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1. Introduction

1.1. Our results

The results of this paper are motivated by the questions of level raising/lowering for

automorphic forms, and the weight part of Serre’s conjecture, as well as a question
about ‘automorphic components’ related to the Fontaine–Mazur conjecture and to global

approaches to the p-adic local Langlands programme. However, our main results are

stated purely in terms of Galois representations.

We need to introduce a few definitions before stating our main theorem. Let F be a

CM field with maximal totally real subfield F+, and write G F for the absolute Galois
group Gal(F/F). (In this paper, all CM fields will be imaginary and so F/F+ is a

quadratic extension.)

We say that a representation s : G F → GLn(Fp) is reasonable if it satisfies the

hypotheses needed to apply the automorphy lifting theorems of [2]; that is, p > 2(n+ 1),
F does not contain a primitive pth root of unity, and s is polarizable, odd, and is

irreducible when restricted to G F(ζp). We say that a representation s : G F → GLn(Qp) is

reasonable if its reduction mod p is reasonable.

We say that a compatible system of l-adic representations of G F is weakly irreducible

if for a positive density set of primes l, its l-adic Galois representations are irreducible.

Conjecturally, this is equivalent to all of the l-adic representations being irreducible, but
this seems to be very hard to prove; weak irreducibility is a well-behaved substitute for

that stronger condition. By the results of [2, 37], if a compatible system is odd, regular,

and polarizable, then it is weakly irreducible if and only if it is potentially automorphic

(in the sense that it potentially corresponds to a cuspidal automorphic representation).
The condition that the representation s is polarizable is best expressed in terms of the

group Gn introduced in [16]; it is a reductive group with connected component GLn ×GL1
and component group of order 2, and as explained in [8, § 8.3], it is very closely

related to the C-group of an n-dimensional unitary group over F+ which splits over F .

Then the polarizability of s is equivalent to the existence of a prolongation of s to a

representation ρ : G F+ → Gn(Fp). In particular, this implies that sc∼= s∨µ|G F+
for some

character µ of G F+ .
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Suppose that ρ : G F+ → Gn(Fp) is a prolongation of s, and let v be a finite place

of F+. A polarized component for ρ|G F+v
is, by definition, an irreducible component of a

deformation ring for lifts of ρ|G F+v
which are of some fixed inertial type, and of a fixed

regular Hodge type if v|p. If v|p, then we say that such a component is globally realizable

if it occurs globally, in the sense that there is some totally real field L+ with a CM

quadratic extension L, a place w|p of L+ for which L+w ∼= F+v , and a (polarizable, odd,

reasonable) representation r : GL → GLn(Qp) which is part of a (polarizable, odd, weakly

irreducible) compatible system, which prolongs to a representation ρ′ : GL+ → Gn(Qp)

whose restriction ρ′|GL+w
gives rise to a point on this component (so that in particular,

ρ′|GL+w

∼= ρ|G F+v
). If the place v splits in F as wwc, then the deformation ring for ρ|G F+v

can

be identified with a deformation ring for s|G Fw
, as in [16]. Conjecturally, every component

is expected to be globally realizable (and the analogous statement for places v - p is

known), but proving this seems to be a very hard problem.

Our main theorem is the following (see Theorem 4.2.11 for a more precise statement

and see § 1.4 for any unfamiliar terminology).

Theorem A. Assume that either n is odd, or that n = 2. Let F be a CM field, and let

s : G F → GLn(Fp) be a reasonable representation, with prolongation ρ.

Let S be a finite set of finite places of F+, such that S contains all of the places at

which ρ is ramified and all of the places lying over p. For each place v ∈ S, let Cv be a

component for ρ|G F+v
, which is globally realizable if v|p.

Then there exists an odd, regular, polarized, weakly irreducible compatible system

({sλ}, {µλ}) of G F -representations with associated p-adic representation s, and a

prolongation ρ of s, which satisfies the following:

(1) ρ lifts ρ, and for each place v ∈ S, the representation ρ|G F+v
lies on Cv.

(2) ρ is unramified outside S.

Note that by the very definition of global realizability, the hypothesis that each Cv
is globally realizable is a necessary condition for the conclusion of the theorem

to hold.

The hypothesis that s is reasonable is needed in order to apply the theorems of [2],

and some restriction on p, n and the size of the image of s is certainly necessary; for
example, the results of [31] show that the analogous result fails for modular forms of

weight 2 if p = 2 (in fact there are also dihedral counterexamples due to Serre with p = 3;

see [14, § 4.4]). More generally, calculations in Galois cohomology suggest that if p 6
n+ 1, and s|G F(ζp )

is reducible, then it unreasonable to hope for a global lifting result with
control of the local representations at all places. Thus the only unnaturally restrictive

hypothesis in Theorem A is the exclusion of even integers n > 2, which is a byproduct

of our methods; this is because given a compatible systems of n-dimensional polarizable

l-adic representations, we cannot deduce the oddness of all the representations in the

compatible system from the oddness of a single representation.

An almost immediate corollary of our results is the following potential automorphy

theorem, which may be of independent interest. Subject to the restriction that n = 2
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or n is odd, it improves on [2, Theorem 4.5.1] by replacing ‘potentially diagonalizable’

by ‘globally realizable’. Note that if v|p in F+ splits in F , then the global realizability

of ρ|G F+v
only depends on s|G Fw

for w|v in F .

Theorem B (Corollary 4.2.12). Assume that either n is odd or n = 2. Let F be a CM

field, and let (s, µ) be a polarized representation, where

s : G F → GLn(Qp)

is odd and ramified at only finitely many primes. Suppose that s is reasonable. Let ρ

be the corresponding prolongation of s, and assume that ρ|G F+v
is globally realizable for

each v|p. Then (s, µ) is potentially automorphic.

In fact (as noted in the abstract), we could weaken the hypothesis that ρ|G F+v
is

globally realizable to requiring only that it is potentially globally realizable, because

this is equivalent to global realizability by Corollary 4.2.13. Perhaps surprisingly, if s
is automorphic, then we cannot deduce that s is also automorphic; this is because our

methods make considerable use of potential automorphy results for other representations

in a compatible system containing s. On the other hand, if we did know that
weakly irreducible compatible systems are automorphic (rather than just potentially

automorphic), then a version of the Breuil–Mézard conjecture for odd-dimensional

globally realizable representations and a version of the weight part of Serre’s conjecture

for odd-dimensional unitary groups would both follow from combining Theorem A with

the methods of [24].

1.2. History and motivation

We now give a somewhat leisurely overview of our motivations and of previous work

on similar questions. Ultimately, the problems that we are working on are motivated by

congruences between modular forms; more specifically, we are concerned with congruences

between eigenforms. Such congruences can often best be understood in terms of the
corresponding Galois representations, and in particular in terms of the restrictions of

these (global) Galois representations to (local) decomposition groups. It is therefore

natural to wonder whether there is a local to global principle for the existence of such

congruences.

The first results in the literature that we know of that are explicitly formulated

in this way are those of [18], which we now recall. Let p > 3 be prime, and let f be a

newform of level prime to p and weight 2. We can (after choosing an embedding Q ↪→ Qp)

associate a p-adic Galois representation ρ f : GQ→ GL2(Qp) to f , and thus a mod p
representation ρ f : GQ→ GL2(Fp). We say that an irreducible representation ρ : GQ→

GL2(Fp) or ρ : GQ→ GL2(Qp) is modular of weight 2 if it is isomorphic to some ρ f
(respectively ρ f ).

Then the main result of [18] is as follows. Suppose we are given a modular

representation ρ : GQ→ GL2(Fp) of weight 2, and that for each prime l 6= p, we are

given a lifting of ρ|GQl
to a p-adic representation ρl : GQl

→ GL2(Qp). Suppose also that

all but finitely many of the ρl are unramified. Then there is a lift ρ : GQ→ GL2(Qp)
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of ρ which is modular of weight 2, with the property that for all l 6= p, we have an

isomorphism of restrictions to inertia ρ|IQl
∼= ρl |IQl

.

This result is best possible, in the sense that any modular representation is necessarily

only ramified at finitely many primes, and that (for example, because spaces of modular

forms are finite-dimensional) it is unreasonable to pin down ρ|GQl
more than specifying it

on inertia. In particular, by local–global compatibility, the conductor of ρ|IQl
determines

the l-power part of the level of the modular form associated to ρ.

It is natural to wonder whether this result can be extended to cover modular

forms of higher weight or with p dividing their level, and to allow some control of ρ|GQp
.

Since the local behaviour at p of ρ f is highly dependent on the weight of the newform
f and the power of p dividing its level, these two questions are closely related, and the

most general local to global result of this kind is best formulated in terms of components

of local deformation rings. If we fix a weight k > 2, and a finite extension K/Qp,

then we can consider the deformation ring Rk
K for liftings of ρ|GQp

which become

semistable over K with Hodge–Tate weights 0, k− 1. If ρ is modular of weight k and

some level, then for some sufficiently large K , ρ|GQp
corresponds to a point of Rk

K . (For

example, if the corresponding modular form has level prime to p, then we can take
K = Qp.)

The spectrum of Rk
K has finitely many irreducible components, and given such a

component, we can ask whether there exists a lift ρ with the property that ρ|GQp
lies on this component. This is the correct analogue of what we are demanding at

the places l 6= p; indeed, it turns out that specifying ρ|IQl
is equivalent to demanding

that ρ|GQl
lies on a particular component of a deformation ring for ρ|GQl

. Proving that
the lifting problem still admits a solution when we specify a component at p is much

harder than the case in which we only specify components away from p, but it follows

from the results of [28] that such a lift exists under a mild (‘Taylor–Wiles’) condition

on ρ. In particular, this again gives a complete understanding of the possibilities for the

weight and level of the corresponding modular form.

When we restrict to the case that 2 6 k 6 p+ 1 and K = Qp, the lifting problem is

closely related to Serre’s conjectures [40] on the weight and level of modular Galois

representations. For example, while not formulated in this way, Serre’s conjecture on the
minimal weight and level is equivalent to asking that ρ admits a modular lift whose

ramification away from p is as small as possible (as measured by the Swan conductor),

and whose weight is as small as possible, compatible with the property of locally having

a crystalline lift of the corresponding Hodge–Tate weights.

It is relatively straightforward to formulate conjectural generalizations of these results.

For example, a detailed formulation of a generalization of Serre’s conjectures to Hilbert

modular forms was made in [7], and the weights are described in terms of the existence

of local crystalline lifts in a similar fashion to that described above. One can make

similar conjectures for automorphic representations on unitary groups over CM fields (or

equivalently, for conjugate self-dual automorphic representations of GLn over CM fields),

and it is these generalizations that will concern us below. (However, we do not expect

any straightforward generalization of these results to hold outside of settings which are

discrete series at the infinite places.)
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While some of the arguments of [18] and of the related papers on the weight and

level parts of Serre’s conjecture can be generalized to Hilbert modular forms, it seems

hard to adapt them to prove the conjectures of [7] completely, and much harder still to

study congruences between forms on GLn in this way. However, in the mid 2000s, a new

approach to these problems was discovered by Khare–Wintenberger [27] and the third

author [22], which we will now describe in the setting of modular forms.

The approach is via the deformation theory of global Galois representations and

automorphy lifting theorems. Suppose that as above we are given components of

deformation rings for ρ|GQl
for each prime l, which are unramified for all but

finitely many l. Then there is a corresponding deformation ring Runiv for the global

representation ρ, and the Qp-points of its spectrum precisely correspond to the Galois

representations that we are hoping to construct. If we can show that the set of Qp-points

is nonempty, then we can hope to show that the Galois representations are modular using

modularity lifting theorems (the Taylor–Wiles method).

The tangent space to Runiv can be computed by Galois cohomology, and it turns out

that Runiv always has dimension at least 1. (This computation relies on the weight k
being at least 2, and more generally on us being in a discrete series context.) Heuristic

arguments lead us to expect that Runiv is a finite Zp-algebra, and if this is the case, the

lower bound on the dimension guarantees the existence of Qp-points.

There is no known purely Galois-theoretic argument guaranteeing this finiteness in

general (although it can sometimes be arranged at the cost of allowing additional

ramification away from p by an argument of Ramakrishna [39]). However, modularity

lifting theorems are proved by identifying deformation rings such as Runiv with Hecke

algebras, which are finite over Zp by definition, so in principle it is enough to prove an

appropriate modularity lifting theorem (which can then be used in the final step of the

argument to deduce that the Galois representations that we have constructed are actually

modular).

Unfortunately, this argument is circular as written, because what the Taylor–Wiles

method allows us to prove is that if some Qp-point of Runiv is modular, then Runiv may be

identified with a Hecke algebra; but it gives us no assistance with producing a Qp-point

in the first place. A key insight of Khare–Wintenberger is that this argument can be

combined with base change and/or potential modularity to avoid the circularity. Suppose

that F is a totally real finite extension of Q, and that ρ|G F is irreducible. Then we may

consider the deformation problem for ρ|G F given by the restrictions to places of F of the

conditions we imposed over Q, and the corresponding deformation ring Runiv
F is again of

dimension at least one.

Now, by definition Runiv is an Runiv
F -algebra, and it is in fact a finite Runiv

F -algebra.

It is therefore enough to prove a modularity lifting theorem for Runiv
F . This allows

us to reprove many cases of the theorem of [18], in the following way. Suppose for

simplicity that for each prime l 6= p, both the original modular representation ρ f |GQl
and the local representation ρl are finitely ramified (that is, they become unramified

after restriction to a finite extension of Ql). Then we may choose a finite solvable totally
real extension F/Q so that the restrictions to the finite places of F of these representations
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are actually unramified. In particular, the corresponding restrictions of ρ f |GQl
and the

local representation ρl lie on the same component of the corresponding local deformation

ring (indeed, the unramified local deformation ring is formally smooth).

By solvable base change, ρ f |G F is modular, and by the choice of F , it gives a point

of Runiv
F . A modularity lifting theorem then shows that Runiv

F is a finite Zp-algebra. Thus

the same is true of Runiv, and so Runiv has Qp-points, which give the sought-after Galois

representations; the modularity of these representations again follows from solvable base

change. The more general case, in which the ramification can be potentially unipotent,

can be handled in the same way when given some level-raising and level-lowering results

over F ; by choosing F appropriately, one reduces to a relatively straightforward case
(see [41]).

A variant of this argument makes it possible to state and prove results about Galois

representations that make no reference to automorphic forms (although the proofs make

heavy use of automorphic techniques). To this end, rather than assuming that ρ is

modular, assume only that it is irreducible and odd, in the sense that ρ(c) is non-scalar,

where c is a complex conjugation. (Of course, since Serre’s conjecture is a theorem, this
implies that ρ is modular, but we can and will make an analogous assumption in more

general contexts where the analogue of Serre’s conjecture is open.) Then the same Galois

cohomology calculations go through, and if we want to produce lifts of ρ with specified

local properties, it is enough by the above arguments to find a finite (not necessarily

solvable) extension of totally real fields F/Q for which ρ|G F is modular (that is, it comes

from a Hilbert modular form).

An argument of Taylor [42, 43] can be used to prove such ‘potential modularity’

theorems. The idea is as follows: one can find a moduli space whose F-points correspond

to abelian varieties, part of whose p-torsion is isomorphic to ρ|G F , and the corresponding

part of whose l-torsion, for some fixed prime l 6= p, is isomorphic to an induction of a

character. Since inductions of characters are always modular, in favourable circumstances

one can use modularity lifting theorems to prove that (part of) the l-adic Tate module

of the corresponding abelian variety is modular, and thus that (part of) the p-adic Tate
module is modular, and finally that ρ|G F is modular. That F-points exist for F sufficiently

large follows from a theorem of Moret-Bailly, which also allows one to impose the kinds

of local conditions that are needed in order to apply modularity lifting theorems.

As well as producing lifts of ρ with specified local properties, it turns out that potential

modularity allows one to prove that each p-adic representation ρ that is constructed in

this way is part of a compatible system of l-adic representations. Indeed, this property

is automatic for Galois representations associated to automorphic forms, so that ρ|G F is

part of a compatible system. By solvable base change, the same is true for ρ|G F ′
whenever

F/F ′ is a solvable extension of totally real fields, and an argument with Brauer’s theorem

(see [19]) makes it possible to put these together to give the required compatible system.

We now digress briefly to discuss another aspect of compatible systems that will be

of fundamental importance throughout this paper. In general, it seems to be hopeless

to understand the components of local potentially semistable deformation rings of

mod p representations in any concrete way, and this in turn places serious restrictions

on automorphy lifting theorems. However, it is possible to understand them in the
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Fontaine–Laffaille case, which by definition is the case that p is unramified in the base

field, and the weight is small relative to p. It is also very hard to prove automorphy lifting

theorems when the global mod p Galois representation has a small image (in particular,

when the image is reducible). This can make it very difficult to prove the potential

automorphy of a given Galois representation (or its automorphy, even if we know that it is

residually automorphic). However, if instead we are given a weakly irreducible compatible

system of l-adic Galois representations, then for all large l, the l-adic representation will

be Fontaine–Laffaille, and its residual image will be suitably large. Accordingly, one

can hope to prove the potential automorphy of the l-adic representation for some l,
and immediately deduce the potential automorphy for all l. As we now explain, this
has been carried out in considerable generality. In our arguments, this will allow us to

use compatible systems of Galois representations as a kind of proxy for automorphic

representations, without assuming the Fontaine–Mazur conjecture.

We briefly review the history of higher-dimensional potential automorphy theorems.

Many of the arguments discussed above were generalized to polarizable (that is,

essentially conjugate self-dual) n-dimensional Galois representations of CM fields in the
papers [16, 26, 44] (the corresponding automorphic representations being those on general

unitary groups). In particular, [44] uses automorphy lifting techniques to prove the kind

of level-raising/lowering results that we applied after the base change above, and the third

author’s paper [23] deduced an n-dimensional version of the theorem of Diamond–Taylor

in low weight.

Potential modularity, while powerful, has its limitations, the chief of which is that

the method explained above only works for modular forms of weight 2 (that is, for

Galois representations with Hodge–Tate weights 0, 1), because for reasons of Griffiths

transversality, the required moduli spaces only exist in this case. Allied to this is

the difficulty mentioned above that the deformation rings for ρ|GQp
are much more

complicated than those for l 6= p, and much less well understood (for example, it is

certainly no longer the case that deformations are potentially unipotent on inertia).

Indeed, when k is large compared to p, very little is known about the components of

these deformation rings, and we do not know whether we can make base changes to make

representations lie on the same component in any generality, which limits our ability to
change components at p (recall that for l 6= p, in the discussion above we used that any

finitely ramified representation can be made to lie on the unique unramified component

after a suitable base change). (It is however worth noting that when k = 2 arguments of
this kind are possible, even for Hilbert modular forms over totally real fields in which p
is highly ramified, by the results of [29] and [21]. These results were a crucial part of the

proof of the weight part of Serre’s conjecture for Hilbert modular forms [24], and the lack

of anything similar for higher-dimensional representations is one of the reasons that less

is known about the weight part of Serre’s conjecture in dimension greater than 2.)

In higher dimensions, the situation is worse; the potential automorphy theorems of [26]

apply only in weight 0 (that is, the lowest discrete series; the corresponding Galois

representations have Hodge–Tate weights 0, 1, . . . , n− 1), and in fact only to ordinary

Galois representations. While this was enough to prove the Sato–Tate conjecture (by

proving the potential automorphy of the symmetric powers of the 2-dimensional Galois
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representations attached to elliptic curves, which are ordinary at most primes), it falls well

short of proving the potential modularity of compatible systems of Galois representations

in any generality. This shortcoming was resolved in [2], which also introduced a way of

systematically changing the weight of the representations, or more generally of moving

between components of deformation rings at p. The argument involves a refinement of a

method of Harris [25] (the ‘tensor product trick’), the basic idea of which is as follows:

given a global Galois representation with regular Hodge–Tate weights, by taking the

tensor product with another representation, one can produce a representation (of much

higher dimension) of weight 0. It is then possible to apply potential modularity techniques

to this representation.
Of course, to be useful, one has to have a way of ‘undoing’ the tensor product again

(on both the Galois and automorphic sides). In general, this is a hard problem, but

if the representation we tensor with is the induction of a character, it turns out to

be relatively straightforward, essentially because the tensor product of an n-dimensional

representation with the induction of a character is itself the induction of an n-dimensional

representation.
We also obtain a way of moving between weights and between components of

deformation rings at places dividing p, in the following way. Let ρ : G F → GLn(Fp) be our

original mod p representation, and let r : G F → GLn(Qp) be induced from a character.

Fix a deformation ring Runiv
1 for ρ corresponding to certain given local conditions. Given

a deformation ρ of ρ, we obtain a deformation ρ⊗ r of ρ⊗ r , and we let Runiv
2 be the

corresponding deformation ring. This procedure makes Runiv into an Runiv
2 -algebra, and an

argument analogous to the one of Khare–Wintenberger that we mentioned above shows

that it is even a finite Runiv
2 -algebra.

It is not immediately obvious that this buys us anything, as to apply the techniques we

used above we will need to prove an automorphy lifting theorem for Runiv
2 . To this end,

suppose that we also have another deformation ring Runiv
3 for ρ, and another lift r ′ of r ,

and that the deformation problem corresponding to the tensor product of a deformation

for Runiv
3 with r ′ again corresponds to Runiv

2 . If r and r ′ are both inductions of characters,

and if we know that Runiv
3 has automorphic points, then we can prove an automorphy

lifting theorem for Runiv
2 , deduce its finiteness over Zp, and then prove the existence of

lifts (and automorphy lifting) for Runiv
1 , the original problem of interest.

It may not be obvious that this is generally applicable, but in fact in combination with

base change techniques it gives enough flexibility to prove the potential automorphy

of compatible families, by moving between Fontaine–Laffaille and ordinary weight 0
deformation problems. A little thought shows that this argument allows us to move

freely between components of local deformation rings at places dividing p, provided

that the corresponding representations are potentially diagonalizable, in the sense that

after some base change, the components contain a point which is a direct sum of

crystalline characters. It turns out to be straightforward to show that Fontaine–Laffaille

representations and ordinary representations are potentially diagonalizable, giving the

claimed potential automorphy result. (The most general result about the existence of

Galois representations proved in [2] is essentially Theorem A above, but with ‘globally

realizable’ replaced by ‘potentially diagonalizable’.)
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While this gives a general potential automorphy result for compatible systems, it

is unsatisfactory as an answer to our original lifting question, due to the restriction

to potential diagonalizable representations. This restriction is problematic for two

reasons: first, beyond the Fontaine–Laffaille and ordinary cases, nothing is known

about the potential diagonalizability or otherwise of n-dimensional representations.

(It is quite plausible that all potentially crystalline representations are potentially

diagonalizable, but this seems to be very hard to establish.) In addition, potentially

diagonalizable representations are by definition potentially crystalline, so they do not

(unlike Theorem A) tell us anything about general potentially semistable representations.

1.3. A sketch of the proofs

We now briefly sketch the proof of Theorem A, omitting many of the trickier technical

details; in particular, we completely ignore places away from p in our discussions, as
the difficulties they present are similar to, but simpler than, the difficulties for places

dividing p. We also suppress all mention of choices of polarization. In essence, our idea

is to go beyond the potentially diagonalizable case, by allowing ourselves to tensor with

representations that are not necessarily induced from characters. There are some obvious

difficulties with this approach, chief among them that on both the automorphic and

Galois sides, it is hard to ‘undo’ a tensor product. We overcome this by using compatible

systems, rather than individual Galois representations.

Our first technique is a variant of the argument of [2] explained above, that of tensoring

with auxiliary representations in order to move between different components. However,

for our purposes, it is insufficient to tensor with a fixed global representation. Instead,

we put ourselves in the following situation: suppose given representations r, s : G F →

GLn(Qp) which belong to compatible systems, and suppose for simplicity that for each

place v|p, we have r |G Fv
∼= s|G Fv

. Let Av be the component corresponding to r |G Fv
,

and let Bv be the component corresponding to s|G Fv
. For each v, let Cv be one of Av

and Bv, and let Dv be the other. Let RC and RD be the corresponding global deformation

rings for r and s, respectively. (We should really be considering prolongations of these

representations to Gn-valued representations of G F+ , but we ignore this point for the
purposes of this introduction.)

We would like to produce representations r ′, s′ corresponding to points of RC and RD,

which belong to compatible systems; in this way, we will be able to swap components
between different residual representations. We initially accomplish this under very

restrictive hypotheses, which we will later relax; note that we certainly need to assume

at first that r ⊗ s is irreducible, and that r ⊗ s has regular Hodge–Tate weights. Now,

the deformation ring Runiv corresponding to r ⊗ s is finite over Zp, because r ⊗ s is part

of a compatible system, and thus potentially automorphic. Taking the tensor product of

representations coming from RC and RD makes RC⊗̂RD into an Runiv-algebra, and we

are able to show that it is in fact a finite Runiv-algebra, so that in the same way as before,

we can see that RC , RD both have Qp-points, which will correspond to the lifts r ′, s′ that

we want to produce.
However, we need to show that these lifts belong to compatible systems. The tensor

product r ′⊗ s′ does belong to a compatible system of representations {tl} (because it
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corresponds to a point of Runiv, and is thus potentially automorphic), so we would like
to have a result ensuring that if one representation in a compatible system is a tensor
product, they all are. This should be true quite generally, but it seems hard to prove, and
we only establish it under rather restrictive hypotheses (which are ultimately sufficient
for our needs).

In outline, we argue as follows. We assume that the Zariski closure of the image
of s′ contains SLn(Qp). Under a strong irreducibility hypothesis (which can be arranged
at infinitely many primes l by imposing local conditions), we can show that the
representations tl decompose accordingly as tensor products tl = r ′l ⊗ s′l , where the Zariski

closure of the image of s′l contains SLn(Ql). Here we make crucial use of a result of
Larsen and Pink [30]. Then, if l is sufficiently large, the representations r ′l and s′l belong
to compatible families by the results of [2]; this is the only place that we need our
assumption on n, as we have to know that r ′l and s′l are odd in the sense of [3]. This
oddness is automatic if n is odd, and can be proved if n = 2 by the methods of [9, 10], but
it seems to be beyond the reach of current technology if n > 2 is even. Our assumptions
then show that (after possibly twisting) the p-adic representations in these compatible
systems are r ′ and s′, as required.

With this component swapping result in hand, the basic outline of the proof of
Theorem A is as follows. Suppose for simplicity that there is only a single place v|p
of F , let r be some lift of r , and let C be the given globally realizable component. By
definition, this means that there is another CM field L, a place w|p and a representation s
(which is part of a compatible system) such that s|GLw

lies on C . Then if we apply our
swapping result to r |G F L and s|G F L , we can produce a lift of r |G F L which lies on the
correct component at some place over v. If we could produce a lift with this property at
all places above v, then we would be done by the usual Khare–Wintenberger method;
in order to do this, we replace F L with its Galois closure, and s with its various Galois
conjugates, and then inductively apply the swapping result to each of these conjugates
in turn.

Unfortunately, the actual argument is much more complicated than this straightforward
outline. The problem is that all of the results that we are applying have hypotheses that
we have been ignoring; for example, we need r ⊗ s to be irreducible, we need r ⊗ s to
have regular Hodge–Tate weights, and we need to satisfy the restrictive hypotheses of
our main swapping result, which are a mixture of local and global assumptions.

We are able to handle the various local assumptions away from p by more base change
tricks, but these cannot help with the global problems. Since the fields F, L and the
representations r , s are arbitrary, we cannot hope to arrange that their restrictions to
the Galois closure of F L are irreducible. Instead, we make use of an idea introduced
in [10], and use the theorem of Moret-Bailly mentioned above to construct auxiliary
global representations with a large image, which locally admit potentially diagonalizable
lifts of arbitrarily large weights.

These representations are constructed over extensions of F and L that we have little

control over, and we have to go to some lengths to ensure that we can arrange all of the

properties we need. Rather than swapping directly between r and s, we instead make a

long chain of swaps, going via many auxiliary representations, and making many base

changes and descents by the Khare–Wintenberger argument.

https://doi.org/10.1017/S1474748020000195 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000195


544 F. Calegari et al.

1.4. Notation, conventions, and background material

All representations considered in this paper are assumed to be continuous with respect to

the natural topologies, and we will never draw attention to this. If M/F is an extension

of number fields, then we will write Mgal for the Galois closure of M over Q, and M F-gal

for the Galois closure of M over F . As usual, if K is a field of characteristic zero, then
we write G K = Gal(K/K ) for its absolute Galois group, and if K is furthermore a local

field, we write IK for the inertia subgroup of G K .

1.4.1. Polarizable representations. We begin by recalling some definitions and

results from [2, 16] concerning polarizable representations.

Recall from [16] that the reductive group Gn over Z is given by the semi-direct product

of G0
n = GLn ×GL1 by the group {1, }, where

 (g, a)−1
= (a · t g−1, a).

We let ν : Gn → GL1 be the character which sends (g, a) to a and sends  to −1.

Let 0 be a group, with an index 2 subgroup 1. Fix an element γ0 ∈ 0 \1. Let R be a

(commutative) ring. Then by [16, Lemma 2.1.1], there is a natural bijection between

• the set of homomorphisms ρ : 0→ Gn(R) which induce isomorphisms 0/1
∼
−→ Gn/G0

n ,

and

• the set of triples (r, µ, 〈 , 〉) consisting of homomorphisms r : 1→ GLn(R) and µ : 0→

R×, and a perfect R-linear pairing

〈 , 〉 : Rn
× Rn

→ R,

which for all x, y ∈ Rn and δ ∈ 1 satisfies

– 〈x, r(γ 2
0 )y〉 = −µ(γ0)〈y, x〉, and

– 〈r(δ)x, r(γ0δγ
−1
0 )y〉 = µ(δ)〈x, y〉.

This correspondence is given by taking r = proj. onto the first factor of G◦n of ρ|1, and

µ = ν ◦ ρ, and setting
〈x, y〉 = t x A−1 y,

where ρ(γ0) = (A,−µ(γ0)) . We say that the pair (r, µ) is polarized1 and that r
is polarizable, and is µ-polarized. If we are given a polarized pair (r, µ), then we will

sometimes refer to a corresponding homomorphism ρ : 0→ Gn(R) (which depends on

the choice of γ0, as well as on a choice of pairing 〈 , 〉 witnessing the polarizability of

(r, µ)) as a prolongation of the pair (r, µ).
Given a polarized pair (r, µ), we call µ the multiplier character of the pair (r, µ). Given

two polarized representations (r1, µ1) and (r2, µ2), there is a polarized representation

(r1⊗ r2, δ0/1µ1µ2), where δ0/1 denotes the unique non-trivial character of 0/1 (see

[2, § 1.1] for the explicit description of this construction as an operation on Gn-valued

representations).

1This is established terminology, and so we use it here. Note though that in general the pair (r, µ) may
not determine the pairing 〈 , 〉 uniquely, even up to a scalar multiple. However, if R is a field and r is
absolutely irreducible, then, as we will observe below, the pairing 〈 , 〉 is uniquely determined up to a
scalar.
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Suppose now that R is a complete local Noetherian ring, that r : 1→ GLn(R) is

such that r mod mR is absolutely irreducible, and that µ : 0→ R× is a character such

that

rγ0 ∼= r∨⊗µ|1. (1.4.2)

Giving such an isomorphism is equivalent to giving a pairing

〈 , 〉 : Rn
× Rn

→ R,

which for all x, y ∈ Rn and δ ∈ 1 satisfies 〈r(δ)x, r(γ0δγ
−1
0 )y〉 = µ(δ)〈x, y〉 for all x, y ∈

Rn and δ ∈ 1. Since isomorphism (1.4.2) is unique up to scaling by elements of R×

(because of our assumption that r mod mR is absolutely irreducible), we see that the
corresponding pairing 〈 , 〉 is also unique up to scaling. In particular, if (r, µ) is polarized,

then the pairing 〈 , 〉 that yields a prolongation of (r, µ) is unique up to scaling.

If ρ is one particular prolongation, corresponding to a pairing 〈 , 〉, then we see that

conjugating ρ by the element (1, λ−1) ∈ GLn(R)×GL1(R) = G◦n(R) ⊂ Gn(R) scales 〈 , 〉 by

λ; the relevant computation is that

(1, λ−1)(g, a) (1, λ) = (1, λ−1)(g, a) (1, λ)−1

= (1, λ−1)(g, a)(λ, λ)

= (λg, a).

Thus we see that all possible prolongations of (r, µ) are obtained from the given

prolongation ρ by such conjugations. We also see that the possible pairings arising from

the choice of a prolongation are independent of the choice of the element γ0 ∈ 0 \1

used to construct the bijection described above between (certain) homomorphisms

ρ : 0→ Gn(R) and (certain) triples (r, µ, 〈 , 〉).
We now consider the particular case that 0 = G F+ , 1 = G F , where F is a (totally

complex) CM field with maximal totally real subfield F+. We say that the pair (r, µ) is

polarized and odd if it is polarized, and for all complex conjugations c ∈ G F+ , we have

µ(c) = −1. In particular, we have the following standard lemma.

Lemma 1.4.3. Suppose that the characteristic of R/mR is not 2. If (r, µ) is polarized, n
is odd, and r mod mR is absolutely irreducible, then (r, µ) is automatically odd.

Proof. This follows from the fact that any odd-dimensional perfect pairing that

is preserved up to scaling by a residually absolutely irreducible group action (in

characteristics other than 2) is necessarily symmetric. Indeed, let c be any complex

conjugation, take γ0 equal to c, and let 〈 , 〉 denote the pairing arising from a choice

of prolongation. Since c2
= 1, we find (using the first of the properties satisfied by the

pairing arising from a prolongation) that 〈x, y〉 = −µ(c)〈y, x〉. On the other hand, as we

already remarked, the pairing is necessarily symmetric. Thus we find that µ(c) = −1, as

required.

We can restrict a global representation ρ : G F+ → Gn(R) to the decomposition

group G F+v of any finite place v of F+. Note that if v is inert or ramified in F , then G F+v
is not contained in G F , so we are in the situation above with 0 = G F+v and 1 = G Fv .
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If however v splits in F , then G F+v is contained in G F , so that ρ(G F+v ) ⊂ G0
n(R) =

GLn(R)× R×, so that (µ being fixed) the data of the representation ρ is the same as

the data of the corresponding representation r : G F+v → GLn(R).

1.4.4. Compatible systems. Let F be a number field. We recall some definitions

from [2, § 5]. Note that what we call a ‘compatible system’ is a ‘weakly compatible

system’ in [2].

By a compatible system R of n-dimensional representations of G F defined over M we
shall mean a 5-tuple

(M, S, {Qv(X)}, {rλ}, {Hτ }),

where

(1) M is a number field,

(2) S is a finite set of primes of F ,

(3) for each prime v 6∈ S of F , Qv(X) is a monic degree n polynomial in M[X ],

(4) for each prime λ of M (with residue characteristic l, say),

rλ : G F → GLn(Mλ)

is a semisimple representation such that

• if v 6∈ S is a prime of F and v - l, then rλ is unramified at v and rλ(Frobv) has

characteristic polynomial Qv(X),

• if v|l, then rλ|G Fv
is de Rham and in the case v 6∈ S crystalline,

(5) for τ : F ↪→ M , Hτ is a multiset of n integers such that for any M ↪→ Mλ over M ,

the τ -labelled Hodge–Tate weights of rλ are Hτ .

We will call R regular if for each τ : F ↪→ M , every element of Hτ has multiplicity 1.

We will refer to a rank 1 compatible system of representations as a compatible system of

characters.

Remark 1.4.5. By abuse of terminology, we refer to a collection of Galois representations

{rλ} as a compatible system if it extends to a 5-tuple R as above. In this case, we say
that the compatible system {rλ} is unramified outside S if it extends to such a 5-tuple

with the given finite set S. Note that if {rλ} is unramified outside S, then the individual

representations rλ are unramified outside S ∪ {v|l} where λ has residue characteristic l.

Remark 1.4.6. By a slight abuse of terminology, if F ′/F is a finite extension of number

fields, and S is a finite set of places of F , then we will sometimes say that a compatible

system of representations of G F ′ is unramified outside S if it is unramified outside of

the set of places of F ′ lying over S. Similarly, we will say that an extension F ′′/F ′ is

unramified outside of S if it is unramified at all places of F ′ not lying over a place of S,

and so on. In particular, we will frequently apply this convention to quadratic extensions

F/F+, where F is CM with maximal totally real field F+.
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Note that if M ′/M is a finite extension, then a compatible system defined over M
naturally determines a compatible system with M ′-coefficients. We regard these two

compatible systems as equivalent. Similarly one can enlarge S, and we also regard

compatible systems associated in this way as equivalent. We may then consider the

equivalence classes of the equivalence relation generated by these equivalences, and it

follows easily from [37, Lemma 1.1] that to each equivalence class of compatible systems

is associated a minimal choice of M , namely the field generated by the coefficients of the

polynomials Qv(X).
For this reason, we generally suppress M in the below. Somewhat abusively, we shall

often assume that M comes with a fixed embedding M ↪→ Qp for each prime p, and
hence talk of the p-adic representation

s : G F → GLn(Qp)

associated to {sλ}.
We also introduce the following convenient shorthand terminology.

Definition 1.4.7. Let F be a number field, and let r : G F → GLn(Ql) be a representation.

Then we say that r is Fontaine–Laffaille, or Fontaine–Laffaille at all primes dividing l
(for emphasis), if l is unramified in F , and for all τ : F ↪→ Ql , the τ -labelled Hodge–Tate

weights of r are contained in an interval of length (l − 2) (the precise interval possibly

depending on τ ).

Note that in particular if {rλ} is a compatible system, then all but finitely many of
the rλ are Fontaine–Laffaille.

If F is CM (in this paper, all CM fields are imaginary), we denote its maximal totally

real subfield by F+. If F is CM, and if M = (M, SF+ , {X −αv}, {µλ}, {w}) is a compatible

system of characters of G F+ , then we will call (R,M) a polarized (and odd) compatible

system if for all primes λ of M the pair (rλ, µλ) is polarized (and odd). (Here SF+ denotes

the set of places of F+ lying below an element of S.) We will call R polarizable (and

odd) if there exists an M such that (R,M) is a polarized (and odd) compatible system.

Note that µλ(cv) is independent of λ, so oddness of a polarized compatible system can

be checked at a single λ.

Recall from [2, § 2.1] that a polarized automorphic representation of GLn(AF ) is a

pair (π, χ) consisting of an automorphic representation π of GLn(AF ), and a character χ :

A×F+/(F
+)×→ C× with χv(−1) = (−1)n for all v|∞, such that πc∼=π∨⊗ (χ ◦NF/F+ ◦

det). We say that an automorphic representation π of GLn(AF ) is polarizable if there

exists a χ such that (π, χ) is polarized.
If (π, χ) is a regular algebraic cuspidal polarized automorphic representation

of GLn(AF ), then there is an associated polarized and odd compatible system

({rλ(π)}, {ε1−nrλ(χ)}), as explained in [2, § 5.1]. (See also [2, Theorem 2.1.1]; note that ε

denotes the cyclotomic character, and rλ(χ) is the compatible system associated to χ ,

regarded as an automorphic representation of GL1(AF+). The assumption that χv(−1) =
(−1)n ensures the oddness of this compatible system.) We say that the pair of compatible

systems ({rλ(π)}, {ε1−nrλ(χ)}) is automorphic. We write rp(π) for the associated p-adic
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representation, and we say that a representation r : G F → GLn(Qp) is automorphic if it

is isomorphic to rp(π) for some π ; note that a compatible system is automorphic if and

only if for some prime p, its associated p-adic representation is automorphic.

The following definition is one of several closely related definitions that one could make

of what it means for a compatible system to be potentially automorphic; conjecturally,

all of these definitions are equivalent, and are equivalent to automorphy, but this seems

to be very difficult to prove.

Definition 1.4.8. If F is CM, then we say that a pair of compatible systems ({sλ}, {ψλ}),
with the sλ being n-dimensional and the ψλ being characters, is potentially automorphic
if for every finite Galois extension F (avoid)/F , there is a finite Galois extension of CM

fields L/F , which is linearly disjoint from F (avoid)/F , and is such that ({sλ|GL }, {ψλ|GL })

is automorphic.

Similarly, we say that a compatible system {sλ} is potentially automorphic if it may be

extended to a potentially automorphic pair of compatible systems ({sλ}, {ψλ}).

Definition 1.4.9. We will call R pure (of weight w ∈ Z) if

• for each v 6∈ S, each root α of Qv(X) in M and each ı : M ↪→ C, we have

|ıα|2 = qwv ;

• and for each τ : F ↪→ M and each complex conjugation c in Gal(M/Q), we have

Hcτ = {w− h : h ∈ Hτ }.

In the following definition, and throughout the body of the paper, ‘density’ means

‘Dirichlet density’.

Definition 1.4.10. We say that a compatible system {sλ} is weakly irreducible if there is

a positive density set of rational primes l so that for all primes λ|l, the representation sλ
is irreducible.

One expects that the irreducibility of a single Galois representation in a compatible

system should imply the irreducibility of all representations, but this is unknown in

general. On the other hand, the notion of weak irreducibility turns out to be easy to
work with in light of the following results.

Lemma 1.4.11. Let F be CM. Then a regular, odd, polarizable compatible system of

representations of G F is weakly irreducible if and only if it is potentially automorphic.

Proof. Any automorphic compatible system is weakly irreducible by [37, Theorem

1.7]; it follows immediately that potentially automorphic compatible systems are also

weakly irreducible. Conversely, a weakly irreducible compatible system is potentially

automorphic by the results of [2]; see Theorem 2.1.16.

Lemma 1.4.12. Let F be CM, and let {rλ} be a weakly irreducible, regular, odd, polarizable

compatible system of representations of G F . Then {rλ} is pure in the sense of [2, § 5.1].
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Proof. Since {rλ} is potentially automorphic by Lemma 1.4.11, it is pure by [2, Corollary

5.4.3].

Lemma 1.4.13. Let F be CM, and let {rλ} be a regular, odd, polarizable compatible system

of representations of G F . Suppose furthermore that {rλ} is pure. Then we may write {rλ} =
⊕

s
i=1{ri,λ}, where each {ri,λ} is a weakly irreducible, regular, odd, polarizable compatible

system of representations of G F .

Proof. This is immediate from [37, Theorem 2.1] and Lemma 1.4.11.

We will occasionally need to make use of compatibility at ramified places. While we

have not built this into our definition of a compatible system, it follows from potential

automorphy, as in the following result.

Proposition 1.4.14. Let F be CM, and let {rλ} be a weakly irreducible, regular, odd,

polarizable compatible system of representations of G F with field of coefficients M.

Let v be a finite place of F, and suppose that v - Nλ (respectively, that v|Nλ). Then,

we have the following:

(1) For each finite extension K/Fv, rλ|G K is unramified (respectively, crystalline) for

some λ if and only if it is so for all λ.

(2) Suppose that (1) holds. Then there is a representation rv of IK/Fv over M such that

for each λ, rλ|IK/Fv
∼= rv (respectively, WD(rλ|G Fv

)|IK/Fv
∼= rv).

Proof. By Lemma 1.4.11, {rλ} is potentially automorphic, so it is strictly compatible
by [2, Corollary 5.4.3]. Strict compatibility means by definition that the Weil–Deligne

representation corresponding to rλ|G Fv
is independent of v, so the consequences follow

immediately.

We next establish some results describing how the property of weak irreducibility of a

compatible system behaves under restriction. To begin with, suppose that F is a number

field and that {rλ} is a compatible system of representations of G F , and that the Zariski

closure of the image of rλ is Gλ. Let G◦λ ⊂ Gλ denote the connected component of the

identity. The following is a theorem of Serre.

Theorem 1.4.15. The pre-image of G◦λ in G F is independent of λ.

Proof. See [30, Proposition 6.14].

As a corollary, we have the following result, which allows us to ensure that certain

restrictions of weakly irreducible compatible systems remain weakly irreducible.

Lemma 1.4.16. Let F be a number field, and let {rλ} be a compatible system

of G F -representations. Then there exists a finite extension F (avoid)/F with the following

property: if L/F is a finite extension linearly disjoint from F (avoid), and if r = rλ is any

representation in the compatible system which is irreducible, then r |GL is irreducible. In

particular, if {rλ} is weakly irreducible, then {rλ|GL } is weakly irreducible.
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Proof. Suppose that r = rλ is irreducible. If L is any finite degree extension of F , then

the Zariski closure of the image of r |GL will also contain G◦λ, because G◦λ is connected

and hence does not contain any finite index subgroups.

By Theorem 1.4.15, the pre-image of G◦λ in G F is independent of λ. Let F (avoid) denote

the corresponding fixed field. If L is disjoint from F (avoid), then the component group

of r |GL will be isomorphic to the component group of r , and hence the Zariski closures

of r and r |GL will coincide. In particular, r |GL will be irreducible.

We also have the following variant of the preceding result, which shows that arbitrary

restrictions (to CM extensions) of weakly irreducible compatible systems (satisfying the

appropriate hypotheses) remain weakly irreducible, provided that at least one member

of the restricted compatible system is irreducible.

Lemma 1.4.17. Let F be CM, and let {rλ} be a weakly irreducible, regular, odd, polarizable

compatible system of representations of G F . Let M be a CM extension of F. If some rµ|G M

is irreducible, then {rλ|G M } (which is a priori a regular, odd, polarizable compatible system

of representations of G M) is again weakly irreducible.

Proof. By Lemma 1.4.12, the weakly compatible system {rλ} is odd, polarized, regular

and pure. These properties are inherited by the system {rλ|G M }, which is therefore a

direct sum of weakly irreducible compatible systems by Lemma 1.4.13. Since rµ|G M is

irreducible, there can only be one compatible system in this direct sum, and {rλ|G M } is

weakly irreducible, as required.

We close the present discussion of weak irreducibility with the following result, which
establishes the weak irreducibility of certain tensor products of compatible systems.

Lemma 1.4.18. Let F be CM, and let {sλ}, {tλ} be regular, odd, weakly irreducible

polarizable compatible systems of representations of G F . Assume that {sλ⊗ tλ} is regular,

and that at least one representation sµ⊗ tµ is irreducible. Then {sλ⊗ tλ} is weakly

irreducible.

Proof. By Lemma 1.4.12, each of {sλ}, {tλ} is pure, so that {sλ⊗ tλ} is regular, pure,

odd, and polarizable. By Lemma 1.4.13, it is therefore a direct sum of weakly irreducible

compatible systems; since sµ⊗ tµ is irreducible, this direct sum can only consist of a

single compatible system, as required.

1.4.19. Deformation rings. When we consider deformation rings and automorphy

lifting theorems, we can no longer use algebraically closed coefficient fields. To this end,

we adopt the convention that O will denote the ring of integers in a finite extension E/Qp
with residue field F, and that E will be chosen large enough such that all representations

under consideration are defined over E (and all mod p representations are defined over F);

as always, the precise choice of E is unimportant.

As usual, let F be a CM field with maximal totally real subfield F+. Following [4],

we work in a slightly more general context than [2, 16], allowing ramification at primes

of F+ which are inert or ramified in F . This allows us to make cleaner statements, and

is also necessary for some of our arguments with auxiliary primes.
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Fix a prime p > 2 and a polarized residual representation (s, µ) of G F+ with s
absolutely irreducible and (as always in the body of this paper) p > 2. We choose once and

for all an element γ0 ∈ G F+ \G F (e.g., we could choose γ0 to be the complex conjugation

at one of the real places of F+), and we let ρ : G F+ → Gn(F) be a fixed prolongation

of (s, µ), following the procedure discussed in § 1.4.1.

Let µ : G F+ → O× be a lift of µ. Let A be a complete local Noetherian O-algebra.

Then a µ-polarized lifting of ρ to A is a representation ρ : G F+ → Gn(A) with ν ◦ ρ = µ

and ρ (mod mA) = ρ. A µ-polarized deformation of ρ to A is a 1+Mn(mA)-conjugacy

class of liftings. As in [15, Lemma 1.5], µ-polarized liftings and deformations ρ in this

sense are equivalent to the data of a lifting or deformation s of s which satisfies sc∼=µs∨

(where the equivalence arises from taking s = ρ|G F ).

We also need to consider the corresponding local deformation problems. We refer

to [4, § 3] for the definitions of deformations of fixed inertial and Hodge types. Let v be a

finite place of F , let ρv : G F+v → Gn(F) be a representation with multiplier µ, and let µ

be a lift of µ. Then a µ-polarized lifting of ρv to A is a representation ρv : G F+v → Gn(A)
with ν ◦ ρv = µ and ρv (mod mA) = ρv. If we fix an inertial type IF+v → Gn(E), then in

the case l 6= p, we may consider the universal framed deformation O-algebra R�,τ of

inertial type τ ; this ring is non-zero for a finite and nonempty set of inertial types τ . We

refer to an irreducible component of any R�,τ
[1/p] as simply ‘a µ-polarized component

for ρv’; such a component uniquely determines τ . By [4, Lemma 3.4.1], each irreducible

component is invariant under conjugation, in the sense that conjugation by elements

of ker(Gn(R�,τ )→ Gn(F)) preserves each irreducible component. We will sometimes speak

of polarized components, rather than µ-polarized components, when the choice of µ is

clear from the context.

If v|p, then in the same way we let R�,τ,v denote the universal framed deformation

O-algebra of ρ for µ-polarized potentially semistable lifts of inertial type τ and Hodge

type v. We again refer to an irreducible component of any R�,τ,v
[1/p] as simply ‘a

µ-polarized component for ρv’. Note that such a component again uniquely determines τ

and v; we say that a component is regular if v is regular (that is, the labelled Hodge–Tate
weights are distinct); we will always assume this in our main results.

Return now to the global situation of a polarized residual representation (s, µ) with

prolongation ρ. Suppose that v splits in F as wwc. A choice of embedding F+→ F+v
gives rise to a choice of w|v in F . With respect to this choice, the representation ρ|G F+v
has an image in G◦n(F) = GLn(F)×GL1(F), and the projection to the first factor is the

representation s|G Fw
. (A different choice of embedding F+→ F+v corresponding to wc

|v

in F would have the effect of replacing s|G Fw
by µ⊗ s∨|G Fw

' s|G Fwc .) If ρv : G F+v →

Gn(A) is a µ-polarized lifting of ρ|G F+v
, then the projection to GLn(A) gives rise to a

lift sw : G Fw = G F+v → GLn(A) of s|G Fw
.

Lemma 1.4.20. If v splits in F, then the assignment ρv 7→ sw is an equivalence of

categories between the µ-polarized liftings of ρ|G F+v
and the liftings of s|G Fw

.
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Proof. Under this identification, the representation ρv is simply the representation

ρv = (sw, µ) : G F+v → G◦n(A) ⊂ Gn(A), from which the result is clear (cf. the discussion

in [16, § 2.3]).

By Lemma 1.4.20, if v splits in F , then we can identify µ-polarized components with

components of the corresponding lifting rings for s|G Fw
after choosing a prime w|v (or

after choosing an embedding F+→ F+v which gives a canonical choice of w|v). We will

sometimes do this without comment later in the paper.

Convention 1.4.21. Let F/F+ be a CM extension. Given a prime v in F+, we choose an

embedding F+→ F+v which in turn determines a choice of prime in F above v which we

denote by w.

Convention 1.4.22. If s : G F → GLn(F) is as above, with prolongation ρ : G F+ → Gn(F),

and if (following Convention 1.4.21) w denotes a prime of F lying over the prime v of

F+, then we will often write ‘µ-polarized component for s|G Fw
’ rather than ‘µ-polarized

component for ρ|G F+v
’.

Given another representation ρ′ : G F+v → Gm(F), and polarized components C , D for

ρ, ρ′, respectively, then there is a well-defined component C ⊗ D for ρ⊗ ρ′. Similarly, if

L/F+v is a finite extension, there is a well-defined µ|GL -polarized component C |L for ρ|GL .

(In the case that v is a split prime, this is [4, Lemma 3.5.1], and the general case is proved

in exactly the same way.)

We will frequently make use of the following lemma without further comment.

Lemma 1.4.23. Let F be a CM field, and let {rλ} be a regular, odd, polarizable, weakly

irreducible compatible system of representations of G F . Then for each λ and each finite

place w of F, the representation rλ|G Fw
lies on a unique component of the corresponding

deformation ring.

Proof. It suffices to prove that rλ|G Fw
defines a smooth point of the corresponding

deformation ring. By [4, Corollary 3.3.5], it is enough to prove that there is a finite

extension L/Fw such that rλ|GL is pure in the sense of [46, § 1]. Since {rλ} is potentially

automorphic by Lemma 1.4.11, this follows from the main theorems of [12, 13] (which

show that automorphic Galois representations are pure).

We now return to global deformation problems.

Proposition 1.4.24. Let F be a CM field, and let p > 2 be prime. Let (r , µ) be

an absolutely irreducible polarized representation of G F . Suppose that r is odd, and

that r |G F(ζp )
is absolutely irreducible, and let µ be a de Rham lift of µ. Let S be a finite set

of finite places of F+ such that r and µ are unramified outside S. For each place v ∈ S,

let Cv be a µ-polarized component for r |G Fv
, which is regular if v|p.

Let Runiv be the universal deformation ring for µ-polarized deformations of r which are

unramified outside S, and lie on the component Cv for each v ∈ S. Then Runiv has Krull

dimension at least one.
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Proof. This is [4, Corollary 5.1.1] (note that the condition there of being ‘discrete series

and odd’ is by definition the same as being odd in the sense of this paper).

1.4.25. Automorphy lifting and adequate representations. We end this section

by recalling some results concerning automorphy lifting theorems. Let F be a CM field

with maximal totally real subfield F+. We say that a finite place v of F is split if v|F+

splits in F . In order to apply the (potential) automorphy results of [2], we need to assume

that all of the places v|p, and all of the places at which our Galois representations are

ramified, are split places; we will avoid making such assumptions in our main results by

making base changes.

We have the following theorem; the notion of adequacy is recalled in Definition 1.4.29.

Theorem 1.4.26. Let F be a CM field, and let p > 2 be prime. Suppose that p - n and

that ζp /∈ F. Let (r, µ) be a polarized automorphic Galois representation, where r : G F →

GLn(Qp), and assume that r(G F(ζp)) is adequate.

Let S be a finite set of places of F+ which includes all places at which (r, µ) is ramified,

and all places dividing p, and for each v ∈ S let Cv denote the local component at v on

which ρ|G Fv
lies, where ρ : G F+ → Gn(Qp) is the prolongation of (r, µ). Assume that

every place in S is a split place.

Let RC denote the global deformation O-algebra for r which parameterizes deformations

of ρ that are µ-polarized, that are unramified outside S, and that for each v ∈ S, lie on

the corresponding component Cv. Then RC is a finite O-algebra, and any representation

corresponding to a Qp-point of RC is automorphic.

Proof. The automorphy statement is essentially [10, Theorem 7.1], and the finiteness

statement follows easily from the proof of loc. cit. (cf. [47, Theorem 10.1]). We only

need to justify the slightly weaker hypotheses that we are making here, in comparison to

assumptions 4(c) and 4(d) in the statement of [10, Theorem 7.1]. Assumption 4(d) was

only made because local–global compatibility at places dividing p was unknown at the

time that [10] was written, but it is now available in the required generality thanks to [1].
Assumption 4(c) is satisfied by Lemma 1.4.23.

As a consequence, we have the following useful finiteness result.

Lemma 1.4.27. Let p be an odd prime, and let F be a CM field with ζp 6∈ F. Let {(sλ, µλ)}
be a weakly irreducible, odd, regular, polarized compatible system of n-dimensional

representations of G F . Assume that p - n, let (s, µ) be the p-adic representation coming

from the given compatible system, with corresponding prolongation ρ, and assume that

s(G F(ζp)) is adequate.

Let S be a finite set of finite places of F+ which contains all of the places dividing p,

and is such that ρ is unramified outside S. For each v ∈ S, let Cv denote the local

component at v on which ρ|G Fv
lies. Let RC denote the global deformation O-algebra

which parameterizes deformations of ρ that are µ-polarized, that are unramified outside S,

and that, for each v ∈ S, lie on the corresponding component Cv. Then RC is a finite

O-algebra.
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Proof. By Lemma 1.4.11, {(sλ, µλ)} is potentially automorphic. By [2, Lemma 1.2.3], we

can reduce to the case that {(sλ, µλ)} is in fact automorphic, and all the places in S are

split places, in which case it follows from Theorem 1.4.26 that RC is a finite O-algebra.

1.4.28. Adequate representations. Let k be a field of characteristic p. We always

assume it is sufficiently large to contain all the eigenvalues of any representation under

consideration. Let V be a vector space over k and let G ⊂ GL(V ) be a group which acts

absolutely irreducibly. We first recall from [47] what it means for G to be adequate.

Definition 1.4.29. G is adequate if the following conditions hold.

(1) H0(G, ad0(V )) = 0.

(2) H1(G, k) = 0.

(3) H1(G, ad0(V )) = 0.

(4) For every irreducible G-submodule W ⊂ ad0V , there is an element g ∈ G with an

eigenvalue α such that tr eg,αW 6= 0 (where eg,α is the projection to the generalized

α-eigenspace of g).

Lemma 1.4.30. Suppose that G acts absolutely irreducibly on V . Then the following are

equivalent.

(1) Condition (4) of Definition 1.4.29.

(2) The set of semisimple elements of G spans ad(V )⊗k k as a k-vector space.

Proof. This follows from Lemma A.1 of the appendix to [47], namely the equivalence

between (i) and (iii).

Lemma 1.4.31. Suppose that V and V ′ are absolutely irreducible representations of a

group 0. Suppose that the projective images of 0 on V and V ′ are disjoint, that is, the

group 0 surjects onto the product of the projective images of 0 on V and V ′, and denote

the projective images by PG and PG ′. Then the images of 0 on ad(V ) and ad(V ′) are PG
and PG ′, respectively, and the image of 0 on ad(V ⊗ V ′) is PG×PG ′.

Proof. The fact that 0 acts on ad(V ) as PG is completely formal. Hence under the

assumption that the projective images PG and PG ′ are disjoint, 0 acts on ad(V )⊕ ad(V ′)
via PG×PG ′. The kernel of the map

GL(ad(V ))×GL(ad(V ′))→ GL(ad(V ⊗ V ′))

consists precisely of pairs of scalar matrices (λ, λ−1). But it is not possible for any g ∈ G
(or PG) to act on ad(V ) as a non-trivial scalar – this would force the action of g on V
itself to be scalar and then to be trivial on ad(V ).

Remark 1.4.32. The proof of Lemma 1.4.31 is just another way of saying that the map

PGL(V )×PGL(V ′)→ GL(ad(V ⊗ V ′))

is injective.
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The following lemma is similar to Lemma A.2 of the appendix to [47].

Lemma 1.4.33. Suppose that V and V ′ are absolutely irreducible representations of a

group 0. Suppose that the projective images of 0 on V and V ′ are disjoint, and that the

images of 0 on V and V ′ satisfy condition (4) of Definition 1.4.29. Then the image of 0

on V ⊗ V ′ satisfies condition (4) of Definition 1.4.29.

Proof. Let G and G ′ denote the images of 0 in V and V ′, respectively. By Lemma 1.4.30,
the semisimple elements g of G and g′ of G ′ span ad(V ) and ad(V ′), respectively.

In particular, the elements g⊗ g′, which are also semisimple, span ad(V )⊗ ad(V ′) =
ad(V ⊗ V ′).

Let g and g′ be any pair of semisimple elements in G and G ′, respectively. By

Lemma 1.4.31, there is a γ ∈ 0 which acts projectively on V and V ′ by g and g′,
respectively. Hence it acts on V and V ′ by λg and λ′g′, respectively, for scalars λ and λ′.

Hence it acts on V ⊗ V ′ by a scalar multiple of g⊗ g′. In particular, it spans the same

line in ad(V ⊗ V ′) as g⊗ g′. Hence these elements span ad(V ⊗ V ′), as required.

Lemma 1.4.34. Suppose that V and V ′ are absolutely irreducible representations of a

group 0 of dimensions n, n′ > 2(p+ 1), respectively, whose projective images are disjoint.

Then the image of 0 acting on V ⊗ V ′ is adequate.

Proof. By Theorem A.9 of the appendix to [47], the images of 0 acting on V and V ′ are
both adequate. That condition (4) of Definition 1.4.29 holds for the image H of 0 acting

on V ⊗ V ′ then follows from Lemma 1.4.33.

The adjoint representation of H has image PG×PG ′ by Lemma 1.4.31, so there is

a surjective map H → PG×PG ′ whose kernel Z is central in H (and acts by scalars

on V ⊗ V ′). Certainly, Z injects into k
×

and so has order prime to p. Let M and M ′

be PG- and PG ′-modules, respectively. Since Z has order prime to p, inflation–restriction

gives

H1(H,M ⊗M ′) = H1(PG×PG ′,M ⊗M ′).
Another application of inflation–restriction gives an exact sequence

H1(PG,M)⊗ (M ′)PG ′
→ H1(PG×PG ′,M ⊗M ′)→ MPG

⊗ H1(PG ′,M ′).

Letting M = M ′ = k or M = ad(V ) and M ′ = ad(V ′), we see the two exterior groups

vanish by the adequacy of the images of 0 on V and V ′, and hence so does the middle

group. Absolute irreducibility is easy, and the lemma follows.

Lemma 1.4.35. Let G ⊂ GL(V ), and let H ⊂ G be a normal subgroup with G/H of order

prime to p, such that H is adequate. Then G is adequate.

Proof. If condition (4) of Definition 1.4.29 holds for H , it obviously holds for G. So it

suffices to check the cohomological conditions. We have (since G/H has order prime to p)

that

H1(G,M) = H1(H,M)G/H .

Hence if the right-hand side vanishes, then so does the left-hand side. Similarly, if

a representation of G is absolutely irreducible after restriction to H , it is absolutely

irreducible.
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Lemma 1.4.36. Let A ⊂ GLn(k) be absolutely irreducible with n > 2(p+ 1). If B ⊂ GLn(k)
has a projective image containing PSLn(l) for some sufficiently large extension l/k
(depending on A), then the image of A⊗ B is adequate.

Proof. By using Lemma 1.4.35, we may assume that B has a projective image

exactly PSLn(l) for some l. This is a simple group. By taking l large enough so that the

projective image of A has order less than that of PSLn(l), we deduce that the projective

images of A and B have no non-trivial common quotients. It follows by Goursat’s lemma
that the image of A⊗ B surjects onto the product of the projective images of A and B.

We now finish by invoking Lemma 1.4.34.

The following is an immediate consequence of Lemma 1.4.36.

Lemma 1.4.37. Suppose that p > 2(n+ 1), that L is a number field, and that a : GL →

GLn(Fp) is an irreducible representation. Then if q is a sufficiently large power of p
(depending on a), and b : GL → GLn(Fp) has a projective image containing PSLn(Fq),

then (a⊗ b)(GL) is adequate.

2. Globally realizable representations

2.1. Global realizability

Let E/Qp be a finite extension with ring of integers O and residue field F. Let K/Qp be

a finite extension, and let
r : G K → GLn(F)

be a representation.

Definition 2.1.1. Say the representation r admits many diagonalizable lifts if the following

holds: for any C > 0, r admits a potentially diagonalizable lift with the property that,

for each embedding σ : K ↪→ Qp, the σ -labelled Hodge–Tate weights of the lift all differ

by at least C .

Remark 2.1.2. We expect that every representation r admits many diagonalizable lifts.

In this paper, we will use a base change trick (based on Lemmas 2.1.3 and 4.1.8) to avoid

needing to know this.

Lemma 2.1.3. For any representation r : G K → GLn(F), there is a finite extension L/K
such that r |GL admits many diagonalizable lifts. Moreover, any L/K such that r and the

mod p cyclotomic character ε become trivial over GL has this property.

Proof. Choose L so that each r |GL is trivial, and the mod p cyclotomic character of GL is

also trivial. For each integer C > 0, 1⊕ εC
⊕ · · ·⊕ ε(n−1)C is a potentially diagonalizable

(in fact, diagonal) crystalline lift of r |GL , all of whose σ -labelled Hodge–Tate weights

differ by at least C .

Convention 2.1.4. We will frequently consider potentially diagonalizable lifts of an r which

admits many diagonalizable lifts. Whenever we do so, we will always choose the lifts to
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have Hodge–Tate weights that are sufficiently spread out (in the sense that the condition

of Definition 2.1.1 holds for some sufficiently large C) that all representations formed

in the arguments that we make (which will involve tensoring representations together)

have regular Hodge–Tate weights. In order to streamline the paper, we will not make this

explicit in any of our arguments.

Definition 2.1.5 (Polarized Local Isomorphisms). Let F be a CM field. Suppose

that a : G F → GLn(F) and b : G F → GLn(F) are absolutely irreducible polarizable

representations with respect to a character µ, so (in particular) they both prolong to

representations

ρ(a), ρ(b) : G F+ → Gn(F),

each of which is uniquely determined up to conjugation by an element in G0
n(F).

Let v be a prime in F+, and let w be a prime above v in F . We define a polarized

isomorphism a|G Fw
' b|G Fw

to be an isomorphism of representations which extends to an

isomorphism of polarized representations:

ρ(a)|G F+v
' ρ(b)|G F+v

.

If v ∈ F+ splits in F , then any isomorphism between a|G Fw
and b|G Fw

extends to such

an isomorphism, because G F+v = G Fw ⊂ G F , and

ρ(a)|G F = a×µ|G F : G F → GLn(F)×GL1(F) = G◦n(F) ⊂ Gn(F)

(and similarly for ρ(b)|G F ), so that ρ(a)|G F+v
= ρ(a)|G Fw

= a|G Fw
×µ|G Fw

(resp. ρ(b)|G F+v

= ρ(b)|G Fw
= b|G Fw

×µ|G Fw
). On the other hand, if v is inert or ramified in F/F+

and a|G Fw
= b|G Fw

is reducible, then this restriction may admit more than one

polarization, and so the requirement that the representations ρ(a)|G F+v
and ρ(b)|G F+v

be isomorphic may be a non-trivial condition.

Definition 2.1.6. Let F be a CM field. We say that a representation s : G F → GLn(Fp)

is reasonable if

• ζp /∈ F , and s|G F(ζp )
is irreducible;

• s is polarizable and odd;

• p > 2(n+ 1).

Definition 2.1.7. Let F be a CM field. We say that a representation s : G F → GLn(Fp)

is pleasant if

• ζp /∈ F , and s|G F(ζp )
is irreducible;

• s is polarizable and odd;

• p > 2(n+ 1);

• all the primes v|p in F+ split in F ;

• for each place w|p of F , s|G Fw
admits many diagonalizable lifts.
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Lemma 2.1.8. Let s be a reasonable representation of G F . Let F (avoid)/F be a finite

extension. Then there is a finite extension L/F of CM fields, which is linearly disjoint

from F (avoid) over F, such that s|GL is pleasant.

Proof. Replace F (avoid) with F (avoid)
· F

ker r
(ζp). Let E = E+F , where E+/F+ is any

totally real extension linearly disjoint from F (avoid)/F+ with the property that for each

place wE |p of E , both s|G EwE
and ε|G EwE

are trivial, where ε is the mod-p cyclotomic

character. It follows from Lemma 2.1.3 that s|G EwE
then admits many diagonalizable

lifts, and moreover, the same is true if one replaces E+ by any further finite extension.

It now suffices to ensure the primes v|p in E+ split in E . To achieve this, we cross with

a quadratic extension. Namely, let L+ = M+E+, where M+/F+ is a quadratic extension
with the property that M+v ' Fv for v|p in F+, and such that L = L+F is linearly disjoint

from F (avoid) over F .

Definition 2.1.9. Let K/Qp be a finite extension, and let ρ : G K → Gn(F) be a

representation with multiplier µK . Let µK be a de Rham lift of µK . A µK -polarized

component C for ρ is globally realizable if there exist a CM number field F and an

odd, regular, polarized, weakly irreducible compatible system ({sλ}, {µλ}) over F , with

corresponding p-adic representation (s, µ), with the following properties:

(1) The residual representation s is reasonable.

(2) There exists a prolongation ξ : G F+ → Gn(F) of (s, µ), and a place v of F+,

such that F+v ' K , µ|G F+v
= µK , ξ |G F+v

∼= ρ, and the representation ξ |G F+v
lies

on C .

We say that a de Rham lift ρ : G K → Gn(O) of ρ is globally realizable if it lies on a

globally realizable component.

Remark 2.1.10. In Definition 2.1.9, if the condition holds for one prolongation ξ , then
it holds for any prolongation. Indeed, we saw in § 1.4 that any two prolongations are

conjugate by some element of 1×GL1 ⊂ G◦n , and the components of the local deformation

ring are invariant under conjugation by [4, Lemma 3.4.1].

Remark 2.1.11. If v splits in F , then by Lemma 1.4.20, we can identify the µ-polarized

deformation ring for ρ with the lifting ring for s|G Fw
: G Fw → GLn(K ) (which is

independent of µK ). Then, in the setting of Definition 2.1.9, it follows from [16, Lemma

4.1.6] that the condition of a component being globally realizable is independent of the

choice of µK (as we can twist compatible systems by algebraic characters).

Remark 2.1.12. Note that by definition, if a component is globally realizable, then it is

regular.

Remark 2.1.13. While it is not obvious from the definition, as a consequence of our main

results, we can show that if n = 2 or n is odd, then any potentially globally realizable

component is globally realizable. More precisely, a component C for ρ : G K → Gn(F) is
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globally realizable if and only if there exists a finite extension L/K such that C |L is

globally realizable. See Corollary 4.2.13.

Remark 2.1.14. Any (regular) potentially diagonalizable representation is globally

realizable; this is easily proved using the methods of [20, Appendix A], and in particular

if n = 2 or n is odd, it is a simple consequence of Corollary 4.2.13 (which shows that it

is enough to prove this after an arbitrary base change), together with [2, Lemma A.2.5]

(which shows how to globalize local representations which are induced from characters).

The notion of being globally realizable can also be formulated in automorphic terms.

Lemma 2.1.15. A µK -polarized component C for ρ is globally realizable if and only if

there exist a CM number field F, a regular algebraic cuspidal polarized automorphic

representation (π, χ) of GLn /F, and a prolongation ρp(π) of rp(π) such that we have

the following:

(1) There is a prime v in F+ such that F+v ' K , ρ p(π)|G Fv
∼= ρ, (ε1−nrp(χ))|G K = µK ,

and the representation ρp(π)|G F+v
lies on C.

(2) The residual representation r p(π) is reasonable.

Proof. For the ‘if’ direction, note that if these conditions are satisfied, then we may

take ({sλ}, {µλ}) in the definition of global realizability to be ({rλ(π)}, {ε1−nrλ(χ)}).
Conversely, if C is globally realizable, then we apply Theorem 2.1.16, taking F (avoid) to

be F
ker s

(ζp), and S to be the set of places of F which lie over p. Then the conditions in the

lemma are satisfied by the automorphic representation corresponding to the compatible

system ({sλ|GL }, {µλ|GL+
}).

Theorem 2.1.16. Let ({s(i)λ }, {µ
(i)
λ }), i = 1, . . . , r be compatible systems of odd, regular,

weakly irreducible polarized Galois representations over a CM field F. Let S be a finite

set of finite places of F+, and let F (avoid)/F be a finite extension. Then there is a finite

Galois extension L/F of CM fields with the following properties:

• L is linearly disjoint from F (avoid) over F.

• Every place in S splits completely in L+.

• Each ({s(i)λ |GL }, {µ
(i)
λ |GL+

}) is automorphic.

Proof. By [2, Theorem 5.4.1], each compatible system ({s(i)λ }, {µ
(i)
λ }) is potentially

automorphic over some finite extension L i/F , which is linearly disjoint from F (avoid)

over F . (Strictly speaking, that result assumes that all of the s(i)λ are irreducible, but as

explained in the introduction to [37], all that is actually needed is that there is a positive

density set of rational primes l such that for each λ|l, s(i)λ is irreducible.)

It suffices to show that L/F can be chosen simultaneously for all i , in such a way that

all places of F above S split completely. This can be arranged by a slight refinement of

the arguments of [2]; we explain the main idea here, referring the interested reader to the

proof of [20, Proposition A.6] for a more detailed treatment of a similar result.
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As a first step, note that since each {s(i)λ } is potentially automorphic, it follows from

[37, Lemma 1.5, Theorem 1.7] that there is a positive density set of rational primes l
such that if λ|l, then each {s(i)λ } is irreducible. Therefore by [2, Proposition 5.3.2], we can

choose l and λ|l such that each s(i)λ is Fontaine–Laffaille at all primes dividing l, each s(i)λ is

irreducible, and indeed s(i)λ |G F(ζl )
is irreducible. We also assume that l > 2(max dim si

λ+ 1).
In the main argument of [2], the field L/F is constructed by a (finite) number of

applications of the theorem of Moret-Bailly, applied to a particular moduli space T
over F+ (see the proof of [2, Theorem 3.1.2]). By the version of the theorem of

Moret-Bailly given in [2, Proposition 3.1.1], we can arrange that the places in S all split

completely in L+ provided that T has F+v -rational points for all places v ∈ S. This need

not be the case, but we can in any case choose a finite solvable extension of totally real

fields M+/F+ so that T has M+w -rational points for each place w of M+ lying over a place

in S. We then replace T by the Weil restriction ResM+/F+ T , and running the arguments

of [2], we find a finite Galois extension L+/F+, linearly disjoint from F (avoid) over F+,

in which all places in S split completely, with the property that if we set L = L+F , then

the restrictions {s(i)λ |GL M+
} are automorphic. Since the extension L M+/L is solvable, it

follows that each {s(i)λ |GL} is automorphic, as required.

3. Compatible systems

Our aim in this section is to prove results showing that if one representation in a
compatible system is a tensor product, then the compatible system is a tensor product.

We do this under somewhat restrictive hypotheses (see Theorem 3.4.3), which we

will suffice for the results of the following section due to some base change tricks

and arguments with auxiliary places. We also prove a number of other results about

compatible systems that we will use in § 4. Our results are mostly Lie-theoretic, and in

particular we make crucial use of the results of [30].

3.1. Component groups

Recall that by Theorem 1.4.15, any compatible system has a well-defined component

group. We have the following technical lemma.

Lemma 3.1.1. Let F be a number field, let r : G F → GLn(Fp) be irreducible, and suppose

that p > max(n, 3). Let L/F denote the field F(ker(r)). Let {rλ} be any compatible system

of Galois representations such that r p = r and such that det(rp) has an infinite image.

Let F ′/F be a finite Galois extension which is linearly disjoint from L/F. Then the

component group of {rλ|G F ′
} is independent of F ′/F.

Proof. Let G denote the Zariski closure of im(rp), and let G0 denote the connected

component of G. Let im◦(rp) denote the intersection of im(rp) with G0. Let F◦ denote

the fixed field of im◦(rp). By Theorem 1.4.15, F◦ is independent of p, and G/G0
'

Gal(F◦/F). It suffices to show that F◦ is completely contained in L. The image im(rp)

of rp inside GLn(Zp) naturally admits a surjection onto Gal(F◦/F). If Gal(F◦/F) has
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order prime to p, then this surjection factors through im(r p), since the kernel of im(rp)→

im(r p) is a pro-p group. But this implies that F◦ is contained in L. Thus we may assume

that Gal(F◦/F) has order divisible by p, and hence that the component group G/G◦ has

order divisible by p.

Note that G acts irreducibly because r is irreducible. By assumption, an element of

order p in G/G◦ induces an outer automorphism of G◦ of order p. If this automorphism

is trivial, then, by Schur’s lemma, this automorphism may be modified by an inner

automorphism to be a scalar which does not lie in G◦. The assumption that the

determinant has an infinite image, however, implies that (since G is reductive and

irreducible) the centre Z is infinite, and hence that Z◦ = Z . This is a contradiction,
and hence this order p element induces a non-trivial outer automorphism of G◦, and

hence also of its Lie algebra g. The automorphism group of any simple Lie algebra has

order at most 3 < p. Thus this order p automorphism must act by permuting the simple

factors. Yet G acts on a space of dimension n, and hence there are at most n simple

factors. Hence we obtain a non-trivial element of order p in Sn , which is impossible

for p > n.

3.2. Representation theory

In this section, we begin by proving some basic representation-theoretic lemmas for

reductive groups G. All the representations we consider below are assumed to be

finite-dimensional.

3.2.1. Reductive linear algebraic groups. Let k be an algebraically closed field of

characteristic zero. If G is a connected reductive linear algebraic group over k, then we

let Gder denote the derived subgroup of G – it is a connected semisimple linear algebraic

group – and let Z denote the centre of G. The natural morphism of connected reductive

linear algebraic groups

Gder
× Z◦→ G

(where as usual Z◦ denotes the connected component of the identity in Z) is surjective,

and its kernel is contained in (the anti-diagonally embedded copy of) the intersection

Gder
∩ Z◦, and thus is contained in the centre of Gder; in particular, it is finite.

We let G̃der denote the simply connected cover of Gder; it is again a connected

semisimple linear algebraic group, and the kernel of the natural surjection G̃der
→ Gder

is finite and central. We write G̃ := G̃der
× Z◦ (and note that the possible ambiguity in

our use of the notation G̃der is ameliorated by the fact that G̃der is naturally identified

with the derived subgroup of G̃). The composite morphism

G̃ = G̃der
× Z◦→ Gder

× Z◦→ G

is again surjective, and its kernel is finite and central.

Since G̃der is semisimple and simply connected, it may be written as a direct product

of almost simple linear algebraic groups. Thus G̃ is a direct product of such groups and

a torus.

If H and J are linear algebraic groups, then any irreducible representation W of

the product H × J may be factored (uniquely, up to isomorphism) as a tensor product
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W ∼=U ⊗k V, where U (resp. V ) is an irreducible representation of H (resp. J ). Applying

this remark in the context of the preceding discussion (thinking of a representation of G
as a representation of Gder

× Z◦ via inflation), we find that the irreducible representations

of G are obtained from the irreducible representations V of Gder by choosing a character

of Z◦ which coincides with the given action of Gder
∩ Z◦ on V (Schur’s lemma ensures

that this action is indeed given by a character) and extending the Gder-action on V to

an action of G (thought of as a quotient of Gder
× Z◦) via having Z◦ act through this

choice of character.

If g denotes the Lie algebra of G (or equivalently of G̃), so that gder is the Lie algebra

of Gder (or equivalently of G̃der), then passing to the induced gder-action induces an
equivalence of categories between the category of finite-dimensional G̃der-representations

over k and the category of finite-dimensional gder-representations over k. In particular,

this equivalence induces a bijection between the isomorphism classes of irreducible

representations of G̃der and the isomorphism classes of irreducible representations of gder.

The following lemma (and its proof) is a very special case of a theorem of Rajan [38].

Lemma 3.2.2. Let U and V be two non-trivial representations of a simple Lie algebra g

over an algebraically closed field of characteristic zero. Then U ⊗ V is reducible.

Proof. Without loss of generality, we may assume that U and V are irreducible. Let the

highest weights of U and V be λ and µ, respectively. Then, if U ⊗ V is irreducible, it

must be the irreducible representation of highest weight λ+µ. By the Weyl character

formula, this implies that

1 =
dim(U ) dim(V )

dim(U ⊗ V )
=

∏
8+

〈ρ+ λ, α〉〈ρ+µ, α〉

〈ρ, α〉〈ρ+ λ+µ, α〉
.

Each individual factor has the form

〈ρ, α〉2+〈ρ, α〉(〈λ, α〉+ 〈µ, α〉)+〈λ, α〉〈µ, α〉

〈ρ, α〉2+〈ρ, α〉(〈λ, α〉+ 〈µ, α〉)
> 1.

Since the pairing is non-negative, we obtain a contradiction unless 〈λ, α〉〈µ, α〉 = 0 for

each root α ∈ 8+. Because g is simple, there exists a maximal root β ∈ 8+ such that, for

any dominant weight ν, one has 〈ν, β〉 > 〈ν, α〉 for any α ∈ 8+. In particular, assuming

without loss of generality that 〈λ, β〉 = 0, we deduce that 〈λ, α〉 = 0 for all roots in 8+,

which implies that λ = 0 and the corresponding representation is trivial.

We say that an irreducible representation W of the connected reductive linear

algebraic group G is tensor indecomposable if, for any isomorphism W ' U ⊗ V
of G-representations, either U or V is a character.

Lemma 3.2.3. Let G = G◦ be a connected reductive Lie group over an algebraically closed

field of characteristic zero, and let G̃ denote the finite cover of G constructed in the

preceding discussion. If W is an irreducible representation of G of dimension > 1, thought

of a representation of G̃ via inflation, then W has a factorization

W '
⊗

Vi
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as a tensor product of tensor indecomposable representations of G̃, where the Vi are

unique up to re-ordering and twisting and have dimension > 1.

Proof. As noted above, the algebraic group G̃ is a direct product of almost simple linear

algebraic groups Gi and a torus T . Any irreducible representation of G is then a tensor

product of irreducible representations of the Gi up to twist by a character of T . It

then suffices to show that the tensor indecomposable representations are precisely the

representations of a single simple factor Gi up to twist. This follows immediately from

Lemma 3.2.2 (which shows that an irreducible representation of any Gi is automatically

tensor indecomposable).

We next establish some purely representation-theoretic results.

Lemma 3.2.4. Let V and W be finite-dimensional linear representations of a group G
over an algebraically closed field. Suppose that V ⊗W decomposes as a direct sum

of characters. Suppose, in addition, there are at most three isomorphism classes of

characters which occur in direct sum. Then V and W also admit such a decomposition.

Proof. First consider the case when both V and W are irreducible. Note that for any

character χ ,

dim HomG(V ⊗W, χ) = dim HomG(V,W∨χ) 6 1,

where the latter inequality follows from the irreducibility of V and W together with

Schur’s lemma. Since the number of distinct characters is at most three, it follows

that dim(V ⊗W ) 6 3, and thus at least one of V or W is a character, and the result

follows.

In the general case, when V and W are not necessarily irreducible, choose irreducible

subrepresentations V ′ ⊂ V and W ′ ⊂ W . Then V ′⊗W ′ ⊂ V ⊗W , and so from what we

have already proved, we find that each of V ′ and W ′ is necessarily a character. We then

see that

V = V ⊗W ′⊗ (W ′)−1
⊂ (V ⊗W )⊗ (W ′)−1

is a direct sum of at most three characters (possibly with multiplicities), and similarly

for

W = (V ′)−1
⊗ V ′⊗W ⊂ (V ′)−1

⊗ V ⊗W.

Remark 3.2.5. The preceding result is false when there are four distinct characters.
Indeed, one can take V = W to be the irreducible 2-dimensional representation (over

Q, say) of the quaternion group Q of order 8.

We recall the definition of a strongly irreducible representation.

Definition 3.2.6. A representation of a group G (either a Lie group or a Galois group)

is strongly irreducible if it remains irreducible after restriction to any finite index

subgroup H ⊂ G.

Remark 3.2.7. A representation of a reductive Lie group G is strongly irreducible if

and only if it remains irreducible after restriction to the connected component G◦ ⊂ G.
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If a topological group G acts continuously on W and a subgroup H ⊂ G fixes a closed

subspace 0 ( V ( W , then the closure of H in G also fixes V . Hence continuous

representations of a Galois group G are strongly irreducible if and only if they remain

irreducible after restriction to any closed finite index subgroup H .

Lemma 3.2.8. Let V and W be irreducible representations of a group G over an

algebraically closed field k of characteristic zero, and suppose that the action of G on V
is strongly irreducible. Then, up to scaling, there is at most one non-trivial bilinear

G-equivariant pairing:

W × V → k(µ),

where k(µ) is the twist of the trivial representation by a character µ of G, and µ is

allowed to range over all characters of G.

Proof. Any such pairing gives rise to an isomorphism V ' W∨(µ). If there existed two

such pairings with the same µ which were not the same up to scalar, then there would be

two corresponding isomorphisms in HomG(V,W∨(µ)). Using either of the identifications

of V with W∨(µ), we deduce that

2 6 dim HomG(V,W∨(µ)) = dim HomG(V, V ),

which contradicts the irreducibility of V by Schur’s lemma. If there were two such pairings
with different µ, then denoting one character by µ and the other by µ⊗χ for a non-trivial

character χ , we deduce that V ' W∨(µ) and V ' W∨(µ⊗χ) and thus V ' V (χ). Taking

determinants of both sides, it follows that χn
= 1. Hence χ defines a map: G → µn ⊂ k×,

and in particular the image of χ is finite. Let H denote the kernel of this map, which is of

finite index. Then we deduce that dim HomH (V, V ) > 2. By Schur’s lemma, this implies

that V |H is reducible, contradicting our assumptions.

3.2.9. Galois representations. Throughout this subsection, we let F be a (not

necessarily CM) number field.

Lemma 3.2.10. Let r : G F → GLm(Qp) be a representation with image 0 := r(G F ), and

suppose that the (semisimple) residual representation r has image r(G F ) = 0 ⊂ GLm(Fp)

containing SLm(Fq) for q a sufficiently large power of p (we can take q = p if p > 5,

and q = 25 if p = 5). Then the Zariski closure G of 0 contains SLm(Qp).

Proof. After conjugation, the image is a closed subgroup of GLm(O) for O the ring

of integers in some finite extension of Qp. By the main result of [33], the image

therefore contains a conjugate of SLm(W (Fq)), from which the result follows immediately
(since SLm is unirational, by [5, Theorem 18.2]).

Lemma 3.2.11. Let {rλ} be a weakly compatible system of G F -representations of dimension

m = n2. Suppose that r = rp = a⊗ b, where a and b are n-dimensional representations

which have images whose Zariski closure contains SLn, and the corresponding Lie algebra

of rp contains sln × sln. Then the component group of the compatible system {ad(rλ)} is

trivial.
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Proof. By Theorem 1.4.15, the pre-image of G◦λ in G F is independent of λ, and so the

component group is independent of λ, and thus we may choose λ = p. We have ad(r) =
ad(a)⊗ ad(b). By assumption, the Zariski closures of the images of ad(a) and ad(b) are

both PGLn , and hence the Zariski closure of ad(r) is G = PGLn ×PGLn . Since G = G◦,
the component group is trivial.

The following result relates irreducibility and strong irreducibility of Galois

representations.

Lemma 3.2.12. Let r : G F → GLn(Qp) be an irreducible Galois representation which is
Hodge–Tate with regular Hodge–Tate weights. If r is not strongly irreducible, then r is

induced from a strongly irreducible representation over some finite extension M/F.

Proof. This is proved in the course of the proof of [11, Corollary 4.4]; we recall the

argument. For any finite extension E/F , either r |G E is irreducible or it decomposes

into a sum of distinct irreducible representations. This follows immediately from the

fact that r |G E has distinct Hodge–Tate weights at any prime w|l. (Note that r |G E is

necessarily semisimple: if V denotes any irreducible subrepresentation, then the various

translates of V by elements of G F are stable under the corresponding conjugates of

G E , and so we see that r |G E becomes completely decomposable under restriction to a

finite index subgroup, so must already have been semisimple.) Suppose then that r |G E

is reducible for some finite extension E/F . Replacing E by its normal closure over F ,

we may assume that the extension E/F is Galois, and the claim that r is induced is

immediate from [11, Lemma 4.3]. If r = IndG F
G M

s, then s is also Hodge–Tate with regular

Hodge–Tate weights, so by induction on n we may assume that r is induced from a

strongly irreducible representation.

The following lemma will prove useful for lifting Galois representations along central

extensions.

Lemma 3.2.13. Suppose that r : G F → GLmn(Qp) is a Galois representation whose image

has Zariski closure inside the image of the map GLn ×GLm → GLnm . Then there exist

Galois representations rA and rB of dimensions n and m, respectively, such that r '
rA⊗ rB .

Proof. There is a central extension

0→ Z → GLn(Qp)×GLm(Qp)→ 0(Qp)→ 0,

where 0 denotes the image of GLn ×GLm in GLnm , and Z is the Qp-points of a torus

embedded anti-diagonally. The result then follows directly from [17, Proposition 5.3].

Lemma 3.2.14. Fix n > m, and let r : G F → GLmn(Qp) be a strongly irreducible
representation such that the Lie algebra of the Zariski closure of the image of r is

isomorphic to t× h× sln, where

• t is a torus of rank at most 1,

• h is semisimple, and

https://doi.org/10.1017/S1474748020000195 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000195


566 F. Calegari et al.

• the corresponding mn-dimensional representation of h× sln is the tensor product of an

m-dimensional representation of h with the standard representation of sln.

Then either

(1) r decomposes as a tensor product a⊗ b, where a is of dimension m and b is of

dimension n, and furthermore the Zariski closure of the image of b contains SLn;

or

(2) m = n, and r is the tensor induction of an n-dimensional representation of GL for

some quadratic extension L of F.

Moreover, in case (1), the representations a and b are unique up to twisting by a
character, or possibly permuting a and b if m = n and h = sln.

Proof. Let G denote the Zariski closure of the image of r , and let G◦ denote the connected

component of G. For now, let us regard r as a (faithful) representation of G. We shall

exhibit a factorization of r as a tensor product of representations of some cover of G
(possibly after passing to a quadratic extension) and then promote this to an actual

factorization of Galois representations by Lemma 3.2.13.

By our assumptions, together with the general discussion of (3.2.1), we may find

a finite cover of G◦ by a group of the form T × H ×SLn , where H is a product of

almost simple groups, and T is a torus. If we let r◦ denote the restriction of r to G◦,
regarded as a representation of T × H ×SLn by inflation, then r◦ is irreducible (as r is

strongly irreducible by assumption), and so we may write r◦ = a◦⊗ b◦⊗ c◦, where a◦ is

an irreducible representation of H , b◦ is the standard n-dimensional representation of

SLn , and c◦ is an irreducible (and hence 1-dimensional) representation of T . (We do not

assert that any of a◦, b◦, or c◦ are representations of G◦.)
After twisting by a character, we may assume (for example, by [36, Lemma 2.3.15]) that

the determinant of r has a finite image, and hence that the determinant of r◦ is trivial.

Thus we may in fact assume that c◦, and hence t and T , is trivial, and we do so from
now on. Thus we assume that G◦ admits a finite cover by H ×SLn , and that r◦ admits a

corresponding tensor factorization a◦⊗ b◦ with b◦ being the standard representation; we

now attempt to extend this tensor factorization to a corresponding tensor factorization

of r .

Since G◦ is normal in G, we obtain a conjugation action of G on G◦, and hence on its

universal cover H ×SLn . (Recall that the formation of universal covers is functorial in

pointed spaces, and note that the conjugation action of G on G◦ acts via automorphisms

of the pointed space (G◦, 1).) Suppose first that h 6= sln ; then there are no non-trivial

morphisms sln → h (since h has a faithful representation of dimension m 6 n), so that any

automorphism of h× sln must fix the sln factor, and correspondingly any automorphism

of H ×SLn must fix the SLn-factor.

The component group G/G◦ is then endowed with a homomorphism

G/G◦→ Out(SLn) (3.2.15)

to the group of outer automorphisms of SLn , which we claim is trivial. To see this,

note first that if n = 2, then Out(SL2) is trivial, and so we are done. If n > 3, then the

outer automorphism group of SLn is cyclic of order 2. If G/G◦ surjects onto this outer
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automorphism group, then the restriction of r◦ to the SLn-factor, which is a direct sum

of m copies of b◦, is isomorphic to its outer twist, which is a direct sum of m copies of

(b◦)∨. Since n > 3, the standard representation of SLn is not self-dual, and hence this is

not possible. Thus (3.2.15) is trivial, as claimed.

The action of G on the SLn-factor by conjugation is thus an inner action, and

so induces a homomorphism G → PGLn , compatible with the given map SLn → G◦.
Let K ⊆ G denote the kernel of this homomorphism; the compatibility just remarked

upon shows that K contains the image of H in G◦. Then we obtain a surjection

K ×SLn → G compatible with the given surjection H ×SLn → G◦. Correspondingly, we

obtain a tensor factorization r = a⊗ b of r inflated to the cover K ×SLn of G compatible
with the factorization r◦ = a◦⊗ b◦ of G◦. This now induces a factorization of Galois

representations by Lemma 3.2.13. Note that b◦ is the standard representation of SLn , so

the Zariski closure of the image of b contains SLn , as claimed.

We now prove that this factorization is unique. Suppose that r ' a′⊗ b′ ' a⊗ b. We

already have uniqueness of these representations over G◦ by Lemma 3.2.3. Hence it

follows that Hom(a, a′) as a G-representation has a summand which becomes trivial
when restricted to G◦, and hence has a summand on which G acts through the finite

quotient G/G◦. If this factor is 1-dimensional, then a and a′ are isomorphic up to twist.

If this factor has dimension > 1, then, over G◦, we see that Hom(a, a′)|G◦ = Hom(a, a)|G◦
has at least two trivial factors, which implies that a is reducible over G◦, contradicting

the strong irreducibility of r . The same logic applies to b, as required.

Suppose finally that h = sln . The argument proceeds as above, except now we have to

allow the possibility that G/G◦ also swaps the factors. Assuming we are in this case,

replacing G by G ′ where G ′ is the kernel of the map G → G/G◦→ S2, we obtain a

tensor factorization of Galois representations as above over some quadratic extension.

But then the image of r must coincide (up to twist) with the tensor induction of the

corresponding n-dimensional representation (of a or b) from this quadratic extension.

Lemma 3.2.16. Consider p-adic representations a and b of G F of dimensions m and n
with m 6 n. Suppose that we have the following:

(1) The representation a⊗ b is irreducible.

(2) The residual representation b has an image containing SLn(Fq) for q a sufficiently
large power of p (in the sense of Lemma 3.2.10).

Let A and B denote the Zariski closures of the images of a and b, respectively.

Let Ader and Bder denote the corresponding derived subgroups, and Ader,◦ and Bder,◦

the connected components of these groups. Let G denote the Zariski closure of the image

of a⊗ b. Then the corresponding representation of Gder,◦ is the natural representation

of Ader,◦
× Bder,◦ corresponding to the tensor product of the two natural representations.

This identifies Gder,◦ with the image of Ader,◦
× Bder,◦ in the automorphism group of the

exterior tensor product of the two natural representations.

Proof. By Lemma 3.2.10, we have Bder,◦
= SLn . Certainly, the connected subgroup

Gder,◦
⊂ SLn2 lies inside the image 0 of Ader,◦

× Bder,◦ under the exterior tensor product.

Since 0 is connected (since it is the image of a connected group under an isogeny), it
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contains no proper finite index subgroups. Thus to prove Gder,◦ ↪→ 0 is an isomorphism,

it suffices to prove it is an isogeny, which we can do on the level of Lie algebras.

Denote the Lie algebras of A and B by a⊕ tA and b⊕ tB , where a and b are semisimple,

and tA and tB are tori of rank at most one. Note that b = sln . After twisting, we may

assume that tB is trivial, and that the Lie algebra of G is g⊕ tG , where tG ' tA. Let d⊕

tD denote the Lie algebra (decomposed as a semisimple part d and a torus tD) of the

Zariski closure of the image of a⊕ b. There is an inclusion d⊕ tD ⊂ a⊕ b⊕ tA, which

induces an isomorphism tD ' tA. Hence d ↪→ a⊕ b. On the other hand, since (a⊕ b)⊗2

contains a⊗ b, there is a surjection d� g. There is an isomorphism

ad0(a⊗ b) ' ad0(a)⊕ ad0(b)⊕
(
ad0(a)⊗ ad0(b)

)
.

The corresponding Lie algebras of the images of ad0(a) and ad0(b) are a and b,

respectively, and the Lie algebra of the image of ad0(a⊗ b) is g. Hence there are maps

a⊕ b ⊇ d� g→ a⊕ b.

The corresponding maps d→ a and d→ b (either coming from the inclusion into a⊕ b

or via the map to g) may be identified with each other, because the semisimple part of

the Lie algebra of a is canonically identified with the Lie algebra of ad0(a). Moreover,

these maps are both surjective, and thus g is identified with d. By Goursat’s lemma, the

inclusion g ⊆ a⊕ b is the pullback to a⊕ b of the graph of an isomorphism

a/nA ' b/nB,

for some ideals nA or nB which may be identified with the kernels of the projections
from g→ b and g→ a, respectively. Since b = sln is simple, either both sides are

trivial, in which case d ' g ' a⊕ b (and we are done), or there is a surjection a�
b. In this latter case, by rank considerations (since A acts faithfully on a space

of dimension m 6 n), we deduce that a ' sln and that the map above induces an

isomorphism of Lie algebras a ' b, and thus g ' a ' b is diagonally embedded in a⊕ b.

This implies that, still on the Lie algebra level, the representation a⊗ b must come from

the tensor product of an n-dimensional representation of sln with a second n-dimensional

representation of the same sln . In either case (standard tensor standard or standard

tensor dual), the corresponding representation would be reducible (as also follows

from a special case of Lemma 3.2.2). This implies (returning to the Lie group level)

that, over some finite extension, a⊗ b is either isomorphic to the direct sum of
a 1-dimensional representation and an irreducible n2

− 1-dimensional representation

or an irreducible
(n

2

)
-dimensional representation and an irreducible

(n+1
2

)
-dimensional

representation (depending on whether the representations of sln are the same or dual

to each other). But since a⊗ b itself is irreducible by hypothesis, it can only decompose

over a finite extension into irreducible representations of the same dimension. The claim

follows.

Theorem 3.2.17. Let {rλ} be a compatible system of G F -representations of dimension mn.

Suppose there exists a prime p with r = rp satisfying the following:

(1) There exist p-adic representations a and b of G F of dimensions m and n with m 6 n
such that r ' a⊗ b.
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(2) The representation a⊗ b is irreducible.

(3) The residual representation b has an image containing SLn(Fq) for q a sufficiently

large power of p (in the sense of Lemma 3.2.10).

Suppose first that (m, n) 6= (2, 2). Let λ be a place with residue characteristic l such

that rλ is strongly irreducible. Then there exist representations aλ and bλ, of dimensions m
and n, respectively, such that rλ = aλ⊗ bλ. Moreover, the image of bλ has Zariski closure

containing SLn(Ql), and aλ and bλ are unique up to twist by a character and up to
permutation – the latter being possible only when n = m.

Suppose now that m = n = 2. In this case, assume also that {rλ} is odd, regular,

polarizable, and weakly irreducible. Then there exists a set of primes l of density one
such that for each λ|l, rλ is strongly irreducible and admits a decomposition rλ = aλ⊗ bλ
satisfying the conditions in the previous paragraph.

Proof. Let A and B denote the Zariski closures of the images of a and b, respectively. By

Lemma 3.2.16, if G denotes the Zariski closure of the image of a⊗ b, then we may identify

the corresponding representation of Gder,◦ with the natural representation of Ader,◦
×

Bder,◦ corresponding to the tensor product of the two natural representations.

Let λ denote a prime for which rλ is strongly irreducible. Let Gλ denote the

Zariski closure of the image of rλ, and let Gder
λ denote the corresponding derived

subgroup, and Gder,◦
λ the connected component of this group. By the strong irreducibility

assumption, the corresponding representation of Gder,◦
λ is irreducible. By a theorem

of Serre [30, Proposition 6.12], the formal character of a compatible system of

Galois representations is independent of λ. In particular, the formal characters of the

corresponding representations of Ader,◦
× Bder,◦

= Ader,◦
×SLn and Gder,◦

λ coincide. It is
possible for the formal characters of irreducible representations of connected groups to

coincide even when the groups differ (for example, there exist 27-dimensional irreducible

representations of G2 and SL3 with the same formal character). However, what is

true [30, Theorem 5.6, Proposition 5.7] is that every such equality arises from taking the

tensor product of a list of (explicitly given) basic similarity relations, described explicitly

in §§ 5.3.1–5.3.4 of [30]. In particular, note that the standard representation of SLn for

any n > 2 does not admit any basic similarity relations (which one can also deduce by

a consideration of ranks), while in the case n = 2, the only similarity relation which

intervenes in our situation is that given by the coincidence of the formal character of

the standard representation of Sp4 with that of the external tensor product of two copies

of the standard representation of SL2. Applied to our situation, it follows that if n > 2
(which we assume for the time being, returning to the case n = 2 at the end of the proof),

there exists a connected semisimple group Hder,◦
λ such that the representation of Gder,◦

λ

is the tensor product of an irreducible n-dimensional representation of Hder,◦
λ with the

standard representation of SLn . Note that the Lie algebra h of Hder,◦
λ need not a priori be

equal to the Lie algebra a of Ader,◦, but this does not concern us. The result then follows

from Lemma 3.2.14, once we show that the representation is not a tensor induction from

a quadratic extension.
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We now prove that this case cannot occur. If rλ is a tensor induction with Lie algebra

containing h× sln , then we must have h = sln acting via the standard representation.

Hence, once more by [30, Theorem 5.6, Proposition 5.7] (and the fact that the standard

representation of SLn does not admit any basic similarity relations), we deduce that

the Lie algebra of a⊗ b also contains sln × sln , and thus that the Zariski closure of a
contains SLn . (To see that the Zariski closure of the image of a contains SLn rather than

a quotient of SLn by some finite group, we use the tautological fact that a has a faithful

representation in dimension n.) By Lemma 3.2.11, we deduce that the component group

of ad(rλ) is trivial. Yet suppose that G is the Zariski closure of the image of rλ, and let H
be the index two subgroup from which rλ is tensor induced. Then

ad(Tensor IndG
H V ) ' 1⊕ IndG

H ad0(V )⊕Tensor IndG
H ad0(V ).

In particular, we see (looking at the second factor) that the image of G acting on ad(rλ)
surjects onto G/H , and so the component group is non-trivial, a contradiction.

We now return to the case n = 2, where we have the additional assumption that the

4-dimensional compatible system {rλ} is odd, regular, polarizable, and weakly irreducible,

and thus potentially automorphic by Lemma 1.4.11. By [48, Theorem 2], for a density one

set of l, rλ is irreducible for all λ|l. We claim that for any λ for which rλ is irreducible, rλ is

also strongly irreducible. If this fails to be the case, then since rλ is regular, it follows (as
in the proof of [11, Corollary 4.4]) that rλ is induced from a quadratic extension of F , and

hence rλ ' rλ⊗χ for some non-trivial quadratic character χ . Since χ lives in a compatible

system, we see that every rλ is induced from a common quadratic extension, and in

particular no rλ is strongly irreducible, contradicting our assumptions. In particular,

since r is assumed irreducible, it is strongly irreducible.

Since rλ is strongly irreducible for a set of primes l of density 1, it suffices to show (given

the argument above in the case of general m, n) that the set of primes l for which there

exists λ|l with Gder,◦
λ having Lie algebra sp4 is a set of density zero. Suppose not; then by

Lemma 3.3.1, we deduce that the compatible system {∧2rλ} decomposes as a direct sum

of a 1-dimensional and a 5-dimensional compatible system. Since ∧2(a⊗ b) = det(b)⊗
Sym2(a)⊕ det(a)⊗Sym2(b), it follows that at least one of Sym2(a) and Sym2(b) must

have a 1-dimensional factor. But then either a or b is induced from a quadratic extension,
so r is induced from a quadratic extension, contradicting the strong irreducibility of r
which we proved in the previous paragraph.

3.3. A lemma on 4-dimensional polarizable automorphic compatible systems

The following lemma was used in the proof of Theorem 3.2.17. Recall that for a Galois

representation rλ, we denote the Zariski closure of the image of rλ by Gλ.

Lemma 3.3.1. Let F be a CM field, and let {rλ} be a 4-dimensional compatible system

of representations which is odd, regular, polarizable, and weakly irreducible. Suppose that

there exists a set of primes l of positive upper density with the property that for some

λ|l, we have Gder,◦
λ = Sp4. Then the compatible system of 6-dimensional representations

{∧
2rλ} decomposes as a direct sum of two compatible systems of dimensions 5 and 1,

respectively.
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Proof. Let T be a set of primes l as in the statement of the lemma. If l ∈ T , then we

let λ denote the choice of a particular λ|l with the property that Gder,◦
λ = Sp4. Then

the Zariski closure of the image of rλ is a subgroup of GSp4(Mλ) containing Sp4(Mλ).

By [2, Proposition 5.3.2], after possibly replacing T with a smaller set of primes (still of

positive upper density), we also may assume that, for any fixed finite extension H/F ,

rλ|G H(ζl )
→ GSp4(Fl)

is irreducible for l ∈ T . We apply this with H equal to the compositum of all the quadratic

extensions of F unramified outside the set of primes of bad reduction for the compatible

system.

Consider the (semisimple) Galois representations:

∧
2rλ|G F(ζl )

→ GL6(Fl).

For each l ∈ T , the representation ∧2rλ admits a 1-dimensional summand. We claim

that for all but finitely many l ∈ T , the complementary 5-dimensional summand is

also irreducible. To see this, consider the various possible images of rλ : G F → GSp4(k)
with k = Fl under the additional assumption that they act irreducibly. The classification

of such maximal subgroups (as first computed in [34]) shows that, for l > 2, we have one

of the following:

(1) The image contains Sp4(Fl).

(2) The image stabilizes a decomposition k4
= k2
⊕ k2, and rλ is thus induced from a

quadratic extension of F .

(3) The projective image is contained in the group PGL2(k) acting via the symmetric

cube representation.

(4) The projective image has absolutely bounded order.

For a more modern reference, one could also consult [6], in particular, tables 8.12 and 8.13,

which list the maximal subgroups of Sp4(q) := Sp4(Fq) and from which one can read off

the maximal subgroups of the almost simple extension PGSp4(Fq) of Sp4(Fq)/Z(Sp4(Fq))

by 〈δ〉 = Z/2Z using the rightmost column. For the convenience of the reader, we note that

groups listed there of type C1 correspond to reducible representations, those of type C2,

C3, and C5 correspond to groups of type (2), and the remaining groups of type C6 or of
class S have absolutely bounded image (type (4)) with the exception of SL2(Fq) which

corresponds to (3).

In case (1), the representation ∧
2rλ decomposes as a direct sum of an

irreducible 5-dimensional representation and a 1-dimensional representation. Moreover,
because Sp4(Fl) is quasisimple (a perfect central extension of a simple group), the

projective image of the representation does not change after restriction to the solvable

extension F(ζl).

We claim that cases (2) and (4) can only hold for finitely many l. In case (2), it follows,

similarly to the proof of [11, Lemma 2.6], that for l sufficiently large, the representation is

induced from a quadratic extension unramified at l. But the quadratic extension must also

be unramified outside the fixed finite set S of primes of bad reduction for the compatible
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system, and so must be contained in H , contradicting our assumption on the irreducibility

of rλ restricted to H(ζl). For case (4), note that since rλ is regular, the order of the

projective image of rλ (even after restriction to inertia at primes above λ) tends to

infinity with l, as follows from Fontaine–Laffaille theory.

Finally, in case (3), ∧2 of the symmetric cube representation of a subgroup of GL2(k)
is the direct sum of a character plus (a twist of) the symmetric fifth power. If l is large,

the only subgroups of GL2(k) for which the 4-dimensional representation is irreducible

but the 5-dimensional representation is not are those whose projective image is S4; since

the image of the symmetric cube representation of such a subgroup then has bounded

projective order, arguing again by Fontaine–Laffaille theory, as in case (4), we see that
this case may also be ruled out if l is sufficiently large. In conclusion, we see that if l is

sufficiently large, then the 5-dimensional summand is irreducible, as required.

Shrinking T further, we see that we may assume that for all l ∈ T , the

representation ∧2rλ decomposes as the sum of a character and a 5-dimensional

representation sλ with the properties that sλ is Fontaine–Laffaille, and sλ|G F(ζl )
is

irreducible. The representation sλ is regular and essentially conjugate self-dual (since rλ
is), and is also odd (by Lemma 1.4.3). We can certainly assume that l > 11, so it follows

that sλ is potentially automorphic by [2, Theorem C], and hence extends to the desired

compatible system.

3.4. Factorization of compatible systems

Our main result in this section is Theorem 3.4.3. We begin with two preparatory lemmas.

The following is a variant of the main results of [9, 10].

Lemma 3.4.1. Let F be a CM field, and let r : G F → GLn(Ql) be an irreducible regular

polarizable representation of G F . Suppose either that n is odd, or that n = 2. If n = 2,

suppose further that l > 11, that Sym2 r is irreducible and is Fontaine–Laffaille at all

places dividing l, and that Sym2 r |G F(ζl )
is irreducible. Then r is odd.

Proof. In the case that n is odd, this is immediate from Lemma 1.4.3. Suppose now

that n = 2. Let Pr denote the projective representation Pr : G F → PGL2(Qp) associated

to r . The polarizability of r implies that Prc
' Pr∨ ' Pr , and hence that Pr extends

to a representation Pr : G F+ → PGL2(Qp). Thus Ad0(r) = Ad0(Pr) also extends to a

representation Ad0(r) : G F+ → GL3(Qp). It follows from [2, Corollary 4.5.2] (and the

case n = 3 of the result being proved) that Ad0(r) is potentially automorphic, and thus

(by [45, Proposition A]) the image of any complex conjugation is non-scalar, and thus

the image of any complex conjugation under Pr is non-scalar.

We show that this implies that r is odd. Because we are in dimension 2, there is

certainly a non-degenerate pairing on Q
2
p and a character µ of G F+ which satisfies

〈r(σ )x, rc(σ )y〉 = µ(σ)〈x, y〉

for any complex conjugation c. Since Pr is not dihedral, the pairing is unique, and to

prove oddness, it suffices to show that 〈x, y〉 = 〈y, x〉. If not, then the pairing is symplectic,
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and 〈x, x〉 = 0 for all x . This implies that

〈r(σ )x, rc(σ )x〉 = 0

for all σ . Because the dimension is 2, we have 〈x, y〉 = 0 for x 6= 0 only when y is a
multiple of x . Since r is irreducible, it follows that Pr(σ ) = Prc(σ ) for all σ , which, by

Schur’s lemma, implies that Pr(c) is scalar, contradicting the result above.

The following lemma gives a local condition for a representation not to be of the

form ρ⊗ (ρc)∨ up to twist for some representation ρ.

Lemma 3.4.2. Let F be a CM field. Let v be a prime in F+ which is inert in F, and denote

by w the corresponding prime in F. Denote by c the non-trivial element of Gal(F/F+) =
Gal(Fw/F+v ). Suppose that l is a prime distinct from the characteristic of v and w. Let

ψ : G Fw → Q
×

l

be a non-trivial ramified character such that ψc
|IFw
= ψ−1

|IFw
. Suppose that

sw : G Fw → GLn2(Ql)

is a representation such that

sw|IFw
∼= ψ |⊕n

IFw
⊕1⊕(n

2
−n).

Then, if n > 2, we cannot write sw in the form

sw ' θ ⊗ (ρ⊗ (ρc)∨),

where ρ : G Fw → GLn(Ql) and θ : G Fw → Q
×

l is a character. If additionally ψ |IFw
has

order > 2, then there is no such decomposition when n = 2 either.

Proof. Suppose for the sake of contradiction that we can write sw ' θ ⊗ (ρ⊗ (ρc)∨).

Consider the representations ρ and (ρc)∨ restricted to IFw . We are assuming for the sake

of contradiction that

ρ⊗ (ρc)∨|IFw
' θ |−1

IFw
⊗ (ψ |⊕n

IFw
⊕1⊕(n

2
−n)).

By Lemma 3.2.4, we deduce that ρ and ρc restricted to IFw are both given by direct

sums of characters.

Suppose that, after restriction to IFw , the representation ρ decomposes as the direct

sum of n copies of a single character φ. The inertia group IFw is normal in G Fw and

in G F+v . For a representation % of IFw and for σ ∈ G F+v , it thus makes sense to define a

representation %σ of IFw by %σ (g) = %(σgσ−1). Since ρ is a representation of G Fw , we

see that ρσ ' ρ for any σ ∈ G Fw . Hence if σ ∈ G Fw , then we have

φ⊕n
' ρ|IFw

' ρσ |IFw
' (ρ|IFw

)σ ' (φσ )⊕n,

and thus φ = φσ . It follows that if c ∈ G F+v is any lift of the non-trivial element

of G F+v /G Fw = Gal(Fw/F+v ), then φc does not depend on this lift. In particular, still

assuming that ρ|IFw
decomposes as a direct sum of n copies of φ, we have

ρc
|IFw
' (φc)⊕n .
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This would imply that ρ⊗ (ρc)∨ is a direct sum of n2 equal characters of IFw ,

contradicting the fact that ψ is ramified, and thus non-trivial on inertia. In particular,

ρ (and by symmetry, ρc) contains at least 2 distinct characters.

Let ϕ be a character of IFw occurring in ρc, so that ϕ−1 occurs in (ρc)∨. Then

ρ|IFw
= (ρ|IFw

⊗ϕ−1)⊗ϕ ⊂ (ρ⊗ (ρc)∨)|IFw
⊗ϕ = θ−1ϕ⊗ sw|IFw

,

so ρ|IFw
⊂ θ−1ϕ⊗ (ψ⊕n

⊕1⊕(n
2
−n)) and it follows that ρ restricted to IFw is a direct sum

of at most two distinct characters with some multiplicity. From the previous discussion,

precisely two such characters occur. The same argument gives the same result for ρc.

Thus we may write

ρ|IFw
= φr

1 ⊕φ
n−r
2 , (ρc)∨|IFw

= ϕs
1⊕ϕ

n−s
2 ,

for some 0 < r < n and 0 < s < n. Since each pair of characters is distinct, we must

have φiϕ j 6= φiϕk and φ jϕi 6= φkϕi when j 6= k. In order for the tensor product to contain

precisely two distinct characters, this forces the equalities φiϕ j = φ jϕi and φiϕi = φ jϕ j .

Since one character occurs in ρ⊗ (ρc)∨ exactly n times (and the other n2
− n times), we

deduce, after some appropriate re-ordering, that

rs+ (n− r)(n− s) = n.

This has no solutions in integers 0 < r < n and 0 < s < n when n > 2, a contradiction.

(Indeed, we have 2n = rs+ rs+ (n− r)(n− s)+ (n− r)(n− s) > r + s+ (n− r)+ (n−
s) = 2n with equality if and only if r = s = (n− r) = (n− s) = 1.)

Now let us consider the case n = 2. In this case, the required character identities imply

that φi/φ j = ϕi/ϕ j is a character of order dividing 2. On the other hand, the ratio of

the two distinct characters occurring in ρ⊗ (ρc)∨|IFw
may be identified both with ψ and

with φi/φ j with i 6= j , which implies that ψ has order 2, a contradiction.

Combining the two previous lemmas (as well as lemmas from previous sections), we

are now able to prove a theorem which allows us to factor a compatible system into the
tensor product of two other compatible systems given such a factorization at one prime p.

Theorem 3.4.3. Let F be a CM field and let p > 2 be prime. Suppose that n is odd or that
n = 2. Let ({sλ}, {µλ}) be an odd, polarized, regular, weakly irreducible compatible system
of representations with associated p-adic representation (s, µ). Suppose that we can write

(s, µ) = (a, µ1)⊗ (b, µ2),

where a and b are n-dimensional representations which are de Rham at all places v|p.

Suppose also that we have the following:

• There is a positive density set of places l such that for each λ|l, the representation sλ
is strongly irreducible.

• s is strongly irreducible.

• The residual representation b has an image containing SLn(Fq) for q a sufficiently

large power of p in the sense of Lemma 3.2.10.
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• There is a finite place x - p of F+ which is inert in F, and a character ψ : G Fx → Q
×

p ,

such that

– ψc
|IFx
= ψ−1

|IFx
,

– ψ |IFx
has (finite) order greater than 2,

– a|G Fx
is unramified, and

– b|IFx
∼= ψ |IFx

⊕1⊕(n−1).

Then there are odd, polarized, regular, weakly irreducible compatible systems ({aλ}, {µ1,λ}),
({bλ}, {µ2,λ}) whose associated p-adic representations are respectively (a, µ1) and (b, µ2);

so in particular {sλ} = {aλ⊗ bλ}.

Proof. Under our first assumption, we deduce from [2, Proposition 5.3.2] that there

exists a set of primes l of density 1 with l > 2(n+ 1) and x - l, such that for each λ|l,
sλ is Fontaine–Laffaille at all places dividing l, sλ is strongly irreducible, and sλ|G F(ζl )

is irreducible. If n = 2, we furthermore can and do assume that Sym2 sλ is irreducible

and Fontaine–Laffaille, and l > 11. (The irreducibility of Sym2 sλ is an easy consequence

of the assumption that sλ is strongly irreducible – for example, one can deduce it from

Lemma 3.2.8.)

By Theorem 3.2.17, we may choose l such that we can write sλ = al ⊗ bl , where al and bl
are both n-dimensional representations of G F , the Zariski closure of bl contains SLn(Ql),

and the unordered pair {al , bl} is unique up to twist. It follows from [36, Theorem 3.2.10]

that we can choose al and bl to be unramified at all but finitely many places, and de

Rham at all places dividing l. (We apply the result to the surjection from GLn ×GLn to its

image in GLn2 ; [36, Hypothesis 3.2.4] is satisfied because F is CM and sλ is polarizable.)

It then follows from [32, Proposition 3.3.4] that we can furthermore ensure that al and bl
are in fact crystalline at all places dividing l. Moreover, the regularity of sλ immediately

implies the regularity of a and b.

Since sλ is Fontaine–Laffaille at all places dividing l and sλ|G F(ζl )
is irreducible, we see

that each of al and bl is Fontaine–Laffaille at all places dividing l, and that al |G F(ζl )
and

bl |G F(ζl )
are irreducible. Since sλ is strongly irreducible, al and bl are strongly irreducible.

We now show that al and bl are both polarizable. Since sc
λ
∼=µλs∨λ , it follows that

al ⊗ bl ∼=µλ(ac
l )
∨
⊗ (bc

l )
∨,

and by the uniqueness of al and bl up to twist, we see that there are characters ψl , ϕl :

G F → Q
×

l such that either al ∼=ψl(bc
l )
∨, bl ∼=ϕl(ac

l )
∨ or that al ∼=ψl(ac

l )
∨, bl ∼=ϕl(bc

l )
∨. In

either case, we have sc
λ
∼=ψlϕls∨λ , and it follows from Lemma 3.2.8 that ψlϕl = µ

c
λ = µλ.

In the first case, we have sλ∼= al ⊗ bl ∼=ϕlal ⊗ (ac
l )
∨. This contradicts Lemma 3.4.2

(the hypotheses of which are satisfied by our assumptions on a|G Fx
and b|G Fx

and by

Proposition 1.4.14).

We are therefore in the second case, and we need to show that ψl , ϕl both extend to

characters of G F+ . Taking the conjugate dual of the isomorphism bl ∼=ϕl(bc
l )
∨, we see that

also bl ∼=ϕ
c
l (b

c
l )
∨, so that bl ∼= (ϕl/ϕ

c
l )bl . Since bl is strongly irreducible, we have ϕl = ϕ

c
l ,

and ϕl extends to G F+ . Similarly, ψl also extends, as required.
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Since al , bl are polarizable, it follows from Lemma 3.4.1 that they are both odd. We

can now apply [2, Theorem 5.5.1] to the polarized representations (al , ψl) and (bl , ϕl),

obtaining compatible systems ({aλ}, {ψλ}) and ({bλ}, {ϕλ}) whose corresponding l-adic

representations are (al , ψl), (bl , ϕl), respectively. Since (sλ, µλ) = (al , ψl)⊗ (bl , ϕl),

we have (s, µ) = (ap, ψp)⊗ (bp, φp), where (ap, ψp) and (bp, ϕp) are the p-adic

representations corresponding to ({aλ}, {ψλ}) and ({bλ}, {ϕλ}), respectively.

Since we also have (s, µ) = (a, µ1)⊗ (b, µ2), it follows from Lemma 3.2.14 (since we

are assuming that s is strongly irreducible) that the pairs {ap, bp} and {a, b} agree up to

twist. After possibly exchanging {aλ} and {bλ}, we may suppose that bp is a twist of b.

Since b is strongly irreducible, and both b and bp are both polarizable and de Rham,
the twist must be by an algebraic character of G F . Replacing {bλ} by the twist by the

corresponding compatible system of characters, and {aλ} by the inverse twist, we have

constructed the sought-after compatible systems (note that we must have µ2 = ϕp by

another application of Lemma 3.2.8, so that also µ1 = ψp).

3.5. A technical lemma

We end this section with a technical lemma that will be used in § 4.1. We begin with

some equally technical preliminaries.

Lemma 3.5.1. Let H be a reductive linear algebraic group with a faithful irreducible linear

representation V , such that the restriction of V to H◦ remains irreducible. Let Z H denote

the centre of H . Then there is an injective map

H/Z H H◦→ Out(H◦,der).

In particular, if Z H is connected, then the component group of H injects into Out(H◦,der).

Proof. If Z H◦ denotes the centre of H◦, then the natural morphism H◦,der
× Z H◦ → H◦

is surjective (since H◦ is a connected reductive linear algebraic group). Thus we see that

the irreducible representation V of H◦ remains irreducible when restricted to H◦,der; and
we also see that the conjugation action of H◦ on H◦,der is via inner automorphisms, so

that there is indeed a well-defined morphism H/Z H H◦→ Out(H◦,der).

Suppose now that some element h ∈ H acts on H◦,der via an inner automorphism. We
must show that h ∈ Z H H◦. Multiplying h by an element of H◦,der, we may assume that h
actually centralizes H◦,der. Since V is an irreducible representation of H◦,der, we see that
h acts on V by scalars, and thus commutes with the action of H . Since H acts faithfully

on V , we see that h ∈ Z H , as required.

Lemma 3.5.2. Let H be a connected semisimple algebraic group with a faithful irreducible

representation of dimension 6 2d . If p > max(d, 3), then p does not divide the order

of Out(H◦,der).

Proof. Suppose that we have an element of Out(H◦,der) of order divisible by p. Any such

outer automorphism induces a non-trivial outer automorphism of the corresponding Lie

algebra. Since the simple Lie algebras only have automorphisms of order at most 3, any

such automorphism must consist of a permutation of the simple factors. But if there is
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a faithful representation of dimension at most 2d , then there can be at most d simple

factors, and Sd has no elements of order p if p > d.

The following lemma is the main result of this subsection. Recall that if M/F is a finite
extension, we let M F-gal denote the Galois closure of M over F .

Lemma 3.5.3. Let F be a number field, and let

a, b : G F → GLn(Fp)

be such that a⊗ b is irreducible. Let {rλ} denote a weakly compatible system

of n2-dimensional regular representations of G F such that rp = a⊗ b, where a is a

deformation of a, b is a deformation of b, and p > max(n, 3). Assume that the image of b
contains SLn(Fq) for q sufficiently large, in the sense of Lemma 3.2.10. If for some λ, rλ
is induced from an extension M/F, then [M F-gal

: F] has order prime to p.

Proof. We may (and so) assume, after tensoring {rλ} by a compatible system of characters

if necessary, that the image of det(rλ) is infinite. (Note that any twist of rλ is also induced
from M/F .) Let G◦λ ⊂ Gλ denote the connected component of the Zariski closure Gλ

of rλ. Let N/F denote the fixed field of the inverse image of G◦λ. Since the connected

component G◦λ is a normal subgroup of Gλ, it follows that N/F is Galois. On the other

hand, if rλ is induced from M , then certainly M ⊂ N , and hence M F-gal
⊂ N . Hence

it suffices to show that the component group of Gλ has order prime to p. For this, we
work at the prime p (since the order of the component group is independent of λ by

Theorem 1.4.15).

To this end, we now let G denote the Zariski closure of rp and G◦ the connected

component of the identity in G. By Lemma 3.2.16, we may assume that Gder,◦ is the

natural representation of Ader,◦
× Bder,◦, where A and B are the Zariski closures of the

images of a and b, respectively, and Bder,◦
= SLn(Qp). Let Z denote the centre of G.

Because det(G) is infinite, it follows that the Lie algebra g contains a non-trivial torus t,

and hence exp(t) ⊂ Z is infinite. Because G acts irreducibly, by Schur’s lemma, it follows

that Z consists of scalars, and thus Z = Q
×

p = Z◦ is connected.

Because rp is regular, it follows from Lemma 3.2.12 that rp is induced from a

strongly irreducible representation sp over some extension Mp/F . By comparison with the

decomposition of Gder,◦ above, this strongly irreducible representation has dimension mn
for some m|n with m[Mp : F] = n. In particular, the Galois closure M F-gal

p /F of Mp

over F has the property that Gal(M F-gal
p /F) is a subgroup of Sn , and thus has order

prime to p.

Let H denote the Zariski closure of the image of sp|G
M F-gal

p
. Since [M F-gal

p : F] has

order prime to p, it is enough to prove that the component group of H has order prime

to p. There is an inclusion G◦ ⊂ H ⊂ G, and Z H = Z = Z◦ is connected. Moreover,

since sp is strongly irreducible, it follows that H has a faithful irreducible representation

of dimension mn 6 n2 6 2n such that the restriction to H◦ is also irreducible. The result

now follows from Lemmas 3.5.1 and 3.5.2.
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4. Building Lifts

4.1. Deformations of a⊗ b and strong irreducibility

In this section, we show that strong irreducibility of compatible systems can be ensured by

imposing ramification conditions at finite places. These ramification conditions become

trivial after a finite base change, and we will use the Khare–Wintenberger method to

remove them from our final results.

We begin with the following preparatory lemma.

Lemma 4.1.1. Let K/Qh be a finite extension of degree prime to p for some prime h ≡
1 mod p. Suppose that l 6= h, and let

ρ : G K → GLm(Ql)

be a representation such that ρ|IK has finite p-power order. If p - m, then ρ admits a

1-dimensional subquotient which is the restriction of a character of GQh
.

Note that the lemma applies to both l = p and l 6= p.

Proof. Since not every irreducible constituent of ρ can be of degree a multiple of p,

we may reduce to the case that ρ is irreducible. The image of inertia has p-power

order and h 6= p. Hence the representation is tamely ramified. Any such irreducible

representation is of the form ρ = IndG K
GL
ψ for a character ψ of GL , where L/K is

unramified (although we do not use this fact) and the degree [L : K ] = m. It follows

that

n := [L : Qh] = [L : K ][K : Qh]

is prime to p. Also, since ρ|IK has p-power order, we see that ψ |IL has p-power order.

It is elementary to see that, since p - n and p|(h− 1), the largest power of p dividing |k×L |
is the same power of p which divides |F×h | = h− 1. (Indeed, (h− 1) divides |k×L |, which

in turn divides hn
− 1, and we have (hn

− 1)/(h− 1) ≡ n (mod p).) By local class field

theory, it follows that the character ψ of GL (whose restriction to inertia is, as we have

observed, of p-power order) is the restriction of a character of GQh
, which we also denote

by ψ . Yet then

ρ = IndG K
GL
ψ = ψ ⊗ IndG K

GL
1.

The representation IndG K
GL

1 contains a copy of the trivial representation. Since ρ is

irreducible, it follows that L = K , and ρ = ψ , as claimed.

Let F be a CM field. Consider a pair of irreducible representations:

a, b : G F → GLn(Fp)

such that a⊗ b is irreducible and a and b are polarizable. We now build on Lemma 3.5.3,

showing how we can control the extensions M/F from which representations inside a

compatible system containing a lift of a⊗ b could possibly be induced.

We will shortly prove Lemma 4.1.3, which enables us to show that, for certain

deformation problems, any deformation of a⊗ b which is induced must be induced from

one of a finite number of possible fields, independent of certain classes of auxiliary

ramification sets Σ . We start with the following preparatory lemma.
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Lemma 4.1.2. Let [Fv : Qv] be a finite extension, and let

r : G Fv → GLn(Ql)

be either potentially unramified if l 6= v or potentially crystalline if l = v. Assume that

the restriction of the Weil–Deligne representation WD(r) to the inertia group IFv factors

through a group of p-power order. Suppose that r is induced from a finite extension Mv/Fv
whose Galois closure M Fv-gal

v over Fv has order prime to p. Then Mv/Fv is unramified.

Proof. The formation of Weil–Deligne representations is compatible with inductions.

Hence, if r = IndG Fv
G Mv

s, then WD(r) = IndWFv
WMv

WD(s). It follows that the kernel of WFv
acting on WD(r) is contained in WMv and thus also contained in WM Fv-gal

v
. But the image

of WD(r) restricted to IFv has p-power order by assumption, and thus the inertia subgroup

of Gal(M Fv-gal
v /Fv) has p-power order. But Gal(M Fv-gal

v /Fv) has order prime to p by

assumption, and thus Mv/Fv is unramified.

Lemma 4.1.3. Fix a finite set S of places of F+ containing all primes above p and all the

primes at which a or b is ramified. Let {rλ} denote a weakly irreducible compatible system

of odd, polarizable, regular n2-dimensional representations of G F such that rp = c⊗ d,

where c is a deformation of a, and d is a deformation of b, and p > max(n, 3). Assume

that the image of b contains SLn(Fq) for q some sufficiently large power of p, in the

sense of Lemma 3.2.10.

Suppose that {rλ} is unramified outside a finite set S ∪Σ of places of F+ (in the sense

of Remark 1.4.5), and that for primes v ∈ Σ, rp(IFv ) is finite. Suppose that λ is a prime

such that the representation rλ is induced from M/F. Then

(1) [M F-gal
: F] has order prime to p,

(2) [M : F] 6 n2, and

(3) M/F is unramified outside S.

In particular, if S is fixed, there are only finitely many such M independently of the choice

of λ, the compatible system {rλ}, and the set Σ.

Proof. By shrinking Σ if necessary, we may (and do) assume that Σ is disjoint from S;

in particular, the representation a⊗ b is unramified at primes of Σ . In particular, since
the primes above p lie in S, we may assume that Σ does not contain any such prime.

The fact that [M F-gal
: F] has order prime to p is an immediate consequence of

Lemma 3.5.3. Let us consider the possible M from which rλ may be induced. The

degree [M : F] is certainly bounded by n2. If we prove that M/F is unramified at primes
not dividing S, then there are only finitely many such M/F as an immediate consequence

of a theorem of Hermite (following Minkowski). Consider the representation rp locally at

primes v ∈ Σ . By assumption, the image rp(IFv ) of the inertia subgroup IFv for v ∈

Σ factors through a finite quotient. On the other hand, the representation a⊗ b is

unramified at v. Hence the image of inertia factors through a finite quotient of p-power

order. By Proposition 1.4.14, the image of IFv factors through a finite quotient of p-power

order for all representations WD(rλ|G Fv
).
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Suppose that rλ is induced from M . Let v be a finite place of F . Then rλ|G Fv
is

induced from Mv. Moreover, the Galois closure M Fv-gal
v of Mv over Fv is contained in

the localization of the Galois closure M F-gal of F at v, and thus Gal(M Fv-gal
v /Fv) also has

order prime to p. If v /∈ S, then either v ∈ Σ and the image of IFv in WD(rλ|G Fv
) factors

through a finite quotient of p-power order or v 6∈ Σ and the image of IFv in WD(rλ|G Fv
)

is trivial. In either case, the claim that Mv/Fv is unramified follows immediately from
Lemma 4.1.2.

Given an integer n and a finite set S of places of F+, we now introduce certain auxiliary

primes v for fields M/F of the kind which arose in Lemma 4.1.3.

Lemma 4.1.4. For each non-trivial M/F unramified outside S with Gal(M F-gal/F) of
order prime to p, either M ⊂ F(ζp) or there exist infinitely many finite places v of F+

and w|v in F with the following properties:

(1) NF/Q(w) = h is prime, and h ≡ 1 (mod pm) for some pm > n2.

(2) h is unramified both in M and in the fixed fields of a and b over F. In particular,

w is unramified in M F-gal/F.

(3) The images of a(Frobw) and b(Frobw) have orders prime to p.

(4) The decomposition group of M F-gal/F at w is non-trivial.

(5) v (resp. w) lies outside any given finite set of places of F+ (resp. F).

Proof. A choice of w in F determines a unique prime v of F+ with w|v. Conditions (2)

and (5) exclude only finitely many places. (By definition, any prime which ramifies in M/Q
is either ramified in F/Q, which is fixed, or is ramified in M/F , which, by definition, is

unramified outside the fixed set S.) The remaining three conditions are a Chebotarev

condition relative to the image of G F in

Gal(F(ζpm )/F)×Gal(M F-gal/F)×GLn(Fp)×GLn(Fp),

where the maps to the two copies of GLn(Fp) factor via a and b, respectively. It suffices

to show that the image of G F contains an element whose projection is trivial in the first

group (for (1)), non-trivial in the second group (for (4)), and semisimple in the last two

groups (for (3)). The first two conditions can be satisfied simultaneously unless M F-gal
⊂

F(ζpm ). Since [M F-gal
: F] is prime to p, this is equivalent to M ⊂ M F-gal

⊂ F(ζp).

Thus if M 6⊂ F(ζp), then there exists a σ ∈ G F which is trivial in Gal(F(ζpm )/F) and

non-trivial in Gal(M F-gal/F). It follows that σ pk
also has this property for any k,

because Gal(M F-gal/F) has order prime to p. On the other hand, the image of any

sufficiently large p-power of any element of GLn(Fp) has order prime to p. Thus the

image of σ pk
for sufficiently large k in the product above has the desired shape.

Definition 4.1.5 (A suitable choice). Continuing on with our running assumptions on a
and b, suppose in addition that the assumptions of Lemma 4.1.3 are in effect. In

particular, both a and b are n-dimensional residual representations of G F which are

polarizable, the representation a⊗ b is absolutely irreducible, and there exists a weakly
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irreducible compatible system {rλ} such that rp = c⊗ d is a deformation of a⊗ b. Let S
be a set containing all primes above p and all primes where a and b are ramified. Fix

characters µ1, µ2 unramified outside S such that a and b are µ1- and µ2-polarizable,

respectively. For v ∈ S, consider any collection of local µ1-polarized components Cv
and µ2-polarized components Dv for a and b, respectively. Suppose, furthermore,

that Cv ⊗ Dv is regular for all v|p. We now choose an auxiliary set Σ disjoint from S and

components Cv, Dv for v ∈ Σ as follows. (Ultimately, we shall apply Lemma 4.1.3 with

precisely this set Σ .) For each of the finitely many fields M/F not contained in F(ζp) and

satisfying conditions (1), (2), and (3) in the conclusion of Lemma 4.1.3, we choose two

primes v in F+ with w|v in F according to Lemma 4.1.4, where the auxiliary set of places
given by (5) is the set of primes which ramify in any of the finitely many fields M/F .

Moreover, for each M/F , we choose this pair of places v so that they have distinct residue

characteristics. We now let Σ be the union of these pairs of places v of F+ for all M/F .

Our choice guarantees that, for any prime l, and for any given M/F , there exists a v ∈ Σ

corresponding to M/F with residue characteristic prime to l. We now choose Cv and Dv
as follows. Recall that F+v ' Fw ' Qh . Let ψ : GQh

→ Q
×

p be a character such that ψ |IFw
has order pm , which exists because h− 1 ≡ 0 mod pm . We consider deformations c and d
at v such that

c|IFw
=

n−1⊕
i=0

ψ i
|IFw

, d|IFw
=

n−1⊕
i=0

ψni
|IFw

.

Such deformations exist (locally) because a(Frobw) and b(Frobw) are semisimple. Since

the characters ψ i
|IFw

(and similarly the characters ψni
|IFw

) are pairwise distinct, this
defines unions of components of the corresponding local deformation rings. We choose Cv
and Dv to be any of the resulting components. The corresponding inertial type of the

n2-dimensional compatible system (which is well defined across the entire compatible

system, by Proposition 1.4.14) at each v ∈ Σ is

n2
−1⊕

i=0

ψ i
|IFw
=

n2
−1⊕

i=0

ψ i
|IF+v

.

(Note that IFw = IF+v .) In particular, it is a direct sum of distinct characters of p-power

order – here we use the assumption that pm > n2. As usual, the corresponding polarized
deformation rings of a and b are denoted by RC,Σ and RD,Σ , respectively. We refer to the

choice of auxiliary set Σ and corresponding components Cv and Dv as a suitable choice.

Equipped with the notion of a suitable choice, we now prove the following.

Lemma 4.1.6. Let {rλ} denote a weakly irreducible, polarizable, regular, odd compatible

system of n2-dimensional representations of G F such that rp = c⊗ d, where c and d are

deformations of a and b of types RC,Σ and RD,Σ , respectively for a suitable choice of Σ,

Cv and Dv as in Definition 4.1.5. Assume that p > max(n, 3), and that the image of b
contains SLn(Fq) for q some sufficiently large power of p, in the sense of Lemma 3.2.10.

Suppose that some rλ is induced from M/F. Then M ⊂ F(ζp).

https://doi.org/10.1017/S1474748020000195 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000195


582 F. Calegari et al.

Proof. Assume that rλ is induced from M/F . The choice of Cv and Dv for v ∈ Σ ensures

that, for primes v ∈ Σ , rp(IFv ) is finite. Hence, by Lemma 4.1.3, M/F is one of finitely

many fields which is unramified outside S, has degree bounded by n2, and M F-gal/F
has order prime to p. Suppose that M 6⊂ F(ζp). By the suitable choice of Σ as in

Definition 4.1.5, there exists a v ∈ Σ corresponding to M which satisfies the conditions

of Lemma 4.1.4 and has residue characteristic not dividing N (λ). Let us write

rλ = IndG F
G M

s : G F → GLn2(Ql).

Since the inertial type of rλ at v consists of distinct characters of IQh
, it suffices to show

that this is incompatible with being an induction.

Let x be a place of M F-gal lying over w (note that Fw = Qh). Since Gal(M F-gal/F) has

order prime to p, it follows that [M F-gal
x : Fw] = [M

F-gal
x : Qh] has order prime to p. We

have a representation
s|G

M F-gal
x
: G M F-gal

x
→ GLm(Ql),

where m[M : F] = n2, and so p - m (since p - n). It follows from Lemma 4.1.1 that s|M F-gal
x

contains at least one subquotient ω which is the restriction of a character of GQh
(note

that s(IM F-gal
x

) has finite p-power order because rλ(IFw ) does by the definition of a suitable

choice of Σ). By the definition of an induction, there is an identification

rλ|G M F-gal =

⊕
σ∈Gal(M F-gal/F)/Gal(M F-gal/M)

sσ |G M F-gal ,

where sσ (g) = s(σgσ−1).

The decomposition group of w in Gal(M F-gal/F) is non-trivial by the choice of v and w

(more precisely, by condition (4) of Lemma 4.1.4). Moreover, because M F-gal is the Galois

closure of M , the intersection of the conjugates of Gal(M F-gal/M) inside Gal(M F-gal/F)
is trivial. Hence, for a suitable choice of x |w in M F-gal, we may ensure that there exists

an element σ in the decomposition group of x above w in Gal(M F-gal/F) that does not

lie in Gal(M F-gal/M). It follows that s|G M F-gal ⊕ sσ |G M F-gal is a summand of rλ|G M F-gal.

But σ lies inside the decomposition group of x , and hence σ x = x , and sσ |G
M F-gal

x
is

the conjugate by σ of s|G
M F-gal

x
. Since ω occurs as a subquotient as s|G

M F-gal
x

, it follows

that ωσ is a subquotient of sσ |G
M F-gal

x
, and hence ω⊕ωσ is a subquotient of rλ|G

M F-gal
x

.

But ω is the restriction of a character of GQh
, and thus ωσ = ω, and ω⊕ω is a subquotient

of rλ|G
M F-gal

x
. By assumption, the restriction rλ|IFw

is a direct sum of distinct characters.

Since w is unramified in M F-gal/F by the construction of Σ (cf. Lemma 4.1.4 (2)), the

restriction rλ|G
M F-gal

x
must also be a direct sum of distinct characters, and hence we have

a contradiction.

Lemma 4.1.7. In the context of Lemma 4.1.6, assume also that r p|G F(ζp )
is absolutely

irreducible. Then rp is strongly irreducible, and for a positive density of primes l, the

representations rλ are strongly irreducible for all λ|l (that is, the compatible system {rλ}
is ‘weakly strongly irreducible’ ).
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Proof. By Lemma 3.2.12, the representations rλ which are absolutely irreducible

are strongly irreducible unless they are induced. Since {rλ} is weakly irreducible by

assumption, for a positive density of primes l, the representations rλ are irreducible for

all λ|l, and certainly rp is irreducible. Hence it suffices to show that the representations rλ
and rp are not induced from some finite extension M/F . By the previous lemma

(Lemma 4.1.6), this can happen only if M ⊂ F(ζp). Thus we will be done if we can

show that rp|G F(ζp )
is absolutely irreducible, and that {rλ|G F(ζp )

} is weakly irreducible.

Since r p|G F(ζp )
is absolutely irreducible by assumption, rp|G F(ζp )

is absolutely

irreducible. Since F(ζp)/F is CM, it follows from Lemma 1.4.17 that {rλ|G F (ζp)} is weakly

irreducible, as required.

We end this subsection with some results (versions of the Khare–Wintenberger

argument) that will allow us to remove the auxiliary conditions discussed above from

our final results. We remind the reader of the conventions introduced in Definition 2.1.5

and Conventions 1.4.21 and 1.4.22, which will be in force throughout the rest of this

section; namely, we write w (possibly decorated by subscripts and superscripts) for a

place of a CM field lying over the place v of its totally real subfield, and we do not

explicitly mention prolongations.

Lemma 4.1.8 (Descending the existence of a compatible system). Let S be a finite set of

finite places of F+ which contains all the places dividing p, and let (a, µ) be a polarized

representation which is unramified outside of S. Let µ : G F+ → Z
×

p be a de Rham lift

of µ which is unramified outside of S. For each v ∈ S, let Av be a µ-polarized component

for a|G Fw
. Assume that a : G F → GLn(Fp) is reasonable.

Suppose that there is a finite Galois extension of CM fields L/F, linearly disjoint

from F
ker a

(ζp) over F, and an odd, polarized, regular, weakly irreducible compatible

system of representations ({sλ}, {µ′λ}) of GL , with associated p-adic representation (s, µ′),
with the following properties:

(1) a|GL is reasonable.

(2) s∼= a|GL .

(3) µ′ = µ|GL .

(4) s is unramified outside of the places lying over S.

(5) For each place vL of L+ lying over a place v ∈ S, s|GLwL
lies on Av|L+vL

.

Then there is an odd, polarized, regular, weakly irreducible compatible system of

representations ({aλ}, {µλ}) of G F , with associated p-adic representation (a, µ), with the

following properties:

(1) a lifts a.

(2) a is unramified outside of S.

(3) For each place v ∈ S, a|G Fw
lies on Av.

Proof. By Theorem 2.1.16, after replacing L by a finite extension, we can and do assume

that ({sλ}, {µ′λ}) is automorphic. Let RA be the universal O-deformation algebra for a,
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for the deformations which are

• µ-polarized and odd,

• unramified outside of S,

• if v ∈ S, then the corresponding lift lies on Av.

Let RA′ be the universal O-deformation algebra for s, for the deformations which are

• µ′-polarized and odd,

• unramified outside of the primes lying over S,

• if v ∈ S, and vL |v is a place of L+, then the corresponding lift lies on Av|L+vL
.

By Proposition 1.4.24, RA has positive dimension, and by [2, Lemma 1.2.3], it is finite

over RA′ . Since RA′ is finite over O by Lemma 1.4.27, we deduce that RA is finite over O.

It follows that RA has Qp-points, and we let a be the representation corresponding to

such a point.

It remains to check that (a, µ) is part of a weakly irreducible compatible system. Since

(by construction) (s, µ′) is automorphic, it follows from Theorem 1.4.26 that (a|GL , µ
′)

is automorphic. Then (a, µ) is part of a compatible system by the usual argument with

Brauer’s theorem; to be precise, it follows from the proof of [2, Theorem 5.5.1], as the

appeal to [2, Theorem 4.5.1] in that proof is only in order to prove potential automorphy,

which we have already established. (Note that the hypothesis on the component groups

of the Galois representations made in the proof of [2, Theorem 5.5.1] is guaranteed by

Lemma 3.1.1; we are free to twist our representations by an algebraic character in order

to guarantee that the determinant has infinite order.) This compatible system is weakly

irreducible by Lemma 1.4.11.

Corollary 4.1.9 (Level lowering for a compatible system). Let S be a finite set of finite

places of F+, containing all of the places dividing p, and let (a, µ) be a polarized

representation which is unramified outside of S. Let µ : G F+ → Z
×

p be a de Rham lift

of µ which is unramified outside of S. Assume that a : G F → GLn(Fp) is reasonable.

For each v ∈ S, let Av be a µ-polarized component for a|G Fw
. Let Σ be a finite set of

finite places of F+, which is disjoint from S, and for each v ∈ Σ, let Av be a µ-polarized

component for a|G Fw
which is potentially unramified.

Suppose that there is an odd, polarized, regular, weakly irreducible system of

representations ({sλ}, {µλ}) of G F , with associated p-adic representation (s, µ), with the

following properties:

(1) s∼= a.

(2) s is unramified outside of S ∪Σ.

(3) For each place v ∈ S ∪Σ, s|G Fw
lies on Av.

Then there is an odd, polarized, regular, weakly irreducible system of representations

({aλ}, {µλ}) of G F , with associated p-adic representation (a, µ), with the following

properties:

(1) a lifts a.
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(2) a is unramified outside of S.

(3) For each place v ∈ S, a|G Fw
lies on Av.

Proof. We may choose a finite Galois extension L/F , linearly disjoint from F
ker a

(ζp)

over F , with the properties that a|GL remains reasonable, and for each v ∈ Σ , and each

place vL |v of L, s|GLwL
is unramified. The result then follows from Lemma 4.1.8, applied

to ({sλ|GL }, {µλ|GL+
}).

4.2. Local swapping

In this subsection, we prove our main theorem (Theorem 4.2.11), building on a series of

lemmas. We begin with the following lemma, which will be used to move components

between different mod p representations. Much of the rest of this section is devoted

to relaxing the rather restrictive hypotheses made in this lemma, culminating in

Lemma 4.2.9.

We again remind the reader that we are using the conventions introduced in

Definition 2.1.5 and Conventions 1.4.21 and 1.4.22. We extend Convention 1.4.21 in the

obvious way to subscripts and superscripts, so that w1 is a place of F over v1 in F+, wL
is a place of L over vL in L+, and so on.

Lemma 4.2.1 (Local swapping I). Suppose that either n > 1 is odd or n = 2. Let F be

a CM field, and let ({aλ}, {µλ}) and ({bλ}, {νλ}) be two weakly irreducible, odd, regular,

polarized compatible systems of n-dimensional representations with corresponding p-adic

representations (a, µ) and (b, ν). Let S be a finite set of finite places of F+ containing

all of the places lying over p, such that each of a, b, µ, or ν is unramified outside of S.

For each v ∈ S, write Av for the µ-polarized component determined by a|G Fw
, and Bv for

the ν-polarized component determined by b|G Fw
. Assume the following:

(1) For each place v ∈ S with v|p, the component Av ⊗ Bv is regular.

(2) The representations a and b are reasonable, and (a⊗ b)(G F(ζp)) is adequate.

(3) The image b(G F ) contains SLn(Fp).

(4) There is a finite place x - p with x ∈ S of F+ which is inert in F, and a character

ψ :G Fx → Q
×

p such that

• ψc
|IFx
= ψ−1

|IFx
,

• ψ |IFx
has (finite) order greater than 2,

• a|G Fx
is unramified, and

• b|IFx
∼=ψ |IFx

⊕1⊕(n−1).

We let T ⊂ S \ {x} be a set of places with the property that if v ∈ T , then there are

an equality µ|G F+v
= ν|G F+v

and a polarized isomorphism a|G Fw
∼= b|G Fw

. Furthermore, if

v ∈ T , then we set Cv = Bv and Dv = Av, while if v ∈ S \ T , then we set Cv = Av and

Dv = Bv.
Then there exist odd, regular, polarized, weakly irreducible compatible systems ({cλ},
{µλ}) and ({dλ}, {νλ}) with corresponding p-adic representations (c, µ) and (d, ν), having
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the following properties:

• c∼= a and d ∼= b.

• For each place v ∈ S, c|G Fw
lies on Cv and d|G Fw

lies on Dv.

• c and d are unramified outside of S.

Proof. Note first that since b is reasonable, we have p > 2(n+ 1) > 6, so in particular

b(G F ) is large enough that Lemma 3.2.10 applies. Note also that since a|G Fx
is unramified

but b|G Fx
is ramified, we have x /∈ T . By Corollary 4.1.9, it suffices to construct the desired

compatible systems after increasing the set S, provided that the additional components Av
that we choose are potentially unramified. Note that the assumption that (a⊗ b)(G F(ζp))

is adequate includes the assumption that a⊗ b is absolutely irreducible; accordingly, we

allow ramification in S ∪Σ , where Σ , and the components Cv and Dv for v ∈ Σ , are a

suitable choice as in Definition 4.1.5. We set Av = Cv and Bv = Dv for v ∈ Σ .

We consider the following four global deformation O-algebras RA,Σ , RB,Σ , RC,Σ ,

and RD,Σ , defined as follows (from this point onwards, we drop the Σ from the notation):

(1) RA and RC are deformation rings for a; RB and RD are deformation rings for b.

(2) The deformations are polarized and odd; the multiplier characters of RA, RB,

RC , RD are, respectively, µ, ν, µ, ν.

(3) If v ∈ S ∪Σ , then the restriction to G Fw of the universal deformation corresponding
to RA, RB , RC , or RD lies on the component Av, Bv, Cv, or Dv, respectively.

(4) The representations are unramified outside of S ∪Σ .

We also consider a fifth deformation O-algebra RA⊗B for a⊗ b, which is defined to

have the following properties:

(1) The deformations are polarized and odd, with multiplier µνδF/F+ .

(2) If v ∈ S ∪Σ , then the corresponding lift lies on the component Av ⊗ Bv = Cv ⊗ Dv.

(3) The representations are unramified outside of S ∪Σ .

Note that {aλ⊗ bλ} is weakly irreducible by Lemma 1.4.18. It follows from Lemma 1.4.27

(with S replaced by S ∪Σ) that RA⊗B is a finite O-algebra. We claim that RC and RD
are also both finite over O.

To prove this, we first note that any deformation coming from RC tensored with one

from RD gives, functorially, a deformation of type RA⊗B . The representation a⊗ b also

gives such a point. By Yoneda’s lemma, there exist corresponding morphisms:

RA⊗B → RA⊗̂ORB, RA⊗B → RC⊗̂ORD.

Since RA⊗B is finite over O, it then suffices to show that the morphism RA⊗B → RC⊗̂ORD
is finite.

By Nakayama’s lemma, we are reduced to showing that if A is an Artinian k-algebra

such that a and b admit deformations ã and b̃ to A (of types C and D, respectively) so

that ã⊗ b̃ is the trivial deformation of a⊗ b, then the corresponding map RC⊗̂ORD → A
factors through some subalgebra A′ of A of uniformly bounded length. To show this, let M
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be the fixed field of the kernel of a⊕ b. Then we find that

ã|G M ⊗ b̃|G M = (a⊗k A)|G M ⊗ (b⊗k A)|G M

is a free A-module with a trivial action of G M . Now, we claim that if V and W are

free A-modules with an action of G M such that the diagonal action on V ⊗A W is trivial,

then G M acts on V and W by scalars. Assume for the sake of contradiction that G M
does not act on V via a character. Then there exists an element v ∈ V and g ∈ G M such

that gv is not a multiple of v. Yet then (choosing w to be any element of W \mAW )
g(v⊗w) cannot possibly be a multiple of v⊗w, a contradiction. Hence the action of G M
on V (and W ) is by scalars.

Let Rdet(C), Rdet(D), etc. denote the corresponding deformation rings for the

determinants of our representations. We have the following diagram:

Rdet(A⊗B) Rdet(C)⊗̂Rdet(D)

RA⊗B RC⊗̂RD

We begin by showing that Rdet(C) and Rdet(D) are finite over O. The Hodge-theoretic

conditions imply that any two characters of type det(C) (or det(D)) differ by a finite

order character unramified outside S ∪Σ , and with ramification at v|p ∈ S ∪Σ bounded
purely by the corresponding type. The finiteness of Rdet(C) and Rdet(D) over O is now

an immediate consequence of class field theory. (Fixing one such pair of characters τC
and τD, the deformation rings over k are identified with group rings k[0] for some finite

ray class group 0.)

Hence we may additionally assume that the determinants of ã and b̃ are fixed.

From the argument above, we have also shown that the action of G M on the

corresponding A-modules V and W is via a scalar. Since there are only finitely many

characters of G M of order n which are unramified outside any fixed finite set of primes,

we deduce that there exists a finite Galois extension N/F such that the action of G N
on V and W is trivial. But this implies that the corresponding maps from RC and RD
to A factor through the quotient of the universal deformation ring over k of a and b
as representations of the finite group Gal(N/F). But the finiteness of these deformation

rings follows exactly as in the proof of Lemma 1.2.3 of [2].

Since RC and RD are finite over O, and have dimension at least one by

Proposition 1.4.24, this shows that RC and RD both have non-trivial Qp-valued

points. Make a choice of such points, and let c, d be the corresponding p-adic

representations. Recall that {aλ⊗ bλ} is weakly irreducible, and thus potentially
automorphic by Lemma 1.4.11. In particular, given any finite Galois extension F (avoid)/F ,

we can find a CM Galois extension L/F which is linearly disjoint from F (avoid)/F
and is such that {(aλ⊗ bλ)|GL } is automorphic. Furthermore, by replacing F (avoid)

by F (avoid)F
ker a⊗b

(ζp), we may assume that (a⊗ b)(GL(ζp)) is adequate, and ζp /∈ L.

Making a further quadratic base change if necessary, we can also assume that all places

at which a⊗ b is ramified, and all places lying over p, are split places. Then (c⊗ d)|GL

is automorphic by Theorem 1.4.26. As in the proof of Lemma 4.1.8, it follows from
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the proof of [2, Proposition 5.5.1] that c⊗ d is part of a regular, odd, polarizable weakly

irreducible compatible system {tλ} (again, using Lemma 3.1.1 to guarantee the hypothesis

on the component groups made in [2, Proposition 5.5.1]).

We will now apply Theorem 3.4.3 to the compatible system {tλ}, and so deduce that c,

d are the p-adic representations corresponding to compatible systems {cλ}, {dλ}, which

(by construction) satisfy all the requirements of the lemma. To complete the proof, it

suffices to verify that the hypotheses of Theorem 3.4.3 are satisfied by {tλ}. The strong

irreducibility assumptions are satisfied by Lemma 4.1.7 and the conditions at the places

in Σ , which implies that the hypotheses of Lemma 4.1.6 hold. The hypothesis on the

image of b is satisfied by assumption. Finally, the place x required in the hypotheses of
Theorem 3.4.3 can be taken to be the place x appearing in hypothesis (4) of the present

lemma: indeed, the hypotheses on the behaviour of a and b at x involve just the restriction

of these representations to the inertia group at x , and thus they are constant along the

components Ax and Bx . As noted above, x 6∈ T , and thus Cx = Ax and Dx = Bx , so that

these same hypotheses are satisfied by c and d. This completes the verification of the

hypotheses of Theorem 3.4.3, and so also completes the proof of the lemma.

Remark 4.2.2. The polarizability requirement in the previous lemma is essential, even

for n = 1. In particular, there are genuine global obstructions (arising from units) to

producing characters with prescribed ramification properties at all primes. However,

the polarizable condition implies that (in our setting) the corresponding characters are

unitary and come from the −1-part of the corresponding ray class groups; in particular,

there are no unit obstructions provided that p 6= 2 (and in this paper, p is never 2).

We now introduce potentially diagonalizable lifts into the picture. We remind the reader

of Convention 2.1.4 (that we will assume without explicit mention that the gaps between

the Hodge–Tate weights of our potentially diagonalizable lifts are sufficiently large); we

will also sometimes assume without further comment that in base change arguments

the weights and types of the potentially diagonalizable representations have been chosen
compatibly.

Lemma 4.2.3 (Existence of potentially diagonalizable lifts). Let s : G F → GLn(Fp) be a

pleasant representation in the sense of Definition 2.1.7, namely:

• ζp /∈ F, and s|G F(ζp )
is irreducible.

• s is polarizable and odd.

• p > 2(n+ 1).

• All the primes v|p in F+ split completely in F.

• For each place w|p of F, s|G Fw
admits many diagonalizable lifts.

Let µ be a character such that (s, µ) is polarized. Let µ be a de Rham lift of µ. Let S be

a finite set of finite places of F+, including all places at which s or µ is ramified, and all

places lying over p.
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Then there is an odd, regular, polarized weakly irreducible compatible system ({sλ}, {µλ})
of G F -representations whose associated p-adic representation is (s, µ), where:

• s lifts s,

• s is unramified outside of S, and

• s is potentially diagonalizable at all places v|p.

Furthermore, if we fix a µ-polarized component Cv of s for each place v - p in S, then we

may assume that s|G Fw
lies on Cv for each v.

Proof. The existence of s follows immediately from [4, Theorem 5.2.1] (the hypotheses of

which hold by [2, Theorems 4.3.1, 4.5.1]). That s is part of a compatible system follows

from [2, Theorem 5.5.1].

We will also make use of the following variant of the previous result, where we no longer

require that s|G Fw
admit potentially diagonalizable lifts for w|p in F , but we allow a finite

base change.

Lemma 4.2.4 (Existence of potentially diagonalizable lifts II). Let s : G F → GLn(Fp) be

a reasonable representation in the sense of Definition 2.1.6, that is:

• ζp /∈ F, and s|G F(ζp )
is irreducible.

• s is polarizable and odd.

• p > 2(n+ 1).

Let µ be a character such that (s, µ) is polarized. Let µ be a de Rham lift of µ. Let S be

a finite set of finite places of F+, including all places at which s or µ is ramified, and all
places lying over p. Let F (avoid)/F be a finite extension.

Then there is a finite Galois extension of CM fields L/F, linearly disjoint from the

field F (avoid)(ζp) over F, and an odd, regular, polarized weakly irreducible compatible

system ({sλ}, {µλ}) of GL -representations whose associated p-adic representation

is (s, µ|GL ), where:

• s|GL is pleasant,

• s lifts s|GL ,

• s is unramified outside of the places lying over SL , and

• s is potentially diagonalizable at all places v|p.

Furthermore, if we fix a µ-polarized component Cv of s for each place v - p in S, then we

may assume that s|G FwL
lies on Cv|L+vL

for each vL |v.

Proof. By Lemma 2.1.8, we may find a finite extension L/F linear disjoint
from F (avoid)(ζp)/F such that s|GL is pleasant. The result then follows immediately from

Lemma 4.2.3.

Remark 4.2.5 (Arguments both reasonable and pleasant). The notions of reasonable and

pleasant (Definitions 2.1.6 and 2.1.7, which were also just recalled in the statements of

Lemmas 4.2.4 and 4.2.3, respectively) are very closely related. Pleasant representations

are automatically reasonable, and reasonable representations are pleasant after a finite
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extension (Lemma 2.1.8). Since, in the ultimate application, we only assume our residual

representations are reasonable, we have endeavoured to structure the arguments below

to only require reasonable hypotheses on the relevant residual representations. However,

at a number of points (including in the conclusions of Lemmas 4.2.6 and 4.2.7 as well as

during the proofs of Lemma 4.2.9 and Theorem 4.2.11), we deduce that certain residual

representations satisfy the stronger condition of pleasantness, even though, almost all of

the time, we only ever use the fact that these resulting representations are reasonable.

(One notable exception is the proof of Lemma 4.2.6, where, to invoke Lemma 4.2.3, we

require that r is reasonable.) Thus the close reader should bear in mind that when it

is stated that a certain residual representation is pleasant, the main implication to take
away is that it is reasonable.

The following lemma and its corollaries will be used in our later arguments to replace

a given representation with one which behaves well under base change.

Lemma 4.2.6 (Auxiliary representations). Let (a, µ) be polarized and odd, where a :
G F → GLn(Fp) is reasonable, and let S be a finite set of finite places of F+, containing

all the places lying over p, and all places at which (a, µ) is ramified. Let F (avoid)/F be a

finite extension, and let q be a power of p.

Then there is a finite Galois extension L/F with ζp /∈ L, which is linearly disjoint

from F (avoid) over F, and a weakly irreducible, odd, polarized, regular compatible system

({rλ}, {µλ|GL+
}) of GL -representations with associated p-adic representation (r, µ|GL+

),

which satisfies the following:

(1) a|GL is pleasant.

(2) r and r |GLgal
are pleasant, and r(GLgal) ⊃ SLn(Fq); here Lgal denotes the Galois

closure of L over Q.

(3) (r ⊗ a|GL )(GL(ζp)) is adequate.

(4) Each place in S splits completely in L+. For each place vL of L+ lying over a

place v ∈ S, we have polarized isomorphisms r |GLwL
∼= a|GLwL

= a|G Fw
.

(5) There is a finite place x of L+ which is inert in L and does not lie over any place

in S, and a character ψ : GLx → Q
×

p with ψc
|ILx
= ψ−1

|ILx
, such that µ|GL+x

is

unramified, ψ |ILx
has finite order greater than 2, and r |ILx

∼= ψ |ILx
⊕1⊕(n−1).

(6) There is an isomorphism r |ILx
∼= ψ |ILx

⊕1⊕(n−1).

(7) For any place v of L+ not lying over S at which r |GLw
is ramified, r(ILw ) is finite.

(8) r |GLw
is potentially diagonalizable for all places w|p of F.

Proof. By Lemma 4.2.3, it is enough to construct the odd, polarized pair (r , µ|GL+
)

satisfying properties (1)–(5), since we may choose local components which force

conditions (6)–(8). Replacing F (avoid) with F (avoid)F
ker a

(ζp), and applying Lemma 2.1.8,

we see that we can ignore the requirements that a|GL is pleasant, and that ζp /∈ L.
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Choose a finite place y /∈ S of F+ which is inert in F and is such that µ|G F+y
is

unramified, and choose a character ψ : G Fy → Q
×

p with ψc
|IFy
= ψ−1

|IFy
such that ψ |IFy

has finite order greater than 2. (Note that we can do this for every place y which is inert

in F .)

Replacing q with a power of q if necessary, we may assume that ψ , µ, and all of the

representations a|G Fw
with v ∈ S are defined over Fq . We may also assume that PSLn(Fq)

is simple, and is not isomorphic to any Jordan–Hölder factor of Gal(Fgal/Q), and
that q is large enough so that condition (3) follows automatically from condition (2)

by Lemma 1.4.37. (Note that if r(GLgal) ⊃ SLn(Fqk ) for some k, then in particular,

r(GLgal) ⊃ SLn(Fq).)
Arguing exactly as in the proof of [20, Proposition A2], by [10, Proposition 3.2] (see

also [35, Theorem 1.2]) we can find a finite totally real extension L+/F+, linearly disjoint

from F (avoid) over F+, in which all places above S ∪ {y} split completely, and a surjective

odd reasonable µ|GL+
-polarized representation r : GL → GLn(Fq) (where L = L+F) with

the property that for each place vL of L lying over a place v ∈ S, we have a polarized

isomorphism r |GLwL
∼= a|GLwL

. In addition, for each place x of L+ lying over y, we can

ensure that r |ILx
∼= ψ |ILx

⊕1⊕(n−1). Furthermore, by the same restriction of scalars trick

that we used in the proof of Theorem 2.1.16, we can assume that L+ is of the form M+F+,

where M+/Q is Galois.

It remains to check property (2). Since M+/Q is Galois, we have Lgal
= M+Fgal

=

L Fgal, and since we are assuming that PGLn(Fq) is simple and is not isomorphic to any

Jordan–Hölder factor of Gal(Fgal/Q), it follows that the projective image of r |Lgal(ζl )

contains PGLn(Fq), from which the required property follows at once.

Corollary 4.2.7 (Auxiliary representations with specified components). Suppose that

either n is odd or n = 2. Let F be a CM field, and let ({aλ}, {µλ}) be a weakly

irreducible, odd, regular, polarized compatible system of n-dimensional representations

with corresponding p-adic representation (a, µ). Assume that a is reasonable. Let S be a

finite set of finite places of F+ containing all of the places lying over p, and chosen so

that (a, µ) is unramified outside of S.

For each v ∈ S, write Av for the µ-polarized component determined by a|G Fw
. Let

F (avoid)/F be a finite extension, and let q be a power of p.

Then there is a finite Galois extension L/F with ζp /∈ L, which is linearly disjoint

from F (avoid) over F, such that for each set T of places of L+ which divide p, there

is a weakly irreducible, odd, polarized, regular compatible system ({sλ}, {µλ|GL+
}) of

GL -representations with associated p-adic representation (s, µ|GL+
), which satisfies the

following:

(1) a|GL is pleasant.

(2) s is pleasant, and is independent of the choice of T (up to isomorphism).

(3) s|GLgal
is pleasant, and s(GLgal) ⊃ SLn(Fq).

(4) (s⊗ a|GL )(GL(ζp)) is adequate.
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(5) For each place vL of L+ lying over a place v ∈ S, we have a polarized isomorphism

s|GLwL
∼= a|GLwL

.

(6) For each place vL /∈ T of L+ lying over a place v ∈ S, s|GLwL
lies on Av|GL+vL

.

(7) s|GLwL
is potentially diagonalizable for all places wL lying over places in T .

(8) There is a finite place x of L+ which is inert in L and does not lie over a place

in S, and a character ψ : GLx → Q
×

p with ψc
|ILx
= ψ−1

|ILx
, such that µ|GL+x

is

unramified, ψ |ILx
has finite order greater than 2, and s|ILx

∼= ψ |ILx
⊕1⊕(n−1).

(9) For any place v of L+ not lying over S at which s|GLw
is ramified, s(ILw ) is finite.

(10) Both L/F, x, and ψ can be chosen independently of the choice of T .

Proof. By Lemma 4.2.6, we may construct a compatible system ({rλ}, {µλ|GL+
}) which

satisfies all the required conditions of the theorem except perhaps (6), and is potentially

diagonalizable at all places above p. We now apply Lemma 4.2.1 to the compatible

systems ({aλ|GL }, {µλ|GL+
}) and ({rλ}, {µλ|GL+

}) with respect to the set T . The result is a

compatible system ({sλ}, {µλ|GL+
}) with s = r independent of T and such that (s, µ|GL+

)

lies on the component associated to a for all vL /∈ T and the component associated to r
(which is a potentially diagonalizable component) for all vL ∈ T , as required. Note that L
is the field on whose absolute Galois group s is defined and so can be chosen independently

of T , and similarly x and ψ can be chosen independently of T (as an examination of the

relevant arguments shows).

Corollary 4.2.8. Maintaining the notation and assumptions of Corollary 4.2.7, we can

instead produce L/F and {sλ} satisfying conclusions (1)–(7) of Corollary 4.2.7, such that
in addition s is unramified outside of S.

Proof. This follows from Corollary 4.2.7 by making a further base change to remove the

ramification at places (including x) not lying over S.

We can now establish the following improvement on Lemma 4.2.1, where we no longer

need to make assumptions (1)–(4) there; we even allow a = b.

Lemma 4.2.9 (Local swapping II). Suppose that either n is odd or n = 2. Let F be a CM
field, and let ({aλ}, {µλ}) and ({bλ}, {νλ}) be two weakly irreducible, odd, regular, polarized

compatible systems of n-dimensional representations of G F with corresponding p-adic
representations (a, µ) and (b, ν). Let S be a finite set of finite places of F+, containing

all of the places lying over p, and chosen such that (a, µ) and (b, ν) are unramified outside

of S. For each v ∈ S, write Av for the µ-polarized component determined by a|G Fv
, and Bv

for the ν-polarized component determined by b|G Fv
. Assume that the representations a

and b are reasonable.

Let T ⊂ S be a set of places with the property that if v ∈ T , then µ|G F+v
= ν|G F+v

,

and there is a polarized isomorphism a|G Fw
∼= b|G Fw

. If v ∈ T , then we set Cv = Bv and

Dv = Av, and if v ∈ S \ T , then we set Cv = Av and Dv = Bv.
Then there exist odd, regular, polarized, weakly irreducible compatible systems

({cλ}, {µλ}) and ({dλ}, {νλ}) with corresponding p-adic representations (c, µ) and (d, ν),
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with the following properties:

• c∼= a and d ∼= b.

• For each place v ∈ S, c|G Fw
lies on Cv and d|G Fw

lies on Dv.

• c and d are unramified outside of S.

Proof. Since the statement is symmetric in ({aλ}, {µλ}) and ({bλ}, {νλ}), it is enough

to prove that ({cλ}, {λµ}) exists. We apply Corollary 4.2.7 twice to the compatible

system ({bλ}, {νλ}). The point of this construction is to provide auxiliary compatible

systems to which we can apply Lemma 4.2.1. In the first application, we take T in

Corollary 4.2.7 to be the set of places of F+ lying over p, and in the second application,

we take T to be the set of places in our S \ T which lie over p. The extension L/F ,

the place x , and the character ψ can be chosen independently of T by Corollary 4.2.7

part (10), and hence we may make the same choice on both cases. We deduce the existence

of a finite Galois extension of CM fields L/F , and odd, regular, polarizable, weakly

irreducible compatible systems ({sλ}, {νλ|GL+
}) and ({tλ}, {νλ|GL+

}) of GL -representations,

with associated p-adic representations (s, ν|GL+
) and (t, ν|GL+

), respectively, such that

we have the following:

• s∼= t .

• a|GL , b|GL , and s = t are pleasant.

• s(GL) contains SLn(Fp).

• (s⊗ a|GL )(GL(ζp)) is adequate.

• For each place vL of L+ lying over a place v ∈ S, we have polarized isomorphisms

s|GLwL
= t |GLwL

∼= a|GLwL
.

• For each place vL of L+ not dividing p and lying over a place v ∈ T , s|GLwL
and t |GLwL

lie on Bv|L+vL
.

• s is potentially diagonalizable at every place dividing p.

• t is potentially diagonalizable at every place dividing p and lying over a place in S \ T .

• At each place vL of L lying over a place v|p with v ∈ T , t |GLwL
lies on Bv|L+vL

.

• There is a finite place x of L+ which is inert in L and does not lie over a place in S,

and a character ψ : GL+x → Q
×

p with ψc
|ILx
= ψ−1

|ILx
, such that µ|GL+x

is unramified,

ψ |ILx
has finite order greater than 2, and

t |ILx
∼= s|ILx

∼= ψ |ILx
⊕1⊕(n−1).

Applying Lemma 4.2.1 to ({aλ|GL }, {µλ|GL+
}) and ({sλ}, {νλ|GL+

}), we deduce the existence

of an odd, regular, polarizable, weakly irreducible compatible system ({uλ}, {µλ|GL+
}) of

GL -representations with associated p-adic representation (u, µ|GL+
), with the following

properties:

• u∼= a|GL .

• For each place vL of L+ lying over a place v ∈ S not dividing p, u|GLwL
lies on Av|GL+vL

.

• For every place vL |p of L+ lying over a place v ∈ S \ T , u|GLwL
lies on Av|L+vL

.

https://doi.org/10.1017/S1474748020000195 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000195


594 F. Calegari et al.

• u is potentially diagonalizable at every place dividing p and lying over a place in T .

• u is unramified outside of S.

Applying Lemma 4.2.1 to ({uλ}, {µλ|GL+
}) and ({tλ}, {νλ|GL+

}), we then obtain an

odd, regular, polarized, weakly irreducible compatible system ({eλ}, {µλ|GL+
}) of

GL -representations with associated p-adic representation (e, µ|GL+
), with the following

properties:

• e∼= a|GL .

• For each place vL lying over a place v ∈ S \ T , e|GLwL
lies on Av|L+vL

.

• For each place vL lying over a place v ∈ T , e|GLwL
lies on Bv|L+vL

.

• e is unramified outside of S.

The existence of ({cλ}, {µλ}) now follows from Lemma 4.1.8, applied to ({eλ}, {µλ|GL+
}).

Corollary 4.2.10 (Merging components). Suppose that either n is odd or n = 2. Let F
be a CM field, and let S be a finite set of finite places of F+, containing all of the

places lying over p. Let T be a set of places of F+ which divide p. Let ({aλ}, {µλ})
and

{
({rvλ }, {ν

v
λ})
}
v∈T be weakly irreducible, odd, regular, polarized compatible systems of

n-dimensional representations of G F with corresponding p-adic representations (a, µ)
and (rv, νv).

For each v ∈ S, write Av for the µv-polarized component determined by a|G Fw
.

Assume that all of the representations a and {rv}v∈T are reasonable, and that the

representations (a, µ) and {(rv, νv)}v∈T are unramified outside of S. Assume also, for

each v ∈ T , that µ|G F+v
= νv|G F+v

, and that there is a polarized isomorphism a|G Fw
∼=

rv|G Fw
.

Then there exists an odd, regular, polarized, weakly irreducible compatible
system ({cλ}, {µλ}) with corresponding p-adic representation (c, µ), with the following

properties:

• c∼= a.

• For each place v ∈ S \ T , c|G Fw
lies on Av.

• For each place v ∈ T , c|G Fw
lies on the component determined by rv|G Fw

.

• c is unramified outside of S.

Proof. Let v1, . . . , vm be the places in T . We claim that for each 0 6 i 6 m, we can

find an odd, regular, polarized, weakly irreducible compatible system ({ci
λ}, {µλ}) with

corresponding p-adic representation (ci , µ), with the following properties:

• ci ∼= a.

• For each place v ∈ S \ T , ci
|G Fw

lies on Av.

• For each j 6 i , ci
|G Fw j

lies on the component determined by rv j |G Fw j
.

• For each j > i , ci
|G Fw j

lies on the component determined by a|G Fw j
.

• ci is unramified outside of S.
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Assuming we can do this, we can take {cλ} := {cm
λ }. We prove the existence of the {ci

λ}

by induction on i , taking {c0
λ} := {aλ}. Then the existence of {ci+1

λ } is immediate from

Lemma 4.2.9 applied to ({ci
λ}, {µλ}) and ({rvi+1

λ }, {ν
vi+1
λ }) (taking the set T there to

be {vi+1}).

Our main theorem is the following (recall that the notion of a globally realizable

component was defined in Definition 2.1.9).

Theorem 4.2.11. Assume that either n is odd or n = 2. Let F be a CM field, and let (s, µ)
be a polarized representation, where s : G F → GLn(Fp) is reasonable. Let S be a finite set

of finite places of F+, such that S contains all of the places at which (s, µ) is ramified and

all of the places lying over p. Let µ be a de Rham lift of µ which is unramified outside

of S. For each place v ∈ S, let Cv be a µ-polarized component for s|G Fw
.

Assume that Cv is globally realizable for each v ∈ S which divides p. Then there

exists an odd, regular, polarized, weakly irreducible compatible system ({sλ}, {µλ})
of G F -representations with associated p-adic representation (s, µ), which satisfies

(1) s lifts s, and for each place v ∈ S, the representation s|G Fw
lies on Cv,

(2) s is unramified outside S.

Proof. Fix a place v1 ∈ S which lies over p. By definition, the hypothesis that Cv1 is

globally realizable means that we can find a CM field E , a place vE,2|p of E+ such

that E+vE,2
∼= F+v1

, a finite set SE of places of E+ containing all of the places lying

over p, and an odd, regular, polarized, weakly irreducible compatible system ({rλ}, {µE,λ})

of G E -representations with associated p-adic representation (r, µE ), such that r is

reasonable, r is unramified outside of SE , and r |G EwE,2
lies on Cv1 (which as usual

implies in particular that µE |G E+vE,2
' µ|G F+v1

and that there is a polarized isomorphism

r |G EwE,2
∼= s|G Fw1

). The reason we use the distinct numbers 1 and 2 in the subscripts is

that we shall ultimately construct a field M containing both E and F , and there will be

no a priori relation between the primes of M+ over v1 in F+ and vE,2 in E+.

Applying Lemma 4.2.4 to s, we may find a finite Galois extension L/F of CM fields

and an odd, regular, polarizable, weakly irreducible compatible system ({̃sλ}, {µλ|GL+
})

of GL -representations with associated p-adic representation s̃, such that s|GL is pleasant,

s̃ lifts s|GL , and s̃ is potentially diagonalizable at all places over p. (Here {µλ} is the

compatible system containing the character µ.) This compatible system is our initial

seed; we now begin constructing auxiliary compatible systems in order to apply our

component swapping to ultimately construct the desired representation.

Applying Corollaries 4.2.7 and 4.2.8 to ({̃sλ}, {µλ|GL+
}), we can, after possibly

further extending L, find an odd, regular, polarizable, weakly irreducible compatible

system ({tλ}, {µλ|GL+
}) of GL -representations with associated p-adic representation t ,

such that we have the following:

• s|GL , t and t |G
(L E)gal

are pleasant. (The pleasantness of s|GL and t, and also of t |Lgal ,

is ensured by the very statements of Corollaries 4.2.7 and 4.2.8. The pleasantness

of G(L E)gal can then be achieved by taking q in Corollaries 4.2.7 and 4.2.8 to be
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sufficiently large, and in particular large enough that PGLn(Fq) is simple and not

isomorphic to any Jordan–Hölder factor of Gal(Egal/Q).)

• For each place vL of L+ lying over a place v ∈ S, we have a polarized isomorphism

t |GLwL
∼= s|GLwL

.

• At each place vL of L+ lying over a place v ∈ S which does not divide p, t |GLwL
lies

on Cv|L+vL
.

• t |GLwL
is potentially diagonalizable for all places vL |p of L+.

• t is unramified outside of the places lying over S.

Now applying Corollaries 4.2.7 and 4.2.8 to ({rλ}, {µE,λ}), we may find a finite Galois

extension K/E of CM fields and an odd, regular, polarizable, weakly irreducible

compatible system ({uλ}, {νλ|G K+
}) of G K -representations with associated p-adic

representation (u, ν|G K+
), such that we have the following:

• u|G
(L K )gal

and t |G
(L K )gal

are pleasant. (This can be achieved by noting that we may

choose K/E to be linearly disjoint not only from (L E)gal but also from the Galois

closure of the splitting field of t .)

• For each place vK of K lying over a place in SE , we have a polarized isomorphism

u|G KvK
∼= r |G KvK

.

• u|G KwK
is potentially diagonalizable for all places vK |p of K+ lying over places in SE ,

except for the places vK ,2 lying over vE,2, for which u|G KwK ,2
lies on Cv1 |K+vK ,2

.

• ν|G K+vK ,2
' µE |G K+vK ,2

and µE |G E+vE,2
' µ|G F+v1

. The first condition follows from the

corollary we are invoking and the second condition was already assumed to be true.

• u is unramified outside of the places lying over SE .

For ease of notation, we now write M = (L K )gal; note then that Mgal
= M . We also draw

the following picture which represents the inclusions between various fields which occur

in this argument:

FF+

E L+ L

K+ K (L E)gal+ (L E)gal

M+ M

E+
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Choose a place vM,2 above vK ,2 and vE,2 in M+. We now conjugate {uλ} by elements

of Gal(M/Q). Because Gal(M/Q) acts transitively on the primes above p in M+, there

exists in particular a σ ∈ Gal(M/Q) with σvM,2 = vM,1 for any choice of prime vM,1 above

our fixed place v1 of F+. Note that, by construction, there will be a polarized isomorphism

uσ |G MwM,1
' u|G MwM,2

' r |G MwM,2
' s|G MwM,1

' t |G MwM,1
,

where the second isomorphism comes from the construction of {uλ}, and the third

isomorphism was one of the defining properties of {rλ}. Similarly, there is an identification

of characters

νσ |G M+vM,1
' ν|G M+vM,2

' µ|G M+wM,1
.

We now apply Lemma 4.2.9 to ({tλ|G M }, {µλ|G M+
}) and ({uσλ |G M }, {νλ|G M+

}) relative to the

set T = {vM,1}. We deduce the existence of an odd, regular, polarized, weakly irreducible

compatible system ({aλ}, {µλ|G M+
}) of G M -representations with associated p-adic Galois

representation (a, µ|G M+
), with the following properties:

• a = t |G M is pleasant.

• At the place vM,1 of M+ lying over v1 in F+, the representation a|G MwM,1
lies

on Cv1 |M+vM,1
.

• a is potentially diagonalizable at all places dividing p other than the places over vM,1.

• At each place vM of M+ lying over a place v ∈ S which does not divide p, a|G MwM
lies

on Cv|M+vM
.

• a is unramified outside of the places lying over S.

As above, we now conjugate {aλ} by elements of Gal(M/F) = Gal(M+/F+).
Because Gal(M+/F+) acts transitively on the primes above v1 in M+, for any such
prime ṽM,1|p, there exists a σ ∈ Gal(M/F) with σ ṽM,1 = vM,1, and thus we deduce that

there exists an odd, regular polarized, weakly irreducible compatible system ({aσλ }, {µ
σ
λ })

of G M -representations with associated p-adic Galois representation (aσ , µσ ), with the

following properties:

• ṽM,1 is a prime in M+ above v1 in F+.

• aσ is pleasant.

• µσ |G M+
ṽM,1

= µ|G M+
ṽM,1

, and there is a polarized isomorphism

aσ |G Mw̃M,1
= tσ |G Mw̃M,1

= t |G Mσw̃M,1
= t |G MwM,1

∼= t |G Mw̃M,1

for w̃M,1 |̃vM,1 in M . This is because the representations t |G Mw̃M,1
are all isomorphic to

the restrictions of s|G Fw1
to G Mw1

, and so do not depend on the choice of ṽM,1 above v1
in M .

• aσ |G Mw̃M,1
lies on Cv1 |M+ṽM,1

.

• aσ is potentially diagonalizable at all places of M dividing p other than those lying

over ṽM,1.
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We now apply Corollary 4.2.10 to the compatible systems ({tλ|G M }, {µλ|G M+
})

and ({aσλ }, {µ
σ
λ }), where we let σ range over a set of elements of Gal(M/F) = Gal(M+/F+)

such that σ ṽM,1 = vM,1, where ṽM,1 ranges exactly over the primes of M+ above v1
in F+. We deduce the existence of an odd, regular, polarized, weakly irreducible

compatible system ({bλ}, {µλ|G M+
}) of G M -representations with associated p-adic Galois

representation (b, µ|G M+
), with the following properties:

• b = t |G M is reasonable.

• At every place ṽM,1|p of M+ which lies over v1, b|G Mw̃M,1
lies on Cv1 |M+ṽM,1

.

• b is potentially diagonalizable at all places of M dividing p and not lying over v1.

• At each place vM of M+ lying over a place v ∈ S which does not divide p, b|G MwM
lies

on Cv|M+vM
.

• b is unramified outside of the places lying over S.

We now use this deformation of t |G M to descend to a deformation of t over GL . Namely,

applying Lemma 4.1.8, we deduce the existence of an odd, regular, polarizable, weakly

irreducible compatible system ({cλ}, {µλ|GL+
}) of GL -representations with associated

p-adic representation (c, µ|GL+
), such that we have the following:

• c∼= t .

• At each place vL of L+ lying over a place v ∈ S which does not divide p, c|GLwL
lies

on Cv|L+vL
.

• At each place vL ,1 of L+ lying over v1, c|GLwL ,1
lies on Cv1 |L+vL ,1

.

• c|GLwL
is potentially diagonalizable for all places vL |p not lying over v1.

• c is unramified outside of the places lying over S.

Hence we have succeeded in finding deformations of a representation t (which looks locally

like s|GL at each v|p but is globally different) which lies on the desired component at the

places lying over v1 and is potentially diagonalizable at all other primes.

We now use local swapping to find a corresponding deformation of s|GL which has the

correct behaviour at the places lying over v1 and is potentially diagonalizable at all other

primes. That is, by applying Lemma 4.2.9 to ({̃sλ}, {µλ|GL+
}) and ({cλ}, {µλ|GL+

}) (taking

the subset T of that lemma to be the set of all places lying over p), we deduce the existence

of an odd, regular, polarized, weakly irreducible compatible system ({dλ}, {µλ|GL+
}) of

GL -representations with associated p-adic Galois representation (d, µ|GL+
), such that

we have the following:

• d ∼= s|GL .

• At each place vL of L+ lying over a place v ∈ S which does not divide p, d|GLwL
lies

on Cv|L+vL
.

• At each place vL ,1 of L+ lying over v1, d|GLwL ,1
lies on Cv1 |L+vL ,1

.

• d|GLwL
is potentially diagonalizable for all places vL |p not lying over v1.

• d is unramified outside of the places lying over S.
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We now descend from L to F : Applying Lemma 4.1.8, we construct an odd, regular,

polarized, weakly irreducible compatible system ({eλ}, {µλ}) of G F -representations with

associated p-adic representation (e, µ), such that we have the following:

• e∼= s.

• At each place v ∈ S which does not divide p, e|G Fw
lies on Cv.

• e|G Fw1
lies on Cv1 .

• e|G Fw
is potentially diagonalizable for all places v|p of F+ other than v1.

• e is unramified outside of the places lying over S.

Since v1 was arbitrary, there exists a compatible system with these properties for each

choice of v1. Applying Corollary 4.2.10 to these compatible systems, we obtain the

required compatible system ({sλ}, {µλ}).

As an immediate consequence, we have the following potential automorphy theorem.

Corollary 4.2.12. Assume that either n is odd or n = 2. Let F be a CM field, and let (s, µ)
be a polarized representation, where

s : G F → GLn(Qp)

is odd and ramified at only finitely many primes. Suppose that s is reasonable. Let ρ

be the corresponding prolongation of s, and assume that ρ|G F+v
is globally realizable for

each v|p. Then (s, µ) is potentially automorphic.

Proof. Let F (avoid)/F be a finite Galois extension. By Theorems 4.2.11 and 2.1.16,

together with Lemma 2.1.8, there is a finite Galois extension of CM fields L/F ,

linearly disjoint from F (avoid)/F and a polarizable regular algebraic cuspidal automorphic

representation of GLn(AL) such that r p(π)∼= s|GL is pleasant, s|GL is only ramified at

split primes, and for each place v of L+, rp(π)|GLv
lies on the component determined

by s|GLv
. Then s|GL is automorphic by Theorem 1.4.26.

Finally, as promised in Remark 2.1.13, we show that ‘potentially globally realizable’

representations are globally realizable.

Corollary 4.2.13. Assume that either n is odd or n = 2. A component C for ρ : G K →

Gn(F) is globally realizable if and only if there exists a finite extension L/K such that C |L
is globally realizable.

Proof. If C is globally realizable, then it is easy to see from the definitions that C |L is

globally realizable, by choosing an appropriate extension of CM fields E/F . Conversely,

suppose that C |L is globally realizable. Let µρ be the multiplier character for C , so

that µρ |GL is the multiplier character for C |L . By the definition of global realizability,

µρ |GL is the restriction of a de Rham character of a totally real field, so it is a power of

the cyclotomic character times a finite order character; so the same is true of µρ .

Exactly as in the proof of [20, Proposition A2], by [10, Proposition 3.2] (see also [35,

Theorem 1.2]) we can find a CM field F with maximal totally real subfield F+, such that

we have F+v ∼= K for all v|p, and a representation % : G F+ → Gn(F) with multiplier µ, such
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that for each v|p, %|G F+v

∼= ρ, and %|G F is reasonable. In particular, we have µ|G F+v
= µρ

for all v|p.
We claim that we can find a (necessarily de Rham) lift µ of µ which satisfies µ|G F+v

= µρ

for all v|p. Indeed, as explained above, we can write µρ = ε
rχρ for some integer r and

some finite order character χρ . By [16, Lemma 4.1.1], there exists a finite order global

character χ such that χ |G F+v
= χρ for each v|p. By construction, it follows that εrχ |G F+v

=

µρ for all v|p, and thus

εrχ = µ ·ψ

for some finite order residual character ψ which is trivial for all v|p. But then µ = εrχψ̃−1

has the required property, where ψ̃ is the Teichmüller lift of ψ .

Let E/F be a finite Galois extension of CM fields, linearly disjoint from F
ker %

(ζp) such

that for each place vE |p of E+, we have E+vE
∼= L. The result follows from Theorem 4.2.11

(applied with F equal to our E , and s our %|G E ), together with Lemma 4.1.8 (applied

with a there being our %|G F , and L our E).
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