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In high-Reynolds-number turbulence the spatial distribution of velocity fluctuation
at small scales is strongly non-uniform. In accordance with the non-uniformity, the
distributions of the inertial and viscous forces are also non-uniform. According to direct
numerical simulation (DNS) of forced turbulence of an incompressible fluid obeying
the Navier–Stokes equation in a periodic box at the Taylor microscale Reynolds number
Rλ ≈ 1100, the average 〈Rloc〉 over the space of the ‘local Reynolds number’ Rloc, which
is defined as the ratio of inertial to viscous forces at each point in the flow, is much
smaller than the conventional ‘Reynolds number’ given by Re ≡ UL/ν, where U and L
are the characteristic velocity and length of the energy-containing eddies, and ν is the
kinematic viscosity. While both conditional averages of the inertial and viscous forces for
a given squared vorticity ω2 increase with ω2 at large ω2, the conditional average of Rloc is
almost independent of ω2. A comparison of the DNS field with a random structureless
velocity field suggests that the increase in the conditional average of Rloc with ω2 at
large ω2 is suppressed by the Navier–Stokes dynamics. Something similar is also true
for the conditional averages for a given local energy dissipation rate per unit mass. Certain
features of intermittency effects such as that on the Re dependence of 〈Rloc〉 are explained
by a multi-fractal model by Dubrulle (J. Fluid Mech., vol. 867, 2019, P1).

Key words: homogeneous turbulence, isotropic turbulence, general fluid mechanics

1. Introduction

The Reynolds number is one of the most fundamental dimensionless numbers in fluid
mechanics. In the literature it is often referred to as the ratio of inertial to viscous forces,
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both of which are key ingredients of Newtonian fluid mechanics. The ratio can be defined
locally at any given position x and time t. In this paper this ratio is called the local Reynolds
number and denoted as Rloc, i.e.

Rloc ≡ |(u · ∇)u|
|ν∇2u| , (1.1)

where u = u(x, t) is the fluid velocity at the position x and time t, ν ≡ μ/ρ is the
kinematic viscosity, and μ and ρ are the fluid viscosity and density, respectively. In
the following, we may omit writing (x, t). (Note: In some of the literature, the word
‘inertial force’ is used to mean ρ[(∂/∂t)u + (u · ∇)u], and the term ρ(u · ∇)u is called
the advective term. In this paper, the word ‘inertial force’ is used to mean ρ(u · ∇)u.)

Let L and U be representative length and velocity scales characterizing the flow field in
a global sense, and let the (global) Reynolds number Re be defined by

Re ≡ UL
ν

. (1.2)

Here, L and U are independent of the position, so that Re is too. For example, in the context
of homogeneous turbulence, one may put L and U to be respectively the characteristic
length and velocity scales of energy-containing eddies. Equation (1.2) is one of the most
commonly used definitions of Reynolds number.

The use of simple estimates u ∼ U and ∇ ∼ 1/L yields

(u · ∇)u ∼ U2

L
, ν∇2u ∼ ν

U
L2 , (1.3a,b)

so that one might think

Rloc ≡ |(u · ∇)u|
|ν∇2u| ∼ Re ≡ UL

ν
, (1.4)

where the symbol ‘∼’ means equality in a certain appropriate sense of the order of
magnitude. However, as is well known, (1.4) is not necessarily correct, and the distribution
of the ratio Rloc is in general not uniform and indeed can be very non-uniform.

In the case of certain classes of laminar flows, such as slow flows past a body at small
but finite Re and flows past a solid wall of simple geometry at high Re, it is not difficult
to get some idea of the distribution of the ratio Rloc analytically. By contrast, for complex
flows, in particular turbulent flows, it is difficult to get analytically information about Rloc.
Little is known about the distribution of Rloc in turbulent flows, as compared with laminar
flows.

In general, flows at high Re are turbulent, and such flows exhibit strong non-uniformity
in the distributions of flow characteristics such as the velocity fluctuation, velocity
gradients, etc. The fluctuations at small scales are strong in some regions (called active
regions), while they are weak in others (called calm or non-active regions); see, e.g.
figures 1 and 4 in Ishihara, Gotoh & Kaneda (2009). Even if the flow is statistically
homogeneous, the spatial distribution of ‘activeness’ is in general not uniform; thus, the
distribution of the ratio Rloc may not be uniform, in accordance with the non-uniformity
of the activeness. Then, one can ask, for example, the following questions: ‘Is the estimate
Rloc ∼ Re, i.e. (1.4), acceptable?’; and if not, ‘How large or small is the difference between
Rloc and Re?’; ‘How is the influence of activeness on the statistics of the inertial and
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viscous forces, and on the ratio Rloc?’; and so on. (Regarding the first two questions, it
may be worthwhile to note that Orszag (1977) gave the estimate Rloc = O(Re1/4); see § 4.)

Although it is difficult to answer these questions analytically, it is at least in principle
not difficult to estimate Rloc in direct numerical simulation (DNS) of the flow field.
Thanks to developments in computation, it is now possible for us to simulate turbulent
flows at considerably high Reynolds numbers, and estimate Rloc. In this study we
consider the statistics of Rloc on the basis of the data of a series of DNS of forced
turbulence of an incompressible fluid in a periodic box, so-called box turbulence, with
the Taylor-microscale Reynolds number Rλ up to approximately 1100.

In order to get some idea of the influence of the activeness on the statistics of
Rloc, particular attention is paid in this study to joint probability distribution functions
(p.d.f.s) P(X, Y), where X = X(x, t) is a measure representing the activeness at (x, t),
and Y = Y(x, t) is the magnitude of the inertial or viscous force under appropriate
normalization, or the ratio Rloc(x, t). Among measures that can represent activeness,
we use here the normalised squared vorticity ω2/〈ω2〉 or the normalised local energy
dissipation rate per unit mass ε/〈ε〉, where ω2 ≡ |∇ × u|2, ε ≡ 2νs2, s2 ≡ SijSij, and
Sij ≡ (∂ui/∂xj + ∂uj/∂xi)/2. In the following, ε is called simply the energy dissipation
rate. The brackets 〈· · · 〉 denote the spatial average over the space, and the summation
convention is used for repeated indices. The present work stemmed from a study of the
small-scale structure of turbulence on the basis of high-resolution DNS of box turbulence
(Kaneda & Morishita 2013).

(Note: In our study, the local Reynolds number Rloc is defined by (1.1). It is different
from another local Reynolds number Rr defined by

Rr ≡ Vrr
ν

, (1.5)

where Vr is the order of magnitude of the turbulent velocity variation over distances of
the order of r at (x, t) (e.g. Kolmogorov 1962; Monin & Yaglom 1975; Landau & Lifshitz
1987). In the theory of Kolmogorov and Oboukhov (Kolmogorov 1962), Vr is given by
Vr = (εrr)1/3, where εr is the average of the energy dissipation rate per unit mass over the
sphere of radius r centred at the position x. Here we assume that r � L, i.e. r is in the
small-scale range. The idea that Rr is different from Re and non-uniformly distributed is
well known in studies of small-scale intermittency.

One should distinguish Rr and Rloc from each other. While Rloc depends only on the
position and time (x, t), Rr depends not only on (x, t) but also on the scale r. In contrast
to Rr, the advective term and Rloc are not invariant under Galilean transformation. This
implies that Rloc is not free from the so-called random sweeping effects by large eddies.
This suggests that the statistics of Rloc can be significantly influenced not only by the
small-scale statistics, but also the statistics of large-scale energy-containing eddies, which
are in general non-universal. Therefore, it would not be surprising if the statistics of Rloc
are fundamentally different from those of Rr. The knowledge of the statistics of only Vr,
or εr if Vr is given by Vr = (εrr)1/3 at small scales, is not sufficient to fix the statistics of
Rloc, in contrast to Rr, because the large-scale statistics may have significant influence on
Rloc.)

2. Direct numerical simulation method and run conditions

The results presented below are based on the analysis of data of DNS of turbulent flow
of an incompressible fluid obeying the Navier–Stokes (NS) equation in a periodic box.
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Run Rλ 10−3Re 104ν kmax kmaxη 102〈ε〉 L 104η T tF(tE)

512-2 173 1.00 7.0 241 1.96 7.95 1.21 81.0 2.10 10
1024-2 268 2.31 2.8 483 1.95 8.29 1.12 40.3 1.94 10
2048-2 446 5.84 1.1 965 1.97 7.62 1.11 20.4 1.93 8.4
4096-2 730 14.8 0.44 1931 2.02 7.11 1.13 10.5 1.95 3.2
8192-2 1101 36.7 0.173 3862 1.95 7.94 1.10 5.05 1.91 6.2(4.2)
512-1 257 2.10 2.8 241 0.95 9.02 1.02 39.5 1.77 10
2048-1 732 16.1 0.44 965 1.01 7.07 1.23 10.5 2.13 10
2048-4 272 2.28 2.8 965 3.92 8.04 1.11 40.6 1.92 0.96
8192-4 739 16.1 0.44 3862 4.07 6.93 1.23 10.5 2.13 1.2

Table 1. Direct numerical simulation parameters and turbulence characteristics at time t = tF .

The fluid is forced at only low wavenumber modes by using negative viscosity. The total
energy per unit mass 〈u · u〉/2 is maintained at an almost time-independent constant ≈
0.5, and there is no mean flow, i.e. 〈u〉 = 0. The DNS is based on a Runge–Kutta method
for time advancing, and an alias-free spectral method. For some details of the DNS method
and numerical results, readers may refer to Ishihara et al. (2016) and Ishihara et al. (2020),
which respectively show the energy spectrum and the second-order structure functions.

Some DNS parameters are given in table 1, where Rλ is the Taylor-microscale Reynolds
number, Re = u′L/ν, 3u′2 = 〈u · u〉, kmax is the maximum wavenumber retained in the
DNS, the minimum wavenumber is 1, η is the Kolmogorov microscale given by η =
(ν3/〈ε〉)1/4, and L is the characteristic length scale of the energy-containing eddies defined
by

L ≡ π

2u′2

∫ kmax

0

E(k)
k

dk, (2.1)

in which E(k) is the energy spectrum, satisfying 3u′2/2 = ∫ kmax
0 E(k)dk, and T is the eddy

turnover time given by T = L/u′.
The numbers such as 4096 and 2 in the run names stand for the number N of the grid

points in each direction of the Cartesian coordinates and the resolution kmaxη at time tF;
‘run m–n’, except run 8192-2, was advanced in time with N = m and kmaxη ≈ n until time
at least tF. Run 8192-2 was first advanced in time with kmaxη ≈ 1 and N = 4096 until the
time t = tE before the setting to N = 8192 and kmaxη ≈ 2. The data of runs 512-2, 1024-2,
2048-2, 512-1 and 2048-1 are from the runs used in Ishihara et al. (2007). The initial fields
of runs 4096-2 (8192-2, 8192-4) and 2048-4, were respectively given by the fields at the
final time step of runs 2048-1 and 1024-2 in Ishihara et al. (2007). The computation used
double-precision arithmetic.

3. Influence of squared vorticity ω2

Figure 1(a–c) shows the pre-multiplied joint p.d.f.s XYP(X, Y) for X ≡ ω2/〈ω2〉 and
Y = |(u · ∇)u|/(u′uη/η), |ν∇2u|/(νuη/η

2), and Rloc, respectively, where uη is the
Kolmogorov microscale velocity given by uη = (〈ε〉ν)1/4. The DNS data presented in
this paper are from those at the instant t = tF, and unless otherwise stated they are
from run 8192-2.

The dashed lines show the conditional averages of Y for a given X = ω2/〈ω2〉.
These figures are to be compared with figure 1(d–f ), which plot the same statistics
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Figure 1. Pre-multiplied joint p.d.f.s XYP(X, Y) for X = ω2/〈ω2〉, and (a) Y = |(u · ∇)u|/(u′uη/η), (b) Y =
|ν∇2u|/(νuη/η

2) and (c) Y = Rloc in run 8192-2. (d–f ) The same as (a–c), respectively, but for the random
field. Vertical colour bars indicate the mapping of XYP(X, Y) values into the colour map. Dashed lines show
the conditional averages 〈Y|X〉 for a given X = ω2/〈ω2〉. The solid lines in (a,b) and the dotted line in (b)
respectively show Y = X1/2 and Y = X3/4 (see (4.16a,b)).

as figure 1(a–c), respectively, but for an artificial random structureless field uR
generated by randomizing the phases of the Fourier velocity components of the DNS
field as

ûR(k) =
(

û(k) cos φ(k) + k
k

× û(k) sin φ(k)

)
eiθ(k), (3.1)

where k is the wave vector, ûR(k) and û(k) are respectively the Fourier transforms of uR(x)

and u(x), ûR(k) satisfies the reality condition of uR(x), θ(k) and φ(k) are random numbers
distributed statistically uniformly over the range [0, 2π), and (θ(k), φ(k), θ(k′), φ(k′))
are statistically independent from each other provided that k /= k′ and k /=−k′. Note that
ûR(k) · k = û(k) · k = 0, and |ûR(k)| = |û(k)| for any k. Here u′, uη and η are the same
in DNS and random fields.
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3.1. Statistics of the inertial force
With regard to the inertial force per unit mass, the normalised averages 〈|(u ·
∇)u|〉/(u′uη/η) over the fundamental periodic box are 0.697 in the DNS and 0.815 in
the random field, respectively. Thus, the average is smaller in the NS field than in the
random structureless field. Here the field obeying the NS equation is called the NS
field. This smallness in the NS field is consistent with the phenomenon known as the
depression of nonlinearity in the sense that a moment in the NS field is smaller than its
random counterpart; averages such as 〈|u × ω|2〉 and 〈|(u · ∇)u − (1/ρ)∇p|2〉 are known
to be smaller than their Gaussian counterparts, where p is the pressure; see Kraichnan &
Panda (1988), Chen et al. (1989), She, Jackson & Orszag (1991), Tsinober (2009), and
the references cited therein. (However, it is to be noted that the smallness of a moment,
say 〈|f |〉 does not necessarily mean the smallness of 〈|f |2〉 as compared with its random
counterpart. In fact, as seen below, the average 〈|f |〉 for f =viscous term is smaller in the
NS field than in the random field, while Parseval’s identity implies that 〈|f |2〉 in the NS is
the same as that in the random field, provided that the energy spectra in the two fields are
the same as in the case given by (3.1).)

Comparison of figure 1(a,d) shows that the depression of the conditional average 〈|(u ·
∇)u|∣∣X〉 for a given X ≡ ω2/〈ω2〉 occurs only for small X (e.g. X < Xi) but not for larger
X, where Xi ≈ 10−1. Figure 1(a) shows that |(u · ∇)u| and X = ω2/〈ω2〉 in DNS are not
statistically independent of each other, but correlated at large X, where the conditional
average sharply increases with X in the DNS field. The increase in the DNS field is much
faster than that in the random field (see figure 1d). According to figure 1(a), the former is
approximately given by

〈|(u · ∇)u|∣∣X〉 ∝ Xα =
(

ω2

〈ω2〉
)α

, α ≈ 1
2
, (3.2)

for large X (e.g. X > XI), where XI ≈ 1.
Note that the NS equation is invariant under any Galilean transformation, while the term

(u · ∇)u is not, as noted in the introduction. Its value depends on the choice of the frame,
i.e. the value measured in one frame is in general different from that in a different moving
frame. In the DNS used in this paper, 〈u〉 = 0. Therefore, the values presented in this
paper are to be understood to be those measured in the frame in which the mean flow is
zero, and 〈u · u〉 = 3u′2.

3.2. Statistics of the viscous force
Regarding the viscous force, the normalised averages 〈|ν∇2u|〉/(νuη/η

2) over the
fundamental periodic box are 0.280 and 0.419 in DNS and random fields, respectively.
Thus, the average is again smaller in the NS field than in the random field.

It is remarkable that the pre-multiplied joint p.d.f. in figure 1(b) is similar to the one in
figure 1(a). The comparison of figures 1(b) and 1(e) shows that, just like 〈|(u · ∇)u|∣∣X〉,
〈|ν∇2u|∣∣X〉 is also smaller in the DNS field than in the random field for small X (e.g.
X < Xv), where Xv ≈ 1, but not for larger x. That is, depression or smallness of 〈|ν∇2u|∣∣X〉
for a given X = ω2/〈ω2〉 in the DNS field compared with the random field occurs only for
small X. Figure 1(b) shows that |ν∇2u| and X = ω2/〈ω2〉 in DNS are not statistically
independent of each other but correlated at large X, where the conditional average sharply
increases with X in DNS, in contrast to the random field shown in figure 1(e). As in
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figure 1(b), the increase is approximately given by

〈|ν∇2u|∣∣X〉 ∝ Xα, α ≈ 1
2 , (3.3)

for large X (e.g. X > XV ), where XV ≈ XI ≈ 1.

3.3. Statistics of the local Reynolds number Rloc

For the local Reynolds numbers, the averages 〈Rloc〉 over the fundamental periodic box
are 67.2 and 41.8 in the DNS and the random fields, respectively. Thus, the average 〈Rloc〉
is larger in the NS field. It is observed that 〈Rloc|X〉 in figure 1(c) is almost independent
of X in the DNS field, in contrast to the random field (figure 1f ). The independence of
the former is consistent with the similarity between figures 1(a) and 1(b) noted above,
and implies that there is a certain mechanism in the NS dynamics, which suppresses an
increase in Rloc with X that is observed at large X in figure 1(f ) for the random field.

The comparison of figures 1(d) and 1(e) suggests that in the random field, the
dependence of conditional average 〈|ν∇2u|∣∣X〉 on X at large X is considerably weaker
than that of 〈|(u · ∇)u|∣∣X〉, while in the DNS field, they are similar; both of them increase
sharply with X at large X. In this sense, the difference between DNS and random fields
is larger in the viscous force than in the inertial force. The enhancement of viscous
force implies the suppression of Rloc. Figure 1(b,e) shows that the conditional average
〈|ν∇2u|∣∣X〉 in the random field is almost independent of X, while the average in the DNS
field sharply increases with X, and is larger than the average in the random field, at large
X.

To understand the NS dynamics responsible for this difference in viscous forces in DNS
and random fields at large X-regions (i.e. active regions), suppose that there is a blob of
high vorticity (enstrophy) embedded in a certain large-scale flow field, say UL, whose
characteristic time scale is much larger than that of the small-scale structure of the blob.
Let the shape of the blob, which may be anisotropic, be characterized by a few length
scales, typically in three directions, and let � be the shortest of the length scales, and u�

be the velocity scale characterizing the velocity jump/difference across the distance �. For
example, if the region is sheet-like, then � and u� are, respectively, the sheet thickness and
velocity jump across the sheet, while if it is tube-like, then they are, respectively, the tube
radius and an appropriate circumferential velocity on the tube surface.

If � happens to be too large, so that the viscous force is too small at a certain instance,
then it is natural to assume that the length scale � would be decreased by a certain
mechanism of NS dynamics; for example, by stretching of the vortex tube or sheet along
the direction(s) parallel to the tube axis or sheet, by the interaction with large-scale
flow UL or eddies outside the blob or both. (The incompressibility condition implies the
compression of the blob in at least one of the directions perpendicular to the direction
of stretching.) Such a mechanism can reduce the length scale � and, thereby, increase the
viscous force. Readers may refer to Kida & Yanase (1999), Davidson (2004) and references
cited therein for examples of concentrated vortex regions (Burgers’ vortex tube and sheet)
that show the growth/decrease of the length scale � under the NS dynamics.

The similarity of figures 1(a) and 1(b), in particular the similarity between conditional
averages (shown by black dashed lines), suggests that the structure of the blob is so
organized that the viscous force appropriately balances the inertial force at each position x.
Figure 1(c) suggests it is unlikely under the NS dynamics for viscous and inertial forces to
be too imbalanced with each other; it is natural to assume that, if they are too imbalanced,
the blob structure is unlikely to survive for very long.
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Figure 2. Plot of 〈Rloc|X〉 vs X = ω2/〈ω2〉 in runs 512-2, 1024-2, . . ., 8192-2 (Rλ ≈ 170 − 1100). Dashed
lines show 〈Rloc|X〉 = (u′η/ν)X−1/4 (see (4.16c)).

Figure 2 shows the plots of 〈Rloc|X〉 as a function of X = ω2/〈ω2〉 in runs with kmaxη ≈
2 (Rλ ≈ 170 − 1100). It is observed that 〈Rloc|X〉 is almost independent of X except at low
and large X at each Re. The large fluctuations/noise at large and small X are presumably
due to the sparseness of the corresponding data. The statistics at very large X may be
sensitive to the spatial resolution of DNS, i.e. the cut-off wavenumber kmax, as shown in
Yeung, Sreenivasan & Pope (2018).

In order to see the potential influence of spatial resolution, we have compared 〈Rloc|X〉
obtained by DNS at Rλ ≈ 268 and 730 with kmaxη ≈ 2 with those obtained by DNS at
similar Rλ but with a lower resolution kmaxη ≈ 1 and a higher resolution kmaxη ≈ 4. The
comparison is shown in figure 3. It is seen that although there are some differences between
〈Rloc|X〉 by DNS with kmaxη ≈ 1 and kmaxη ≈ 2 or 4, the difference between the plots for
kmaxη ≈ 2 and 4 (solid and dashed lines) is not so significant, i.e. the plots agree well
with each other, at least to the extent that can be seen in figure 3, except at low X and
large X, say, e.g. X > 102. The comparison suggests that the result ‘that 〈Rloc|X〉 is almost
independent of X except at low and large X at each Re’ noted above is not much affected
by the resolution, provided that kmaxη ≈ 2 or larger. In this paper we use the data by DNS
with kmaxη ≈ 2, unless otherwise stated.

After reading a preliminary version of this paper, an anonymous reviewer commented
that the present study is related to the joint p.d.f. of the local energy transfer vs enstrophy
studied in Faller et al. (2021). They found that the local energy transfer, defined as an
inner product of vectors related to the velocity and the inertia forces, is proportional to ω2.
The reviewer noted that we can expect the constancy of the ratio of local energy transfer
to local viscous dissipation, if we approximate the local energy dissipation by νω2 (the
equality holds exactly only for global averages). It is to be noted here that the local energy
transfer studied in Faller et al. (2021) is defined in terms of the velocity difference between
two points, so that it is invariant under any Galilean transformation. This suggests that the
transfer is free from the so-called random sweeping effects by large eddies, while the
term (u · ∇)u used in the definition of Rloc, (1.1), in the present study is not invariant
under Galilean transformation, and is in general dominated by the sweeping effect by
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Figure 3. Comparison of 〈Rloc|X〉 by DNS with the resolution kmaxη ≈ 2 (runs 1024-2 and 4096-2) and those
by a lower resolution kmaxη ≈ 1 (runs 512-1, 2024-1) and a higher resolution kmaxη ≈ 4 (runs 2048-4 and
8192-4).

large eddies. In the authors’ view, it is therefore questionable that the statistics of the ratio
studied in Faller et al. (2021) are similar to those of Rloc.

Figure 1(c) (black dashed line) and figure 2 show that the dependence of 〈Rloc|X〉 on the
activeness X = ω2/〈ω2〉 is weak, i.e. 〈Rloc|X〉 is almost independent of X. The weakness
of the dependence of the statistics of Rloc on X is also observed in figures 4 and 5. Figure 4
shows the plot of the pre-multiplied joint p.d.f. F(Y) ≡ XYP(X, Y) at X ≡ ω2/〈ω2〉 =
10n (n = −5, −4, . . . , 3) as a function of Y = Rloc. It is observed that the profiles of the
curves are similar. The similarity is more pronounced in figure 5, which shows the plots
of the normalised p.d.f. f defined by

f (ξ) ≡ CF(Y) = CXYP(X, Y) (3.4)

for any fixed X, where C is an appropriate normalization factor, which is chosen so that∫ ∞
−∞〈f |X〉dξ = 1, and ξ = ξ(Y) is given by

ξ = ξ(Y) ≡ log10 Y − 〈log10 Y|X〉. (3.5)

It is observed in figure 5 that the curves for different values of X overlap well, and f (ξ) fits
well to f (ξ) ∝ ξ8/3 and ξ−3 at ξ ≈ −2 and 2, respectively.

4. Local Reynolds number vs Re, and Re-dependence of moments

Given (1.3a,b), one might expect (1.4), i.e. Re ∼ 〈Rloc〉, but this is not so. In fact, Re ≡
UL/ν ≈ 3.67 × 104 in the DNS field which yields figure 1, where U = u′ and L is the
characteristic length scale of energy-containing eddies defined by (2.1). The value 3.67 ×
104 is much larger than 〈Rloc〉 = 67.2. This implies that in the DNS,

Re ≡ UL
ν

� Rloc ≡ |(u · ∇)u|
|ν∇2u| . (4.1)

The large difference between 〈Rloc〉 and Re is not surprising because high Re turbulence
is a multi-scale phenomenon involving eddies of a very wide scale range. In general,
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Figure 4. Pre-multiplied joint p.d.f. F(Y) ≡ XYP(X, Y) as a function of Y = Rloc at X = ω2/〈ω2〉 = 10n (n =
−5, −4, . . . , 3) in run 8192-2. Solid lines are for n = −5, −4, −3, −2, −1 from bottom to top, and dashed
lines are for n = 0, 1, 2, 3 from top to bottom. Left and right solid lines show the slopes of F ∝ Y8/3 and
F ∝ Y−3, respectively.
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Figure 5. The same as figure 4 but for normalised p.d.f. f (ξ) defined by (3.4). To avoid excessive overlap, the
lines for n = 0, 1, 2, 3 are shifted downward and plotted with the right-hand side scale. Left and right solid
lines show the slopes of f ∝ ξ8/3 and f ∝ ξ−3, respectively.

the viscous term is not dominated by large eddies but by small ones. Hence, the second
estimate of (1.4) is not necessarily correct. An estimate 〈Rloc〉 that is rough but better than
(1.4) can be obtained by assuming that

(i) velocity gradients in the advective and viscous terms are dominated by small-scale
eddies of size ∼ η and characteristic velocity ∼ uη, and

(ii) eddies of large scales (∼ L) and small scales (∼ η) are statistically independent from
each other (see, e.g. Tennekes 1975).
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Slope=1/4

Slope=0.29
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〈Rloc〉

Figure 6. Plots of 〈Rloc〉 (◦), u′η/ν (�) and 〈|(u · ∇)u|〉/〈ν|∇2u|〉 in (4.3) (×) vs Re, in runs 512-2, 1024-2,
. . ., 8192-2. The symbols • and � show 〈Rloc〉 by runs 512-1, 2048-1 (kmaxη ≈ 1) and runs 2048-4, 8192-4
(kmaxη ≈ 4), respectively. Dashed, solid and dotted lines show the fit of (4.12), the slopes by the multi-fractal
model and the slopes 1/4, respectively.

These assumptions imply that

|(u · ∇)u| ∼ u′uη

η
, |ν∇2u| ∼ ν

uη

η2 , (4.2a,b)

instead of (1.3a,b). If we further introduce a bold assumption, i.e.〈 |(u · ∇)u|
ν|∇2u|

〉
∼ 〈|(u · ∇)u|〉

〈ν|∇2u|〉 , (4.3)

then we obtain

〈Rloc〉 ∼ u′η
ν

∝ Re1/4, (4.4)

at high Re, where we assumed u′η/ν = u′/(ν 〈ε〉)1/4 ∝ Re1/4 at high Re. The estimate
(4.4) gives 〈Rloc〉 ≈ 16.9(= u′η/ν), which is much better than 3.67 × 104 given by (1.4).

Equation (4.4) is also given by the estimate Rloc = O(u′/(νkd)) = O(Re1/4) by Orszag
(1977), who obtained it by using

〈|(u · ∇)u|2〉 = O(u′2Ω) = O(〈ε〉u′2/ν), (4.5)

and

〈|ν∇2u)|2〉 = O
(

ν2
∫ ∞

0
k4E(k) dk

)
= O(νk2

d〈ε〉), (4.6)

where Ω2 = (1/2)〈ω2〉 and kd ≡ 1/η.
Figure 6 shows the plot of 〈Rloc〉 vs Re by DNS. The values u′η/ν and

〈|(u · ∇)u|〉/〈|∇2u|〉 in (4.3) are also plotted. This gives a direct check of (4.3); it is
seen that the right-hand side of (4.3) is closer than u′η/ν to the left-hand side, i.e. 〈Rloc〉,
although (4.3) is not exact as could be expected. It is also observed that the slope is not far
from 1/4, as predicted by (4.4), although it looks slightly steeper than 1/4.
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The anonymous reviewer noted in § 3 commented that in the view of the reviewer the
result that the slope of 〈Rloc〉 is slightly steeper than 1/4 can be easily explained by
intermittency, and the use of the same arguments developed in Dubrulle (2019) based
on multi-fractal theory yields 〈Rloc〉 ∼ Re0.29. (See Appendix A for the derivation of this
result as well as (4.7)–(4.11a–d) and (4.16a–c) shown below.)

One can apply similar arguments not only to 〈Rloc〉, but also to 〈(Rloc)
n〉 for n /= 1. The

application gives
〈(Rloc)

n〉 ∝ Rern, (4.7)

where
r1 = 0.29, r2 = 0.60, r3 = 0.93, r4 = 1.26. (4.8a–d)

If there was no intermittency, 〈(Rloc)
n〉 ∝ Ren/4, i.e. rn = n/4, provided that η/L ∝

Re−3/4.
One can apply similar arguments also to the moments of the inertial and viscous forces.

The application gives〈( |(u · ∇)u|
u′uη/η

)n〉
∝ Rein,

〈( |ν∇2u|
νuη/η2

)n〉
∝ Revn, (4.9a,b)

where

i1 = −0.04, i2 = 0, i3 = 0.13, i4 = 0.36, (4.10a–d)

v1 = −0.03, v2 = 0.13, v3 = 0.52, v4 = 1.26. (4.11a–d)

If there was no intermittency, the assumption (4.2a,b) would give in = vn = 0 for any n.
Figures 7, 8 and 9 show 〈(Rloc)

n〉, 〈[|(u · ∇)u|/(u′uη/η)]n〉 and 〈[|ν∇2u|/(νuη/η
2)]n〉,

respectively, for n = 1, 2, 3 and 4 by DNS. A least square fitting of the DNS data in the
figures to the form

log10〈Yn〉 = an + bn log10 Re, (4.12)

gives

r1 = 0.29, r2 = 0.58, r3 = 0.97, r4 = 1.85, (4.13a–d)

i1 = −0.01, i2 = 0.03, i3 = 0.13, i4 = 0.31, (4.14a–d)

v1 = −0.02, v2 = 0.07, v3 = 0.25, v4 = 0.51, (4.15a–d)

where an and bn are constants, and bn = rn, in and vn for Y = Rloc, |(u · ∇)u|/(u′uη/η)

and |ν∇2u|/(νuη/η
2), respectively.

Although a close inspection shows that the theoretical estimates (4.8a–d), (4.10a–d) and
(4.11a–d) do not accurately agree with (4.13a–d), (4.14a–d) and (4.15a–d), especially for
large n, the theory captures well the tendency that the intermittency effect is considerably
small for n = 1 and 2, and it is not so small for larger n, i.e. n = 3, 4. The numerical
disagreement of the theory with the DNS especially for large n is not surprising because
the moments for large n (in other words, moments including many ‘∇’), are in general
sensitive to the resolution. Figures 6–9, which include some data by DNS with a lower
resolution (kmaxη ≈ 1) and higher resolution (kmaxη ≈ 4), give an idea on the potential
influence of the resolution. The figures suggest that the influence of the resolution is not
particularly significant for small n, say for n = 1, 2, provided that kmaxη ≈ 2 or larger. By
the way, the figures also suggest that, regarding the low-order moments for n = 1 and 2,
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Figure 7. Plot of 〈(Rloc)

n〉 vs Re for n = 1, 2, 3 and 4. Dotted lines show the slopes n/4. The meanings of the
symbols and the solid and dashed lines are the same as in figure 6, but for 〈(Rloc)

n〉.

〈|(
u·

∇)
u|n 〉/

(u
′ u

η
/η

)n

10–1

100

101

102

103 104 105

n = 1

n = 2

n = 3

n = 4

Re
Figure 8. The same as in figure 7, but for 〈[|(u · ∇)u|/(u′uη/η)]n〉. The slopes for in = 0 are omitted.
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Figure 9. The same as in figure 7, but for 〈[|ν∇2u|/(νuη/η

2)]n〉. The slopes for vn = 0 are omitted.

929 A1-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.806


Y. Kaneda, T. Ishihara, K. Morishita, M. Yokokawa and A. Uno

(a)

10–6 10–4 10–2 100 102 104
10–5

10–4

10–3

10–2

10–1

100

101

102

103

(b)

10–6 10–4 10–2 100 102 104

10–6 10–4 10–2 100 102 104

10–6 10–4 10–2 100 102 104

10–6 10–4 10–2 100 102 104

10–6 10–4 10–2 100 102 104

10–5

10–4

10–3

10–2

10–1

100

101

102

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

(c)

10–3

10–2

10–1

100

101

102

103

104

105

106

(d)

10–5

10–4

10–3

10–2

10–1

100

101

102

103

(e)

10–5

10–4

10–3

10–2

10–1

100

101

102

( f )

10–3

10–2

10–1

100

101

102

103

104

105

106

Y 
=

 |(u
∙∇

)u
|/(

u′
u η

/η
)

Y 
=

 |v
∇2

u|〉
/(

vu
η
/η

2
)

R lo
c

〈Y | X 〉 〈Y | X 〉

〈Y | X 〉 〈Y | X 〉

〈Rloc | X 〉 〈Rloc | X 〉

X = s2/〈s2〉X = s2/〈s2〉
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Figure 11. The same as figure 2 but with X = s2/〈s2〉 = ε/〈ε〉. Lines for 〈Rloc|X〉 = (u′η/ν)X−1/4 are
omitted.
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Figure 12. The same as figure 5 but with X = s2/〈s2〉 = ε/〈ε〉. The line for n = −5 is omitted.

the exponents by DNS with kmaxη ≈ 1 are not that different from those with kmaxη ≈ 2
or 4.

The disagreement between the theory and the DNS is not surprising also in view of
the fact that the theory is based on assumptions which one may think to be questionable
in a strict sense especially at finite Re. Among them are the assumption of the statistical
independence of eddies at small scales (∼ η) from those of eddies at large scales (∼ L) as
noted in the derivation of (4.2a,b), and the assumption of applicability of the intermittency
model not only to the active regions (large X-region) but also to the non-active regions
(or ignoring the potential difference of statistics in non-active regions); it would not
be surprising if the non-active regions may have non-negligible influence on low-order
moments at finite Re.

By the way, as shown in Appendix A, the application of the idea of multi-fractal theory
to the vorticity yields

|(u · ∇)u|
u′uη/η

∼ X1/2,
|ν∇2u|
νuη/η2 ∼ X3/4,

Rloc

u′η/ν
∼ X−1/4, (4.16a–c)

where X ≡ ω2/〈ω2〉. Concerning the inertial force, the exponent 1/2 in (4.16a) is in good
agreement with the exponent of the conditional average for a given X by the DNS (see
(3.2)). As regards the viscous force and Rloc, (4.16b,c) is consistent with the increase
(decrease at high Rλ) of the conditional average of the viscous force (Rloc) with X at large
X in the DNS as seen in figures 1(b,c) and 2, but the exponents 3/4 and −1/4 seem not
that close to those of the conditional averages by the DNS.

At present, it is not known if the agreement between the theory and DNS would be
improved by increasing the resolution and/or Re of DNS.

5. Influence of energy dissipation rate ε

Figures 10, 11 and 12 show the same plots as figures 1, 2 and 5, respectively, but for X =
ε/〈ε〉, where ε = 2νs2 = 2νSijSij. Overall, figures 10, 11 and 12 are similar to figures 1, 2
and 5, respectively. In particular, it is observed that
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(i) the pre-multiplied joint p.d.f.s XYP(X, Y) in figures 10(a) and 10(b) are similar to
each other, like those in figures 1(a) and 1(b), where Y = |(u · ∇)u|/(u′uη/η) and
Y = |ν∇2u|/(νuη/η

2) in figures 10(a) and 10(b), respectively;
(ii) the conditional averages 〈Y∣∣X〉 increase with X at large X, and the increases are

nearly proportional to X1/2, in figure 10(a,b) just like in figure 1(a,b), where X =
ω2/〈ω2〉 in figure 1, whereas X = ε/〈ε〉 in figure 10;

(iii) both of the conditional averages of the inertial and viscous forces in the DNS field are
smaller than those in the random field at small X, and the depression of conditional
averages occurs only for small X, but not for large X;

(iv) the dependence of the conditional average 〈Rloc
∣∣X〉 on X is weak in figures 10(c) and

11, just as in figures 1(c) and 2;
(v) the normalised p.d.f. f (ξ) given by (3.4) is almost independent of X as seen in the

overlap of the curves in figure 12, just as in figure 5.

It is shown in the same way as the derivation of (4.16a–c) in Appendix A that one
has (4.16a–c) not only for X = ω2/〈ω2〉, but also for X = ε/〈ε〉. As in the case of X =
ω2/〈ω2〉, the exponent 1/2 in (4.16a) by the intermittency model is in good agreement
with DNS (figure 10(a)), but the exponents 3/4 and −1/4 in (4.16b,c) look to be not close
to those of the conditional averages by DNS, in figures 10(b,c) and 11.

6. Conclusion

In this paper we studied the statistics of the local Reynolds number Rloc, defined as the ratio
of inertial to viscous forces, in DNS of forced turbulence in a periodic box with the Taylor
microscale Reynolds number Rλ up to approximately 1100. Particular attention is paid
to the influence of the local activeness of the field on the statistics of Rloc. We analysed
the joint p.d.f. P(X, Y), where X = X(x, t) is a measure representing the activeness at
(x, t), and Y = Y(x, t) is the magnitude of the inertial or viscous force under appropriate
normalization, or the ratio Rloc(x, t). Among the measures that can represent activeness,
we used the normalised squared vorticity ω2/〈ω2〉 and the normalised energy dissipation
rate ε/〈ε〉.

The analysis of the DNS data shows that both of the conditional averages of inertial
and viscous forces for a given activeness X represented by X = ω2/〈ω2〉 or X = ε/〈ε〉
increase nearly in proportion to X1/2 in active regions. By contrast, the conditional average
of Rloc for a given X is almost independent of X over a wide range of X, i.e. the increase
in the conditional averages of inertia and viscous forces at large X cancel each other. A
comparison of the DNS field with a structureless random field having the same energy
spectrum suggests that there is a certain mechanism in the NS dynamics which suppresses
the increase of the Rloc with the activeness, at large X.

Not only the conditional average Rloc, but also the conditional p.d.f. of Rloc for a given
X is observed to be almost independent of X after an appropriate normalization. Under
an appropriate normalization, the p.d.f. is almost independent of X and fits well to certain
simple power law forms in certain ranges of X for both X = ω2/〈ω2〉 and X = ε/〈ε〉.

The DNS data also show that the average 〈Rloc〉 over the entire space is much smaller
than the global Reynolds number defined by Re ≡ UL/ν, and scales with Re as ∝ Reα ,
where L and U are respectively the integral length scale and root mean square of the
fluctuating velocity in one direction, and α is approximately 1/4, which is consistent with
the estimate Rloc = O(Re1/4) by Orszag (1977), but a little larger than 1/4. This result is
shown to be consistent with the simple multi-fractal model of intermittency of Dubrulle
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(2019). The idea of the model is applicable also to the estimates of the nth order moments
of Rloc as well as those of inertial and viscous forces. Although the theoretical estimates
do not accurately agree with DNS, the theory captures well the tendency for the influence
of intermittency on the Re scaling of the moments to generally increase with n.
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Appendix A. Derivation of (4.7)–(4.11a–d) and (4.16a–c)

We assume here that there exists a local ‘Kolmogorov scale’ ηh for each local exponent
h. (Such an ηh scales with viscosity like ∝ ν1/(1+h), and if h = 1/3 we recover the
Kolmogorov microscale.) Then, by replacing uη and η in (4.2a,b) to u′(ηh/L)h and ηh,
respectively, we have

|(u · ∇)u| ∼ u′
[

u′
(ηh

L

)h
]

1
ηh

, |ν∇2u| ∼ ν

[
u′

(ηh

L

)h
]

1
(ηh)2 , (A1a,b)

instead of (4.2a,b), so that

Rloc ∼ u′

ν
ηh ∼ Re

ηh

L
, (A2)

which gives

〈Rloc〉 ∼ Re
〈ηh

L

〉
. (A3)

If there was no intermittency, ηh = η everywhere and we recover the Re1/4 scaling (4.4).
But if there is intermittency, described by a multi-fractal spectrum C(h), we obtain instead

〈Rloc〉 ∝ Re1−χ(1), (A4)

where

χ(1) = min
h

χ(1; h), χ(ξ ; h) ≡
(

ξ + C(h)

1 + h

)
, (A5a,b)
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in which we have used ηh/L ∝ Re−1/(1+h). Using a parabolic fit for C(h), i.e.

C(h) = 1
2b

(h − a)2, b = 0.045, a = 1
3

+ 3b
2

(A6a–c)

(see Dubrulle 2019), we obtain 〈Rloc〉 ∝ Re0.29. The authors are grateful to an anonymous
reviewer for these comments. Readers may refer to, for example, Frisch (1995), Dubrulle
(2019) and the references cited therein for more about multi-fractal models.

Similar arguments can be applied also to 〈(Rloc)
n〉 for n /= 1. Equation (A2) and the

multi-fractal model with (A6) give (4.7), where

rn = n − min
h

χ(n; h). (A7)

This gives among others (4.8a–d).
Similar arguments can be applied also to the moments of the inertial and viscous forces.

Since (A1) can be written as

|(u · ∇)u|
u′uη/η

∼ Re−1/2
(ηh

L

)h−1
,

|ν∇2u|
νuη/η2 ∼ Re−5/4

(ηh

L

)h−2
, (A8a,b)

(A1) and the multi-fractal model with (A6) give (4.9a,b), where

in = −n
2

− min
h

χ(n(h − 1); h), vn = −5n
4

− min
h

χ(n(h − 2); h), (A9a,b)

and we have used u′2/L ∼ Re−1/2(u′uη/η) and νu′/L2 ∼ Re−5/4(νuη/η
2). Consequently,

we have among others (4.10a–d) and (4.11a–d). The result i2 = 0 in (4.10b) implies
that minh χ(2(h − 1); h) = −1. This is consistent with the relation 〈ε〉 ≡ 2ν〈SijSij〉 ∝ Re0

obtained by Frisch & Vergassola (1991) in the framework of multi-fractal theory.
The argument leading to (A1) can be applied also to the vorticity field. By setting ω ∼

u/ηh with u ∼ u′(ηh/L)h, we have ω ∼ u′(ηh/L)h/ηh = (u′/L)(ηh/L)h−1. This implies
that

X1/2 = ω

uη/η
∼ Re−1/2

(ηh

L

)h−1
, (A10)

where we have used u′/L ∼ Re−1/2(uη/η) and X = ω2/〈ω2〉 = ω2/(uη/η)2, the last
equality of which is verified by (uη/η)2 = 〈ε〉/ν = 〈ω2〉. It is shown by straightforward
algebra that (A8) and (A10) with (ηh/L) ∼ Re−1/(1+h) give (4.16a–c).
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