19

the constant RE steady state price after 10 time periods. The corresponding auto-
correlation plot is shown in Figure 3d with hardly any significant autocorrelations.

A final learning rule, introduced recently by Hommes and Sorger (1998), is
sample autocorrelation learning (SAC learning), where producers use a linear
forecasting rule,

pe
t = αt + βt (pt−1 − αt ),

and update the parameters αt by the sample average and βt by the first-order
autocorrelation coefficient. Figure 2e shows realized market prices under SAC-
learning. The amplitude of the price oscillations quickly decreases, and prices seem
to converge to RE, with random fluctuations around the constant RE steady state
price after 10 time periods. SAC learning has significant negative autocorrelations
at lags 2 and 3, but this is mainly caused by the initial large amplitude price
fluctuations; when restricted to the last 40 observations, that is, after SAC learning
converges to the RE steady state, these significant autocorrelations disappear.

Figures 2 and 3 show that for our strongly unstable treatment of the cobweb
experiments, different expectations schemes and learning models lead to different
types of price fluctuations. Mechanical forecasting rules such as naive or adaptive
expectations lead to large-amplitude price fluctuations with linear forecastable
structure in market prices. It is important to note that, even in the strongly unstable
case, simple learning schemes, such as learning by average, OLS learning, and
SAC learning, enforce convergence to RE. Hence, even for a strongly unstable
cobweb market producers may learn the RE price from time series observations,
without any information about underlying market equilibrium equations. The goal
of our experiments is to investigate whether this theoretical observation is valid in
our cobweb laboratory experiments.

4. EXPERIMENTAL RESULTS

This section reports the results of the experiment. In Section 4.1 the earnings of the
participants are discussed, whereas Section 4.2 focuses on the first two moments
of realized market prices, namely, the sample mean and the sample variance. We
compare these sample means and sample variances to the theoretical benchmark
cases of Section 3, and in particular we investigate whether market prices are
biased (i.e., whether the sample mean deviates from the RE steady state) and
excessively volatile (i.e., whether the sample variance of realized market prices
is significantly larger than the RE variance). Finally, the predictability of realized
market prices, as measured by sample autocorrelation patterns, is investigated.

4.1. Earnings

Table 2 summarizes the average earnings over the subjects and their standard
deviation for the stable, unstable, and strongly unstable treatments, as well as
for the RE and AE benchmarks. The AE earnings reported in the table were
computed with the supply curve as in the strongly unstable treatment and with
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TABLE 2. Average earnings of the subjects and its standard deviation in
points for the three treatments, over the full sample of 50 periods as well as
over the subsamples of the first 25 and the last 25 periods

Earningsa

Periods 1–25 Periods 26–50 Periods 1–50

Treatment Mean SD Mean SD Mean SD

Strongly unstable (λ = 2) 12,224 5,388 17,616 5,234 29,840 8,884
Unstable (λ = 0.5) 22,246 2,572 27,329 2,822 49,575 4,940
Stable (λ = 0.22) 25,649 2,756 29,545 948 55,193 3,430
RE 30,653 — 30,589 — 61,242 —
AE (w = 0.2) 18,694 — 19,256 — 37,950 —

a Note that 1300 points is equal to 1 guilder ≈ 0.45 Euro.

adaptive coefficient w = 0.2. Note that the RE earnings reported in the table are
equal for all treatments, because under RE the forecasting errors are equal to the
realizations of the shocks εt in (7), which were identical for all treatments. An
immediate observation from the table is that the average earnings in the stable
treatment are higher than the average earnings in the unstable and the strongly
unstable treatments. For all treatments the average earnings in the last 25 periods
are higher than in the first 25 periods. Although the total average earnings of
the stable and the unstable treatments do not differ a lot (only 6,000 points), the
difference between the unstable and the strongly unstable is much bigger (almost
20,000 points). More importantly, the average earnings in the stable treatment
are close to the average earnings in the RE benchmark, especially in the subsample
of the last 25 periods. Furthermore, the total average standard deviation in the
stable treatment is smallest. In the last 25 periods of the stable treatment, the
standard deviation is almost three times smaller than in the first 25 periods. For
both the unstable and the strongly unstable treatments this is not the case. To
summarize, when the model becomes more stable, the average earnings of the
subjects increase, whereas the difference in earnings decreases.

4.2. Testing the Rational Expectations Hypothesis

In this section we investigate whether the RE hypothesis is an accurate description
of realized aggregate market prices, with or without a learning phase. Stated
differently, we investigate whether realized market prices in the experiments con-
verge to the RE steady state. We investigate the validity of RE as a description of
aggregate price fluctuations by focusing on three important characteristics, namely
whether realized market prices are biased, whether price fluctuations exhibit excess
volatility, and whether realized prices are predictable. It seems natural to measure
these characteristics by the mean, the variance, and the autocorrelation patterns of
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realized market prices and compare these to the corresponding RE characteristics.
We investigate and compare these characteristics for all treatments.

4.2.1. Price dynamics. Figure 4 shows the realized prices for all treatments,
with the strongly unstable treatment in the left panel, the unstable treatment in
the middle panel, and the stable treatment in the right panel. In all markets, prices
seem to fluctuate irregularly without any clear pattern. By eye inspection, it is
immediately clear that in the strongly unstable treatment, the amplitude of the
price fluctuations is much larger than in the unstable and the stable treatments. In
the stable treatment (right panel), the amplitude of the price fluctuations is small
and seems surprisingly close to the RE benchmark (cf. Figure 2a). In the unstable
treatment (middle panel), the amplitude of the price fluctuations is larger and
decreases somewhat over time. In the strongly unstable treatment (left panel), the
amplitude seems to be much larger than in the RE benchmark, suggesting excess
price volatility. Only for group 1 (top left) of the strongly unstable treatment
does the amplitude of the price oscillation decrease over 50 time periods. This
group thus shows some form of learning and at least a tendency to converge to
RE, although the convergence seems to be much slower than, e.g., in the SAC
benchmark (cf. Figure 2d).

To investigate the validity of the RE hypothesis in our experiment, Table 3
shows the sample mean and sample variance of the realized prices for the stable,
the unstable, and the strongly unstable treatment for the full sample of 50 periods,
as well as for subsamples of the first 25 and the last 25 periods. For all treatments,
the sample average of realized market prices is surprisingly close to the RE
benchmarks of 5.91, 5.73, and 5.57, respectively. Over the full sample of 50
periods, in the strongly unstable treatment the sample variance ranges from 1.56
to 4.23, which is much higher than the variance 0.25 of the RE benchmark. In
the unstable treatment the sample variance of realized prices ranges from 0.46
to 0.80, which is also larger than the RE benchmark. In the stable treatment, the
sample variance of realized prices over the full sample of 50 periods ranges from
0.31 to 0.41, which is only slightly higher than the RE benchmark of 0.25. In
the subsample of the last 25 periods, the sample variance in the stable treatment
ranges from 0.29 to 0.32, which is remarkably close to the variance under RE. In
contrast, for the unstable treatment, and for the strongly unstable treatment, in the
subsample of the last 25 periods, the sample variance ranges from 0.26 to 0.60 and
from 0.66 to 3.32 respectively, which is much higher than the variance under RE.

Table 4 shows the results for statistical tests comparing both the sample mean and
the sample variance of realized market prices to the theoretical RE-benchmarks.
Using the t-statistic, the null hypothesis that the sample mean of realized market
prices is equal to the RE steady state price cannot be rejected for 17 out of 18 groups
in the stable, the unstable, and the strongly unstable treatments. The only exception
is group 2 of the unstable treatment, for which the null hypothesis is rejected at
the 5% level. Table 4 also shows the results for testing the null hypothesis that
the sample variance of realized market prices is equal to the variance under RE
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FIGURE 4. Time series of realized prices of the six groups in the strongly unstable treatment (left panel), the unstable treatment (middle panel),
and the stable treatment (right panel).

https://doi.org/10.1017/S1365100507060208 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100507060208


LEARNING IN COBWEB EXPERIMENTS 23

F
IG

U
R

E
4.

C
on

tin
ue

d.

https://doi.org/10.1017/S1365100507060208 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060208


24 HOMMES ET AL.

TABLE 3. Sample averages and sample variances of realized market
prices, in the first 25, the last 25, and the full sample of 50 periods,
for all (strongly unstable, unstable, and stable) treatments

Periods 1–25 Periods 26–50 Periods 1–50

Sample Sample Sample Sample Sample Sample
average variance average variance average variance

Strongly unstable treatment (λ = 2)
RE 5.91 0.25 5.91 0.25 5.91 0.25
Group 1 5.92 3.33 5.64 0.66 5.78 1.97
Group 2 5.94 6.58 6.07 2.05 6.01 4.23
Group 3 6.07 4.75 5.50 3.32 5.79 4.04
Group 4 5.96 1.44 6.01 1.75 5.99 1.56
Group 5 6.12 2.58 5.77 2.06 5.95 2.30
Group 6 5.96 2.37 6.18 0.95 6.07 1.64

Unstable treatment (λ = 0.5)
RE 5.73 0.25 5.73 0.25 5.73 0.25
Group 1 5.87 1.03 5.71 0.60 5.79 0.80
Group 2 5.98 0.67 5.92 0.26 5.95 0.46
Group 3 5.93 0.74 5.85 0.38 5.89 0.55
Group 4 5.72 0.92 5.79 0.53 5.76 0.71
Group 5 5.86 0.67 5.78 0.40 5.82 0.52
Group 6 5.89 1.01 5.92 0.46 5.90 0.72

Stable treatment (λ = 0.22)
RE 5.57 0.25 5.57 0.25 5.57 0.25
Group 1 5.59 0.44 5.66 0.29 5.63 0.36
Group 2 5.61 0.37 5.65 0.30 5.63 0.34
Group 3 5.67 0.45 5.61 0.32 5.64 0.38
Group 4 5.69 0.50 5.69 0.32 5.69 0.41
Group 5 5.68 0.37 5.65 0.32 5.66 0.35
Group 6 5.63 0.34 5.57 0.30 5.60 0.31

over the full sample of 50 periods. For all groups in the unstable and the strongly
unstable treatments, the null hypothesis is rejected at the 1% level. For two groups
in the stable treatment (groups 2 and 6), we cannot reject the null hypothesis at the
5% level. The earlier observation that, over the full sample, the amplitude of price
fluctuations is larger than under the RE benchmark is thus statistically significant
in all unstable cases and even in four stable cases.

It seems reasonable, however, to allow for some learning phase in the unknown,
stationary cobweb environment. Table 5 shows the results for the statistical tests
comparing both the sample mean and the sample variance of realized market prices
over the subsample of the last 25 periods to the theoretical RE-benchmarks. In all
cases, the null hypothesis that the sample mean of realized market prices equals
the RE steady state price cannot be rejected. In this sense, subjects are thus able to
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TABLE 4. Mean and variance test for the full sample of 50 periods

Strongly unstable treatment Unstable treatment Stable treatment

µ = 5.91 σ 2 = 0.25 µ = 5.73 σ 2 = 0.25 µ = 5.57 σ 2 = 0.25

t-stat p-value Var. ratio p-value t-stat p-value Var. ratio p-value t-stat p-value Var. ratio p-value

Group 1 −0.65 0.52 387 0.00 0.50 0.62 157.21 0.000 0.66 0.51 69.8 0.027
Group 2 0.33 0.74 830 0.00 2.29 0.03 89.85 0.003 0.69 0.49 65.7 0.055
Group 3 −0.43 0.67 791 0.00 1.53 0.13 107.54 0.000 0.82 0.41 74.7 0.011
Group 4 0.43 0.67 306 0.00 0.23 0.82 139.03 0.000 1.34 0.19 79.1 0.004
Group 5 0.17 0.86 451 0.00 0.88 0.39 102.49 0.000 1.15 0.26 67.1 0.044
Group 6 0.86 0.38 321 0.00 1.45 0.15 140.70 0.000 0.38 0.71 60.9 0.118
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L.TABLE 5. Mean and variance test for the subsample of the last 25 periods

Strongly unstable treatment Unstable treatment Stable treatment

µ = 5.91 σ 2 = 0.25 µ = 5.73 σ 2 = 0.25 µ = 5.57 σ 2 = 0.25

t-stat p-value Var. ratio p-value t-stat p-value Var. ratio p-value t-stat p-value Var. ratio p-value

Group 1 −1.64 0.11 63.6 0.00 −0.10 0.92 57.14 0.00 0.83 0.41 28.0 0.26
Group 2 0.56 0.58 197 0.00 1.85 0.08 25.26 0.39 0.71 0.49 29.4 0.21
Group 3 −1.12 0.27 319 0.00 0.94 0.35 36.20 0.05 0.38 0.71 31.5 0.14
Group 4 0.38 0.71 167 0.00 0.42 0.68 50.66 0.00 1.09 0.29 31.3 0.15
Group 5 −0.49 0.63 197 0.00 0.37 0.72 38.06 0.03 0.73 0.47 31.6 0.14
Group 6 1.41 0.17 90.9 0.00 1.40 0.17 43.84 0.01 0.02 0.99 28.8 0.23
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learn the correct price level. For the stable treatment, also, the null hypothesis that
the sample variance of realized prices is equal to the variance under RE cannot
be rejected. For the unstable treatment this null is rejected at the 5% level in
five out of six cases, and for the strongly unstable treatment in all cases. This
suggests that in the stable treatment participants are on average able to learn the
RE steady state price. In the stable treatment, the first two moments of the long-run
empirical distribution of realized market prices correspond to the first and second
moment of the RE benchmark. In the unstable and the strongly unstable treatments,
only the first moment, the mean, corresponds to the RE benchmark, whereas
the second moment, the sample variance, is significantly larger than for the RE
benchmark. In the unstable and the strongly unstable treatments, although subjects
are able to learn the correct price level, even after a learning phase of 25 periods,
our cobweb experiments still exhibit statistically significant excess volatility in
prices.

4.2.2. Predictability of prices. Finally, we investigate whether there is still
forecastable structure in realized market prices that could have been exploited
by smart subjects to improve their forecasts. The simplest and perhaps most
important form of predictability is linear predictability, as measured by sample
autocorrelations.

Figure 5 shows the sample autocorrelation plots for the strongly unstable treat-
ment (left panel), the unstable treatment (middle panel), as well as for the stable
treatment (right panel). An immediate and important observation from Figure 5
is that realized market prices show no clear autocorrelation pattern, with hardly
any significant lags. The only group exhibiting a clear and regular autocorrelation
pattern is group 5 of the strongly unstable treatment, which is characterized by the
regular (−,+,−,+, . . .) autocorrelation pattern that was also observed for the
AE benchmark. However, in contrast to AE, for group 5 only lags 1, 5, 7, 11, 15,
and 16 are significant. In general, significant autocorrelations are rare, and in our
cobweb experiments realized market prices exhibit (almost) no linear predictable
structure. In terms of (linear) predictability the RE benchmark is thus a good
description of our cobweb experiments. Even in the unstable and the strongly
unstable case, where we found significant excess price volatility in Section 4.2.1
and market prices kept fluctuating with relatively large amplitude, participants in
the experiment are not irrational, in the sense that there is no easily exploitable
predictable structure in realized market prices.

5. CONCLUDING REMARKS

We have investigated expectation formation and learning in cobweb experiments.
The realized market price is determined by aggregation over six individual price
forecasts. Market equilibrium equations, as well as distributions of exogenous
shocks, are unknown to subjects. Subjects can only rely upon past observations
of realized prices in forming expectations. Market equilibrium equations are fixed
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FIGURE 5. Autocorrelation plots over the full subsample of 50 periods (with Bartlett 5% significance bands) for the six groups in the strongly
unstable treatment (left panel), the unstable treatment (middle panel), and the six groups in the stable treatment (right panel).
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and thus stationary for 50 time periods, so that each market has a unique and
constant RE price. A distinction is made between a stable, an unstable, and a
strongly unstable treatment. In the stable treatment under naive expectations,
prices will converge to the RE steady state price, whereas in the unstable and the
strongly unstable treatments under naive expectations, prices diverge from the RE
steady state and converge to a 2-cycle. Simple benchmark models of learning,
such as learning by sample average, enforce convergence to the RE steady state
price for all three different treatments. An important motivation for our paper is to
investigate, in a controlled stationary laboratory environment, which expectations
hypothesis yields an accurate description of aggregate realized market prices in
a cobweb-type commodity market. In particular, we investigate whether the RE
benchmark provides a good description of long-run market price fluctuations.

For all treatments, the null hypothesis that the sample mean of realized market
prices is different from the RE steady state price cannot be rejected. One thus
can say that in a stationary experimental cobweb economy the first moment, the
mean, of the empirical distribution of realized market prices corresponds to the RE
steady state price. Without any knowledge about market fundamentals, subjects
are thus on average able to learn the correct price level.

In the stable treatment the second moment, the sample variance, of realized
market prices also is very close to the variance under RE. In the stable treatment,
the null hypothesis that the sample variance in the last 25 periods is equal to the
sample variance under RE cannot be rejected. In contrast, in the unstable and
the strongly unstable treatments the null hypothesis that the sample variance of
realized market prices is (smaller than or) equal to the sample variance under RE
is strongly rejected. For all groups in the strongly unstable treatment and five out
of six groups in the unstable treatment, realized market prices exhibit statistically
significant excess volatility, that is, higher price volatility than under RE.

For all treatments, predictability of realized market prices was investigated by
sample autocorrelations. Typically, (almost) no significant sample autocorrelations
are found, implying that there is little predictable structure left in realized market
prices that could have been easily exploited by “smart” participants. Although
in the unstable treatments prices keep fluctuating with large amplitude, these
fluctuations are irregular and fairly unpredictable.

Which expectations hypothesis is a good description of aggregate realized mar-
ket price fluctuations in a cobweb economy? The answer to this question depends
on the stability of the model. If the market is stable (under naive expectations), RE
is a fairly good description, at least after a short learning phase. Hence, even when
agents do not know market equilibrium equations, the RE equilibrium concept may
be a useful description of aggregate market outcome. If the market is unstable,
however, RE is not a good description, since we find significant and persistent
excess price volatility. It is remarkable that the validity of RE exactly coincides
with the stability of the simple naive expectations rule. Adaptive expectations are
not a good description of the experiments, because they typically lead to fairly
regular up-and-down price oscillations with regular autocorrelation patterns in
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realized market prices. Neither are adaptive learning schemes such as learning by
sample average or ordinary least squares (OLS) learning good descriptions of our
experimental outcomes, because these schemes always converge quickly to RE.
The experimental outcome for an unstable cobweb economy may be described as
a boundedly rational heterogeneous expectations equilibrium, where subjects are
on average able to learn the correct price level, but diversity of beliefs leads to
excess price volatility. More work on individual prediction strategies is needed to
classify individual forecasting strategies.

Finally, we would like to discuss to which market institutions our results may
apply. In a cobweb-type commodity market, aggregate equilibrium prices are
driven by producers’ individual price expectations. A key feature of the cobweb
expectations feedback structure is that it is self-reversing in the following sense.
A high (low) price expectation of the producers leads to high (low) production
which, by market equilibrium of demand and supply, leads to a low (high) realized
market price. The cobweb commodity market is thus a producer-driven negative
expectations feedback system. Our experiments show that in a stationary envi-
ronment with a negative expectations feedback structure, without any knowledge
about market equilibrium equations, subjects are able to learn the correct price
level. Apparently, persistent under- or overvaluation does not arise in a commodity
market with a negative expectations feedback structure. This does not imply that
prices will converge to a steady state equilibrium price in such a market. The
amplitude of realized market price fluctuations depends heavily on the sensitivity
of the realized market equilibrium price to individual expectations. Our cobweb
experiments provide an example of how in a market where the realized market
price is very sensitive to expectations, excess volatility, with large-amplitude
fluctuations around the correct price level, may arise.

There is another, different expectations feedback structure that seems important
and particularly relevant in speculative asset markets. In a speculative asset mar-
ket, expectations are typically demand-driven and are often self-fulfilling in the
following sense. The aggregate demand for a risky asset depends upon traders’
individual expectations of future prices of the asset. High (low) price expectations
of individual agents lead to a high (low) aggregate demand for the asset which, by
market equilibrium of demand and supply, leads to a high (low) realized market
price. A speculative asset market is thus a demand-driven positive expectations
feedback system. In a recent Ph.D. thesis van de Velden (2001) shows that in an
experimental speculative asset market it is indeed much harder for subjects to learn
the correct price level and persistent over- or undervaluation and price bubbles
seem more likely than in the producer-driven commodity market considered in
this paper. In another recent paper, Hommes et al. (2005) present asset-pricing
laboratory experiments where individuals coordinate their expectations on simple
trend-following rules, leading to (temporary) bubbles and asset price fluctuations
around a constant bechhmark fundamental price. We conclude that the market
institution and in particular the nature of the expectations feedback structure,
whether it is producer- or demand-driven and whether the feedback is positive
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or negative, seems to be a key element for the outcome of a learning process of
market equilbrium prices. More experimental work is needed to investigate this
key problem in dynamic market phenomena in more detail.
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