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We study adaptive learning in economic environments subject to recurring structural
change. Stochastically evolving institutional and policymaking features can be described
by regime-switching models with parameters that evolve according to finite state Markov
processes. We demonstrate that in nonlinear models of this form, the presence of sunspot
equilibria implies two natural schemes for learning the conditional means of endogenous
variables: under mean value learning, agents condition on a sunspot variable that captures
the self-fulfilling serial correlation in the equilibrium, whereas under vector
autoregression learning (VAR learning), the self-fulfilling serial correlation must be
learned. We show that an intuitive condition ensures convergence to a regime-switching
rational expectations equilibrium. However, the stability of sunspot equilibria, when they
exist, depends on whether agents adopt mean value or VAR learning: coordinating on
sunspot equilibria via a VAR learning rule is not possible. To illustrate these phenomena,
we develop results for an overlapping-generations model and a New Keynesian
model.
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1. INTRODUCTION

A given forward-looking macroeconomic model may admit classes of rational
expectations equilibria that differ in terms of the sets of state variables that agents
use when forming expectations. For example, standard linear stochastic rational
expectations models have solutions that depend only on the minimal set of state
variables, and may also have solutions that depend on extrinsic random variables
(i.e., sunspots). Existence and uniqueness of equilibria are well understood in
linear models with constant parameters; however, in a growing area of research
that focuses on models with changing parameters, these issues are reemerging.1
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In regime-switching models, which constitute the focus of this paper, parameters
evolve according to finite state Markov processes.2 The nonlinear structure of
regime-switching rational expectations models prevents a complete characteriza-
tion of the full class of solutions, though recent papers by Davig and Leeper (2007)
and Farmer et al. (2009) suggest that multiplicity of equilibria—some depending
on extrinsic sunspot or bubbles processes—can arise in models of interest to
applied economists and policymakers.

There has long been interest in indeterminacy, that is, the possibility that an
economy can be driven by inefficient, self-fulfilling expectations, i.e., “sunspots.”
For example, an extensive literature studies whether monetary policy can be de-
signed to prevent coordination on sunspots, and a separate literature examines the
extent to which “rational bubbles” equilibria can account for observed movements
in asset prices. In this paper, we are interested in a distinct but related question:
in nonlinear regime-switching models, which, if any, equilibria are attainable by
agents using an adaptive learning rule, such as least squares? Equilibria that are
attainable in this manner are said to be “learnable” or “stable under learning.”

In regime-switching models, assessing stability under learning is complicated
by the fact that the number and nature of the rational expectations equilibria depend
on whether agents condition their expectations only on the current realization of
the Markov chain capturing the time-varying nature of the model’s parameters, or
also on the history of its realizations. If agents condition their expectations only
on the current regime, we say the economy is in a regime-dependent equilibrium
(RDE); if agents also condition their expectations on past regimes, we say the
economy is in a history-dependent equilibrium (HDE). It is well known that
conditions guaranteeing uniqueness within the class of RDE may not impinge on
the existence of HDE: a model may have a unique RDE and also have multiple
HDE. We note that HDE correspond to an indeterminacy in the model, because
the dependence on past regimes is self-fulfilling.

The presence of multiple equilibria in our model leads naturally to the question
of equilibrium selection, which is the main topic of our paper; and, as mentioned,
we propose using stability under adaptive learning as the equilibrium selection
mechanism. Following Lucas (1986), we maintain that stability under adaptive
learning is a useful metric for identifying empirically relevant equilibria.3 An
equilibrium is plausible or reasonable if, whenever rational expectations are re-
placed with a standard adaptive learning rule, agents’ beliefs converge to those
consistent with the rational expectations equilibrium. Based on this assumption,
we assess whether regime-switching equilibria are learnable.

Our viewpoint is informed by a large and growing literature that replaces rational
expectations with learning rules under which agents are modeled as professional
econometricians; that is, they hold forecasting models that share a reduced form
with a rational expectations equilibrium, and they adjust the parameters of their
model in light of new data. The advantage of this approach is that it places
economist and agent on equal footing and avoids the cognitive dissonance inher-
ent in rational expectations models. This approach is particularly compelling in

https://doi.org/10.1017/S1365100511000800 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000800


1000 WILLIAM A. BRANCH ET AL.

regime-switching models because of the coexistence of equilibria in the regime-
and history-dependent classes.

Among the stochastic properties of the sunspot equilibria associated with linear
models with constant or time-varying parameters is self-fulfilling serial corre-
lation, that is, serial correlation that is present in the equilibrium process only
because agents believe it is present. Whether agents know and condition on this
serial correlation, or instead must learn about it, implies two distinct learning
rules, which may lead to distinct stability outcomes. Under “mean value learn-
ing,” agents regress on a sunspot variable that includes in its stochastic structure
the equilibrium’s self-fulfilling serial correlation, whereas under “VAR learning”
agents must learn the self-fulfilling serial correlation from the data by employing
a (first-order) vector autoregression model.

Our primary results are surprising. When the conditions for a unique RDE
are satisfied, the associated equilibrium is stable under learning. Moreover, this
condition also governs the stability of HDE under mean value learning; on the
other hand, the HDE are not attainable under VAR learning.

The paper is organized as follows: Section 2 provides results for a simple univari-
ate model; Section 3 generalizes the model and defines the classes of equilibria;
Section 4 provides the main stability analysis; Section 5 presents applications
to an overlapping-generations model with switching preferences, and to a New
Keynesian model with switching monetary regimes; Section 6 concludes.

2. THE UNIVARIATE CASE

We begin with a general reduced-form, univariate, regime-switching model,

yt = β(st )Etyt+1 + γ (st )rt , (1)

where rt is a stationary, exogenous AR(1) process, and st ∈ {1, 2} is a two-state
Markov process, independent of rt , with transition matrix P = (pij ). Although
we assume that st takes on two values, the analysis provided holds for any finite
number of states.

We note that the expectational difference equation (1) might arise from the
Fisherian model of inflation in Davig and Leeper (2007). The Fisherian model is
given by

it = Etπt+1 + rt ,

it = α(st )πt ,

where α(st ) > 0. The first equation is a (log-linearized) Fisher equation, where it
is the nominal interest rate, πt is the inflation rate, and rt is the real interest rate,
taken to be a stationary, exogenous process. The second equation is the policy rule
pursued by the central bank in setting nominal interest rates, and it indicates the
potentially time-varying nature of policy. By combining equations and redefining
variables, we see that the Fisherian model fits the more general model (1). If (1)
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captures the Fisherian model then β(st ) > 0; however, in general, β(st ) can be
any real number.

2.1. Rational Expectations Equilibria

A rational expectations equilibrium of the regime-switching model is any bounded
solution to (1).4 Because the model (1) is a nonlinear expectational difference
equation, it is not, in general, possible to identify the entire collection of rational
expectations equilibria; however, it is possible to identify several natural classes
of equilibria depending on the conditioning behavior of the agents.

Our first class of equilibria correspond to those studied by Davig and Leeper
(2007), and are closely associated with what Davig and Leeper call “the minimal
state variable solution” (MSV) of (1), which takes the form5

yt = B(st )rt . (2)

The dependence of yt on st (and not lags of st ), and the independence of st and rt ,
suggests that we consider solutions to (1) of the form yt = yit ⇔ st = i, where
y1t , y2t are stochastic processes independent of st+j for all integers j . We call such
a solution a RDE, and note that the MSV is an RDE.6

In an RDE, the dependence of yt on st allows simple state-contingent expecta-
tions formation so that the yit solve

y1t = β1 (p11Ety1t+1 + p12Ety2t+1) + γ1rt ,
(3)

y2t = β2 (p21Ety1t+1 + p22Ety2t+1) + γ2rt ,

where, here and in the sequel, we use the notation βi = β(i) and γi = γ (i).
We refer to (3) as the stacked system and conclude that an RDE must satisfy (3).
We also note that the MSV solution (2) identified by Davig and Leeper (2007)
corresponds to the unique MSV solution to (3) in the sense of McCallum (1983).7

The stacked system (3) shows that when expectations are conditioned on current
st , the univariate nonlinear model (1) is recast into a multivariate linear model,
which can then be solved using standard techniques, e.g., Blanchard and Kahn
(1980); and, in particular, the number and nature of the RDE can be determined.
Recall that a linear model is determinate if there is a unique REE and indeterminate
if there are multiple REE. Standard determinacy analysis implies that there is a
unique nonexplosive rational expectations equilibrium for (3), and therefore a
unique RDE for (1), provided that the matrix(

β1p11 β1p12

β2p21 β2p22

)
(4)

has eigenvalues inside the unit circle. We refer to the determinacy condition in (4)
as the conditionally linear determinacy condition (CLDC); it is analogous to the
long-run Taylor principle in Davig and Leeper (2007).8
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Because the underlying model (1) is nonlinear, the CLDC does not necessarily
guarantee uniqueness when agents also condition their expectations on st−n for
n > 0. This point was made by Farmer et al. (2009), who showed that although
the CLDC implies uniqueness for the univariate model in the case of positive
feedback across regimes (i.e., for all i, βi > 0), if some regimes exhibit negative
feedback, then multiple equilibria may exist even when the CLDC is satisfied. To
illustrate, we first simplify the model by setting γi = 0. In this case, the MSV
solution is particularly simple: yt = 0. Now note that a rational expectations
equilibrium yt may be associated with a martingale difference sequence (mds) ξt ;
i.e., Et−1ξt = 0, so that

yt = β−1
t−1yt−1 + ξt , (5)

and further, any mds ξt identifies an REE via (5), provided that the implied process
for yt is bounded. We now construct an mds ξt so that the boundedness criterion is
met. Assume |β1| < 1 < |β2| (this corresponds to the case in which “one regime
is determinate and one regime is indeterminate”). Nondegeneracy requires that
regimes are not absorbing; thus let p22 > 0. Define

ξt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−β−1
1 yt−1 + δ11εt (st−1, st ) = (1, 1)

p11

p12
β−1

1 yt−1 + δ12εt (st−1, st ) = (1, 2)

−β−1
2 yt−1 + δ21εt (st−1, st ) = (2, 1)

p21

p22
β−1

2 yt−1 + δ22εt (st−1, st ) = (2, 2),

where δij ∈ R is arbitrary, and εt is any martingale difference sequence with
uniformly bounded support. Then ξt is an mds.9 The dynamics for yt implied by
plugging ξt into (5) follow:

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ11εt (st−1, st ) = (1, 1)

1
p12

β−1
1 yt−1 + δ12εt (st−1, st ) = (1, 2)

δ21εt (st−1, st ) = (2, 1)

1
p22

β−1
2 yt−1 + δ22εt (st−1, st ) = (2, 2).

(6)

It is straightforward to verify that (6) is a solution to the model by stepping
yt forward one period, taking conditional expectations, and plugging into (1).
To show that it is an REE, we have to demonstrate boundedness. We have the
following result:10

LEMMA 1. The process yt , as given by (6), is uniformly bounded if and only
if |β2p22| > 1.
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Intuitively, provided that |β2p22| > 1, the only explosive “state” occurs when
(st−1, st ) = (1, 2), but then (st , st+1) = (2, 1) or (st , st+1) = (2, 2): either way,
the divergence is halted.

It is straightforward to find βi such that the CLDC is satisfied and (6) is uniformly
bounded, and a microfounded example based on an overlapping-generations
(OLG) model is provided in Section 5.1. We note that if the CLDC is satisfied
and |β2p22| > 1, then β1 must be positive.11 Thus, for multiple equilibria to exist
when the CLDC is satisfied, it must be the case that β2 < 0, so that the univariate
model exhibits positive feedback in the determinate regime and negative feedback
in the indeterminate regime. This observation will be important in constructing
the example in Section 5.1.

When |β2p22| > 1, we refer to the process given by (6) as a HDE, because
dynamics explicitly depends on st and st−1. Notice that the indeterminacy of
regime 2 spills over across regimes so that there is sunspot dependence in both
regimes. This is in contrast to RDE, where yt switches between two stochastic
processes that are independent of the underlying Markov state. In the HDE the
value of yt depends on the current state st and also explicitly on the Markov state
in the previous period. This dependence is self-fulfilling in the sense that it exists
only because of agents’ expectations.

2.2. Digression: Expectational Stability in Constant-Parameter Models

Consider the constant-parameter version of (1),

yt = βE∗
t yt+1 + γ rt , (7)

now written with a (possibly) boundedly rational expectations operator E∗ and
where rt = ρrt−1 + νt , where 0 < ρ < 1 and νt is white noise.

When |β| < 1 the model is determinate and there exists a unique equilibrium
that has the form yt = brt . To analyze stability under learning, we posit that agents
hold a perceived law of motion (PLM, i.e., a forecasting model) whose functional
form is consistent with the equilibrium representation:

yt = A + Brt .

Although there is no constant in the equilibrium representation yt = brt , it is
standard to allow agents to consider the possibility that there may be a constant
term, i.e., to learn the steady-state values of y as well.

The parameters A and B capture agents’ perceptions of the relationship between
y and r , and may be estimated using, for example, recursive least squares. Let At

and Bt be the respective estimates using data up to time t . Agents form forecasts
using the PLM to obtain12

E∗
t yt+1 = At−1 + Bt−1ρrt .
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Plugging these forecasts into (7) leads to the actual law of motion (ALM),

yt = βAt−1 + (βBt−1ρ + γ )rt .

Here we assume that agents know the true process governing rt . The actual law
of motion defines a map T : R2 → R2 that takes perceived coefficients to actual
coefficients:

T (A,B) = (βA, βBρ + γ ).

Notice that the fixed point of the T-map identifies the unique rational expectations
equilibrium of the model. The unique rational expectations equilibrium yt = brt

is stable under learning if (At , Bt ) → (0, b) almost surely.
The asymptotic behavior of (At , Bt ) often reduces to a fairly simple and intuitive

condition known as E-stability: see Evans and Honkapohja (2001). The rational
expectations equilibrium is said to be E-stable if it is a locally asymptotically
stable fixed point of the ordinary differential equation (o.d.e.)

d(A,B)

dτ
= T (A,B) − (A,B).

The E-stability principle states that if agents use recursive least squares—or
closely related learning algorithms—then E-stable rational expectations equilibria
are locally stable under learning.13 In this simple example, if (0, b) is a locally
asymptotically stable fixed point of the o.d.e., then (At , Bt ) → (0, b) almost
surely.

The economic intuition behind the E-stability principle is simple: reasonable
learning algorithms dictate that agents update their parameter estimates in the
direction indicated by the forecast errors and T (A,B) − (A,B) is, in a sense, a
forecast error. If the rest point of the o.d.e. is stable, then adjusting parameters in the
direction indicated by the forecast error will lead the parameters toward the rational
expectations equilibrium. The E-stability condition is thus that all eigenvalues of
DT have real parts less than one. For the case at hand, the derivatives are given
by β and ρβ.14 Because the model is determinate by assumption (i.e., |β| < 1),
the rational expectations equilibrium is stable under learning.

When |β| > 1, the model is indeterminate and there exists a continuum of
equilibria. To fix ideas, we assume the model is nonstochastic (rt = 0) and let
yt be an REE corresponding to (7). Then there exists an mds ξt so that yt =
β−1yt−1 + ξt : the “general form representation” of yt . Also, there exists a serially
correlated process given by ηt = β−1ηt−1 + ξt so that yt = ηt : the “common
factor representation" of yt .15

We first assume that agents engage in “mean value learning”; that is, they
observe the extrinsic process ηt and estimate the conditional mean of y using a
forecasting model of the form

yt = A + Bηt .
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Computing the T-map provides DTA = β,DTB = 1, so that the sunspot equilibria
are E-stable provided that β < −1.16

Under “VAR learning,” agents estimate both the mean and the lag structure of
the endogenous variables via

yt = A + Byt−1 + Cξt ,

where ξt is a martingale difference sequence. The primary difference between
VAR and mean value learning is that the latter assumes that agents coordinate
on the serially correlated sunspot ηt , whereas the former postulates that agents
try to detect the self-fulfilling lag structure from the data. Computing the T-map
provides the following derivatives:

DTA = β(1 + B),

DTB = 2βB,

DTC = βB.

Because, at the REE, B = β−1, it follows that that DTB = 2: so if agents employ
VAR learning, then the sunspot equilibria are never stable.

2.3. E-Stability in Univariate Regime-Switching Model

We now extend the analysis in the previous subsection to the regime-switching
model (1). We analyze the stability of equilibria in each class identified previously.

Without loss of generality, we continue to assume that γi = 0, i = 1, 2. Recall
that, in case the CLDC holds, there is a unique RDE of the form yt = 0. To
analyze stability under learning, given the regime-switching structure, we provide
agents with a PLM that, although functionally consistent with the RDE, allows
regime-dependent learning:

yt = A(st ).

According to this PLM, the learning agent believes that if the state of the world is
given by st = 1, then yt = A(1), and if the state of the world is given by st = 2,
then yt = A(2).

Stepping this equation forward leads to state-contingent expectations

Et (yt+1|st = j) = pj1A(1) + pj2A(2).

Thus, there is a state-contingent T-map given by

A(j) → βj [pj1A(1) + pj2A(2)].

Differentiating leads to the Jacobian matrix that governs E-stability:

DT =
(

β1p11 β1p12

β2p21 β2p22

)
.
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The condition for E-stability of RDE is that the eigenvalues of DT have real parts
less than one. But now notice that the matrix DT coincides with the matrix (4)
governing uniqueness of RDE: if the CLDC is satisfied, then the unique regime-
dependent equilibrium is E-stable.

We now turn to the stability of the univariate HDE given in (6), and we consider
VAR learning. HDE may depend on a constant, lagged y, and an extrinsic sunspot
ξ , and the nature of these dependences may vary depending on the state of the
world yesterday and today. Consistent with this, we provide agents with a PLM
of the form

yt = A(st−1, st ) + B(st−1, st )yt−1 + C(st−1, st )ξt ,

where ξt is an m.d.s., and the parameters A,B,C in the PLM are elements of the
real line. We assume that st but not contemporaneous yt is in the information set.
Computing conditional forecasts using this PLM, we obtain the following T-map
for B:

B(i, j) −→ βj [pj1B(j, 1) + pj2B(j, 2)]B(i, j).

Ignoring the boundedness requirement, a fixed point of this map identifies an
HDE. The only restrictions, then, are the following:

1 = β1 [p11B(1, 1) + p12B(1, 2)] = β2 [p21B(2, 1) + p22B(2, 2)] .

In particular, there is a two-dimensional continuum of coefficients on lagged y

providing fixed points.
Following Farmer et al. (2009), we focus on particular fixed points, given by

B(1, 1) = B(2, 1) = 0, B(1, 2) = β−1
1

p12
, B(2, 2) = β−1

2

p22
.

To analyze stability, we compute the eigenvalues of DT . The T -map for the
coefficients B decouples and provides the following Jacobian:

DTB =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 β−1
1 β2p21/p12 β−1

1 β2p22/p21

0 0 1 0

0 0 p21/p22 2

⎞⎟⎟⎟⎟⎟⎠.

The Jacobian has an eigenvalue of 2, which implies that under learning, HDE,
when represented this way, are E-unstable.

We now explore the stability of HDE under mean value learning. Agents are, in
essence, assumed to know the self-fulfilling serial correlation, but are still required
to learn the mean. This assumption implies a PLM of the form

yt = A(st−1, st ) + Bηt , (8)
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where ηt is an extrinsic process given by

ηt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ11εt (st−1, st ) = (1, 1)

1
p12

β−1
1 ηt−1 + δ12εt (st−1, st ) = (1, 2)

δ21εt (st−1, st ) = (2, 1)

1
p22

β−1
2 ηt−1 + δ22εt (st−1, st ) = (2, 2).

Thus agents are assumed to condition their forecasting model for yt on a history-
dependent intercept and on an extraneous exogenous variable ηt that has the
required serial correlation properties. Notice that agents’ beliefs concerning the
mean of yt are still state-contingent.

The T-map is given by

A(i, j) → βj [pj1A(j, 1) + pj2A(j, 2)]

and B → B; this yields the Jacobian matrix

DTA =

⎛⎜⎜⎜⎜⎜⎝
β1p11 β1(1 − p11) 0 0

0 0 β2(1 − p22) β2p22

β1p11 β1(1 − p11) 0 0

0 0 β2(1 − p22) β2p22

⎞⎟⎟⎟⎟⎟⎠,

which has the same eigenvalues as the Jacobian matrix for the RDE plus a pair of
zero eigenvalues.17 Therefore, when there is a unique RDE, and agents form their
forecasts via the mean-value PLM (8), it is possible for agents to coordinate on
either the RDE or the HDE.

Whether HDE exist when the CLDC is satisfied depends on the specific eco-
nomic model. It is possible to verify that in the univariate case, when β1, β2 are
restricted to take nonnegative values, the CLDC implies β2p22 < 1; thus in the
Fisherian model, if there is a unique RDE, then HDE do not exist: the CLDC is
sufficient to preclude the presence of HDE. HDE can exist when the CLDC is not
satisfied, for example, when β1 < 1, β2 > 1, and β2p22 > 1; however, they are
not stable under learning even if agents use mean value learning.

Moving outside the context of the Fisherian interpretation, in a model with
negative coefficients, HDE can exist even when the CLDC holds. In Section 5, an
OLG model is presented that naturally leads to β1 > 0, β2 < 0, and in which the
CLDC is satisfied; then, whenever |β2p22| > 1, it follows that HDE exist and are
stable under mean value learning.

3. REGIME-SWITCHING EQUILIBRIA: THE MULTIVARIATE CASE

Having introduced our results within a univariate model, we now formalize and
generalize our findings. We focus on models whose reduced form consists of a
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system of nonlinear expectational difference equations of the form

yt = β(st )Etyt+1 + γ (st )rt , (9)

where yt is an (n × 1) vector of random variables, and β(st ) and γ (st ) are
conformable matrices that depend on st , an m-state Markov process taking on
values in {1, . . . , m}. As before, we use the notation β(st ) = βi, γ (st ) = γi ⇔
st = i, i = 1, 2, . . . , m. The stochastic matrix P governing the evolution of st is
taken to be recurrent and aperiodic, so that it has a unique stationary distribution.
For simplicity, βi is taken to be invertible for all i. Finally, rt = ρrt−1 + ε̂t is
a (k × 1) exogenous stationary VAR(1) process independent of sj for all j . For
convenience we assume that rt has bounded support.

A rational expectations equilibrium of the model is a solution of (9) that also
satisfies a boundary condition. We focus on processes satisfying the following
property:

DEFINITION. A stochastic process yt with initial condition y0 is uniformly
bounded (almost everywhere) or UB if ∃M (y0) such that supt ||yt ||∞ < M (y0),
where || · ||∞ is the L∞ or “essential supremum” norm.

With this definition available, we may define a rational expectations equilibrium:

DEFINITION. A rational expectations equilibrium is any UB stochastic process
satisfying (9).

Although being UB may appear to be an a priori strong notion of boundedness,
it is common in the linear rational expectations literature and is consistent with
standard determinacy analysis.

3.1. Regime-Dependent Equilibria

The minimal state variable solution to the model (9) takes the form18

yt = B(st )rt , (10)

and, as before, this functional form guides our definition of RDE.

DEFINITION. Let st be the Markov process governed by P and taking values
in {1, 2, . . . , m}. Let yt be a solution to (9). Then yt is a RDE if it is uniformly
bounded and there exist uniformly bounded stochastic processes y1t , y2t , . . . , ymt ,
with yit independent of st+j for all integers j , such that yt = yit ⇔ st = i. Note
that the MSV solution is an RDE.

In an RDE, depending on the realization of st , yt takes on values from one of
m stochastic processes, with each process being independent of the Markov state.
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Conditioning (9) on each regime leads to the system

y1t = β1p11Ety1t+1 + β1p12Ety2t+1 + · · · + β1p1mEtymt+1 + γ1rt ,

y2t = β2p21Ety1t+1 + β2p22Ety2t+1 + · · · + β2p2mEtymt+1 + γ2rt ,

...
...

...

ymt = βmpm1Ety1t+1 + βmpm2Ety2t+1 + · · · + βmpmmEtymt+1 + γmrt ,

which governs dynamics for yit for i = 1, 2, . . . , m. We note that this is a linear
system that can be written compactly as

ŷt = MEtŷt+1 + γ rt , (11)

where M = (⊕m
j=1βj )(P ⊗ In), ŷt = (y ′

1t , y
′
2t , . . . , y

′
mt )

′ and γ ′ = (γ ′
1, . . . , γ

′
m)′,

and where we use the direct sum notation ⊕m
j=1βj = diag(β1, β2, · · · , βm).

The stacked system (11) is a multivariate linear rational expectations model,
and, as before, the MSV solution (10) of the switching model (9) corresponds to the
unique MSV solution of the stacked system (11) in the sense of McCallum (1983).
The number and nature of solutions to (11) are well known. We are particularly
interested in conditions under which there exists a unique UB solution to the
stacked system, as this condition will also govern the expectational stability of
solutions to the economic system (9). We summarize this in the following remark.

Remark. A necessary and sufficient condition for the existence of a unique
uniformly bounded solution to (11) is that the eigenvalues of (⊕m

j=1βj )(P ⊗ In)

lie inside the unit circle. In this case, we say that the CLDC is satisfied.

PROPOSITION 2. If the CLDC holds then there is a unique RDE that corre-
sponds to the MSV solution.

This proposition follows from the fact that any RDE solves the stacked system
(11).19 Subsequent sections show a close connection between the conditions for
unique RDE and E-stable rational expectations equilibria, and so the CLDC takes
on added importance hereafter.

3.2. History-Dependent Equilibria

This subsection formalizes the definition of HDE, that is, equilibria where agents
condition their expectations on an expanded state vector that includes st−n. We
focus on the case n = 1.

DEFINITION. Let st be the Markov process governed by P , taking values in
{1, 2, . . . , m}. Let yt be a solution to (9). Then yt is a HDE if it is uniformly bounded
and its distribution conditional on st differs from its distribution conditional on st

and st−1: yt |st �∼ yt |(st , st−1).
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Sunspot solutions of the stacked system (which have constant parameters) can
be HDE by having a history-dependent sunspot shock: see the Remark in the
Appendix for details. More generally, under conditions identified in the Appendix,
there exist HDE with time-varying coefficients on the lagged endogenous variable,
and we turn to equilibria of this form now.

Assuming without loss of generality that γt = 0 for all t , these HDE may be
represented as

yt = B̂(st−1, st )yt−1 + Ĉ(st−1, st )ξt , (12)

where ξt is a uniformly bounded mds, and detailed expressions for the coefficient
matrices B̂, Ĉ are provided in the Appendix. Also, just as in the univariate case, it
is possible to represent the same HDE in the alternative form

yt = ηt , (13)

where

ηt = B̂(st−1, st )ηt−1 + Ĉ(st−1, st )ξt .

The stochastic properties of (13) are equivalent to those of (12); however, these two
representations imply different informational assumptions and distinct stability
results. As in Section 2, these observations lead to two natural learning rules.

3.3. Equilibrium Representations

The representations of regime-switching rational expectations equilibria preced-
ing, and in Section 2, form the basis for the forecasting rules used by boundedly
rational agents when forming expectations. As emphasized in Evans and McGough
(2005b), stability under adaptive learning may depend on the functional form of
the agents’ forecasting model. Therefore, we provide the following summary:

1. There exists an RDE capturing the minimal state variable (MSV) solution to (11),
and its representation is given by

yt = B(st )rt .

2. HDE are sunspot equilibria that (setting γt = 0 for convenience) can be naturally
represented in (at least) two ways: as yt = B̂(st−1, st )yt−1 + Ĉ(st−1, st )ξt , where ξt

is an arbitrary, uniformly bounded martingale difference sequence; or as yt = ηt ,
where ηt = B̂(st−1, st )ηt−1 + Ĉ(st−1, st )ξt .

4. EXPECTATIONAL STABILITY: THE MULTIVARIATE CASE

In this section we investigate equilibrium stability in our general regime-switching
model.
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4.1. E-Stability and the Conditionally Linear Determining Condition

This section demonstrates that the CLDC implies E-stability of RDE. Throughout,
we assume that agents observe the current state st and know the true transition
probabilities, but do not observe yt . This is consistent with a common convention
of the adaptive learning literature that assumes agents observe contemporaneous
exogenous variables, but not current values of endogenous variables.20

Agents have a PLM of the form

yt = A(st ) + B(st )rt ,

where A(j) is (n × 1), and B(j) is (n × k). Notice that we assume agents do not
know that in equilibrium the Ai = 0.

PROPOSITION 3. If the CLDC holds, then the unique RDE is E-stable.

The proof is in the Appendix. This result states that an economy described by
the main expectational difference equation (9), with expectations formed from
the MSV forecasting model and updated using least squares, will converge to the
unique RDE.

4.2. E-Stability and Indeterminacy

Now we examine the stability of HDE, and again, for simplicity, we set γt = 0.
We begin by considering VAR learning. In this case, the PLM takes the form

yt = A(st−1, st ) + B(st−1, st )yt−1 + C(st−1, st )ξt , (14)

where ξt is an mds, independent of the Markov states. The PLM makes clear the
primary distinction between HDE and the class of RDE solutions, because, here,
coefficients depend explicitly on st and st−1, whereas coefficients in the PLM for
the RDE depend only on st .

General results on the stability of HDE are not available because the set of all
fixed point solutions has not been characterized. If m = 2, there is, however, a
subclass of fixed points that corresponds to multivariate analogues of the equilibria
studied by Farmer et al. (2009) in the univariate case. If every eigenvalue of β2 is
larger than 1/p22 in modulus, then there exists a continuum of HDE such that

B(1, 1) = B(2, 1) = 0, B(1, 2) = β−1
1

p12
, B(2, 2) = β−1

2

p22
. (15)

The restriction that the eigenvalues of β2 are larger, in modulus, than 1/p22 ensures
that the resulting process is uniformly bounded.21 We have the following result,
which is proved in the Appendix.

PROPOSITION 4. HDE of the form (15) are never stable under VAR learning.
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Now consider mean value learning. In this case, agents are assumed to condition
on a sunspot that captures the self-fulfilling serial correlation in the endogenous
vector, and thus only estimate the state-dependent mean. Specifically, assume
agents observe an extrinsic noise process that satisfies

ηt = B̂(st−1, st )ηt−1 + Ĉ(st−1, st )ξt .

Then we take our agent’s forecasting model as

yt = A(st−1, st ) + Bηt .

We have the following result, which is proved in the Appendix.

PROPOSITION 5. Assume the model is parameterized so that HDE exist. If
there exists a unique RDE, then there exist HDE that are stable under mean value
learning.

4.3. Discussion

A brief review of our results is in order. First, consider the univariate model. If both
regimes exhibit positive feedback, i.e., βj > 0, j = 1, 2, then the CLDC implies
determinacy: there is a unique equilibrium corresponding to the MSV solution and
it is stable under learning. HDE do not exist in this case. On the other hand, there
exist models with positive feedback in the “determinate” regime, βj < 1, and
negative feedback in the “indeterminate” regime, βj < −1, for which the CLDC
does not rule out multiple equilibria. In these cases, HDE are shown to exist even
when the CLDC holds, and these HDE are unstable under VAR learning and stable
under mean value learning. An economic example that fits this case is the OLG
model presented in the next section.

The results for the multivariate case are quite similar to those for the univariate
model. The CLDC guarantees a unique RDE, but might be insufficient, in general,
to guarantee a unique equilibrium. Models for which the CLDC is satisfied may
exhibit HDE that are unstable under VAR learning and stable under mean value
learning. An economic example that fits this case is the New Keynesian model
presented in the next section.

There are some questions left open by the preceding analysis. We have only
studied stability of HDE of the form (15). Regardless of whether the CLDC holds,
other HDE may exist, either as different fixed points for the same T-map implied
by the PLM (14), or by conditioning on different states (i.e., st−n for some n > 1).
We cannot comment on the existence or stability of such HDE.

Finally, we note that if the CLDC does not hold, then there are multiple RDE.
Indeed, if the CLDC does not hold, then the stacked system (11) has multiple
uniformly bounded solutions corresponding to sunspot equilibria, and provided
that the sunspot shock associated with a given equilibrium is independent of the
Markov state, that equilibrium will be an RDE.

https://doi.org/10.1017/S1365100511000800 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000800


ADAPTIVE LEARNING AND REGIME SWITCHING 1013

5. ECONOMIC EXAMPLES

To gain some insight into the economics necessary to allow stable sunspot equi-
libria, we consider two examples.

5.1. An Overlapping-Generations Model

This section presents a simple OLG model with money as storage extended to
incorporate a preference parameter that follows a two-state Markov process. The
basic setup is standard: households live for two periods, they work nt hours when
they are young, and they consume ct+1 when they are old. They produce qt units
of a nonstorable good according to the production function qt = nt . Finally,
households can buy and sell goods in exchange for fiat money M at the price pt .

The representative household solves the following problem:

max u(ct+1) − V (qt )

ptqt = Mt = pt+1ct+1.

The household’s FOC is given by

v′(nt ) = Et

[
pt

pt+1
u′(ct+1)

]
.

In equilibrium, ct = qt ; and, assuming the money supply is constant, pt+1qt+1 =
ptqt . Combining these observations yields the equilibrium condition v′(qt )qt =
Etu

′(qt+1)qt+1. Finally, we assume that v is linear and u is CRRA, with relative
risk aversion coefficient σ . Under these assumptions, the nonautarky steady state
is q = 1 and the linearized model is

qt = (1 − σ)Etqt+1, (16)

where variables are now in deviation from steady-state form.
Section 2 demonstrated that if the CLDC is satisfied and HDE of the form

(6) exist, then the determinate regime must exhibit positive feedback, and the
indeterminate regime must exhibit negative feedback. Thus, assume a two-state
Markov process: σ(st ) ∈ {σ1, σ2}, where 0 < σ1 < 1 < σ2. With this assumption,
the model (16) fits the reduced-form structure (1); further, it is straightforward to
choose parameter values such that the CLDC is satisfied and HDE of the form (6)
exist: σ1 = 0.7, σ2 = 2.5, p11 = 0.5, p22 = 0.7 provides an example.

5.2. A New Keynesian Model

There is extensive empirical evidence of regime change in monetary policymaking
[see Clarida et al. (2000), Bernanke (2004), and Dennis (2006)]. These findings
motivate models that build regime-switching policy rules directly into rational
expectations frameworks.
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As an example, Davig and Leeper (2007) and Farmer et al. (2009) construct
rational expectations solutions for the New Keynesian model closed with a nominal
interest rate rule whose coefficients are subject to occasional regime change.
The New Keynesian model is given by (linearized) reduced-form equations for
inflation, π , and the output gap, x, such as

πt = δEtπt+1 + κxt + ut

xt = Etxt+1 − σ−1 (it − Etπt+1) + gt ,

where gt captures aggregate demand shocks and ut represents cost-push shocks.
The first equation is the New Keynesian Phillips curve, which represents the
aggregate supply relation. The second equation is the New Keynesian IS equation,
which represents the demand side of the economy.

It is typical to close a New Keynesian model with a nominal interest rate
targeting rule along the lines proposed by Taylor (1993). A New Keynesian model
with recurring policy change assumes a nominal interest rate rule with time-varying
parameters

it = α(st )πt + γ (st )xt .

To capture recurrent regime change, Davig and Leeper (2007) assume that the
parameters α(st ), γ (st ) in the policy rule follow a two, state Markov chain:

α(st ) =
{

α1 for st = 1
α2 for st = 2

,

and

γ (st ) =
{

γ1 for st = 1
γ2 for st = 2

.

The random variable st follows a finite-state Markov chain with transition proba-
bilities pij ≡ Pr [st = j |st−1 = i] for i, j = 1, 2.

The Taylor Principle dictates that, in a model with constant policy coefficients
α, γ , nominal interest rates rise more than one for one with inflation, that is, α > 1.
Policy that satisfies the Taylor Principle leads to a model with a unique rational
expectations equilibrium, whereas when α < 1 it is possible for there to exist
multiple equilibria that exhibit inefficiently high volatility. With regime-switching
policy rules, private-sector expectations build in the possibility of future passive
monetary policy and this places a restriction on how active (i.e., to what extent
α > 1) policy must be to ensure determinacy.

As an example, we parameterize the model as in Davig and Leeper (2007):
δ = 0.99, κ = 0.17, σ = 1. Moreover, we follow Farmer et al. (2010) and
set α1 = 3.0, α2 = 0.92, γ1 = γ2 = 0, and p11 = 0.8, p22 = 0.95. With
these parameter values the CLDC is satisfied, as the eigenvalues of the matrix M

are 0.98, 0.81, 0.63, 0.63. Thus, there is a unique E-stable RDE. Similarly, it is
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possible to compute the eigenvalues of the matrices βj , j = 1, 2: eigenvalues of
β1 (in absolute value) are 0.81, 0.81, and for β2 they are 1.06, 0.81. Notice that
the largest eigenvalue of β2 is greater than 1/p22 = 1.05. The E-stability results
in Propositions 4 and 5 apply to an HDE where both eigenvalues are larger, in
modulus, than 1/p22. However, Farmer et al. (2010) show that there exists a HDE
in a form similar to (6). It is possible to extend the E-stability [see the Appendix in
Branch et al. (2011)] to this case, and it follows that the HDE are E-stable under
mean-value learning but never under VAR learning.

It is surprising that HDE can be stable under mean value learning. In a constant-
parameters New Keynesian model, Evans and McGough (2005a) studied the sta-
bility of rational expectations equilibria under mean value learning and found
that, under a constant-parameter policy rule of the same form as considered
in this paper, the “common factor” representation of a sunspot equilibrium is
E-unstable.

6. CONCLUSION

We extend the literature on learning to a nonlinear framework to allow for regime
shifts and we study the stability under adaptive learning of two classes of equilibria:

• Regime-Dependent Equilibria: An RDE is a uniformly bounded process
that satisfies the regime-switching expectational difference equation and
imposes the restriction that agents do not condition their expectations on
lagged regimes (i.e., only the current regime enters the state vector).

• History-Dependent Equilibria: An HDE is a process that satisfies the regime-
switching expectational difference equation, where agents condition expec-
tations on current and lagged values of the regime (i.e., current and past
regimes enter the state vector).

The CLDC ensures the existence of a unique RDE, and further indicates that
it is also E-stable. When the CLDC is satisfied, there may still exist sunspot
equilibria, and we demonstrate that these equilibria may be learnable, depending
on the conditioning set imposed on boundedly rational agents.

We applied our results to three simple models. In the univariate Fisherian model,
because feedback is positive, there is a unique equilibrium, and it is selected by
E-stability. On the other hand, an OLG model allows negative feedback regimes
even in the univariate case, and therefore induces equilibrium multiplicity even
when there is a unique RDE. Finally, a benchmark version of the New Keynesian
model yields the analogous result in higher dimensions and in a model of applied
interest. When there are simulataneously a unique RDE and many HDE, we found
that under VAR learning, E-stability selects a unique equilibrium; however, it
is possible that if agents condition their expectations on the self-fulfilling serial
correlation (e.g., sunspots)—a stronger requirement than VAR learning—then
there may exist multiple E-stable equilibria.
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NOTES

1. Some examples of work in this area include Andolfatto and Gomme (2003), Leeper and Zha
(2003), Davig (2004), Zampolli (2006), Chung et al. (2007), Davig and Leeper (2007), Svensson and
Williams (2007), Benhabib (2009), Farmer et al. (2009). Brainard (1967) is an early example of work
on parameter instability.

2. There has been an extensive empirical literature modeling the economy as following a regime-
switching process [see Hamilton (1989), Kim and Nelson (1999), and Sims and Zha (2006)].

3. See, in addition, Evans (1985), Bray and Savin (1986), and Marcet and Sargent (1989).
4. The relevant notion of boundedness will be made formal in the next section.
5. A minimal state variable solution of a system of expectational difference equations is a notion

introduced by McCallum (1983), and corresponds to a solution that conditions on the smallest pos-
sible collection of exogenous and predetermined variables. McCallum (1983) provides an additional
“limiting” criterion to select among multiple MSV-like solutions. Within the context of the models
studied by McCallum, his limiting criterion identifies a unique MSV solution. In this paper, we will
simply refer to the equilibrium of the form (2) as the MSV solution. The multivariate counterpart in
Section 3 has the same form.

6. The precise definition of an RDE will be given in the next section.
7. A more complete discussion of the stacked system is given in Section 3.1.
8. Davig and Leeper (2007) showed that, in the univariate case, provided that |β1| < 1 < |β2|, the

CLDC is equivalent to
p11β1(1 − β2) + p22β2(1 − β1) + β1β2 < 1.

9. It is straightforward to verify that ξt is an mds by taking one step ahead expectations conditional
on the observable states st−n, n > 0.

10. The proof is in the Appendix of the working paper version, Branch et al. (2011).
11. This follows from algebra, with the help of Mathematica.
12. We assume that learning agents may condition on lagged endogenous variables and current

exogenous variables, but not on current endogenous variables. This is a standard timing convention
in the learning literature. Alternative informational assumptions are available and can affect stability
analysis: see Evans and McGough (2005b) for details.

13. The connection between E-stability of a rational expectations equilibrium and its stability under
real-time learning is quite deep: see Evans and Honkapohja (2001) for details.

14. Here, and later, we exploit that when the T-map decouples, we can compute derivatives sepa-
rately.

15. In the model (7), because there is no lag dependence, the serial correlation in the equilibrium
yt is present only because agents expect it to be: thus we call the serial correlation “self-fulfilling.” If
the reduced-form model (7) also included lagged terms (i.e., yt−n for some n > 0), then the sunspot
equilibrium would have both self-fulfilling and fundamental serial correlation. In a linear model, the
common factor sunspot ηt is required to capture the self-fulfilling part of the model’s serial correlation.
This requirement is known as the resonance frequency condition—see Evans and Honkapohja (2003)
and Evans and McGough (2005b) for details.

16. That DTB = 1 reflects the fact that T (B) = B: if ηt is an appropriately serial correlated
sunspot, then so too is Bηt for any B. For more on this issue, see Evans and McGough (2005b).

17. That the T-map fixes B is a standard result: if ηt is a self-fulfilling sunspot then Bηt is as well.
18. The coefficient matrices B(i) are computed in the Appendix.
19. See the Appendix of the working paper version [Branch et al. (2011)] for the proof.
20. This may be a strong assumption, but it can be viewed as the same assumption made under

rational expectations.
21. The New Keynesian example in Section 5.2 and the Appendix of the working paper version

[Branch et al. (2011)] give an example of an HDE where only one eigenvalue of β2 is larger, in
modulus, than 1/p22.
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22. If one were to literally use the method of undetermined coefficients, the v in (A.2) would be
yt . However, if v is taken to be a vector of initial conditions chosen to lie on the stable manifold, and
if (A.2) is satisfied at t = 1, then it will be satisfied for all t .

23. And the set of fixed points can be quite complicated. For example, note that if there is a
non-trivial HDE with, say, B(i, j) �= 0, then according to DTB ,

βj

(
m∑

k=1

pjkB(j, k)

)
= 1

so that C(i, j) can be any real number. In particular, the derivative of the T-map has a unit eigenvalue in
this dimension. The effect of this unit eigenvalue on the link between E-stability and real-time learning
(i.e. the E-stability Principle) is discussed in detail in Evans and Honkapohja (2001).
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APPENDIX

A.1. MSV SOLUTION OF THE MAIN MODEL

Following Davig and Leeper (2007), we take the MSV solution of (9) to have the form
yt = B(st )rt , and note that this equilibrium coincides with the MSV solution [in the sense
of McCallum (1983)] to the stacked system (11). Using this later insight, we may compute
the MSV coefficients. We solve for B(st ) for st ∈ {1, 2, . . . , m} by using the stacked
system: set

B = [B(1)′, . . . , B(m)′]′,

which yields ŷt = Brt , where ŷ ′
t = (y ′

1t , . . . , y
′
nt ), and

vec(B) = [
Inm − ρ ′ ⊗ (⊕m

j=1βj

)
(P ⊗ In)

]−1
vec(γ ).

It is worth remarking at this point that the class of RDE includes the MSV solution to
the regime-switching model, and may also include a sunspot equilibria, provided that the
sunspot shock is not correlated with the underlying Markov process st .

A.2. HDE DETAILS

Farmer et al. (2009) show that there exist multiple uniformly bounded HDE that have the
following representation:

yt =
(

cst−1

v′
st−1

vst−1

vst v
′
st−1

)
yt−1 + vst ξt , (A.1)
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provided there exist c1, . . . , cm and v = (v′
1, . . . , v

′
m)′ �= 0 such that |cj | ≤ 1 and c and v

solve {(⊕m
j=1βj

)−1 − [(⊕m
j=1cj

)
P
]⊗ In

}
v = 0. (A.2)

Here ξt is independent of st+n for all n. The condition (A.2) is essentially derived from
the method of undetermined coefficients. When (A.2) is satisfied, solutions to the repre-
sentation (A.1) are solutions to (9).22 The construction of the autoregressive parameter
in the representation (A.1) is chosen so that, regardless of the history of realizations of
st , these parameters are bounded in matrix norm and, hence, the solutions are uniformly
bounded.

Our definition of HDE—as rational expectations equilibria that exhibit conditional de-
pendence on both st and st−1—allows the identification of a more general class of equilibria
than those represented by (A.1). Sticking with the case γ = 0, we consider equilibria of
the form

yt = B(st−1, st )yt−1 + C(st−1, st )ξt .

The coefficients must satisfy{
In − βj

[
m∑

k=1

pjkB(j, k)

]}
B(i, j) = 0 (A.3)

{
In − βj

[
m∑

k=1

pjkB(j, k)

]}
C(i, j) = 0. (A.4)

Notice that provided nonzero B(i, j) satisfy (A.3), the C(i, j) are arbitrary. It is straight-
forward to verify that (A.1) is a solution to (A.3), but as we saw in Section 2, there may be
many others.23

Remark. The definition of an HDE restricts solutions to the class of uniformly bounded
stochastic processes whose conditional density exhibits dependence on st and st−1. Notice
that if yt is an RDE then yt |st ∼ yt |(st , st−1). However, by Proposition 2, when the CLDC is
not satisfied, there may exist solutions to the stacked system that are not RDE. In particular,
when the matrix (⊕m

j=1βj )(P ⊗ In) has ns eigenvalues outside the unit circle then for each
ns-dimensional martingale difference sequence ξt of forecast errors independent of st−n for
all n, there are a martingale difference sequence ξ̃t and an SSE ŷt with a representation
given by

ŷt = bŷt−1 + crt−1 + d(st−1, st )ξ̃t , (A.5)

where d is any function of st−1 and st .

A.3. PROOF OF PROPOSITION 3

Given the PLM yt = A(st ) + B(st )rt , expectations are state-contingent, where st = j

implies

Et (yt+1|st = j) = pj1A(1) + pj2A(2) + · · · + pjmA(m)

+ [pj1B(1) + pj2B(2) + · · · + pjmB(m)]ρrt .
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This produces a state-contingent actual law of motion, or, equivalently, a state-contingent
T-map

A(j) → βj

[
pj1A(1) + pj2A(2) + · · · + pjmA(m)

]
B(j) → βj

[
pj1B(1) + pj2B(2) + · · · + pjmB(m)

]
ρ + γj .

Conveniently, this state-contingent T-map may be stacked, and becomes the T-map as-
sociated with the stacked system under the PLM ŷt = A + Brt , where, as before,
B = [B(1)′, . . . , B(m)′]′, and also A = [A(1)′, . . . , A(m)′]′. The T-map is given by

T (A, B)′ = [(⊕m
j=1βj

)
(P ⊗ In)A,

(⊕m
j=1βj

)
(P ⊗ In) Bρ + γ

]
,

and the RDE is a fixed point of T (A,B). Here T : R(nm×1) ⊕R(nm×k) → R(nm×1) ⊕R(nm×k).
The eigenvalues of the Jacobian matrices

DTA = (⊕m
j=1βj

)
(P ⊗ In)

DTB = ρ ′ ⊗ [(⊕m
j=1βj

)
(P ⊗ In)

]
govern E-stability; i.e., E-stability requires real parts less than one, so that the E-stability
condition is implied by the CLDC.

A.4. PROOF OF PROPOSITION 4

The block of the T-map associated with the perceived parameters B is given by

B(i, j) → βj [pj1B(j, 1) + pj2B(j, 2)]B(i, j).

Because this block decouples from the rest, showing that this block of the T-map is unstable
is sufficient. The Jacobian is given by

(
DT 1

B DT 2
B

DT 3
B DT 4

B

)
,

where

DT 1
B =

(
DT 1

B (1, 1) p12B(1, 1)′ ⊗ β1

0 I ⊗ β2 (p21B(2, 1) + p22B(2, 2))

)
,
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DT 2
B =

(
0 0

p21B(1, 2)′ ⊗ β2 p22B(1, 2)′ ⊗ β2

)
,

DT 3
B =

(
p11B(2, 1)′ ⊗ β1 p12B(2, 1)′ ⊗ β1

0 0

)
,

DT 4
B =

(
I ⊗ β1 (p11B(1, 1) + p12B(1, 2)) 0

p21B(2, 2)′ ⊗ β2 DT 4
B (2, 2)

)
,

DT 1
B (1, 1) = p11B(1, 1)′ ⊗ β1 + I ⊗ β1 (p11B(1, 1) + p12B(1, 2)),

DT 4
B (2, 2) = p22B(2, 2)′ ⊗ β2 + I ⊗ β2 (p21B(2, 1) + p22B(2, 2)).

Inserting

B(1, 1) = B(2, 1) = 0, B(1, 2) = β−1
1

p12
, B(2, 2) = β−1

2

p22

yields repeated unit eigenvalues, plus the eigenvalues of

β−1
2 ⊗ β2 + I ⊗ I. (A.6)

Now notice that for a given n × n matrix A, if λ is an eigenvalue of A, then λ + 1 is an
eigenvalue of A + In. Because β−1

2 ⊗ β2 has a unit eigenvalue, we conclude that 2 is an
eigenvalue of (A.6), thus implying instability.

A.5. PROOF OF PROPOSITION 5

The corresponding T-map is

A(i, j) → βj

m∑
k=1

pjkA(j, k) (A.7)

and T (B) = B. To prove the proposition, we show that the eigenvalues of the relevant
Jacobian matrix DTA are the mn eigenvalues of M = (⊕m

j=1βj ) (P ⊗ In) plus (m − 1)mn

zeros. Let Mi denote the ith block of n rows of M . Also, let

A = (A(1, 1)′, A(1, 2)′, . . . , A(1, m)′, A(2, 1)′, . . . , A(m, m)′)′ ∈ Rm2n
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be the stacked vector of perceived constants. Finally, anticipating the result, define the
matrix DTA as follows:

DTA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 · · · 0

0 M2 · · · 0

0 0 · · · Mm

M1 0 · · · 0

0 M2 · · · 0

0 0 · · · Mm

...
...

...
...

M1 0 · · · 0

0 M2 · · · 0

0 0 · · · Mm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rm2n×m2n.

Noting that the T-map for the perceived constants, as given by (A.7), may be represented
as A → DTA · A, we conclude that DTA is the relevant Jacobian matrix.

By construction, the dimension of the kernel of DTA is (m − 1)mn, indicating the same
number of zero eigenvalues. Now let v be an eigenvector of M , and let λ be the associated
eigenvalue. Then, by explicit computation, w = (v′, v′, . . . , v′)′ is an eigenvalue of DTA

associated to eigenvalue λ. Thus the remaining mn eigenvalues of DTA are the same as the
eigenvalues of M .
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