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In urban areas, Global Positioning System (GPS) accuracy deteriorates due to signal
degradation and multipath effects. To provide accurate and robust navigation in such GPS-
denied environments, multi-sensor integrated navigation systems are developed. This paper
introduces a 3D multi-sensor navigation system that integrates inertial sensors, odometry and
GPS for land-vehicle navigation. A new error model is developed and an efficient loosely
coupled closed-loop Kalman Filter (Extended KF or EKF) integration scheme is proposed.
In this EKF-based integration scheme, the inertial/odometry navigation output is continu-
ously corrected by EKF-estimated errors, which keeps the errors within acceptable
linearization ranges which improves the prediction accuracy of the linearized dynamic error
model. Consequently, the overall performance of the integrated system is improved. Real
road experiments and comparison with earlier works have demonstrated a more reliable
performance during GPS signal degradation and accurate estimation of inertial sensor errors
(biases) have led to a more sustainable performance reliability during long GPS complete
outages.
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1. INTRODUCTION
1.1. Inertial Navigation Systems (INS). Navigation systems (Farrell, 2008) are a

core component in many application areas such as intelligent transportation systems
(Ming and Yuming, 2006), robotics and vehicular networks (Abrougui et al., 2010).
Commonly, the navigation component is developed as an embedded system where
various sensors are processed by sophisticated signal processing techniques to provide
accurate real-time navigation information (Farrell, 2008; Titterton and Weston,
2004). Before the development of Global Navigation Satellite Systems (GNSS) (Misra
and Enge, 2011; El-Rabbany, 2006), most navigation systems utilized inertial sensors
(accelerometers and gyroscopes) (Titterton and Weston, 2004; El-Sheimy, et al., 2007)
that provided linear acceleration and angular rate measurements to provide
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self-contained accurate high-rate inertial navigation systems (INS) (Titterton and
Weston, 2004) (Britting, 2010). Recently, most INS are based on the strapdown
scheme (Titterton and Weston, 2004) where gyroscope measurements are used to
calculate the platform orientation and then accelerometer measurements are trans-
formed from body-frame to a local navigation frame to be integrated twice to calcul-
ate platform position. Although INS is accurate in the short-term, errors accumulate
due to measurement integration and can grow without bounds. In fact, the high cost
and drifts are two major limitations of INS. Fortunately, the recent advances, cost-
reduction and wide availability of Micro-Electro-Mechanical Systems (MEMS)-based
inertial motion sensors have attracted many researchers to utilise this technology to
develop low-cost accurate navigation systems (Faulkner et al., 2002; Titterton and
Weston, 2004; El-Sheimy, et al., 2007). However, the accuracy of MEMS sensors is
still a challenge. To overcome MEMS-INS limitations, integration with other sensors/
systems is commonly used (Farrell, 2008; Iqbal et al., 2008; Atia et al., 2010).

1.2. Global Positioning System (GPS). When the US Global Positioning System
(GPS) became publicly available, it quickly became the dominant navigation com-
ponent in almost all modern navigation systems. The most important advantage of a
GNSS is consistent long-term accuracy. However, due to dependency on radio-
frequency (RF) ranging, GNSS can suffer from multipath and signal availability
problems. Additionally, to provide accurate navigation information, a GPS receiver
must be able to acquire and track signals from at least four satellites in open-sky with
direct Line-Of-Sight (LOS) signals (El-Rabbany, 2006; Misra and Enge, 2011). Even
with four satellites visible in the sky, GNSS accuracy may deteriorate due to multi-
path. In multipath conditions, the GPS receiver receives multiple copies of satellite
signals reflected/refracted through obstacles such as high buildings, mountains or
trees. In addition to multipath problems, a complete GPS signal blockage may happen
in tunnels, narrow alleys, and under bridges.

1.3. Integrated Navigation Systems. Due to the complementary error character-
istics of GNSS and INS, integration between both systems maximizes the benefits and
minimizes the drawbacks of both GNSS and INS (Farrell, 2008). In navigation
systems where a basic motion dynamic model is used to predict the system navigation
state, systems integration is implemented by fusing multi-sensor measurements using
advanced estimation algorithms known as filtering algorithms (Hwang, 1997; Farrell,
2008; Faulkner et al., 2002). The most common filtering algorithms are Kalman
Filtering (KF) (Farrell, 2008) and Particle Filtering (PF) (Arulampalam et al., 2002).
Regardless of the filtering technique used, the navigation state x is predicted by a basic
dynamic model given by

ẋ(t) = f (x(t), u(t)) + w(t) (1)
where f (x(t), u(t)) is the transition model and w(t) represent system noise. The
integrated navigation system receives external measurements (observations) in the
following general form:

z(t) = h(x(t)) + v(t) (2)
where h(x(t)) is the measurement model and v(t) represents measurements noise. The
objective of filtering is to provide best estimate of system state x(t) given partial state
observations z(t). Typically, in INS/GNSS systems, an INS dynamic model is used to
predict a navigation state x(t) and GNSS position/velocity updates are used as
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observations z(t). For application-specific systems such as land-vehicle navigation,
some constraints and extra sources of information can be used to enhance the inte-
grated INS/GNSS navigation performance (Mannings, 2008; Iqbal et al., 2009).

2. PREVIOUS WORK. Commonly, speed information is used to enhance
INS/GNSS integrated systems for land-vehicles. In this context, a reduced inertial
sensor system (RISS) integrated with GNSS was introduced as a low-cost integrated
navigation system for wheeled vehicles (Iqbal et al., 2008; Georgy et al., 2010; Atia
et al., 2010). Instead of utilizing a full 3D inertial measurements unit (IMU) to provide
3D navigation, the RISS/GNSS consists of only a vertically aligned gyroscope, two
level accelerometers, wheel sensors (odometer) and GNSS receiver. This configuration
can provide 3D navigation without a full IMU and reduces both system complexity
and cost. In earlier works, RISS/GNSS integration was either based on an approxi-
mated linearized RISS error dynamic model and an open-loop KF algorithm (Iqbal
et al., 2008; Karamat et al., 2009; Cossaboom et al., 2012) or based on a dynamic
motion model (instead of error dynamic model) and an open-loop Particle Filter (PF)
algorithm (Georgy et al., 2010). Both integration schemes are described in the
following two subsections.

2.1. Integration of RISS/GNSS using open-loop KF. The RISS dynamic motion
model is a dynamic model that predicts the vehicle state based on measurements from
RISS sensors (single gyroscope, two accelerometers and the odometer). This step is
called mechanisation. As it will be shown in subsequent sections, the RISS dynamic
motion model is not linear. In this scheme, in order to use KF, the system dynamic
model described by Equation (1) has to be linear with the assumption that system
noise is zero-mean Gaussian noise (Farrell, 2008). Thus, the RISS dynamic motion
model is linearized around a nominal navigation state x̄(t) using a Taylor expansion
and considering only the first order term as follows:

δẋ(t) = ∂f (x(t), u(t))
∂x

����
x̄(t)

δx(t) +Higher.Order.Terms (3)

In this case, the KF system state is the error in navigation state δx = (x(t) − x̄(t))
instead of the navigation state itself x(t). In the earlier open-loop KF scheme (Iqbal
et al., 2008; Karamat et al., 2009; Iqbal et al., 2009; Cossaboom et al., 2012) the
nominal navigation state where the linearization is performed around (x̄k) is the pure
un-aided RISS navigation state calculated by the RISS dynamic motion model. There
is no feedback from the KF to the RISS dynamic motion model. This RISS/GPS
open-loop KF integration scheme is shown in Figure 1, which is taken from
Cossaboom et al. (2012). The dotted line represents the feedback from the filter to the
RISS which is not implemented in an open-loop KF.

2.2. Integration of RISS/GNSS using open-loop Particle Filter (PF). In this
scheme, and due to the ability of PF to handle nonlinear models (Atia et al., 2010;
Georgy et al., 2010), the nonlinear RISS dynamic motion model is directly used in
prediction of the navigation state xk. This scheme is also an open-loop scheme since
no feedback from the PF to the RISS mechanisation exists. The RISS/GPS PF system
block diagram is shown in Figure 2. PF is a Monte-Carlo based solution for the
Bayesian Filtering problem that can handle nonlinear/non-Gaussian dynamic sys-
tems. States are modelled as a conditional probability density function (conditioned

653AN ENHANCED 3D MULTI-SENSOR INTEGRATED NAVIGATIONNO. 4

https://doi.org/10.1017/S0373463314000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000083


on all external measurements). Probability density functions are approximated by a
set of weighted samples called particles. Each iteration of PF has three important
steps; prediction, update, and resampling. In prediction, the RISS dynamic motion
model probability density function is applied to each particle to obtain a new particle
set that constitutes the predictive state probability density function. In the update
phase, when measurements are available (zk), each particle is weighted using an obser-
vation likelihood function. Then all weights are normalized. In the resampling step,
the new particles set is obtained by randomly selecting from the weighted particles
such that each particle is selected a number of times proportional to its weight.

3. PROBLEM DEFINITION AND OBJECTIVES
3.1. Limitations of Open-loop KF RISS/GPS and PF RISS/GPS. In the earlier

open-loop KF scheme (Iqbal et al., 2008; Karamat et al., 2009; Iqbal et al., 2009;
Cossaboom et al., 2012) the nominal navigation state where the linearization is
performed around (x̄k) is the un-aided RISS navigation output which drifts
continuously without bounds pushing the error in navigation state (δx(t)) out of
acceptable linearization range. Consequently, the prediction step becomes sign-
ificantly inaccurate during GNSS outages. In addition, the linearized RISS error
dynamic model derived is a simplified model with some important terms ignored in the
derivation as will be described in the subsequent sections. Although open-loop PF
outperforms open-loop KF as reported by Georgy et al. (2010), it is computationally
expensive due to the processing of huge numbers of particles. In addition, due to the
open-loop design of the scheme, no feedback is taken from the corrected state to the
RISS mechanization and no sensor errors are estimated. Consequently, sensor
measurements (mainly gyroscope in RISS) are not corrected.

Figure 1. RISS/GPS Open-loop KF.

Figure 2. RISS/GPS Open-loop PF.
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3.2. Objectives. The objectives of this work are to target the limitations in the
existing open-loop KF and PF developed for the RISS/GPS configuration. The
methodology to target these limitations is to derive a new RISS dynamic error model
and develop a closed loop KF (known also as extended KF or EKF). In the proposed
EKF scheme, the nominal navigation state is continuously compensated by the
feedback coming from EKF-estimated correction. In addition, the RISS sensors
measurements are continuously compensated for biases estimated by EKF. The
expected advantages from this work can be summarised as follows:

. An EKF integration scheme is introduced where linearization is performed
around the corrected RISS output that keeps errors within acceptable accurate
linearization range. This should lead to a more sustainable performance during
longer GPS outages.

. A more sustainable performance during long GNSS outages is obtained by
compensating gyroscope measurements using the recent gyroscope bias estimated
by EKF.

. A new more accurate error model is given.

. An accuracy comparable to PF using only KF is obtained while the expensive
computation load of PF is avoided.

In the following sections, detailed model derivations for the proposed EKF-based
RISS/GNSS integrated navigation system are given in addition to experimental setup,
results and analysis.

4. METHODOLOGY
4.1. The 3D RISS/GNSS System. 3D RISS is a 3D low-cost reduced inertial

sensors system consisting of two accelerometers mounted to the lateral (x) and longi-
tudinal (y) directions of the vehicle fame and a vertically aligned gyroscope (z) in
addition to the vehicle speed sensor as shown in Figure 3. There are some basic
benefits from using this reduced configuration for land-vehicles:

. Using RISS instead of full 3D inertial measurement unit (IMU) eliminates two
gyroscopes, which reduces the overall cost of the system.

. Computational complexity of RISS motion equations is less than full IMU
mechanization equations (Titterton and Weston, 2004).

. Roll and Pitch calculations do not use mathematical integration and hence
contain no drifts or error growth without bounds.

The 3D RISS navigation state vector is defined as x=[φ, λ, h, ve, vn, vu, r, p, A]T

where φ is latitude, λ is longitude, h is altitude, ve is east velocity, vn is north velocity,
vu is upward velocity, r is roll, p is pitch and A is azimuth. The RISS dynamic motion
model equations are given by:

p = sin−1 fy − aod
g

� �
(4)

r = − sin−1 fx + vf (wz − bz)
g cos p

� � (5)
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Ȧ = − [wz − bz] − we sin(φ) − vetan(φ)
Rn + h

� �
(6)

φ̇ = vn

Rm + h
(7)

λ̇ = ve

(Rn + h) cos (φ) (8)

ḣ = vu (9)
ve = vf sin(A) cos( p) (10)
vn = vf cos(A) cos(p) (11)

vu = vf sin( p) (12)
fx and fy are the accelerometers measurements and vf is the vehicle forward speed and
ωz is the gyroscope measurements, bz is the estimated gyroscope bias, we is the earth
rotation rate and Rn is the earth normal radius of curvature. Rm is the earth meridian
radius of curvature. A block diagram that shows RISS mechanization system is shown
in Figure 4.
Analysis of RISS motion Equations (4) to (12) shows that the major source of errors

in the RISS system is the error in gyroscope measurements (gyroscope bias). Actually
any error in the gyroscopemeasurements will propagate directly to azimuth which then
propagates indirectly into an error in the horizontal channel velocity and consequently
in position. Regarding pitch and roll calculations, because no integration is involved in
the pitch and roll calculations as shown in Equations (4) and (5), error in the level
accelerometer measurements have a very minor effect and can be reduced by common
sensor calibration techniques (Farrell, 2008; Titterton and Weston, 2004; El-Sheimy
et al., 2007). Regarding the odometry, since the speed of the vehicle was not too high
during tests (52 km/hr in downtown and 91 km/hr in suburbs and highway), the scale

Figure 3. 3D RISS Configuration.
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factor effect is minor with respect to the gyroscope bias error. Thus, special attention
will be given to the vertically aligned gyroscope in the results and discussions section.

4.2. The RISS Error Dynamic System Model. The RISS error model used in
EKF is derived by linearization of the RISS mechanisation Equations (4) to (12) using
Taylor expansion (Britting, 2010; Farrell, 2008) and then considering only the first
order terms and ignoring the higher order terms to have the system model in the
following linear form:

δẋ(t) = F (t)δx(t) + G(t)w(t) (13)
where w(t) is zero mean Gaussian noise vector. The covariance matrix of w(t) is
defined as Q and called the system noise matrix and is given by:

Q = kw(t)w(t)T l (14)
F(t) is the transition matrix and G(t) is noise shaping parameter matrix.
The error state vector of 3D RISS is defined as:

δx = [δφ, δλ, δh, δve, δvn, δvu, δA, δbz, δaod]T

where δφ is latitude error, δλ is longitude error, δh is altitude error, δve is east velocity
error, δvn is north velocity error, δvu is upward velocity error, δA is azimuth error, δbz is
the error in gyroscope bias and δaod is error in acceleration (aod) derived from odometer
measurements. The roll error and pitch angle errors (δr, δp) were not considered in the
model since they are calculated independently using gravity measurements without
mathematical integration. By linearizing the RISS motion Equations (4) to (12)
around an operating point, an error model is obtained. In this work, we consider a
more accurate and detailed linearized error model. The newRISS error model has a list
of advantages that contribute significantly in the enhancement of the performance and
the applicability of EKF closed loop filtering scheme. Those advantages differ from the
previously introduced simplified model in the following points:

. In azimuth (δA) error equation derivation, the derivatives with respect to φ, ve

and h were performed and included.
. In longitude (δλ) error model, the derivative with respect to φ, and h was

performed and included.

Horizontal 
Accelerometer 
Measurements 

Pitch and Roll 
Calculation

Odometer 
Reading 

Vertical 
Gyroscope 

Measurements 

Figure 4. 3D RISS Mechanization Block Diagram.

657AN ENHANCED 3D MULTI-SENSOR INTEGRATED NAVIGATIONNO. 4

https://doi.org/10.1017/S0373463314000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000083


. In the time derivative of ve and vn, the term of time derivative of azimuth was
considered.

. In addition, the model for azimuth error was modified to be a function of error in
gyroscope bias (δbz) instead of gyroscope bias itself.

These terms were ignored in the previously introduced error model in earlier works.
Actually, it turned out that those terms have an effect on the stability of the error
model and the overall EKF-based dynamic system. This was verified by applying the
proposed closed-loop EKF using the old simplified error model derived in earlier
works. In this case, the EKF filter diverges quickly no matter what the system noise,
measurements noise, and other EKF parameters are.
The overall performance of the derived error model will be examined in the

experimental work section. To derive the azimuth error equation, a Taylor expansion
is applied to azimuth Equation (6) as follows:

δ̇A = ∂[.]
∂bz

δbz + ∂[.]
∂φ

δφ+ ∂[.]
∂ve

δve + ∂[.]
∂h

δh (15)

which gives

δ̇A = δbz + ωe cos(φ)δφ+ ve sec2(φ)δφ
Rn + h

+ tan(φ) δve
Rn + h

− ve tan φδh

(Rn + h)2 (16)

Because the term (Rn+h)2 is fairly very large with respect to the term vetan φδh, it can
be safely cancelled and the following Azimuth error model equation is obtained:

δ̇A = δbz + ωe cos(φ)δφ+ ve sec2(φ)δφ
Rn + h

+ tan(φ)δve
Rn + h

(17)

To derive the latitude error equation, a Taylor expansion is applied to latitude
Equation (7) as follows:

δ̇φ = ∂[.]
∂vn

δvn + ∂[.]
∂h

δh (18)

which gives

δ̇φ = δvn

Rm + h
− vnδh

(Rm + h)2 (19)

Because the term (Rm+h)2 is fairly very large (earth radius squared in metres) with
respect to term vnδh, it can be safely cancelled and the following latitude error model
equation is obtained:

δ̇φ = δvn

Rm + h
(20)

To derive the longitude error equation, a Taylor expansion is applied to longitude
Equation (8) as follows:

δ̇λ = ∂[.]
∂ve

δve + ∂[.]
∂h

δh+ ∂[.]
∂φ

δφ (21)
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which gives

δ̇λ = δve

(Rn + h) cos(φ) +
ve tan(φ)δφ

(Rn + h) cos(φ) +
veδh

(Rn + h)2 cos(φ) (22)

Because the term (Rn+h)2 cos(φ) is fairly large (earth radius squared in metres) with
respect to term vnδh, it can be safely cancelled and the following longitude error model
equation is obtained:

δ̇λ = δve

(Rn + h) cos(φ) +
ve tan(φ)δφ

(Rn + h) cos(φ)
(23)

Regarding the altitude error model, it is directly related to error in up velocity
as follows:

δ̇h = δvu (24)
To derive the east velocity error equation, we first take the derivative with respect to
time assuming constant pitch angle (since pitch is fairly small in this land-vehicle
application) which gives

v̇e = aod sin(A) cos( p) + vf cos(A) cos( p)Ȧ = aod sin(A) cos( p) + vnȦ (25)
Applying a Taylor expansion as follows:

δ̇ve = ∂[.]
∂aod

δaod + ∂[.]
∂A

δA+ ∂[.]
∂vn

δvn + ∂[.]
∂Ȧ

δȦ (26)

which gives

δ̇ve = sin(A) cos( p)δaod + aod cos(A) cos( p)δA

− ωz − bz − ω sin(φ) − ve tan(φ)
Rn + h

� �
δvn + vnδbz

+ vnωe cos(φ) + vevn sec2(φ)
Rn + h

� �
δφ+ vn tan(φ)

Rn + h
δve

(27)

The north velocity error equation can be derived similarly using the same steps applied
in case of east velocity error equation derivation. This will lead to the following north
velocity error equation:

δ̇vn = cos(A) cos( p)δaod − aod sin(A) cos( p)δA

+ ωz − bz − ωe sin(φ) − 2ve tan(φ)
Rn + h

� �
δve − veδbz

− veωe cos(φ) + ve2 sec2(φ)
Rn + h

� �
δφ

(28)

Regarding the up velocity error model equation, taking the time derivative of
Equation (12) assuming small constant pitch angle, it can be easily shown that the
error model equation for velocity up is given by:

δ̇vu = sin( p)δaod (29)
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Regarding the errors in gyroscope bias (δbz) and odometer deriving error (δaod),
they are modelled as a first-order Gauss-Markov random process (Farrell, 2008) as
follows:

δ̇aod = −βodδaod +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βodσ

2
od

q
w (30)

δ̇bz = −βzδbz +
ffiffiffiffiffiffiffiffiffiffiffiffi
2βzσ2z

q
w (31)

where ( βz, σz), ( βod, σod) are Gauss-Markov (Farrell, 2008; Britting, 2010; Iqbal et al.,
2009) process parameters for δbz and δaod error states respectively. To estimate those
parameters, autocorrelation calculations of stationary measurements of the sensors
are collected and error analysis similar to the analysis in Britting (2010) and Iqbal
et al. (2009) is conducted. For details about how to estimate those Gauss-Markov
parameters, the reader is referred to Farrell (2008).

4.3. The RISS/GNSS Measurements Model. The second major part of the
proposed integrated navigation system is the measurement model. The measurement
model relates the observations which are the difference between GPS position/velocity
and RISS predicted position/velocity. The measurement δz model is given by:

δz = Hδx+ v (32)
Where δz is the measurements vector defined by:

δz =

φGNSS − φRISS

λGNSS − λRISS

hGNSS − hRISS

veGNSS − veRISS

vnGNSS − vnRISS

vuGNSS − vuRISS

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(33)

and H (the design matrix of the filter (Farrell, 2008; Iqbal et al., 2008; Iqbal et al.,
2009)) is given by:

H =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

(34)

and v is zero-mean Gaussian noise vector defined as measurement noise whose
covariance matrix R is given by:

R = kvvT l (35)
4.4. The Extended Kalman Filter for the 3D RISS/GNSS System. Having

the system dynamic model defined by Equation (13) and measurement model
defined by Equation (32) and havingH and Fmatrices clearly defined, the EKF-based
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RISS/GNSS system prediction and update are performed in the discrete domain as
follows:

. Prediction Step:

1k,k+1 = I + FkT (36)
P−
k+1 = 1k,k+1P

+
k 1

T
k,k+1 +Qd (37)

where1k,k+1 is the discrete transition matrix, T is the sampling period, I is the identity
matrix, P−

k+1 is the a priori estimate of error state covariance matrix, Qd is the system
noise matrix defined by

Qd = GQGTT (38)

. Measurements (Update) Step:

Kk+1 = P−
k+1H

T [HP−
k+1H

T + Rk]−1 (39)
δx+k+1 = Kk+1δzk+1 (40)

P+
k+1 = (I − Kk+1) P−

k+1 (41)
where δx+k+1 is the error state estimation and P+

k+1 is the posterior error covariance
matrix estimation.

4.5. The closed loop scheme. A block diagram of the proposed system is given
in Figure 5. Two important modifications are introduced:

. The estimated error in position, velocity and attitude is used to correct RISS
navigation state xk so in the next epoch mechanization, xk+1 is predicted taking
xk as the corrected RISS navigation output instead of the un-aided RISS
navigation output in earlier work.

. The estimated gyroscope bias error is added to the previous bias value to obtain a
corrected gyroscope bias.

In addition, the sub-sequent gyroscope measurements are continuously compensated
for this new bias.

Figure 5. EKF-Based RISS/GNSS Integrated Navigation System Block Diagram. Note the
feedback to RISS mechanization and gyroscope measurements.
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5. EXPERIMENTAL WORK. To test the proposed closed loop EKF-based
RISS/GNSS system, real road experiments were performed in the city of Kingston and
Napanee, Ontario, Canada. The testing strategy was to build a platform that has a
MEMS-based RISS/GNSS system running side by side with a high-end tactical grade
INS/GNSS integrated navigation system used as a ground-truth. After data collection,
the proposed EKF-based RISS/GNSS system was used in post-processing mode to
compute a navigation solution. The calculated solution was compared to the ground-
truth calculated by the high-end navigation grade reference system. The testing stra-
tegy was to impose GPS outages during the post-processing mode and calculate the
positional errors during those outages. Then, comparisons were made with earlier
works that either used open-loop KF with the simplified RSS dynamic error model or
open-loop PF. To test the performance during noisy multipath GPS conditions, some
portions of the trajectories at which GPS multipath exists will be displayed on a map
to show the performance of the proposed system during these challenging portions.
Furthermore, some analysis on the accuracy of the estimated sensors biases will
be given.

5.1. Accuracy of the Ground Truth System. The ground-truth system used in
the experiments consisted of a tactical-grade ring laser gyro (RLG)-based IMU called
HG1700 AG11 from Honeywell. This tactical grade IMU is integrated with NovAtel
G2 Pro-Pack GPS receiver using a system called SPAN developed by Novatel
(2010). According to Novatel (2013), this ground-truth system is capable of keeping
position error below 2.5 metres under 60 seconds of complete GPS outage. In partial
GPS outages and multipath conditions, it can keep the errors under 3 metres for
longer GPS outages due to the utilisation of the phase measurements even from two
visible satellites. When a limited number of satellites are available, phase updates
can be used to constrain the growth of errors in the solution. As the number of
satellites available increases, with two available satellites corresponding to one
phase update, the growth in the error is constrained further. In addition to the high
accuracy of the real-time solution calculated by this ground-truth system, the ground-
truth solution used in comparisons is further improved offline using a smoothing
tool called “Inertial Explorer” from Novatel Inc. The offline processed solution
is even better than the real-time solution because of the backward smoothing
mechanism (Wang, 2012) it applies to the solution in offline processing. A detailed
quantitative analysis of the accuracy of this ground-truth system can be found in
Novatel (2013).

5.1. Experimental Setup. The experimental setup used in this work is described
as follows:

5.1.1. RISS System Configuration. Crossbow IMU300CCMEMS-based inertial
sensors were used for the experiments (IMU300, 2011). This IMU was utilized in the
RISS architecture, and the performance was examined on real road data collected over
various trajectories. The error parameters of the Crossbow IMU300CCMEMS-based
inertial sensors are shown in Table 1. The forward speed (odometer data) was gathered
from the vehicle’s built in sensors and collected by the On-Board Diagnostics version
II (OBD II) interface using CarChip (CarChip, 2011).

5.1.2. Reference Navigation Solution. As mentioned earlier, the reference
solution used to evaluate the proposed method is based on the Honeywell HG1700
AG11 high-end tactical-grade IMU. This IMU was integrated with the NovAtel GPS
receiver using an off-the-shelf assembly, the G2 Pro-Pack SPAN unit developed by
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NovAtel (Novatel, 2010). The error parameters of the HG1700 AG11 high-end
tactical-grade IMU are shown in Table 1.

5.2. Testing Trajectories. Three trajectories were used for testing (see Figures 6
to 8). These trajectories have been used in earlier work using either open-loop KF
or open-loop PF and results of earlier works are already published. This makes
the comparison with the new proposed EKF scheme easier. The Kingston Downtown
trajectory is the same trajectory used in earlier works in Cossaboom et al. (2012)
using open-loop KF and in Georgy et al. (2010) using open-loop PF. The Kingston
suburbs trajectory is the same trajectory used in earlier works in Cossaboom et al.
(2012) using open-loop KF. The Napanee trajectory is the same trajectory used
in earlier works by Iqbal et al. (2009) using open-loop KF. In the Kingston
Downtown and Kingston suburb trajectories, ten GPS outages of 60 seconds long
were introduced to check the performance of the integrated navigation system when
GPS is completely lost. To further check the proposed closed loop EKF scheme,
the Napanee trajectory was tested with ten GPS outages of 120 seconds instead of
60 seconds. The GPS outages were selected such that they contained turns and
different dynamics.

Table 1. Specifications of Crossbow IMU300CC MEMS-based IMU.

Crossbow IMU300CC IMU HG1700 IMU

Gyroscope
Range ± 100 deg/s ± 1000 deg/s
Bias < ±2·0 deg/sec 1 deg/hr
Scale Factor < 1% 150 ppm
Random Walk < 2·25 deg/hr1/2 0·125 deg/hr1/2

Accelerometer
Range ± 2 g ± 50 g
Bias ± 30mg 1·0 mg
Scale Factor < 1% 300 ppm
Random Walk < 0·15m/s/hr1/2 0·0198m/s/hr1/2

Figure 6. Testing Trajectory in Kingston downtown, ON, Canada.
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5.3. Results and Discussions
5.3.1. Performance during GPS Outages
5.3.1.1. Comparison with Simplified Open-loop KF. In Figures 9 to 11, the

maximum position error calculated during the GPS outages are displayed for both the
new EKF with the new error model against the old error model in the open-loop KF
scheme. In Figures 9 and 10, it is noticed that although the position error in the
proposed EKF-based scheme with the new error model is better, the differences are
not significant enough to build a strong conclusion. However, Figures 9 and 10 show
clearly that while the error in the old open-loop KF scheme can go to the edge of a
hundred metres, the error in the proposed EKF-based went to a maximum of
25 metres. This result agrees with the analysis mentioned earlier in this paper that says
the new EKF-scheme is expected to perform better in the situations where the old
open-loop KF scheme significantly fails. To increase the confidence in this conclusion,
an outage of 120 seconds was simulated in the Napanee trajectory and results are
shown in Figure 11. Results show clearly that while the open-loop KF scheme
significantly fails (error of an average of 75 metres) in longer GPS outages, the
proposed new EKF-based scheme performed almost the same as in the 60 seconds
outages (error of an average of 18 metres). To further show conclusive results, we

Figure 7. Testing Trajectory in Kingston sub-urban, ON, Canada.

Figure 8. Testing Trajectory in Napanee, ON, Canada.
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Figure 10. Maximum Position Error Analysis in Kingston Suburbs Trajectory. EKF+new Error
Model Vs. Old Error Model + Open-loop KF.

Figure 11. Maximum Position Error Analysis in Napanee Trajectory. EKF+new ErrorModel Vs.
Old Error Model + Open-loop KF.

Figure 9. Maximum Position Error Analysis in Kingston Downtown Trajectory. EKF+new Error
Model Vs. Old Error Model + Open-loop KF.
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displayed the average maximum position error over all GPS outages in all the three
trajectories and results are displayed in Figure 12.

5.3.1.2. Comparison with Open-loop PF. In Figures 13 and 14, the maximum
position error calculated during the GPS outages are displayed for both the proposed
new EKF scheme with the new error model against an open-loop PF scheme. In
Figures 13 and 14, it can be seen that the performance of the two schemes is very close
while open-loop PF performs slightly better due to the probabilistic nature and the
number of particles processed (120 particles as reported in (Georgy et al. 2010)). If the
computational load is taken into consideration in the comparison, the proposed EKF
scheme performs faster than PF. As reported in Georgy et al. (2010), KF performs
20% faster than PF. It has to be taken into consideration that the PF presented in
Georgy et al. (2010) is already optimized. If a standard PF is to be used, this
percentage will significantly increase. Average maximum position over all outages in
the two trajectories (Kingston Downtown and Napanee) is displayed in Figure 15.
This confirms the conclusion that the proposed EKF-based scheme performs similarly
to the open-loop PF presented in Georgy et al. (2010).

Figure 12. Average Maximum Position Error Analysis over all outages in all trajectories.
EKF+new Error Model Vs. Old Error Model + Open-loop KF.

Figure 13. Maximum Position Error Analysis in Kingston Downtown Trajectory. EKF+new
Error Model Vs. Open-loop PF.
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5.3.2. Gyroscope Bias Estimation. Regarding the estimation of gyroscope bias,
Figures 16 to 18 show the behaviour of the gyroscope bias convergence in the filter. It
can be seen that all estimations converged around the same bias value (approximately
−0.24 deg/s). The convergence starts with motion and takes almost 300 seconds in
Kingston Downtown Trajectory and 250 seconds in Kingston suburb trajectory and
around 300 seconds in the Napanee trajectory. The spikes in the beginning are mainly
due to the initialization of the biases to zero. The convergence starts with motion
because when the vehicle starts to move it receives velocity updates from GPS, which
indirectly affect the observability of the azimuth and consequently affects the
gyroscope bias estimation. After taking sufficient GPS measurement updates, the
EKF converges and the gyroscope biases are accurately estimated. This estimation
of the gyroscope bias enables the system to sustain a good performance during
GPS outages because all subsequent gyroscope measurements are compensated for
this bias.

Figure 15. Average Maximum Position Error Analysis over all outages in all trajectories.
EKF+new Error Model Vs. Open-loop PF.

Figure 14. Maximum Position Error Analysis in Napanee Trajectory. EKF+new ErrorModel Vs.
Open-loop PF.
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5.3.3. Effect of Gyroscope Bias Estimation on Roll Calculations. The estimated
gyroscope bias is used to compensate the incoming gyroscope measurements. This has
a direct effect on the roll angle estimation as shown in Equation (5). To check this
effect, the roll angle was calculated with and without this compensation and results are

Figure 16. Gyroscope Bias Estimation Convergence in Kingston Downtown Trajectory.

Figure 17. Gyroscope Bias Estimation Convergence in Kingston Suburban Trajectory.

Figure 18. Gyroscope Bias Estimation Convergence in Napanee Trajectory.
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shown in Figure 19. The root mean square error of the roll angle in degrees shows a
slight improvement with gyroscope bias compensation. The effect is clearer in the
Napanee trajectory.

5.3.4. Performance during GPS multipath. The proposed EKF-based RISS/GPS
system proved that it not only provides better accuracy in GPS complete outage, but it
also enhances GPS multipath mitigation in noisy GPS conditions. This is mainly
performed by balancing the measurements covariance matrix R and the system noise
Q. Due to the efficient gyroscope bias estimation of the proposed EKF-based scheme
and due to the closed-loop feedback configuration, the prediction performed by the
RISS dynamic motion model is trusted, which enables the system to adaptively ignore
noisy GPS updates in multipath conditions. To show this effect, portions of the tra-
jectory are shown in Google maps using the GPS Visualizer tool. These portions
contain noisy GPS positioning and they are shown in Figures 20 to 22. These figures
show two important notes. Firstly, the proposed EKF-based RISS/GPS system
handles the GPS noisy updates well. Secondly, the ground-truth system accuracy is

Figure 19. Effect of Gyroscope Bias Compensation on Roll Accuracy.

Figure 20. Noisy GPS updates in Kingston Downtown Trajectory.
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further verified because figures show clearly that the ground-truth system output is
perfectly coincident with streets/roads on the map.

6. CONCLUSION. In this paper, an enhanced closed loop EKF-based multi-
sensor 3D integrated navigation system for land-vehicles was introduced. The system
utilises a reduced inertial sensor set (RISS) integrated with GPS. This configuration
was introduced previously in earlier works. However, the integration scheme was
either built on open-loop Kalman Filter or a nonlinear computationally expensive
open-loop Particle Filtering. Furthermore, the integration used a simplified RISS
dynamic error model. The main contribution of the work presented in this paper is the
development of a closed loop EKF-based integration scheme with a new RISS
dynamic error model. The experiments on three different trajectories showed that the
proposed closed loop EKF integration scheme outperforms the open-loop KF-based

Figure 21. Noisy GPS updates in Kingston Suburban Trajectory.

Figure 22. Noisy GPS updates in Napanee Trajectory.
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scheme and performs comparably with open-loop PF. In GPS outages, improvements
ranging from 20% to 80% were obtained. Improvements were stronger with longer
GPS outages. In addition, performance of the proposed EKF-based RISS/GPS
system is comparable to open-loop PF that has been introduced in earlier works
with the advantage of having similar accuracy with less computations and faster
processing. This may be preferable for real-time embedded realization of the proposed
navigation system.
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