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Abstract. Stable accessibility of partially hyperbolic systems is central to their stable
ergodicity, and we establish its C1-density among partially hyperbolic flows, as well as in
the categories of volume-preserving, symplectic, and contact partially hyperbolic flows. As
applications, we obtain on one hand in each of these four categories of flows the C1-density
of the C1-stable topological transitivity and triviality of the centralizer, and on the other
hand the C1-density of the C1-stable K-property of the natural volume in the latter three
categories.
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1. Introduction
The renaissance of partial hyperbolicity that began in the 1990s centered on the quest for
stably ergodic dynamical systems [30]. The Hopf argument as the central technical device
brought the notion of accessibility to the fore, and this motivated results to the effect that
stable accessibility of partially hyperbolic diffeomorphisms (Definition 2.1) is C1-dense
([18, Main Theorem], [3], [30, Theorem 8.5]). Our first aim is to show that this also holds
for flows. Among the applications is our secondary aim: a C1-open dense set of partially
hyperbolic flows that commute with no other flow.
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1.1. Statement of results.

THEOREM 1.1. (Generic accessibility) For any smooth compact manifold M and r ≥ 1,
C1-stable accessibility (Definition 2.4) is C1-dense among Cr flows in each of the
following:
• partially hyperbolic flows;
• volume-preserving partially hyperbolic flows;
• symplectic partially hyperbolic flow; and
• contact partially hyperbolic flows.

Our motivation for establishing genericity of accessibility was to adapt arguments of
Burslem [14] in order to establish generic triviality of the flow centralizer (Definition 1.7),
in particular a relative paucity of faithful Rk Anosov actions.

THEOREM 1.2. (No centralizer) On any smooth compact manifold M and for any r ≥ 1,
Cr -flows which C1-stably have trivial flow centralizer are C1-dense among Cr flows in
each of the following:
• partially hyperbolic flows;
• volume-preserving partially hyperbolic flows;
• symplectic partially hyperbolic flow; and
• contact partially hyperbolic flows.

There are more direct applications of accessibility.

COROLLARY 1.3. (Generic transitivity) On any smooth compact manifold M and for any
r ≥ 1, a C1 open and dense set of Cr flows is topologically transitive in each of the
following:
• volume-preserving partially hyperbolic flows;
• symplectic partially hyperbolic flow; and
• contact partially hyperbolic flows.

Proof. Theorem 1.1 provides an open dense set of accessible such flows; their time-1
maps are accessible volume-preserving partially hyperbolic diffeomorphisms for which
almost every point has a dense orbit ([10], [30, Theorem 8.3]); those points then have
dense flow-orbits.

Indeed, strong ergodic properties, such as the K-property [19, Definition 3.4.2], are
similarly common if one adds the assumption of center-bunching [13].

COROLLARY 1.4. (K-property) On any smooth compact manifold M and for any r ≥ 2,
there is a C1-open and dense set of Cr flows for which the natural volume has the
K-property (for all time-t maps) in each of the following:
• volume-preserving partially hyperbolic flows;
• symplectic partially hyperbolic flow; and
• contact partially hyperbolic flows.
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Proof. Theorem 1.1 provides an open dense set of accessible such flows; for any t �= 0
their time-t maps are accessible volume-preserving center-bunched partially hyperbolic
diffeomorphisms and hence have the K-property [13, Theorem 0.1].

Remark 1.5. The conclusion of Corollary 1.4 implies that of Corollary 1.3, but the latter
does not need center-bunching.

Remark 1.6. Being a finite-time condition, the center-bunching property appears to be
open, so one could restate Corollary 1.4 as follows. On any smooth compact manifold M

and for any r ≥ 2, the set of Cr -flows for which the natural volume C1-stably has the
K-property (for all time-t maps) is C1 dense in each of the following:
• volume-preserving partially hyperbolic flows;
• symplectic partially hyperbolic flow; and
• contact partially hyperbolic flows.

An alternative restatement would be as follows. On a smooth compact manifold M and
for any r ≥ 2, consider the set PH of Cr flows on M in each of the following:
• volume-preserving partially hyperbolic flows;
• symplectic partially hyperbolic flow; and
• contact partially hyperbolic flows.
Then the C1-closure in PH of the set of flows for which the invariant volume stably has
the K-property contains all center-bunched flows in PH.

As Corollary 1.4 indicates, accessibility is central to the ergodic theory of partially
hyperbolic dynamical systems (Definition 2.1), the theory of which was revived two
decades after its founding [11, 12] when Pugh and Shub sought non-hyperbolic examples
of volume-preserving dynamical systems that are stably ergodic [24, 31–33]. Stable
ergodicity was established by adapting the Hopf argument [19, §7.1.2], and accessibility
is the key ingredient [13].

In this context, flows (as opposed to diffeomorphisms) have received little attention.
Accessibility of a partially hyperbolic flow and of its time-1 map are equivalent, so a theory
for diffeomorphisms suffices for establishing ergodicity for partially hyperbolic flows.
Indeed, the initial examples of stably ergodic partially hyperbolic diffeomorphisms were
time-1 maps of hyperbolic flows. Moreover, the stability of ergodicity and accessibility of
the time-1 map implies their stability for the flow.

Considering flows becomes salient, however, when investigating the prevalence of
(stable) accessibility and ergodicity. Diffeomorphisms are rarely the time-1 map of a flow,
so density or genericity results for diffeomorphisms do not automatically imply like results
for flows. The issue is that one needs to argue that the flows themselves rather than just their
time-1 maps can be perturbed in a desired fashion.

1.2. Centralizers. Our interest in accessibility (that is, in Theorem 1.2) arose from a
desire to understand the centralizer of flows beyond hyperbolic ones [4, 19]. Partially
hyperbolic flows are a natural next step, and this led us to wanting to adapt the pertinent
result [14, Theorem 1.2] to flows—and its proof uses accessibility in an essential way.
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The centralizer of a dynamical system reflects the symmetries of that system, and this
leads to the expectation that the centralizer of a (sufficiently complex; see [19, Example
1.8.8]) dynamical system is often small. (It also reflects non-uniqueness of conjugacies [19,
p. 97].) Since the notion is relative to an ambient group [19, Remark 1.8.9], we make the
needed terminology explicit.

Definition 1.7. The flow centralizer of a Cr flow consists of the Cr flows that commute
with it, and there are different types of triviality [27]. We say that the centralizer is trivial if
it consists of constant scalings of the flow, that is, the generating vector fields of commuting
flows are constant multiples of the given vector field; in this case we also say that the flow
is self-centered or that it commutes with no other flow.

A vector field has quasi-trivial flow centralizer if vector fields that commute with it are
its multiple by a smooth scalar factor.

Remark 1.8. (Hyperbolicity implies small centralizer [19, §9.1]) An Anosov flow has
trivial flow centralizer [19, Corollary 9.1.4], and this extends to kinematic-expansive flows
on a connected space with at most countably many chain components, all of which are
topologically transitive [19, Theorem 9.1.3].

Quasi-triviality of the centralizer holds for (Bowen–Walters) expansive flows [29] and
indeed Cr -generic flows [27] (including volume-preserving ones [9]).

An open and dense subset of C∞ Axiom-A flows with a strong transversality
condition has (properly) trivial flow centralizer [34], as do transitive Komuro expansive
flows [7] (this includes the Lorenz attractor), and C1-generic sectional Axiom-A
flows [6, 8].

Indeed, hyperbolic flows usually have small centralizers [19, Theorem 9.1.3], and we
extend this and the requisite accessibility result to partially hyperbolic flows.

One can also look for diffeomorphisms that commute with a flow; the set of these
is the diffeomorphism centralizer of the flow. Even Anosov flows can have non-trivial
diffeomorphism centralizers [28, §5].

While there has been interesting work beyond the hyperbolic context (the centralizer
is quasi-trivial for a C1-generic flow with at most finitely many sinks or sources [28],
trivial if the flow moreover has at most countably many chain-recurrence classes), our
results produce open dense sets with the desired properties, whereas elsewhere, often only
‘residual’ is known.

If one thinks of the centralizer question as the possibility of embedding a flow in a
faithful R2-action (or a diffeomorphism into a faithful Z2-action), then a deeper probe
could focus on the classification (or rigidity) of Rk-actions for k ≥ 2 (e.g., aiming to show
that they are necessarily algebraic if the dynamics is hyperbolic). Great efforts have already
been devoted to this aim [17, 26], and quite recently, these have been pushed into the
partially hyperbolic realm for discrete time (for smooth, ergodic perturbations of certain
algebraic systems, the smooth centralizer is either virtually Z

l or contains a smooth flow
[5, 16]). Also, the centralizer of a partially hyperbolic T3-diffeomorphism homotopic to an
Anosov automorphism is virtually trivial unless the diffeomorphism is smoothly conjugate
to its linear part [22].
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2. Background
In this section we review needed definitions and previous results. We provide much of the
basic background elsewhere [19], but we define two main notions here.

Definition 2.1. (Partial hyperbolicity) An embedding f is said to be (strongly) partially
hyperbolic on a compact f -invariant set � if there exist numbers C > 0,

0 < λ1 ≤ μ1 < λ2 ≤ μ2 < λ3 ≤ μ3, with μ1 < 1 < λ3,

and an invariant splitting into non-trivial stable, central and unstable subbundles

TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x), dxf Eτ (x) = Eτ (f (x)), τ = s, c, u,

such that if n ∈ N, then (with ‖	A
‖ := ‖A−1‖−1)

C−1λn
1 ≤ ‖	dxf

n � Es(x)
‖ ≤ ‖dxf
n � Es(x)‖ ≤ Cμn

1,

C−1λn
2 ≤ ‖	dxf

n � Ec(x)
‖ ≤ ‖dxf
n � Ec(x)‖ ≤ Cμn

2,

C−1λn
3 ≤ ‖	dxf

n � Eu(x)
‖ ≤ ‖dxf
n � Eu(x)‖ ≤ Cμn

3.

In this case we set Ecs := Ec ⊕ Es and Ecu := Ec ⊕ Eu.
A flow is said to be partially hyperbolic on a compact flow-invariant set if its time-1 map

is partially hyperbolic on it, and uniformly hyperbolic if the center direction of the time-1
map consists only of the flow direction. In either case we say that a dynamical system is
partially hyperbolic on an invariant set.

A partially hyperbolic contact flow is a partially hyperbolic flow generated by the Reeb
vector field R = Rα of some contact form α; this is the vector field defined by dα(R, ·) ≡ 0
and α(R) ≡ 1 (the first condition constrains Rα to a one-dimensional subspace in each
tangent space, and then the second condition selects a unique (non-zero!) element of that
subspace [23, Lemma/Definition 1.1.9]).

Here, a contact form is a smooth 1-form α such that α ∧ (dα)n is a volume; this implies
that the underlying manifold is (2n + 1)-dimensional.

Remark 2.2. (Contact flows versus Reeb flows) The usual definition of a contact flow
is that the flow preserves a contact form (or a contact structure; these are also called
infinitesimal automorphisms [23, Definition 1.5.7]). A (cooriented) contact structure is
a hyperplane field ξ = ker α for some (locally defined) contact form α. The classical
examples of contact flows (such as geodesic flows and surgered variants of them [20])
are in fact the Reeb flow of the invariant contact form α, that is, the flow generated by the
Reeb vector field R of α.

Making this our definition removes ambiguity, but it is illuminating to clarify the
relation between Reeb flows and flows that preserve a contact structure or form†. This
is done to some extent in [21, §2.2]: if the flow of a nowhere-vanishing vector field X

preserves a contact structure ker α transverse to X, then it is the Reeb flow of the contact
form α/α(X); this transversality holds for topologically transitive flows without fixed

† If there are no fixed points, then the latter two are equivalent [23, p. 180].
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points and for Anosov 3-flows. (The set of non-transversality of a vector field that preserves
a contact structure is a smooth codimension-1 submanifold of Euler characteristic 0
that separates the ambient manifold invariantly into two open sets; in dimension 3 its
connected components are 2-tori on which the flow is not expansive.) Flows with trivial
flow centralizer that preserve a contact form are its Reeb flows (up to constant scaling).

For a partially hyperbolic set � and x ∈ � there exist local stable and unstable
manifolds that define global stable and unstable manifolds denoted by Ws(x) and Wu(x),
respectively.

Remark 2.3. (Persistence of partial hyperbolicity) For a flow � and a partially hyperbolic
set � for � with splitting T�M = Eu ⊕ Ec ⊕ Es and continuous invariant cone fields
Cu, Cs , Ccu, and Ccs , containing Eu, Es , Ecu, and Ecs , respectively, there exist neighbor-
hoods U0 of � and U0 of � and cone fields Cu

0 , Cs
0, Ccu

0 , and Ccs
0 over U0 such that if � ∈ U0

and �′ ⊂ U0 is a compact �-invariant set, then �′ is partially hyperbolic with a splitting
T	M = Es

� ⊕ Ec
� ⊕ Eu

� such that Eu
� , Es

� , Ecu
� , and Ecs

� are contained in Cu
0 , Cs

0, Ccu
0 ,

and Ccs
0 , respectively.

To avoid confusion we will sometimes refer to these neighborhoods as U0(�, �) and
U0(�, �) when we consider different flows and different partially hyperbolic sets.

Definition 2.4. (Accessibility) Two points p, q in a partially hyperbolic set � ⊂ M are
accessible if there are points zi ∈ M with z0 = p, z
 = q, such that zi ∈ V α(zi−1) for
i = 1, . . . , 
 and α = s or u. The collection of points z0, z1, . . . , z
 is called the us-path
connecting p and q and is denoted variously by [p, q]f = [p, q] = [z0, z1, . . . , z
]. (Note
that there is an actual path from p to q that consists of pieces of smooth curves on local
stable or unstable manifolds with the zi as endpoints.)

Accessibility is an equivalence relation and the collection of points accessible from a
given point p is called the accessibility class of p.

A partially hyperbolic set � is bisaturated if Wu(x) ⊂ � and Ws(x) ⊂ � for all x ∈ �,
and a bisaturated partially hyperbolic set is said to be accessible if the accessibility class
of any point is the entire set, or, in other words, if any two points are accessible.

If the entire manifold is partially hyperbolic for a flow, then it is bisaturated. In this case,
the flow is accessible if the entire manifold is an accessibility class.

A pair (�, �) of a dynamical system and a partially hyperbolic set of it is accessible
on X ⊂ M if for every p ∈ X ∩ � and q ∈ X there is an su-path from p to q. If � is
bisaturated, this implies that either X ∩ � = ∅ or X ⊂ �. Furthermore, a pair (�, �) of a
dynamical system and a partially hyperbolic set of it is stably accessible on X ⊂ M if there
exist neighborhoods U of � and U of � such that if �̃ ∈ U and �̃ ⊂ U is a �̃-invariant
bisaturated compact set, then (�̃, �̃) is accessible on X.

Brin quadrilaterals illuminate what is needed for accessibility and are important in our
proof (Definition 3.13, Figure 1). The difficulty addressed by accessibility is the ability
to achieve displacements in the center direction even by motion solely along stable and
unstable arcs. Brin quadrilaterals consist of pairs of stable and unstable arcs arranged so as
to return to the starting point or its center leaf; when the stable and unstable foliations are
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FIGURE 1. A ‘bad’ and ‘good’ Brin quadrilateral.

jointly integrable, such quadrilaterals close up and there is no displacement in the center
direction. When such a quadrilateral does not close up, displacement in the center direction
is possible, and when the center is one-dimensional, this implies accessibility. In general,
and in our situation, one needs to arrange for such quadrilaterals to produce displacement
in any of the center directions (Figure 3).

Although we are interested in flows that are partially hyperbolic over the entire manifold,
our general result on accessibility (Theorem 3.1) holds for bisaturated partially hyperbolic
sets.

We obtain accessibility (Theorem 1.1) by adapting from [3, 18] the proof of the
following result.

THEOREM 2.5. (Avila, Crovisier, Dolgopyat and Wilkinson [18, Main Theorem], [3,
footnote p. 13]) If M is a smooth compact manifold and r ≥ 1, then stable accessibility is
C1-dense among
• all,
• volume-preserving, and
• symplectic
partially hyperbolic Cr diffeomorphisms of M .

From Theorem 1.1, we obtain Theorem 1.2 by adapting ingredients from the proof of
the following result.

THEOREM 2.6. (Burslem [14, Theorem 1.2]) In the set of Cr partially hyperbolic
diffeomorphisms of a compact manifold M (r ≥ 1), there is a C1-open and C1-dense
subset V whose elements all have discrete diffeomorphism centralizer.

3. Accessibility
In [18] the authors prove that accessibility is C1 open and dense in the space of Cr partially
hyperbolic diffeomorphisms for r ≥ 1. Furthermore, the result holds in the symplectic and
conservative settings. In [3] the result is extended to bisaturated partially hyperbolic sets,
and a gap in [18] is fixed. We build on this work.

3.1. Proof outline and the C1-restriction. The fundamental difficulty in producing
accessibility is that one needs to perturb the invariant subbundles (or foliations) in specific
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ways, but that such perturbations can only be achieved indirectly by perturbing the dynam-
ics. This, in turn, affects the invariant subbundles in locations beyond those where one
seeks to produce the desired effects—which might undo what one has previously achieved.
What makes this approach possible is that the resulting perturbations of the invariant
subbundles are quickly attenuated further along an orbit. This needs to be controlled
well enough to ensure that the minor perturbations far away in time cause no problems,
and one ingredient is to undertake the desired perturbations along an orbit with a large
first-return time, so these undesired effects have dampened enough by the time the orbit
returns. It is helpful here that the kind of perturbations we need are to bring the invariant
subbundles/manifolds into ‘general position’ rather than the opposite. Nonetheless, these
features seem to necessitate using the C1 topology. To emphasize this point: undertaking
Cr -perturbations for r ≥ 2 necessarily requires a 1/εr−1-neighborhood, and this makes
it impossible to arrange for large first-return times, which in turn necessitates controlling
the perturbative effects across multiple returns. This is not known to be impossible but
constitutes a formidable difficulty. Interestingly, this appears to be the sole place where
difficulties with Cr -perturbations arise, so should anyone be able to address this point, a
number of Cr -genericity theorems would follow directly.

To achieve the global property of accessibility one mixes the global and the local
in a two-step approach: accessibility modulo disks and accessibility on disks. The first
step produces a (careful) choice of disks ‘in the center direction’ such that the partially
hyperbolic dynamical system is accessible modulo these disks: one can get from any one
point to any other via a finite path consisting of segments that are variously stable, unstable,
or in one of these disks.

Our proof techniques for this are essentially the same as theirs. The first step is to find
a collection of disks, called a c-admissible disk family, such that each disk is sufficiently
small, intersects the bisaturated set, and for which points take a long time to return under
the flow. In the dynamically coherent setting these can be chosen as small disks in the
center foliation, but in the not dynamically coherent setting we choose disks that are
sufficiently ‘close’ to the center direction. These disks are chosen in such a way that the
family of disks is sufficiently dense in the manifold, but still pairwise disjoint. Furthermore,
for any point p in the bisaturated set and any disk D there is a us-path that will start at p

and end at a point in D, and this is a robust property. This is accessibility modulo disks.
The perturbation construction then locally modifies the flow in such a way that the disk

segments can be replaced by stable-unstable paths, that is, such that each disk is in an
accessibility class. It is this perturbation we need to implement for flows rather than maps.
And this perturbation does not affect the previously obtained accessibility modulo these
disks, because that is robust. Thus, the second step is to prove that a small perturbation of
the flow can ensure that the system is accessible on each c-admissible disk, and this is also
a robust property. Then we can build a us-path not only to points on the disk, but also to
points close to the disk. So, given two points x and y in the bisaturated set, the first step
ensures that there is a us-path from x to a point close to y in a c-admissible disk, and the
second ensure that there is a us-path from the point in the disk to y.

Thus, the central modification is the introduction of these local perturbation arguments
for flows rather than diffeomorphisms. The remaining parts of the prior arguments are
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to the effect that the perturbation does indeed have the desired properties, and those
arguments apply via time-1 maps.

As we work through these arguments, we concentrate on these local perturbations,
describing what needs to be achieved, with some indications of proofs, and then producing
those needed perturbations. We conclude this preview with a brief description of what
issues we needed to address when finding suitable perturbations for flows.

For diffeomorphisms a natural way to achieve a desired local perturbation is to
postcompose the diffeomorphism with a map that is close to the identity and equal to it
outside the neighborhood in question. This map is picked just such as to move points from
where the diffeomorphism mapped them to where one wants the perturbation to map them.
This is the approach taken by Avila, Crovisier, Dolgopyat, and Wilkinson. Some care is
taken that the postcomposed map is in the right category (volume-preserving or symplectic,
respectively). Then so is the composition. This approach has no counterpart for flows
because postcomposing a flow is meaningful only for a time-t map, and postcomposing
a time-t map with anything is not going to give anything that corresponds in a clear way to
a flow. (It may be amusing or intriguing that this postcomposed map is constructed as the
time-1 map of a flow, but this does not help make the approach work for perturbing flows.)

What we do instead is to introduce the right kind of ‘drifts’ in small flow-boxes. Even
without the constraints of volume- preservation, symplecticity, and so on, it is not wholly
straightforward to decide how to arrange for a deformation by a drift with a specific desired
outcome. Making sure that those local perturbations can further be arranged to respect the
invariance of volume, a symplectic form or a contact form requires additional work, which
happens to be of slightly different kinds for these respective categories. Most notably, in
the contact case it is natural to drive these flow perturbations by perturbing the contact
form.

3.2. Definitions. Theorem 1.1 is a consequence of the following more general theorem,
which corresponds to [3, Theorem B].

THEOREM 3.1. Let � be a partially hyperbolic set for a flow � on a closed manifold M ,
and let U be a C1 neighborhood of �. There exist a neighborhood U of � and a non-empty
open set O ⊂ U such that if � ∈ O and 	 ⊂ U is a bisaturated partially hyperbolic set
for �, then 	 is accessible for �.

Furthermore, this holds among volume-preserving, symplectic, and contact flows.

We first review notation introduced in [3] before explaining the adaptations that need to
be made to prove Theorems 1.1 and 3.1. We will use slightly different notation, because we
are using the notation for flows that they use for the charts.

PROPOSITION 3.2. (Adapted charts) Let M be a smooth manifold with dim(M) = d .
For each point p ∈ M there is a chart fp : B(0, 1) ⊂ TpM → M with the following
properties.
(1) The map p �→ fp is piecewise continuous in the C1 topology. So there are open sets

U1, . . . , U
 ⊂ M and
• compact sets K1, . . . , K
 covering M with Ki ⊂ Ui ,
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• trivializations gi : Ui × R
d → TUi

M such that gi({p} × B(0, 2)) contains the
unit ball in TpM for each p ∈ Ui , and

• smooth maps Fi : Ui × B(0, 2) → M ,
such that each p ∈ M belongs to some Ki , with fp = Fi ◦ g−1

i on B(0, 1) ⊂ TpM .
(2) When a volume, symplectic, or contact form has been fixed on M , this pulls back

under fp to a constant (and standard such) form on TpM [25, Theorems 5.1.27,
5.5.9, 5.6.6].

Remark 3.3. We note that, given a compact set K with continuous splitting TKM = E1 ⊕
E2, there is a Riemannian metric with respect to which the norm of the projection from E2

to E1 is arbitrarily small. Then the charts F can be chosen so the bundles E1 and E2 are
lifted in Bd(0, 3) to nearly constant bundles.

Remark 3.4. For a volume, symplectic, or contact form, the standard chart expresses that
form, respectively, as
• dx1 ∧ · · · ∧ dxd ,
• ∑d/2

i=1 dxi ∧ dyi ,
• α = dt + ∑(d−1)/2

i=1 xi dyi .
We note that a chart of the latter type is automatically of flow-box type: the Reeb
vector field Y of α = dt + ∑(d−1)/2

i=1 xi dyi is ∂/∂t because it is (uniquely) defined by
dα(Y , ·) ≡ 0, α(Y ) ≡ 1.

We do not assume dynamical coherence for the partially hyperbolic set � (the existence
of a foliation tangent to Ec), and so we define approximate center manifolds that will be
sufficient.

Definition 3.5. (c-admissible disk) For sufficiently small η > 0 and p ∈ �, denote by
Bc(0, η) the ball around 0 in Ec

p of radius η. The set Vη(p) := fp(Bc(0, η)) is a
c-admissible disk with radius η =: r(Vη(p)), and we set βVη(p) := Vβη(p) for β ∈ (0, 1).
A c-admissible disk family is a finite collection of pairwise disjoint, c-admissible disks.

Definition 3.6. (Return time) For a subset S of a flow-box [19, Definition 1.1.13] of
‘height’ τ , the return time is R(S) := inf{t > τ | ϕt (S) ∩ S �= ∅} ∈ [0, ∞].

Note that a flow-box contains no fixed point. If p ∈ M is not fixed, then R(Bη(p)) −−−−η→0→
per(p) if we agree that per(p) = ∞ if p is not periodic, and per(p) is the period of p for
any periodic p.

For a c-admissible disk family D and β ∈ (0, 1) we let

βD := {βD : D ∈ D}, |D| :=
⋃

D∈D
D, r(D) := sup

D∈D
r(D), R(D) := R(|D|).

3.3. The Avila–Crovisier–Dolgopyat–Wilkinson arguments. The proof of accessibility
in [3] proceeds in two steps. The first is a general fact for partially hyperbolic sets
for diffeomorphisms on the existence of c-admissible disk families that stably meet all
unstable and stable leaves as follows.
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Definition 3.7. (Global c-section) We say that a set X ⊂ M is a (global) c-section for
(�, �) if X ∩ 	 �= ∅ for every bisaturated subset 	 ⊂ �.

Remark 3.8. This terminology alludes to that of a (Poincaré) section for a flow, which
meets bunches of orbits; (global) c-sections meet many stable and unstable leaves.
Although this is not a defining property, the (global) c-sections we find will be transverse
to stable and unstable leaves (Proposition 3.9) and will indeed meet all stable and unstable
leaves once accessible (Proposition 3.11).

Via time-t maps, the result on the existence of such families immediately holds in our
setting.

PROPOSITION 3.9. [3, Proposition 1.4] Let � be partially hyperbolic set for �. Then
there exists a δ > 0 with the following property. If U is a neighborhood of � such that
U ⊂ U0(�, �) and T > 0, then there exist a c-admissible disk family D and σ > 0 such
that
(1) r(D) < T −1,
(2) R(D) > T (this implies that |D| contains no fixed point), and
(3) if � satisfies d1(�, �) < δ and d0(�, �) < σ , then for any bisaturated partially

hyperbolic set 	 ⊂ U for �, the set |D| is a (global) c-section for (�, 	).

Remark 3.10. (Fixed points nowhere dense) This prompts us to note that the set of fixed
points of a partially hyperbolic dynamical system is nowhere dense: the set of fixed
points of a continuous dynamical system is closed, and the restriction to it is the identity,
so the interior is empty by partial hyperbolicity. Thus the c-admissible disk family in
Proposition 3.9 can be chosen away from the set of fixed points.

The next step is a result about stable accessibility on center disks. Its proof needs
adaptations for flows, the core part of which is Lemma 3.15 below.

PROPOSITION 3.11. [3, Proposition 1.3] If � is a partially hyperbolic set for a flow � and
δ > 0, then (with the notation of Remark 2.3) there exist T > 0 and a neighborhood U of
� such that U ⊂ U0(�, �), and if D is a c-admissible disk family with respect to (�, �)

with r(D) < T −1 and R(D) > T , then for all σ > 0 there exists � ∈ U0(�, �) such that
(1) d1(�, �) < δ,
(2) d0(�, �) < σ ,
(3) if D ∈ D and 	 ⊂ U is a bisaturated partially hyperbolic set for �, then (�, 	) is

stably accessible on D, and
(4) if � preserves a volume, symplectic, or contact form, then so does �.

Theorem 3.1 follows from Propositions 3.9 and 3.11 just as [3, Theorem B] follows
from [3, Propositions 1.3 and 1.4] in [3, §1.6], including the preservation of a volume,
symplectic, or contact form.

Proof of Proposition 3.11. Much of the proof of this proposition is exactly as in [3]. We
will explain the ideas in these parts while highlighting the points that need modifications
for flows.

https://doi.org/10.1017/etds.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.24


846 T. Fisher and B. Hasselblatt

The first step [3, Lemma 2.1] introduces smaller disks that are sufficiently close to,
but disjoint from, a c-admissible disk and have the property that there are su-paths at
sufficiently small scales connecting any point in the c-admissible disk to one of the smaller
disks, not just for the original map, but also for any maps that are sufficiently C1 close.

For these smaller disks one can then perform perturbations so that the flow is accessible
on them. Then one can show that the perturbed flow will be accessible on D (the
c-admissible disk for the original flow). By the choice of the c-admissible family we obtain
accessibility of the bisaturated set for the perturbed flow.

The existence of the smaller disks does not use perturbations and assumes the existence
of a c-admissible disk for a partially hyperbolic map. This holds in our setting by
considering time-t maps. We include the statement of the result for completeness and
adapt its formulation to flows.

LEMMA 3.12. There exist δ1, ρ1 > 0, K > 1 and a neighborhood U1 of � such that for
any ρ ∈ (0, ρ1), for any c-admissible disk D with radius ρ, centered at p ∈ �, and for any
ε ∈ (0, K−1ρ), there exist z1, . . . , z
 ∈ TpM such that the following assertions hold.
(1) The balls B(zi , 100d2ε) are in the Kε-neighborhood of f −1

p (D).
(2) The balls B(zi , 100d2ε) are pairwise disjoint.
(3) For any x ∈ D, there exists some zi such that for any � that is δ1-close to � in the

C1 distance and for any bisaturated set 	 ⊂ U1 for �:
(a) if x ∈ 	, then there is an su-path for � between x and fp(B(zi , ε));
(b) if fp(B(zi , ε)) ⊂ 	, then any point y ∈ fp(B(x, ε/2)) belongs to an su-path

that intersects fp(B(zi , ε)).

The idea of the proof of Theorem 1.1 is to create small perturbations of the flow �

supported near the points z1, . . . , z
 to create accessibility near each zi . This requires the
following notion (which will be used in Lemma 3.14 to show accessibility near the zi).

Definition 3.13. (θ -accessibility) A pair (�, 	) of a flow and a bisaturated set is
θ -accessible on fp(B(z, 2dε)) if there exist an orthonormal basis w1, . . . , wc of Ec

p and
for each j ∈ {1, . . . , c} a continuous map

Hj : [−1, 1] × [0, 1] × f −1
p (	) ∩ B(z, 2dε) → f −1

p (	) ∩ B(0, 2ρ)

such that for any x ∈ f −1
p (	) ∩ B(z, 2dε) and s ∈ [−1, 1] we have:

(a) Hj(s, 0, x) = x;
(b) the map fp ◦ Hj(s, ., x) : [0, 1] → 	 is a four-legged su-path (Brin quadrilateral),

that is, the concatenation of four curves, each contained in a stable or unstable leaf
in alternation;

(c) ‖Hj(s, 1, x) − x‖ < ε/10d; and
(d) ‖Hj(±1, 1x) − (x ± θεwj)‖ < θ(ε/10d).

The second step is that θ -accessibility in a neighborhood of a point implies accessibility
on a smaller neighborhood. This is a restatement of [3, Lemma 2.2]. The proof is again
almost the same, but we provide it for completeness.

From now on write d := u + c + s, where dim Eu = u, dim Ec = c, and dim Es = s.
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LEMMA 3.14. For any θ > 0, there exist δ2, ρ2 > 0 and a neighborhood U2 of � such that
(1) for any p ∈ �, any z ∈ B(p, ρ2) ⊂ TpM and ε ∈ (0, ρ2),
(2) for any flow � that is δ2-close to � in the C1 topology,
(3) for any bisaturated set 	 ⊂ U2 such that (�, 	) is θ -accessible on fp(B(z, 2dε)),
the pair (�, 	) is accessible on fp(B(z, ε)).

Proof. We let v1, . . . , vu be an orthonormal basis of Eu
p and vu+c+1, . . . , vd an

orthonormal basis for Es
p. We define local flows �i on f −1

p (	) as follows. Let Xi be

a vector field along the leaves of f −1
p (W

j
�) where Xi(x) = Dπ

j
x (x + vi) for j = u if

1 ≤ i ≤ u and j = s if u + c + 1 ≤ j ≤ d , and the local flow is defined by the vector field
Xi on the set B(0, 2ρ1) ∩ f −1

p (	) and ρ1 is given by Lemma 3.12. So the orbit of x is

the projection by π
j
x on the curve t �→ x + tvi for |t | < ρ1, and the orbits are C1 curves

whose tangent space is arbitrarily close to Rvi for sufficiently small constants ρ1, δ1, and
U1 as in Lemma 3.12.

For ρ2, δ2, and U2 sufficiently small we see that

‖ϕt
i (x) − (x + tθεvi)‖ < |t |θ ε

10d
. (3.1)

We also let vu+j = wj be an orthonormal basis for the center direction and define
inductively

ϕt
u+j (x) = Hj(t , 1, x) when t ∈ [0, 1),

ϕt
u+j (x) = ϕt−1

u+j ◦ ϕ1
u+j (x) when t > 1,

ϕt
u+j (x) = ϕt+1

u+j ◦ ϕ−1
u+j (x) when t < 0

where the above holds for t so long as it can be defined. From properties (c) and
(d) in the definition of Hj and estimate (3.1) above, P(t1, . . . , td ) := ϕ

t1
1 · · · ϕ

td
d (x0)

for (t1, . . . , td ) ∈ [−3θ−1, 3θ−1]d is a continuous map with ‖P(t1, . . . , td ) − (x0 +∑
i tiθεvi)‖ < 2ε/10. The image of P contains B(x0, 5ε/2), and fp ◦ P shows that

(�, 	) is accessible on B(z, ε).

3.4. The adaptation to flows. Having reproduced the parts of the proof of
Proposition 3.11 that work just like in discrete time, we now proceed to the perturbation
construction, where the adaptations to flows become nontrivial. This result and
proof are similar to [3, Lemma 2.3], but in our case our perturbations need to
be constructed for flows instead of maps. This is the essential adaptation of the
Avila–Crovisier–Dolgopyat–Wilkinson arguments.

LEMMA 3.15. Consider a partially hyperbolic flow � generated by a vector field X.
With the previous notation, there exist η, α0 > 0 such that for any α ∈ (0, α0), p ∈ �,
z ∈ B(0, 1/4) ⊂ TpM with X(fp(z)) �= 0, r ∈ (0, 1/4) and any unit vector v ∈ Ec

p there
is a vector field Y such that
(1) Y = X outside fp(B(z, 3r)),
(2) df −1

p Y = df −1
p X + αηv on B(z, 2r),

(3) Y is α-close to X,
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FIGURE 2. The perturbations in Lemma 3.15.

(4) the flow � defined by Y is (r/100d2)-close to � in the C1 distance, and
(5) if � preserves a volume, symplectic, or contact form, then so does �.

Proof. Figure 2 (which utilizes that by Remark 3.10 we are working away from fixed
points) illustrates what we would like to achieve: to connect the perturbed vector field
(in the smallest circle) to the original one (in the square) by a bump-function interpolation.

For arbitrary vector fields this is all there is. For volume-preserving flows, we invoke
the pasting lemma [35, Theorem 1] (see also [1]) to ensure volume-preservation of the
perturbation.

For the symplectic category, take symplectic flow-box charts as in Proposition 3.2 in
the rectangle and large circle in Figure 2; they are locally Hamiltonian with constant
Hamiltonians on each neighborhood, so we can interpolate the Hamiltonians in the
annulus.

For contact flows take a Darboux chart (Remark 3.4) on the rectangle, then put a suitably
rotated and scaled version in the large disk. This defines a local contact form whose Reeb
field is as desired; interpolate the contact forms in the annulus. (For perturbations in the
flow direction, that is, reparameterization, no rotation is needed.)

Remark 3.16. In a Darboux chart B(0, r) × [0, T ] with contact form dz + ∑
xi dyi , an

explicit such contact perturbation in the direction of a vector v = ∑
vi∂xi

+ vn+i∂yi
is

β = dz +
∑

i

xi dyi + g(z)(vif (xi)yi − vn+if (yi)xi) dz

with g ≡ 1 outside a neighborhood of {0, T } and f constant and supported near 0. Here

dβ =
∑

i

dxi ∧ dyi + g(z)[vi(f
′(xi)yi dxi + f (xi) dyi)

− vn+i (f
′(yi)xi dyi + f (yi) dxi)] ∧ dz,

and the corresponding Reeb field R = c∂z + ∑
i ai∂xi

+ bi∂yi
satisfies

0 ≡ ιRdβ =
∑

i

[ai − cg(z)(vif (xi) − vn+if
′(yi)xi)

=0

] dyi
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−[bi − cg(z)(vn+if (yi) − vif
′(xi)yi)

=0

] dxi

+g(z)[ai(vif
′(xi)yi − vn+if (yi)) − bi(vn+if

′(yi)xi − vif (xi))] dz,

so R = c(∂z + g(z)
∑

i[vif (xi) − vn+if
′(yi)xi]∂xi

+ [vn+if (yi) − vif
′(xi)yi]∂yi

)

with c determined by β(R) ≡ 1. Where f is constant, this is R = c(∂z + fgv), which
‘drifts’ in the prescribed direction.

This shows that and how a C1-small real-valued function produces a C1 (rather than
C0) perturbation of a Reeb field (and via a C2-perturbation of the contact form).

To construct the desired flow we will use the above perturbation to establish
θ -accessibility for the sets fpi

(B(zi , 2dε)). We do this by adjusting Brin quadrilaterals
using the perturbation above. Before explaining this step we first adjust the neighborhood
U and describe the setup we will need.

We first let Cs
0 and Cu

0 be cone fields in U0 that are �-invariant for t < 0 and t > 0,
respectively. Furthermore, from the choice of δ3 we know that the cone fields are invariant
for any flow that is δ3-close in the C1 topology to �. For T > 0 we let U be a neighborhood
of � such that

U ⊂ U1 ∩ U2 ∩
⋂

|t |≤T

ϕt (U0). (3.2)

We also define Cu = DϕT (Cu
0 ) and Cs = DϕT (Cs

0) on U . We know there exist T1 > 0
and ρ4 > 0 such that if T ≥ T1, ρ < ρ4, and p ∈ �, then fp(B(0, 2ρ)) ⊂ U and the cone
fields Df −1

p (Cs) and Df −1
p (Cu) on B(0, 2ρ) are γ -close to Es

p and Eu
p in TpM , where

γ < αη.
Let ρ ∈ (0, min{ρ1, ρ2, ρ3, ρ4}) and fix T ≥ T1 so that any c-admissible disk D

with center p ∈ � and r(D) < T −1 satisfies fp(D) ⊂ B(0, ρ) ⊂ TpM . We also have U

defined by T satisfying (3.2) and the existence of a family D of c-admissible disks from
Proposition 3.9 for some σ > 0.

Fix θ = 2αηd. We now describe the quadrilaterals we will use to establish
θ -accessibility for the perturbed flow. For D ∈ D we fix the zi as in Lemma 3.12 and,
for sufficiently small ε, the sets fpi

(B(zi , 100d2ε)) ⊂ U . We can also define subspaces
E s and Eu such that
• Dfpi

(zi)E s ⊂ Cs(fpi
(zi)),

• Dfpi
(zi)Eu ⊂ Cu(fpi

(zi)),
• dim E s = dim Es

pi
, and

• dim Eu = dim Eu
pi

.
Let vs ∈ E s and vu ∈ Eu be unit vectors and fix an orthonormal basis w1, . . . , wc for

Ec
pi

. For the foliations Fu and F s we define the flow �′
k that corresponds to the linear flow

(x, t) �→ x + tvk projected to the leaves of Fk for k ∈ {u, s}. For each j ∈ {1, . . . , c} we
examine the quadrilaterals given by the composition

vi,j = ϕ′
s(−10jdε) ◦ ϕ′

u(−10dε) ◦ ϕ′
s(10jdε) ◦ ϕ′

u(10dε)

and

vi,−j = ϕ′
s(10jdε) ◦ ϕ′

u(10dε) ◦ ϕ′
s(−10jdε) ◦ ϕ′

u(−10dε).
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FIGURE 3. Perturbed quadrilateral.

We define

R(i, ε) := max
1≤j≤c

(max(‖vi,j‖, ‖vi,−j‖)).

Because R(i, ε) ∈ o(ε) [18, equation (8)], we have the following lemma.

LEMMA 3.17. For each zi there is an ε0 > 0 such that R(i, ε) < θε/10d for ε ∈ (0, ε0).

We let � be the flow generated by a vector field whose restriction to B(zi +
10jdεvs , 2dε) and B(zi − 10jdεvs , 2dε) satisfies the conditions in Lemma 3.15.

Then, starting at zi and using the quadrilaterals above, we see that the new flow
coincides with translation by θεwj from the original flow. Indeed, by construction the first
leg of the quadrilateral is left unperturbed by the new flow. Similarly, the second leg is left
unperturbed. The third leg is the composition of x �→ x − (10dε)vu with the translation
(θ/2)εwj . The fourth leg similarly corresponds to the composition with the linear flow and
translation by (θ/2)εwj . Then the quadrilateral on B(zi , 2dε) corresponds to translation
by θεwj ; see Figure 3.

Similarly, the quadrilateral associated with −j corresponds to translation by −θεwj

from the original flow. From this we obtain the desired function Hj used to ensure
θ -accessibility; see Figure 4.

Furthermore, from the size of the perturbations we see that the flows are at least
(ε/100d)-close in the C0 topology. We now show that this flow � is as in Proposition 3.11.

Let 	 ⊂ U be a bisaturated set for �. Let �̃ be C1-close to � and 	̃ ⊂ U be a
bisaturated set for �̃ contained in a small neighborhood of 	. By the construction above we
know that (�̃, 	̃) is θ -accessible on each of the fpi

(B(zi , 2dε)). Then (�̃, 	̃) is accessible
on each of the sets fpi

(zi , ε).
For D ∈ D that intersects 	̃ at a point z we know there exists an su-path for �̃

from z to a point y ∈ fpi
(B(zi , ε)) for some i from Lemma 3.12. Furthermore, from

Lemma 3.12 we know if x is ε/2 close to z in D, then there is an su-path to a point
y′ ∈ fpi

(B(zi , ε)). Accessibility on B(zi , ε) implies there is an su-path from y to y′. So
any point in the ε/2-neighborhood of z contained in D is in the same accessibility class
as z. This implies that every point in D is in the same accessibility class for (�̃, 	̃) since
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FIGURE 4. θ -accessibility.

D is connected. Then (�, 	) is stably accessible on any disk D ∈ D. This concludes the
proof of Proposition 3.11.

4. Centralizers
We now adapt arguments by Burslem from the proof of Theorem 2.6 [14, Lemmas 5.2, 5.3]
in order to prove Theorem 1.2. We will use the following criterion [4].

PROPOSITION 4.1. For r ≥ 0, a Cr flow � has trivial flow-centralizer (Definition 1.7)
if � has discrete Cr diffeomorphism-centralizer, that is, if for any Cr f : M → M that
commutes with � and is sufficiently close to the identity, there is a τ near 0 such that
f = ϕτ .

We note that without fixed points, some of the arguments below are a little simpler.

Proof of Theorem 1.2. First, we produce a (non-fixed) closed orbit that is isolated among
closed orbits of at most (say) twice its period.

CLAIM 4.2. There is a non-fixed recurrent point.

Proof (Crovisier). A partially hyperbolic flow has a non-atomic ergodic invariant measure
because the topological entropy is positive [15, Theorem 2] while atomic measures have
zero entropy. Almost every point is recurrent [19, Poincaré Recurrence Theorem 3.2.1] and
not fixed (ergodicity).

This produces a closed orbit by perturbation.

CLAIM 4.3. A C1-perturbation has a closed orbit.

Proof (Rifford). From a non-fixed recurrent point, the Pugh closing lemma gives
a C1-close (partially hyperbolic) flow with a closed orbit; this also works for
volume-preserving and symplectic flows [2, §3.1] as well as for Reeb flows—this is
implicit in [2] as follows.

C1 contact perturbations as in Remark 3.16 (or in the proof of Lemma 3.15) produce
the following local connection lemma for a contact form α on a compact manifold: for a

https://doi.org/10.1017/etds.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.24


852 T. Fisher and B. Hasselblatt

Darboux chart C = B(0, ρ) × [0, T ] there is a K > 0 such that for small enough ε, r > 0
and P , Q ∈ B(0, r) with d(P , Q) < rε, there is a contact form β with dC1(Rα , Rβ) < Kε

such that β = α outside B(0, r) × [0, T ] and the flow of Rβ connects P × {0} to Q × {1}
in time T .

The Pugh–Mai methods in [2] then imply that for a recurrent point p of Rα and a
sufficiently small ε, there is an ε-perturbation β of α such that p is periodic for Rβ .

Now, by the transversality theorem [25, Theorems A.3.19, 7.2.4 and p. 296], for a
Cr -open C1-dense set of such flows,
• this closed orbit is transverse and hence isolated among closed orbits of up to twice its

period, and
• fixed points are transverse and hence finite in number.
Theorem 1.1 then gives a C1-open dense set of accessible (volume-preserving/symplectic/
contact) partially hyperbolic flows � with a closed orbit O(p) that is isolated among
closed orbits of at most twice its period. By Proposition 4.1 it suffices to show that their
diffeomorphism centralizer is discrete.

If f : M → M is C1, commutes with � and is sufficiently close to the identity, then
f maps closed orbits of � to closed orbits of � with the same period. Thus, since O(p)

is isolated among orbits of the same period, f (p) ∈ O(p) once f is sufficiently close to
the identity, and indeed f (p) = ϕτ (p) for some τ near 0. Thus h := f ◦ ϕ−τ fixes p and
commutes with �. Here, ‘sufficiently close’ means that dC0(h, id) < ε, where ε > 0 is as
in Lemma 4.5 below.

To conclude that h = id, it suffices to verify this on the dense set M of points that
are accessible from p with (su)-paths that avoid fixed stable and unstable leaves, that is,
disjoint from Wu(x) and Ws(x) for any fixed point x. (This set is dense because the set of
fixed points is finite and their invariant manifolds have positive codimension.)

For any y ∈ M, recursive application of Lemma 4.4 below to a finite (su)-path from p

to y shows that h fixes all vertices of this path and hence y.

LEMMA 4.4. [14, Lemma 5.3] If h(q) = q and Wu(q) contains no fixed point, then
h(x) = x for all x ∈ Wu(q). Likewise for Ws(q).

Proof. Suppose x ∈ Wu(q); the case x ∈ Ws(q) is analogous. Then

h(x) ∈ h(Wu(q))
h∈C1���� Wu(h(q))

h(q)=q����� Wu(q) = Wu(x),

while

d(ϕt (x), ϕt (h(x))) = d(ϕt (x), h(ϕt (x))) < dC0(h, id) < ε.
This implies h(x) = x by Lemma 4.5 below.

The proof of [14, Lemma 5.2] applies to leaves containing no fixed points.

LEMMA 4.5. There is an ε > 0 such that if Wu(x) contains no fixed point and y ∈ Wu(x)

satisfies d(ϕt (x), ϕt (y)) < ε for all t ∈ R, then x = y. Likewise for Ws(x).

This concludes the proof of Theorem 1.2.
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