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We consider a three-dimensional chemotaxis–convection–diffusion coupled system with
the effect of surface tension at the deformed free surface. The novelty of this research is to
explore the impact of surface tension on bioconvection. Our aim is to determine the nature
of the instability at the onset of bioconvection in a chemotaxis–convection–diffusion
system involving surface tension by performing a detailed linear stability analysis of
steady-state cell and oxygen concentration distributions. The influence of the surface
tension on the accumulated chemotaxis cells at the deformed free surface is studied
analytically to illustrate its effect on the stability of the system. The Froude number, Frτ ,
and capillary number, Caτ , are two additional parameters introduced here. A detailed
parametric study is undertaken to investigate the roles of the critical Rayleigh number,
Raτ c, as well as Frτ and Caτ , in the chemotaxis system. Linear stability results revealed
that an increasing value of Raτ would stabilize the chemotaxis system. At a higher value
of Frτ , the motion of the cells is faster towards the free surface, and as the surface tension
force increases, less accumulated cells are found at the free surface. A cluster of the cells
can be observed mostly at the trough rather than on the crest of the wave profile. While
experimental results for the present model are not yet available, the results of the linear
stability analysis provide useful information about the system’s stability.
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1. Introduction

Chemotaxis refers to the motion of chemical attractant cells or organisms in response to
a chemical stimulus (Brenner, Levitov & Budrene 1998). The mathematical model of this
kind of cell mobility was first derived by Patlak (1953) and Keller & Segel (1971). More
specifically, Patlak (1953) derived a mathematical model for particle movement, whereas
Keller & Segel (1971) were the first to derive a mathematical model for the real living cell
movement. In a suspension of chemotaxis cells (e.g. Bacillus subtilis) in a container open
to the air, complex bioconvection patterns are formed. These patterns appear because the
slightly dense diluted cell consumes oxygen, swims towards the higher concentration of
oxygen (i.e. upwards) and accumulates close to the free surface. This phenomenon triggers
a density change in the suspension, and Rayleigh–Taylor-type instabilities occur. There are
two somewhat unique cases: a ‘shallow’ and a ‘deep’ chamber. In a shallow chamber, cells
can swim actively due to the presence of a high-enough oxygen concentration throughout
the chamber, whereas in a deep chamber, the oxygen concentration starts to decrease
towards the bottom of the chamber, away from the free surface. Therefore, the chamber can
be divided into active and inactive regions. Bacteria consume oxygen and then freely move
to the active region, the inactive region forms at the bottom of the chamber, and the cells in
it become less active due to the lack of oxygen. Experiments with shallow chambers have
shown the formation of various complex, irregular patterns (Hill & Pedley 2005; Bestehorn
2009). Experiments with a very shallow or tilted chamber have shown no pattern formation
(Ko & Chase 1973; Pedley & Kessler 1992; Comer 2007). However, experiments with
a deep chamber have shown regular and clear hexagonal bioconvection patterns, which
turn more complex as the depth increases (Bees 1998). Due to its significant role in
medical, industrial and geophysical areas, many research groups have devoted their efforts
to understanding the dynamics of cell motility in suspension. The chemotaxis phenomenon
can be successfully modelled by coupling the two convection–diffusion types of equations
governing the cell and oxygen concentrations with the Navier–Stokes equations involving
the Boussinesq approximation. Previously published mathematical models were derived
only for the case with a flat free surface to investigate such phenomena (Kessler
et al. 1994; Hillesdon, Pedley & Kessler 1995; Hillesdon & Pedley 1996; Metcalfe &
Pedley 1998). Hill & Pedley (2005) reviewed the different mechanisms of up-swimming
microorganisms and bioconvection. Chemotaxis–convection–diffusion is a particular type
of bioconvection. The coupling phenomenon of chemotaxis, diffusion and convection
has been illustrated in experiments of cell suspension by Hillesdon & Pedley (1996) and
Hillesdon et al. (1995). The same phenomenon was successfully illustrated in numerical
simulations by Chertock et al. (2012), Lee & Kim (2015) and Deleuze et al. (2016). It
would be more interesting to study all these phenomena for the distorted free surface with
the impact of surface tension as this is relevant to many natural settings.

The pattern formation of microorganisms has been studied theoretically, experimentally
and numerically, with the main focus on the blow-up phenomena in a finite time either for
a flat free surface or for rigid top and bottom surfaces. Avramenko & Kuznetsov (2010)
performed a linear stability analysis of both rigid top and open flat free surfaces and
obtained a correlation between the critical value of the bioconvection Rayleigh number and
the traditional ‘thermal’ Rayleigh number by heating the fluid flow from below, whereas
Kuznetsov (2005) studied the same phenomena under an inclined temperature gradient.
Both studies proved that the flow system becomes more unstable when the fluid is heated
from below.

Plume formation and its stabilization result from the balance between the chemotaxis,
diffusion and convection of cells. It is a known fact that chemotaxis brings instability
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Stability analysis of chemotaxis system

to the nonlinear system and leads to aggregation; despite this fact, all previous stability
analyses of the chemotaxis system were performed for the flat free surface only (Hill,
Pedley & Kessler 1989; Hillesdon 1994; Hillesdon et al. 1995; Hillesdon & Pedley
1996; Metcalfe & Pedley 2001; Hill & Pedley 2005; Kuznetsov 2005; Avramenko &
Kuznetsov 2010). Kowalczyk, Gamba & Preziosi (2004) performed a detailed linear
stability analysis of two different models to check their potentials to form plumes on
a homogeneous cell solution. However, Hillesdon & Pedley (1996) showed that the
condition for linear instability of the chemotaxis–convection–diffusion system depends
on the taxis Rayleigh number Raτ . Notably, previously published linear stability analysis
results aid us in understanding the chemotaxis phenomenon at the onset of bioconvection.
Moreover, nonlinear studies provide detailed information about the formation of complex
bioconvection patterns/plumes and their respective stability in the system. Metcalfe &
Pedley (1998) and Ma et al. (2016) performed weakly nonlinear stability analyses to
investigate the stability of the different patterns forming in the chemotaxis system. Tuval
et al. (2005) showed that the hydrodynamic vortices formed by convection strengthen
the circulation of fluid and enhance the intake of oxygen into the solvent. Duan,
Lorz & Markowich (2010) and Liu & Lorz (2011) proved the global existence of
the chemotaxis–Stokes system under small and large initial cell population densities,
respectively. Following this, Chertock et al. (2012) numerically studied plume formation
in the system for the flat free surface and revealed that the number and shape of the plumes
can be controlled by the initial cell population density.

Metcalfe & Pedley (2001) derived both two-dimensional and three-dimensional
mathematical models for only the active region of a deep chamber where the cells are
active. Their study showed that the system is unstable near the flat free surface. They also
studied the phenomenon of the formation of falling plumes of fluid with high density
cells. Performing stability analysis in a two-dimensional model is sufficient to obtain
information about the nature of the instability at the onset of bioconvection. However,
this is not enough to obtain detailed information about the cell dynamics in the nonlinear
regime. Thus, performing nonlinear stability analysis of a three-dimensional model is
essential. Through weakly nonlinear stability analysis, the phenomenon of the formation
of patterns/plumes with its nature of stability and nonlinear cell dynamics can be studied
in detail. Hill & Pedley (2005) considered only a shallow chamber to study the swimming
behaviour of microorganisms, which involves nonlinear analysis of the patterns. Moreover,
the stability analysis in both linear and nonlinear regimes was performed and discussed in
detail by Metcalfe & Pedley (1998). Hillesdon et al. (1995) formulated a three-dimensional
model for both shallow and deep chambers and studied the formation of plumes. Their
numerical results showed good qualitative agreement with experimental results. Hill et al.
(1989) carried out linear stability analyses on the flat interfaces of a shallow and a finite
depth chamber. Their investigations showed that the suspension becomes more unstable
as the depth of the chamber increases. Pedley, Hill & Kessler (1988) performed a linear
stability analysis of an infinite uniform suspension. Their results were verified again by
Hill et al. (1989).

To study the dynamics of the chemotaxis–convection–diffusion system, the stability
analysis must be performed in both linear and nonlinear regimes. Hillesdon & Pedley
(1996) followed the same trail as Hillesdon et al. (1995) did in their study on stability
analysis and performed a linear stability analysis for both shallow and deep chambers
to understand the nature of stability at the onset of bioconvection. In a shallow layer,
there is a large amount of oxygen, while in a deep layer, there is a region far from the
free surface where oxygen and, consequently, the cell concentration gradients are zero.
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This linear stability analysis was followed by a weakly nonlinear stability analysis by
Metcalfe & Pedley (1998) to predict the patterns when the suspension is just deep enough
for patterns to form. They drew the bifurcation diagram to exhibit the behaviour of the
system. However, Hill & Pedley (2005) performed a nonlinear stability analysis of pattern
formation, and their study included the dispersion in shear flows along with the swimming
behaviour of algal cells. It would be interesting to conduct the linear and nonlinear stability
analyses of the chemotaxis–convection–diffusion system with deformed free surface and
with the effect of surface tension.

Chakraborty et al. (2018) performed a linear stability analysis of the two-dimensional
distorted free surface of a chemotaxis–convection–diffusion system in a shallow chamber
to investigate the formation of patterns at the onset of instability. However, the effect of
the surface tension on the interfacial flow in a shallow chamber was neglected. It has been
seen that the small but finite amplitude perturbations of the free surface are sufficient to
trigger instability. Recently, Ivančić, Sheu & Solovchuk (2019) published their work on the
effect of surface tension, σ , which is a function of cell concentration, n. They solved the
problem numerically by modifying the presently available model to render a more realistic
one in both two and three dimensions, and they noted that the higher concentration of cells
on the free surface decreases the effect of the surface tension of the fluid, which may have
a significant impact on the onset of instability. It would be interesting to study the impact
of surface tension on cell concentration and vice versa.

It was found in the literature that surface tension plays an important role in a thin film
flow problem. It has a significant influence on the holding of the wave profile’s shape. The
occurrence of capillary ripples in a flow problem is mainly due to the presence of surface
tension. This is why we were motivated to take into account the surface tension effect
to describe the dynamics of the chemotaxis–convection–diffusion coupling system in a
shallow chamber with a deformed free surface. A stability analysis of a three-dimensional
chemotaxis system in a shallow chamber that considers the effect of surface tension
at the deformed free surface has not been attempted yet. In this paper, we consider a
homogeneous suspension with a deformed free surface in a shallow rectangular chamber.
The novel aspects of the present work are that the free surface is allowed to deform, the
surface tension effect is taken into account along with consideration of the free surface
stress boundary condition of the chemotaxis system. Our aim is to explore the linear and
nonlinear stability analyses of the chemotaxis–convection–diffusion system.

Most of the previously published studies were devoted to the chemotaxis system with the
flat free surface and successfully explained the formation of patterns and the dynamics of
falling plumes. However, the free surface is normally deformable in natural conditions.
To the best of the authors’ knowledge, the linear and nonlinear stability analyses of
the chemotaxis-convection-diffusion system for deformed free surface have not been
performed yet. Most of the previously performed studies were devoted to the shallow
chamber case. However, there are still many things worth exploring with regard to the
deep chamber case. In the natural scenario, the chemotaxis system is complex in nature,
and for this reason, nonlinear stability analysis needs to be performed. It is obvious that the
presence of surface tension and normal, tangential stress boundary conditions will have a
phenomenal impact on the pattern formation and the behaviour of the system. Therefore,
we felt stimulated to perform the present study. We have performed linear and weakly
nonlinear (in an upcoming paper) stability analyses at the onset of instability to study
the dynamics of the formation of the patterns while considering the effect of the surface
tension. It is a known fact that linear stability analysis provides only a basic idea about the
formation of patterns. It cannot explain well the amplitude, types and significant physical
role of pattern formation that results from cross-diffusion in the chemotaxis system.
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Figure 1. Schematic diagram of a three-dimensional chemotaxis system with liquid–air interface Γs, where
the oxygen concentration is equal to that of air, not crossed by cell. No-slip boundary condition is imposed at
the container walls Γw.

Thus, conducting weakly nonlinear stability analysis becomes necessary. Conducting
nonlinear stability analysis would help us predict the characteristics of the patterns formed
in the system. Besides, it would be really interesting to investigate the formation of these
patterns under the influence of surface tension at the deformed free surface. However,
to keep the present paper at a reasonable length, we provide only a detailed study of
the linear stability analysis of the chemotaxis system. A complete study of the weakly
nonlinear stability analysis will be presented in the next article. A comparison and detailed
discussion of the numerical simulation results underlying the bifurcation theory will be
included in an upcoming article.

The paper is organized as follows: the mathematical formulation of the chemotaxis–
convection–diffusion system is presented and the steady-state solution is described in
§ 2. The linear stability analysis is performed and its analytical solutions are presented
in § 3. The stability analysis results are discussed in § 4. Finally, some conclusions are
summarized and recommendations for future works are provided in § 5.

2. Mathematical model

A three-dimensional shallow rectangular chamber containing an incompressible fluid
with deformed free surface is considered. For the mathematical description of the
three-dimensional chamber, we use a Cartesian coordinate system (x, y, z), referring to
the streamwise, spanwise and cross-wise coordinates, respectively. The top of the chamber
is open to the air, and the motion of the fluid flow in a rectangular chamber is subjected
to the tangential stress condition prescribed on the free surface, z = h(x, y, t). The bottom
and the sidewalls are rigid and impermeable to cells and oxygen (see figure 1).

Under the full Boussinesq approximation, the dimensional form of the governing
equations for the chemotaxis–convection–diffusion elliptic–parabolic system of equations
for an incompressible fluid flow is as follows:

∇ · u = 0, (2.1a)

ρ (ut + u · ∇u) + ∇p − μ∇2u = −ρgk − nVbg(ρb − ρ)k, (2.1b)

nt + ∇ · [un − Db∇n + Sdimr(c)n∇c] = 0, (2.1c)

ct + ∇ · (uc − DO∇c) = −nκr(c), (2.1d)

where u = (u, v, w) denotes the flow velocity in the (x, y, z)-direction; p denotes the
hydrostatic pressure, ρ and μ the fluid density and viscosity; g denotes the gravitational
acceleration, n the number of cells per unit area, Vb and ρb the volume and volumetric
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mass density of a cell, respectively, and c the oxygen concentration. The source term
Vbg(ρb − ρ)k stands for the buoyancy force exerted by a cell on the liquid in the vertical
direction, where k denotes the unit vector. The parameter Sdim in (2.1c) is the dimensional
chemotaxis sensitivity (the movement of cell towards higher concentration depends on the
chemotaxis sensitivity, Sdim); Db and DO are the cell and oxygen diffusivities. In (2.1d), κ

is the rate of consumption of oxygen by bacterium. Bacteria are considered to be slightly
denser than water such that ρb > ρ, where cells are supposed to swim in the water during
the consumption of oxygen. Therefore, we have assumed (ρb − ρ)/ρ � 1 and nVb � 1.
The oxygen consumption is proportional to the cell population density n. The cell (n)

and oxygen (c) concentrations are advected by the liquid flow. When the concentration
of oxygen is lower than a threshold value, the cells become stable or inactive, i.e. they
neither consume oxygen nor swim towards the region with higher oxygen concentration.
This procedure is indicated by a non-dimensional cutoff function, r(c), which is defined
by the step function

r(c) =
{

1, if c > c∗

0, if c � c∗ (2.2)

where c∗ = 0.3 was derived by experiments (Hillesdon et al. 1995; Hillesdon & Pedley
1996) (see supplementary material available at https://doi.org/10.1017/jfm.2021.508 for
concise nomenclature).

The set of equations (2.1a)–(2.1d) is closed with the boundary conditions and will
be solved in a three-dimensional rectangular container (Ω). The dynamic boundary
conditions applied at the interface (z = h(x, y, t)) are

n · τ̄ · n = − (∇ · n) σ, (2.3a)

t1 · τ̄ · n = 0, (2.3b)

t2 · τ̄ · n = 0. (2.3c)

The stresses along the tangential and normal directions are balanced at the interface, z =
h(x, y, t). The boundary conditions for cell and oxygen concentrations at the interface are

Sdimnr(c)∇c · n = Db∇n · n, (2.3d)

c = cair. (2.3e)

The kinematic boundary condition is

ht = w − uhx − vhy, (2.3f )

where τ̄ is the stress tensor for the liquid, n(= (−hx, −hy, 1)/N) and t1(=
(1, 0, hx)/

√
1 + h2

x) and t2(= (0, 1, hy)/
√

1 + h2
y) are the unit outward normal and

tangential vectors on the interface and N =
√

1 + h2
x + h2

y . A no-slip boundary condition

is applied on the container walls (Γw); the fluxes of cell and oxygen are equal to zero

u = 0, v = 0, w = 0, ∇n · n = 0, ∇c · n = 0. (2.3g)

The characteristic cell density is defined as the average of the initial cell population

n0 = 1
|Ω|

∫
Ω

n0(x, y, t) dx. (2.4)

By the choice of this characteristic cell density, the total number of cells can be measured
easily in each simulation under different initial distributions of cells.
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Stability analysis of chemotaxis system

Equations (2.1)–(2.3) can be expressed in terms of their dimensionless forms by using
the following variables:

x = Lx′, y = Ly′, z = h0z′, h = h0h′, n = n0n′, c = cairc′,

t = h2
0

εDb
t′, p = μDb

εh2
0

p′, u = Db

h0
u′, v = Db

h0
v′ w = εDb

h0
w′,

⎫⎪⎬
⎪⎭ (2.5a–k)

where h0 and L are the characteristic length scales in the vertical and horizontal
directions, respectively, ε = h0/L � 1 is an aspect ratio. Finally, after dropping the prime
from the dimensionless quantities, the dimensionless Navier–Stokes equations for the
incompressible fluid flow and the Keller–Segel equation for n and c can be read as

ux + vy + wz = 0, (2.6a)

ε(ut + uux + vuy + wuz) + Prτ px = Prτ [ε2(uxx + uyy) + uzz], (2.6b)

ε(vt + uvx + vvy + wvz) + Prτ py = Prτ [ε2(vxx + vyy) + vzz], (2.6c)

ε3(wt + uwx + vwy + wwz) + Prτ pz = ε2Prτ [ε2(wxx + wyy) + wzz] − εFr−2
τ

−εPrτ Raτ n, (2.6d)

ε(nt + unx + vny + wnz) = [ε2(nxx + nyy) + nzz] − Sτ r(c)(n[ε2(cxx + cyy) + czz]

+ [ε2(cxnx + cyny) + cznz]), (2.6e)

ε(ct + ucx + vcy + wcz) + Hτ r(c)n = Leτ [ε2(cxx + cyy) + czz]. (2.6f )

The above set of dimensionless governing equations is subject to the dimensionless
boundary conditions prescribed on the deformed free surface z = h(x, y, t)

− p + 2ε2[ε2(uxh2
x + (uy + vx)hxhy + vyh2

y) − (uz + ε2wx)hx − (vz + ε2wy)hy + wz]

[1 + ε2(h2
x + h2

y)]

= ε3[(1 + ε2h2
x)hyy − 2ε2hxhyhxy + (1 + ε2h2

y)hxx]

Caτ [1 + ε2(h2
x + h2

y)]3/2 , (2.7a)

(1 − ε2h2
x)(uz + ε2wx) + 2ε2(wz − ux)hx − ε2(uy + vx)hy − ε2(vz + ε2wy)hxhy = 0,

(2.7b)
(1 − ε2h2

y)(vz + ε2wy) + 2ε2(wz − vy)hy − ε2(uy + vx)hx − ε2(uz + ε2wx)hxhy = 0,

(2.7c)
Sτ r(c)n[cz − ε2(cxhx + cyhy)] − [nz − ε2(nxhx + nyhy)] = 0, (2.7d)

c = 1. (2.7e)

On the other boundaries, we prescribe

u = 0, v = 0, w = 0, (2.7f )

nz = ε2 (nxhx + nyhy
)
, (2.7g)

cz = ε2 (cxhx + cyhy
)
. (2.7h)

The kinematic boundary condition is

ht + uhx + vhy = w. (2.7i)
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The dimensionless parameters are defined as

Prτ = ν

Db
, Raτ = gVbn0(ρb − ρ)h3

0
Dbμ

, Frτ = Db√
gh3

0

, Caτ = μDb

σh0
,

Sτ = Sdimcair

Db
, Hτ = κn0h2

0
cairDb

, Leτ = DO

Db
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

In the above equation, Prτ is the taxis Prandtl number, Raτ the taxis Rayleigh number
(buoyancy-driven flow), Frτ the taxis Froude number, Caτ the taxis capillary number, Sτ

the dimensionless chemotaxis sensitivity, Hτ the chemotaxis head and Leτ the taxis Lewis
number. The chemotaxis head represents the consumption of the chemo-attractant by the
cell. The chemotaxis system is characterized by chemotaxis sensitivity (Sτ ) and head (Hτ ).
It can be seen from (2.8) that only Raτ and Hτ depend on the characteristic length h0 and
the characteristic cell density n0. In summary, the hydrodynamic and chemotaxis transport
equations currently under investigation are characterized by the above-mentioned seven
non-dimensional parameters.

The present dimensionless parameters, such as Prτ , Raτ , Leτ , Sτ and Hτ , are different
from the parameters defined by Hillesdon & Pedley (1996). For better readability, the
differences are stated as follows: Sτ ∼ γHP, Hτ /Leτ ∼ βHP, Leτ ∼ δHP, Prτ ∼ ScHP
and Raτ ∼ ΓHP, where the subscript HP refers to Hillesdon & Pedley (1996). Other
dimensionless parameters in the present chemotaxis system are Caτ , which indicates the
situation when a flow system comes into play due to the surface tension contribution, and
Frτ , which exhibits the influence of gravity on cell diffusion.

2.1. Steady-state solutions
In steady-state flow, the fluid properties of the system do not change over time. The
pressure, velocity and cell and oxygen concentrations will vary in the z-direction only. The
solution for p(z) is obtained as follows by integrating (2.6d) with the boundary condition
(2.7a)

p(z) = ε

Prτ Frτ
2 (1 − z). (2.9)

The solutions for n(z) and c(z) are obtained as follows:

c(z) = 1 − 2
Sτ

ln

⎛
⎜⎜⎝

cos
(

Sτ

2
A1z

)

cos
(

Sτ

2
A1

)
⎞
⎟⎟⎠ , (2.10a)

n(z) = Sτ

2
Leτ A2

1
Hτ

sec2
(

Sτ

2
A1z

)
, (2.10b)

where the unknown constant A1 is determined from the transcendental equation given by
Hillesdon & Pedley (1996)

tan
(

Sτ

2
A1

)
= Hτ

Leτ

1
A1

. (2.11)

Detailed derivations of steady-state solutions have been presented in previous publications
(Hillesdon et al. 1995; Hillesdon & Pedley 1996; Chakraborty et al. 2018). Expansion of
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the above equation yields a value of A1 of the order of O(Hτ /Leτ ). By substituting the
value of A1 into (2.10), we get the steady-state concentrations for cell and oxygen. The
expansion of (2.11) is possible only when A1 tan((Sτ /2)A1) = Hτ /Leτ � 1. It is necessary
to expand the steady-state solutions (2.10) and (2.11) in powers of Hτ /Leτ . The expansion
for A1 in (2.11), (2.10a) and (2.10b) gives, respectively,

A1 =
(

2Hτ

Sτ Leτ

)1/2
(

1 − Sτ

12
Hτ

Leτ

+ 7Sτ
2

288
Hτ

2

Le2
τ

+ O
(

Hτ

Leτ

)3
)

, (2.12)

c = 1 + 1
2
(z2 − 1)

Hτ

Leτ

+ Sτ

24
(z2 − 1)2 Hτ

2

Le2
τ

+ O
(

Hτ

Leτ

)3

, (2.13)

n = 1 + Sτ

6
(3z2 − 1)

Hτ

Leτ

+ Sτ
2

18
(1 − 3z2 + 3z4)

Hτ
2

Le2
τ

+ O
(

Hτ

Leτ

)3

. (2.14)

It should be noted here that this shallow chamber instability problem depends on Sτ , Hτ

and Leτ and Leτ � Hτ . From (2.12)–(2.13), we can also see that c(z) and n(z) can be
written as functions of the two variables z and Sτ Hτ /Leτ . Note that the expressions for
the steady-state solutions of the cell and oxygen concentrations in the present system are
different from those mentioned in the works of Hillesdon (1994), Hillesdon & Pedley
(1996) and Metcalfe & Pedley (1998) (steady-state profiles for a shallow chamber are
independent of δHP and only vary with γHPβHP).

3. Linear stability analysis

In this study, the aim behind conducting linear stability analysis is to investigate the onset
of buoyancy-driven instability. The instability starts appearing if the Rayleigh number,
which is the ratio of the buoyancy to viscous forces, reaches a critical value. In this section,
we seek the critical Rayleigh number, which is the function of the physical parameters
of the system. We first linearize the governing equations in (2.6) by adding small
perturbations to the steady-state solutions. Then, the resulting equations are solved for
perturbations with a wavenumber k, which corresponds to the dimensionless wavelength
λ = 2π/k.

Here, we perturb the following field variables with respect to their respective basic state
solutions:

u(x, t) = εũ(x, t), (3.1a)

p(x, t) = p(z) + εp̃(x, t), (3.1b)

n(x, t) = n(z) + εñ(x, t), (3.1c)

c(x, t) = c(z) + εc̃(x, t), (3.1d)

h(x, t) = 1 + εη̃(x, t), (3.1e)

where the components of ũ are (ũ, ṽ, w̃) and x denotes (x, y, z). After substituting (3.1)
into the dimensionless governing equations (2.6) along with the dimensionless boundary
conditions (2.7) and eliminating ũ, ṽ and p̃, the resulting equations can be expressed in
terms of w̃, ñ, c̃ and η̃ only. Then, the solutions are sought in the form of normal modes

[w̃, ñ, c̃, η̃] = [W(z), N(z), C(z), η] exp(i(kxx + kyy) − ωt). (3.2)
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Introducing (3.2) into the perturbation expressions given in (3.1a) and (3.1c)–(3.1e), the
resulting system of equations renders

[
d2

dz2 −
(

εω

Prτ

+ ε2k2
)](

d2

dz2 − ε2k2

)
W + εk2Raτ N = 0, (3.3a)

d2N

dz2 − Sτ

dc
dz

dN
dz

−
(

ε2k2 − εω + Sτ

d2c
dz2 + n(z)

Hτ Sτ

Leτ

)
N

= ε
dn
dz

W + Sτ

(
εn(z)
Leτ

dc
dz

W + dn
dz

dC
dz

− εωn(z)
Leτ

C
)

, (3.3b)

d2C
dz2 −

(
εω

Leτ

+ ε2k2
)

C − ε

Leτ

dc
dz

W − Hτ

Leτ

N = 0, (3.3c)

where k =
√

kx
2 + ky

2, kx and ky are the wavenumbers of the disturbance in the x- and y-
directions, and ω is the complex angular frequency, which has the complex wave velocity
c = ω/k. Seeking of the solutions to the above system of equations (3.3) is subject to the
boundary conditions prescribed at the interface and at the other boundaries

2ε2ωCaτ

dW(1)

dz
+ ε

(
ε2k2 + Caτ

Prτ Frτ
2

)
W(1) = 0, (3.3d)

d3W(1)

dz3 + ε2k2 dW(1)

dz
= 0, (3.3e)

dN(1)

dz
− Sτ

dc(1)

dz
N(1) − Sτ n

dC(1)

dz

= 1
ω

d2n(1)

dz2 W(1) − Sτ

ω

(
n

d2c(1)

dz2 + dc(1)

dz
dn(1)

dz

)
W(1), (3.3f )

C(1) = 0, (3.3g)

W(0) = 0,
dW(0)

dz
= 0,

dN(0)

dz
= 0,

dC(0)

dz
= 0. (3.3h)

No-slip boundary condition is directly implemented in the numerical simulations. Use of
periodic boundary conditions will be helpful in stability analysis. It should be mentioned
that Caτ and Frτ have significant effects on the free surface of the chemotaxis flow system.
To perform temporal stability analysis, we consider real wavenumber components kx,
ky (the disturbance travels in the direction tan−1(ky/kx)), and the temporal growth rate
is ωi. If ωi > 0, the disturbance grows in time with the phase velocity ωr/k. The real
angular frequency is ωr, while the phase velocities along the x, y axes are ωr/kx, ωr/ky,
respectively (subscripts r and i denote the real and imaginary parts, respectively). The real
angular frequency is related to the ordinary frequency and will be written in terms of a
wave velocity cr and a wavelength λ, i.e. f = cr/λ = cr/(2π/k) = ωr/(2π) or ωr = 2πf .

When performing spatial stability analysis, we impose wavenumber components ω as
real and seek kx and ky. The spatial growth rate is −kxi . If kxi < 0, the disturbance grows
in space and the phase velocity is ω/kxr .
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Stability analysis of chemotaxis system

We solve the above system of equations shown in (3.3) using AUTO07P software
(Doedel 2008). The spatial stability analysis (k complex and ω real) is performed starting
from its analytical solution at k = 0.

3.1. Analytical solutions
We would like to express W, C and N in powers of Sτ Hτ /Leτ . Then, the leading term (and
higher orders, if desired) will possibly be obtained in each of the series. For the sake of
simplicity, we consider the case with a small wavenumber k ∼ (Sτ Hτ /Leτ )

1/2, such that

k2 = k̃
2
(Sτ Hτ /Leτ ) is of order O(1) (this is to keep the dimensional wavenumber fixed as

h → 0). The statement ‘the higher-order derivative and the right-hand side must hold in
(3.3a) at the leading order of W’ is required to get a non-trivial solution. Then, the reduced
equation takes the form (

d2

dz2 − εω

Prτ

)
d2W
dz2 = −εk̃

Sτ Hτ

Leτ

NRaτ , (3.4)

i.e. the viscous force, d4W/dz4, balances the buoyancy force on the right-hand side, leaving
aside the time dependence on ω. Without any loss of generality, we also specify that
N = 1 at z = 1, and set C = (Hτ /Leτ )C̄. Now, we have the possibility of getting the
leading orders of N and C̄ in (3.3b) and (3.3c), which prospectively lead to the non-trivial
solutions. Here, two cases can be considered: first, Raτ ∼ O(1) and ω ∼ O(Sτ Hτ /Leτ );
second, Raτ ∼ O(Leτ /Sτ Hτ ) and ω ∼ O(Sτ Hτ /Leτ ) (for detail, see Hillesdon & Pedley
1996; Chakraborty et al. 2018). However, the solutions of the first case render a negative
value of ω, indicating that the system is stable under all circumstances. For this reason, we
choose the second case to perform the analysis where it is desirable to carry out expansions
of the form

N(z) =
∞∑

i=0

Ni(z)
(

Sτ Hτ

Leτ

)i

, C̄(z) =
∞∑

i=0

C̄i(z)
(

Sτ Hτ

Leτ

)i

,

W(z) =
∞∑

i=0

Wi(z)
(

Sτ Hτ

Leτ

)i

,

and

ω(k̃) =
∞∑

i=1

ωi(k̃)
(

Sτ Hτ

Leτ

)i

, Raτ (k̃) =
∞∑

i=−1

Raτi(k̃)
(

Sτ Hτ

Leτ

)i

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

So, at the leading order, the governing equations become

d4W0

dz4 = −εk̃2N0Raτ −1,
d2C̄0

dz2 = N0,
d2N0

dz2 = 0, (3.6a–c)

with the boundary conditions

d3W0(1)

dz3 = 0,
d2W0(1)

dz2 = 0, C̄0(1) = 0,
dN0(1)

dz
= 0,

dW0(0)

dz
= 0, W0(0) = 0,

dN0(0)

dz
= 0,

dC̄0(0)

dz
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)
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In this study, we have arbitrarily set N0 = 1 at z = 1, and the corresponding solutions are

W0(z) = − k̃2εRaτ−1

24
z2(z2 − 4z + 6), (3.8a)

C̄0(z) = 1
2 (z2 − 1), (3.8b)

N0(z) = 1. (3.8c)

At the next order, the governing equations are

d4W1

dz4 =
(

εω1

Prτ

+ 2k̃2ε2
)

d2W0

dz2 − k̃2ε
(
Raτ0N0 + Raτ−1N1

)
,

d2C̄1

dz2 = N1 + k̃2ε2C̄0,

d2N1

dz2 = (2 + εω1 + k̃2ε2)N0 + z
dN0

dz
+ zεW0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

with the boundary conditions

d3W1(1)

dz3 + k̃2ε2 dW0(1)

dz
= 0,

W1(1) + 2εω1Prτ Frτ
2 dW0(1)

dz
+ k̃2ε2 Prτ Frτ

2

Caτ

W0(1) = 0,

dN1(1)

dz
− dC̄0(1)

dz
+ ω2

ω1

dN0(1)

dz
− N0(1) = 0, C̄1(1) = 0,

dW1(0)

dz
= 0, W1(0) = 0,

dN1(0)

dz
= 0,

dC̄1(0)

dz
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

Then, we solve the above system of equations with the corresponding boundary conditions
to get the solutions of W1, C̄1 and N1 at the first order. The solutions are given in
Appendix A.

Similarly, we will solve the system of equations at the second order using the zeroth-
and first-order solutions which are mentioned in Appendix A.

The first-order solution consists of functions of N1, C̄1 and W1, and we can obtain

ω1 = 0, or, ω1 = k̃2ε

(
7

1440
Raτ −1 − 1

)
, (3.11a,b)

i.e. the instability is either stationary or non-oscillatory.
For the second-order solution, we find ω2 as follows:

ω2 = k̃2ε(7Raτ −1 − 1440)(7!k̃2ε2Frτ
2Prτ

2 + (37k̃2ε2 − 784)Prτ − 102k̃2ε2)

8!21Prτ

. (3.12)

It can be noticed from (3.11a,b) that the system is unstable to small wavenumber
disturbances if Raτ−1 > (1440/7). The resultant instability indicates that the system under
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Stability analysis of chemotaxis system

investigation is non-oscillatory. It would be interesting to study the marginal stability when
ωr = 0 and calculate ωi. Marginal stability (ω = 0) occurs when

Raτ (k̃) = 1440
7(Sτ Hτ /Leτ )

+ O(1). (3.13)

The correction of Raτ0 to the value of Raτ (k̃) in (3.13) for marginal stability can now be
found in terms of Raτ−1 and k̃2 using (3.12).

4. Results and discussions

In the present paper, we have introduced two new physical dimensionless parameters,
namely, the Froude number, Frτ , and the capillary number, Caτ , which are varied in
the parametric study and discussed in detail. We have also independently varied other
physical parameters such as Leτ , Sτ , Hτ and ε, in the parametric study. The impact of these
parameters on the chemotaxis–convection–diffusion system is addressed in the following
sections. The results are discussed according to the variation of parameters. The following
results are plotted using analytical solutions in § 3.1.

4.1. Vary Leτ ; other parameters are fixed
The steady-state profiles for a shallow chamber are dependent on Leτ , Hτ and Sτ ; however,
in Hillesdon & Pedley (1996), these profiles are independent of δHP and vary only with
γHPβHP. It is also important to recall that they considered the vertical axis of the shallow
chamber as z = 1 at bottom and z = 0 at the top, whereas we have taken the axis to
be the vertical direction opposite to it, i.e. z = 0 at the bottom and z = 1 at the top
boundary. We have changed the axes orientation of the model of Hillesdon & Pedley (1996)
and presented their results in comparison with ours in figure 2. Since the steady-state
solutions of cell and oxygen concentrations in Hillesdon & Pedley (1996) are independent
of δHP, we have compared our steady-state results for Leτ = 1 and also varied the value
of Leτ = 5 to study the impact of the diffusivity variations. The results for a variety
of shallow chamber examples have been presented, in which they covered the whole
steady-state density profiles ranging from Sτ Hτ /Leτ ∼ γHPβHP = 0.8 (nearly uniform)
to Sτ Hτ /Leτ ∼ γHPβHP = 300 (highly dense at the top). It can be observed from the
comparison that the concentration levels of both cells and oxygen are equally distributed.
However, the variation of Leτ shows that the movement of the cells becomes much faster
as the diffusivity of oxygen increases. Figures 2(a) and 2(b) show the steady-state cell
and oxygen concentration profiles, respectively, at the uniform stage, and figures 2(c) and
2(d) show the profiles at the top of the shallow chamber, where the cell concentration starts
getting denser (i.e. at the top boundary). Cell mobility in the present study is comparatively
rapid but in a less non-scattered manner compared with that in the study by Hillesdon &
Pedley (1996). In fact, the cell concentration profile is found to be quite close to the oxygen
distribution profile. It should be noted that the impact of the surface tension will be seen
in the perturbed cell and oxygen concentration profiles in the linear stability analysis since
the surface tension is non-zero at the free surface.

In § 2, we have mentioned that the five dimensionless parameters Leτ , Hτ , Sτ , Prτ

and Raτ are slightly different from those Hillesdon & Pedley (1996) referred to. A few
estimated parametric values from the linear stability analysis conducted in the present
study are compared with the published results of Hillesdon & Pedley (1996) in table 1.
The differences are apparent because the present study involves the values of Frτ and Caτ .
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Figure 2. Steady-state cell and oxygen concentration profiles of Hillesdon & Pedley (1996) are plotted to make
a comparison with those of the present study. The parameter values of γHP ∼ Sτ = 1 and βHP ∼ Hτ = 0.8 in
(a,b); and γHP ∼ Sτ = 5 and βHP ∼ Hτ = 60 in (c,d), are taken into account.

Leτ Sτ Hτ Γc-HP kc-HP Raτ c-Present kc-Present ε Frτ

1 0.05 1.02 × 104 1.37 15234.24 154.4 0.1 0.001
1 1 625 1.58 811.183 34.4 0.1 0.001
1 1 — — 811.183 17.2 0.2 0.001
1 1 — — 811.183 6.9 0.5 0.001
1 10 200 1.90 240.299 10.8 0.1 0.001
1 50 328 1.94 681.248 4.8 0.1 0.001
1 100 522 1.91 1300.81 3.3 0.1 0.001
10 10 241 1.29 811.183 34.4 0.1 0.001
1 1 — — 1028.42 34.4 0.1 0.003
1 1 — — 1761.58 34.4 0.1 0.006

Table 1. The estimated values of Raτ c and kc for the shallow chamber case are presented where -HP and
-Present represent the values of Hillesdon & Pedley (1996) and the present work, respectively.

Among the ten sets of results, only six have been compared with the results of Hillesdon
& Pedley (1996), which can be seen in table 1; the neutral stability curves Raτ (k) are
plotted in figure 4 and figure 7 shows the variation of other parameters. The estimated
results of Raτ c and the corresponding values of kc vs Sτ Hτ with the varying values of
other parameters are visualized in figure 3. Some interesting points can be observed in
these computed results of Raτ c and kc. Firstly, we can see in figure 7(c) that the neutral
curves for the different values of Leτ (fixed Sτ Hτ = 1) diverge initially and then gradually
converge as the wavenumber increases. Conversely, in the study by Hillesdon & Pedley
(1996), neutral curves diverged for different values of δHP as the wavenumber increased
(see figure 5 in Hillesdon & Pedley 1996). Secondly, the computed value of Raτ for a
given k is larger for Leτ = 10 than for Leτ = 1, i.e. as Leτ increases, the system stabilizes.
The same trend can be seen in the work of Hillesdon & Pedley (1996). Interestingly, the
computed values of Raτ c and kc for the present study in case sets 2 and 8 are the same.
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Figure 3. (a) Critical values of Rayleigh number, Raτ c, and (b) the corresponding values of the critical
wavenumber are computed for varying Leτ ; (c) the variation of ε and (d) Froude numbers Frτ are shown
for fixed values of Leτ = 1 and Prτ = 7700. The minimum value in the curve is Sτ Hτ /Leτ ≈ 1.936.
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Figure 4. Comparison of the neutral stability curve of the present study (a) with the result of Hillesdon &
Pedley (1996) (b) for shallow chamber.

The interpretation of these results is not straightforward. The increment in the value of
Leτ can be expressed either as an increase in DO with fixed Db or as a decrease in Db with
fixed DO, and the decreasing value of Leτ can be expressed vice versa. A difference can
be seen between the present study and that of Hillesdon & Pedley (1996) for the case sets
in table 1 and figure 4. In our study, the neutral stability curve for Leτ = 1, Sτ = 1 and
Hτ = 1 slowly diverges initially and then gradually stabilizes as k increases, whereas for
Hillesdon & Pedley (1996), it diverged for any given k.

It can be visualized from the table 1 that, with the increasing value of Leτ , a plane
free surface density gradient occurs for larger values of Sτ Hτ . However, the value of Raτ c
first drops as Sτ Hτ is increased and then rises again. Besides, kc has a maximum value,
although the minimum values of kc and Raτ c are not obtained at the same value as Sτ Hτ .
This behaviour is exhibited in figures 3(a) and 3(b), which show the critical Rayleigh
number, Raτ c, and the corresponding value of kc being plotted against Sτ Hτ for varying
values of Leτ . From the figure, we can see that, for each value of Leτ , the minimum value
of Raτ c is found when Sτ Hτ /Leτ ≈ 1.936. From this detection, it is now clear that Raτ

might not be suitable for measuring the ratio between the buoyancy force that leads to
bioconvection and the viscous force that intercepts it.
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The frequency of oscillation vs Sτ Hτ is plotted with the variation of Leτ in figure 8(a). It
can be observed from the figure that the growth rate is not affected by the variation of Leτ .
However, in the growth rate, the curve shift towards higher Sτ Hτ becomes noticeable as
the value of the Lewis number increases. This behavioural change is due to the increasing
value of Leτ . Hence, the cell diffusivity is extremely less than oxygen, i.e. a smaller cell
concentration at the interface leads to greater discontinuity (the system becomes unstable).
Besides, the presence of Frτ aids in increasing the cell concentration with increasing Leτ .

The characteristics of the perturbed cell and oxygen concentrations and velocity profiles
are illustrated in figures 10(a), 11(a) and 12(a), respectively, corresponding to the values of
Raτ c and kc for a shallow chamber with the variation of Leτ . It is clear from figure 10(a)
that, as the value of Leτ increases, the concentration of cells decreases at the air–water
interface, and their movement towards the free surface is steady. With decreasing Leτ ,
the cells get denser, and the cells’ movement towards the free surface is more rapid. The
aggregation of cells is mostly found just below the layer of free surface. This result justifies
that, when the oxygen diffusion is higher, then the cell diffusivity is small or constant, and
so are the critical values of Raτ c and kc, which start to fall with the increase of Leτ . As Leτ

increases, the diffusivity of oxygen also increases, and this statement is supported by the
oxygen concentration profiles presented in figure 11(a) for the variation of Leτ = 0.5, 1, 5.
Figure 12(a) shows the characteristics of the perturbed fluid velocity profiles for a shallow
chamber corresponding to the values of Raτ c and kc. The intensity of the wave profile
for Leτ = 0.5 is much higher than that for the case with the increasing value of Leτ .
Eventually, an increase in the diffusivity of oxygen makes the system unstable, and vice
versa, as Leτ decreases. The flow motion in the chemotaxis system is interrupted at the
onset of convection, however, it stabilizes after reaching the free surface.

Thus far, the results have been compared when there is variation in Leτ and the other
physical parameters are fixed at ε = 0.1, Sτ Hτ = 1, Prτ = 7700, Frτ = 0.001 and Caτ =
0.01. In the next stage, the impact of the Froude number is discussed by varying the Frτ

values to 0.001, 0.003 and 0.006 and fixing the other parameters at Leτ = 1, ε = 0.1,
Sτ Hτ = 1, Prτ = 7700 and Caτ = 0.01. It is noteworthy that the results of figures 10, 11
and 12, are plotted from the eigenvalue problem.

4.2. Vary Frτ ; other parameters are fixed
The values of Raτ c and kc have been computed by varying the Froude number and
presented in table 1. It can be observed from the parameter sets two, nine and ten that
for Frτ = 0.001, 0.003 and 0.006, the computed Raτ c values are 811.183, 1028.42 and
1761.58, respectively, whereas kc gives the same value of 34.4 for different Frτ (here,
Sτ Hτ = 1 and Leτ = 1). This situation is also illustrated in figure 3(d), where kc vs Sτ Hτ

is plotted for the varying values of Frτ . Notably, under the variation of Frτ , kc shows the
same critical value at the minimum value of Sτ Hτ . This implies that the wavenumber is not
influenced by the change in Sτ Hτ though the initial jump found is due to the change in Frτ .
As the value of the Froude number increases, the wavenumber reaches its maximum value
in the uniform stage of the system. Otherwise, the wavenumber is constant throughout the
system. In figure 7(d), neutral stability curves are shown under the variation of Frτ . Due
to the presence of Frτ , the flow at the free surface accelerates under the action of gravity.
As the value of Frτ increases, the flow accelerates even further for Frτ = 0.006 compared
with those at other values of Froude number. Therefore, initially, the system seems to be
destabilized, however, it stabilizes as the wavenumber increases. However, if we look at
the result of the oscillation of frequency curves in figure 8(c), it shows a minute deflation
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in the growth rate as Frτ increases. However, quite a big shift is noticed in the growth rate.
The frequency of oscillations vs Sτ Hτ is illustrated in figure 8(c) for the variation of Frτ .
In other words, a decrease in the frequency of oscillations causes the system to become
stabilized.

The real parts of the perturbed cell and oxygen concentrations and velocity profiles
are plotted by varying Frτ = 0.001, 0.003, and 0.006 in figures 10( f ), 11( f ) and 12(e),
respectively, corresponding to the values of Raτ c and kc. Both the cell and oxygen
concentration profiles show a subtle effect on the upper surface rather than the bottom
surface of the chemotaxis system. Although the differences are very small, the cell
concentration profile decreases as Frτ increases with a steady motion and gradually
reaches towards the free surface. The same situation is also seen for the perturbed oxygen
concentration profiles. The significant effect of Frτ is visible at the perturbed fluid velocity
profiles, where on increasing the value of Frτ , the velocity of the fluid becomes steady at
the free surface. It stabilizes the motion of the fluid close to the free surface, where the
concentrations of both cells and oxygen are balanced. Whereas the comparison between
the profiles of Nr, Cr and Wr slightly differs for the higher value of Frτ .

4.3. Vary Caτ ; other parameters are fixed
The frequency of oscillations vs Sτ Hτ is illustrated in figure 8(b) for the variation of Caτ .
The increasing value of Caτ shows an inflation in the growth rate along with a small shift,
leading the system to be stable. The curves widen due to the increasing value of Sτ Hτ as
Caτ increases, and the peak value falls, giving stability to the system at the free surface in
the shallow chamber case. The frequency of oscillation, ω, vs k is plotted in figure 9(b) for
the variation of Caτ . The same scenario can be seen here for the frequency of oscillations
where the curves get wider and the peaks rise with the increasing wavenumber, however,
this occurs for the decreasing value of Caτ . A slight tilt in the front of the curves can be
seen for the decreasing value of Caτ . This explains that the surface tension is tenacious
enough to hold the exalted wave profile.

The real parts of the perturbed cell and oxygen concentrations, and velocity profiles
are plotted by varying Caτ = 0.005, 0.01, and 0.05 in figures 10(e), 11(e) and 12(d),
respectively, which are corresponding to the values of Raτ c and kc. A similar scenario
can be seen in figures 10( f ) and 11( f ) for the variation of Frτ . Note that in figures 10(e)
and 11(e) we mentioned the perturbed cell and oxygen concentrations for varying values of
Caτ . Figure 12(d) shows the different characteristics of the perturbed fluid velocity profile
Wr in a shallow chamber with the variation of Caτ . It is clear from the figure that the
velocity profile Wr increases with an increasing value of Caτ . The comparison between the
profiles of Wr (the perturbed fluid velocity), Nr (the perturbed cell concentration) and Cr
(the perturbed oxygen concentration) detects a random movement of cells in the system as
lack in oxygen makes the system unstable. The chemotaxis system stabilizes as the surface
tension increases at the free surface. However, at the onset of convection, the system shows
a destabilizing effect. The concentrations of cells and oxygen increase near the free surface,
and almost all cells are accumulated near the stable free surface.

4.4. Vary Sτ Hτ ; other parameters are fixed
In table 1, the estimated values of Raτ c and kc for shallow chamber are given for the
variation of Sτ Hτ and Leτ . These values of Raτ c and kc are compared with those of
Hillesdon & Pedley (1996) though the comparison by varying Leτ has been discussed
in the previous section. In linear stability analysis, we have fixed the value of Leτ , and
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Figure 5. (a) The curves Raτ and (b) ωi corresponding to varying values of Sτ at fixed values of Leτ = 1,
ε = 0.1, Hτ = 10, Prτ = 7700, Frτ = 0.001 and Caτ = 0.01.
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Figure 6. The curves Raτ and (b) ωi corresponding to varying values of Hτ at fixed values of Leτ = 1,
ε = 0.1, Sτ = 5, Prτ = 7700, Frτ = 0.001 and Caτ = 0.01.

independently varied the values of Sτ and Hτ . These variations can be seen in figures 5
and 6 are discussed in detail later in this section. In table 1, data sets 1–7, we have fixed
the values of Leτ = 1 and Sτ = 1, and varied Hτ from 0.05 to 100. It can be observed that,
in the uniform stage of the system (Hτ = 0.05), the critical Rayleigh number is estimated
to take the highest value and similarly for the critical wavenumber. It can be seen that, as
the value of Hτ increases, the value of the critical Rayleigh number drops. The minimum
value of the critical Rayleigh number is found when Hτ = 10. Then, the value of critical
Rayleigh number starts to rise again as the value of Hτ starts increasing. When k → 0,
the analytical approximation is Raτ → 1440Leτ /7Sτ Hτ = 4114.29. The critical values of
the Rayleigh number and wavenumber are Raτ c = 15234.24 and kc = 154.4. It can be
anticipated that our numerically predicted first pattern would be experimentally seen when
Raτ is slowly reduced to Raτ c. In general, the most unstable disturbance occurred for
Raτ > Raτ c, which has a different wavelength. The approximate value of a dimensionless
wavelength λc = 2π/kc can be calculated from the value of the critical wavenumber kc.
It would be interesting to conduct an experiment using the present model to verify these
estimated results and predictions.

In figures 5 and 6, the neutral stability and growth rate, respectively, are plotted with the
variations of Sτ and Hτ separately. In figure 5, Sτ is varied from 1 to 5, and Hτ is varied
from 10 to 50 in figure 6. Interestingly, all the neutral stability curves in figures 5(a) and
6(a) for the variation of Sτ and Hτ , respectively, intersect at a point when Raτ = 205.71.
Further, all the curves of the growth rate in figures 5(b) and 6(b) for the variation of Sτ

and Hτ , respectively, have the cutoff wavenumber k = 12.8. In figures 5(a) and 6(a), all
the neutral stability curves for different values Sτ and Hτ converge as the wavenumber
increases. In fact, the value of Raτ , for a given k, is larger, for Sτ = 5 and Hτ = 10,
than for the other lower varying values of Sτ and Hτ . It is implied that an increase in the
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Figure 7. Neutral stability curves presented with the variation of Hτ , Sτ in (a) (fixed Leτ = 1, ε = 0.1, Prτ =
7700, Caτ = 0.01, Frτ = 0.001), ε in (b) (fixed Leτ = 1, Sτ , Hτ = 1, Prτ = 7700, Caτ = 0.01, Frτ = 0.001),
Leτ in (c) (fixed ε = 0.1, Sτ , Hτ = 1, Prτ = 7700, Caτ = 0.01, Frτ = 0.001), Frτ in (d) (fixed Leτ = 1, ε =
0.1, Sτ , Hτ = 1, Prτ = 7700, Caτ = 0.01) and Prτ in (e) (fixed Leτ = 1, ε = 0.1, Sτ , Hτ = 1, Caτ = 0.01,
Frτ = 0.001).
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Figure 8. The curves of ω are presented at the critical Raτ with the variation of Leτ in (a) (fixed Caτ = 0.01,
Frτ = 0.001), Caτ in (fixed Leτ = 1, Frτ = 0.001) (b) and Frτ in (fixed Leτ = 1, Caτ = 0.01) (c).
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Figure 9. The curves of ω are presented at the critical Raτ with the variation of ε in (a) (fixed Caτ = 0.01)
and Caτ in (b) (fixed ε = 0.1). Other parameters are fixed at Leτ = 1, Sτ = 1, Hτ = 1, Frτ = 0.001 and
Prτ = 7700.
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Figure 10. Different characteristics of the perturbed cell concentration profiles Nr are presented corresponding
to the values of Raτ c and kc for shallow chamber with the variation of Leτ in (a) (fixed ε = 0.1, Sτ ,

Hτ = 1, Prτ = 7700, Caτ = 0.01 and Frτ = 0.001); ε in (b) (fixed Leτ = 1, Sτ , Hτ = 1, Prτ = 7700, Caτ =
0.01 and Frτ = 0.001); Caτ in (e) (fixed ε = 0.1, Leτ = 1, Sτ , Hτ = 1, Prτ = 7700 and Frτ = 0.001); Frτ in
( f ) (fixed ε = 0.1, Leτ = 1, Sτ , Hτ = 1, Prτ = 7700 and Caτ = 0.01). Panels (c,d) show the profiles for
Sτ , Hτ = 1 and Sτ , Hτ = 5 and other parameters are fixed at ε = 0.1, Leτ = 1, Prτ = 7700, Caτ = 0.01 and
Frτ = 0.001.

values of Sτ and Hτ is evidently stabilizing. The qualitative behaviour in each case is the
same, as the wavenumber k increases, the Rayleigh number Raτ decreases steadily to its
minimum value. The variation in Hτ shows that the motion of fluid at the critical Rayleigh
number consists of convective cells. Thus, the cells initiated in the upper unstable layer
penetrate through the stable layer and reach towards the bottom layer. The convection
starts in this situation, and soon, the whole chamber becomes involved in this motion.
This initial motion, observed experimentally, has a wavenumber, and this wavenumber
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Figure 11. Different characteristics of the perturbed oxygen concentration profiles Cr are presented
corresponding to the values of Raτ c and kc for shallow chamber with the variation of Leτ in (a) (fixed ε = 0.1,
Sτ , Hτ = 1, Prτ = 7700, Caτ = 0.01 and Frτ = 0.001); ε in (b) (fixed Leτ = 1, Sτ , Hτ = 1, Prτ = 7700,
Caτ = 0.01 and Frτ = 0.001); Caτ in (e) (fixed ε = 0.1, Leτ = 1, Sτ , Hτ = 1, Prτ = 7700 and Frτ = 0.001);
Frτ in ( f ) (fixed ε = 0.1, Leτ = 1, Sτ , Hτ = 1, Prτ = 7700 and Caτ = 0.01). Panels (c,d) show the profiles
for Sτ , Hτ = 1 and Sτ , Hτ = 5 and other parameters are fixed at ε = 0.1, Leτ = 1, Prτ = 7700, Caτ = 0.01
and Frτ = 0.001.

is presumed to be equal to the most unstable wavenumber corresponding to the value of
Raτ . Similarly, the growth rates in figures 5(b) and 6(b) show higher inflation for large
values of Sτ and Hτ , i.e. increase in Sτ and Hτ is apparently stabilizing. The growth rate
corresponding to a particular wavenumber is greatest in Sτ = 5 and Hτ = 50, for k > 4.

In figures 10(d) and 10(c), 11(d) and 11(c) and 12(c), the characteristics of the perturbed
cell and oxygen concentrations, and the fluid velocity profiles, respectively, are presented
with respect to the length of the shallow chamber corresponding to the values of Raτ c
and kc. In figures 10(d) and 10(c), Hτ is varied from 1 to 5, respectively, whereas Sτ is
fixed at 1. The concentration of cells for Hτ = 1 is less at the bottom of the chamber and
increases near the free surface (see figure 10d). Moreover, in figure 10(c), the concentration
of cells for Hτ = 5 is even lower than that for Hτ = 1, and, similarly, it increases near the
free surface. In figures 10(d) and 10(c), the concentration of oxygen gradually increases
for Hτ = 1 as moving towards the free surface. Moreover, as expected, the most apparent
difference is seen in the Cr distribution profile for Hτ = 5. Although, both cell and oxygen
zero-flux conditions are satisfied at z = 0. The distribution of C is mostly interrupted
within the system due to the excessive consumption of the oxygen. The fluid velocity
profile Wr increases with the increasing value of Hτ (see in figure 12c). The difference in
the velocity profiles becomes more noticeable as the value of Hτ increases.
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Figure 12. Different characteristics of the perturbed fluid velocity profiles Wr are presented corresponding
to the values of Raτ c and kc for shallow chamber with the variation of Leτ in (a) (fixed ε = 0.1, Sτ ,

Hτ = 1, Prτ = 7700, Caτ = 0.01 and Frτ = 0.001); ε in (b) (fixed Leτ = 1, Sτ , Hτ = 1, Prτ = 7700, Caτ =
0.01 and Frτ = 0.001); Sτ , Hτ in (c) (fixed ε = 0.1, Leτ = 1, Prτ = 7700, Caτ = 0.01 and Frτ = 0.001); Caτ

in (d) (fixed ε = 0.1, Leτ = 1, Sτ , Hτ = 1, Prτ = 7700 and Frτ = 0.001); Frτ in (e) (fixed ε = 0.1, Leτ = 1,
Sτ , Hτ = 1, Prτ = 7700 and Caτ = 0.01).

4.5. Variation of ε and Prτ

The length of the shallow chamber has also been varied to investigate the nature of the
stability and the impact of ε on the present system. The variation of ε presented in table 1
shows that the estimated values of Raτ c remained unchanged for different ε although the
estimated values of kc increased with decreasing ε. It can be said that the number of waves
increases as the length of the chamber increases. These results are illustrated in figure 3(c)
where one can clearly visualize that the critical wavenumber increases with the decreasing
value of ε and is not influenced by the change in Sτ Hτ . This statement can also be verified
through figure 7(b), in which the neutral stability curves show a stabilizing effect in the
increasing cutoff wavenumber when the length of the chamber increases although Raτ is
not influenced by the change. The impact of the chamber length can also be seen in the
frequency of oscillations, where the growth rate is illustrated against the wavenumber in
figure 9(a).

In figures 10(b), 11(b) and 12(b), the characteristics of the perturbed cell and oxygen
concentrations, and fluid velocity profiles, respectively, are presented with the variation
in the length of the shallow chamber corresponding to the values of Raτ c and kc. It can
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Figure 13. Frequency of oscillation, ω, is plotted for the variations of Caτ and Frτ corresponding to the values
of Raτ c and kc for shallow chamber, and other parameters are fixed at ε = 0.1, Leτ = 1, Sτ = 1, Hτ = 10 and
Prτ = 7700.

be observed in figure 10(b) that the cell concentrations at the free surface for a small
chamber are lower than in the long chamber in comparison with those at the bottom
of the shallow chamber. Therefore, it can be stated that the cell concentration will
increase with an increasing length of the chamber. However, the oxygen concentration
profiles in figure 11(b) show that the oxygen concentration level will be identical at
the free surface for differently sized chambers although at the bottom of the chamber,
the oxygen concentration level will increase/decrease as the length of the chamber
decreases/increases. Figure 12(b) shows that the variation in the length of the chamber
has a significant impact on the velocity of the wave profiles. As the length of the chamber
increases, we can observe steady velocity profiles, whereas the velocity of the wave profile
increases as the length of the chamber decreases.

We have varied Prτ from 500 ∼ 7700 to investigate the impact of the Prandtl number on
the chemotaxis system, and this is shown in figure 7(e). It can be observed from the figure
that the trend of the curves is similar for the variation of Prτ . As Prτ increases, the value
of Raτ increases along with the value of wavenumber. Here, Prτ is defined as the ratio of
the fluid diffusivity to cell diffusivity, and the values are varied for 500 � Prτ � 7700,
i.e. the viscosity of the fluid is higher than the cell diffusivity, and this brings instability
to the chemotaxis system. Since all the curves show a similar nature in the figure, so the
highest value of Prτ (=7700) is considered for the parametric study.

Since Frτ and Caτ are two important physical parameters in this system, we have varied
both the parameters together as well as the other parameters such as Leτ and ε to study
their influence on the stability of the chemotaxis system. The frequency of oscillations, ω,
vs Frτ and Caτ is plotted in figure 13. The figure shows that the peak of the frequency
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Figure 14. Critical Rayleigh number, Raτ c, is plotted for the variations of Leτ and Frτ (ε = 0.1 fixed) in (a),
and for the variations of ε and Frτ (Leτ = 1) in (b). Other parameters are fixed at Sτ = 1, Hτ = 1, Caτ = 0.01
and Prτ = 7700.
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of the oscillation curve increases with a decreasing value of Caτ , and the increase in the
peak of the curve is also influenced by an increasing value of Frτ . The curve exponentially
increases with the increasing value of Frτ . Based on the results in the figure, we can say
that the surface tension force is strong enough to hold the peak of the wave, although
increasing the value of Frτ enables the curve to take its peak value. Then, at a much lower
value of Caτ and higher value of Frτ , the frequency of the oscillation curve converges
indicating the stabilization of the chemotaxis system.

The critical Rayleigh number, Raτ c, vs Leτ and Frτ is plotted in figure 14(a), and in
figure 14(b), plotted against ε and Frτ . It can be seen in figure 14(a) that the value of Raτ

drops initially when the value of Leτ is smaller, however, then it diverges as the value of
Leτ increases. Here, it is worth mentioning that Raτ c also depends on the parameters Sτ

and Hτ . The values of Sτ and Hτ are fixed to one here. Moreover, we have already seen
in figure 3(a) how the neutral stability curve initially diverges at a small value of Sτ Hτ

for the lower value of Leτ although, with an increasing value of Frτ , the neutral stability
curve exponentially increases, showing the destabilizing nature of the system. However,
after reaching a certain value of Frτ , the neutral stability curve converges. This effectively
explains that the presence of Frτ in the system accelerates the fluid motions, however, an
increase/decrease in the diffusivities of oxygen and cells would not affect the fluid motion.
The fluid motion is affected due to the change in Frτ and Sτ Hτ . For the variations in Frτ ,
the impact on the neutral stability curve can easily be seen in figure 14(b). Although change
in the value of ε does not have any impact on Raτ c, the fluid motion is influenced due to
the change in the length of the shallow chamber. It has been seen that the fluid accelerates
even faster as the length of the chamber decreases. The number of waves that will occur
in the system depends on the value of ε, as ε increases/decreases, the number of waves
decreases/increases.

5. Conclusions

A three-dimensional model of the chemotaxis–convection–diffusion coupling system with
the effect of surface tension at the air–water interface is considered. The impact of the
surface tension on bioconvection, and vice versa, is the novelty of the present work, and it
has been studied in detail. Both the surface tension phenomenon and cell dynamics at the
free surface have been considered by incorporating them into the present model.

A parametric study of the chemotaxis–convection–diffusion system with deformed free
surface with the effect of surface tension is performed. The parameters Leτ , Sτ Hτ , Prτ ,
ε, Frτ and Caτ are varied and compared with the results of Hillesdon & Pedley (1996)
for the flat free surface. The results of neutral stability curves showed that our system
slowly starts to diverge initially, however, it stabilizes the system as k increases where the
neutral stability curves always diverge for variation of parameter values in Hillesdon &
Pedley (1996) study. As the value of Frτ increases, the value of the critical Raτ number
increases, and this accelerates the free surface instability, although the wavenumber is not
affected due to the increment in Frτ . The value of Raτ is independent of Caτ , but the flow
velocity profile is influenced by the variation of Caτ . On variations in Caτ and Frτ , the
cell and oxygen concentration profiles, respectively, show very small changes. Moreover,
initially, the cells move towards the free surface (higher concentration of oxygen) and such
a movement is not affected in the presence of the Froude number and surface tension.
Later on, the cells are influenced and accelerated, and they accumulate near the trough
of the waves. The variation in ε shows that the wavenumber increases as the length of
the chamber increases. The frequency of oscillations is also increased with the increasing
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wavenumber as the length of the chamber increases. Increase in the value of Leτ and
independent variation of Sτ and Hτ evidently stabilizes the system.

Linear stability analysis provides useful results on qualitative perspective of the unstable
behaviour of the cell distribution at the onset of bioconvection, but it cannot explicate the
initial stage of the formation of bioconvection patterns. Therefore, we expanded our study
to perform weakly nonlinear stability analysis. It is observed in the linear stability analysis
that the angular frequency or growth rate shows stability in the nature of the chemotaxis
system at higher order. For this reason, we restrict the expansion of physical variables for
the weakly nonlinear stability analysis up to the third order only. The parameter Raτ is
the nonlinear controlled parameter of the chemotaxis system. In the near future, we will
provide a complete weakly nonlinear stability analysis that will aid us in determining the
nonlinear dynamics of the chemotaxis phenomenon and the stability of the formation of
patterns at the onset of bioconvection on the free surface under the influence of surface
tension. Also, we will provide the bifurcation theory results and compare them with the
numerical simulation results. Due to the lack of experimental evidence for the present
bioconvection model, it would be difficult to compare the results for validation.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.508.
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Appendix A. Solutions of N , C̄ and W at O(Sτ Hτ /Leτ ), O(Sτ Hτ /Leτ )2 and
O(Sτ Hτ /Leτ )3

The solutions of N1, C̄1 and W1 at the first order O(Sτ Hτ /Leτ ) are

W1(z) = − k̃2z2εRaτ −1

6s!2Prτ

[−240k̃2ε2Frτ
2Prτ

2 + 2(z − 1)Prτ (2z3(k̃2ε2 + 1) + z2(2 − 10k̃2ε2)

+ z(5k̃2ε2 + 32) + 35k̃2ε2 − 128) + k̃2ε2(−2z4 + 12z3 − 15z2 − 20z + 25)]

+ k̃4z2ε3(Raτ −1)
2

11!4Prτ

[−5!1078Frτ
2Prτ

2 + 2(10z9 − 88z8 + 165z7 − 539z4 + 2475z2

− 4070z + 2047)Prτ − 539(2z4 − 12z3 + 15z2 + 20z − 25)]

− 1
24

k̃2(z − 3)(z − 1)z2εRaτ 0, (A1a)

C̄1(z) = k̃2ε2Raτ −1

9!2
[−10z9 + 72z8 − 108z7 + 147z4 − 270z2 + 169]

+ 1
24

(z2 − 1)[z2(k̃2ε2 + 2) − 5k̃2ε2 + 14], (A1b)

N1(z) = 1 + z2 − k̃2ε2Raτ −1

7!4
(20z7 − 112z6 + 126z5 − 49z2 + 15). (A1c)
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At the second order, the governing equations are

d4W2

dz4 = −k̃2ε(N0Raτ 1 − N1Raτ 0 − N2Raτ −1) − k̃2ε3

Prτ

(k̃2εPrτ + ω1)W0

+ ε

Prτ

(2k̃2εPrτ + ω1)
d2W1

dz2 + εω2

Prτ

d2W0

dz2 , (A2)

d2N2

dz2 = z
dC̄0

dz
+ (k̃2ε2 + ω1ε + 2)N1 + 1

3
(3z2 + 3ω2ε − 1)N0 + 1

6
z(z2 − 1)

dN0

dz

+ z
dN1

dz
− 1

3
z(1 − 2z2)εW0 + zεW1, (A3)

d2C̄2

dz2 = k̃2ε2C1 + N2, (A4)

with the boundary conditions

d3W2(1)

dz3 + k̃2ε2 dW1(1)

dz
= 0,

W2(1) + k̃2ε2 Frτ
2Prτ

Caτ

W1(1) + 2εFrτ
2Prτ

(
ω1

dW1(1)

dz
+ ω2

dW0(1)

dz

)
= 0,

C̄2(1) = 0,
dN2(1)

dz
+ ω2

ω1

dN1(1)

dz
+ +ω3

ω1

dN0(1)

dz
− N1(1) − ω2

ω1
N0(1)

−dC̄1(1)

dz
−
(

ω2

ω1
+ 1

3

)
dC̄0(1)

dz
− 1

2ω1
W0(1) = 0,

dW2(0)

dz
= 0, W2(0) = 0,

dN2(0)

dz
= 0,

dC̄2(0)

dz
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

At the third order, the governing equations are

d4W3

dz4 = −k̃2ε
(
N0Raτ 2 + N1Raτ 1 + N2Raτ 0 + N3Raτ −1

)+ ε(2k̃2εPrτ + ω1)

Prτ

d2W2

dz2

+ ω2ε

Prτ

d2W1

dz2 + ω3ε

Prτ

d2W0

dz2 − k̃2ω2ε
3

Prτ

W0 − k̃2ε3(k̃2εPrτ + ω1)

Prτ

W1, (A6)

d2N3

dz2 = −1
3

z(1 − 2z2)
dC̄0

dz
+ z

dC̄1

dz
+ N2(k̃2ε2 + ω1ε + 2) + 1

3
N1(3z2 + 3ω2ε − 1)

+ 1
6

z(z2 − 1)
dN1

dz
+ 1

18
N0(3z4 − 3z2 + 18ω3ε + 1) + z

dN2

dz
− 1

3
z(1 − 2z2)εW1

+ zεW2, (A7)

d2C̄3

dz2 = k̃2ε2C2 + N3, (A8)
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with the boundary conditions

d3W3(1)

dz3 + k̃2ε2 dW2(1)

dz
= 0,

W3(1) + k̃2ε2 Frτ
2Prτ

Caτ

W2(1) + 2εFrτ
2Prτ

(
ω1

dW2(1)

dz
+ ω2

dW1(1)

dz
+ ω3

dW0(1)

dz

)
= 0,

C̄2(1) = 0,
dN3(1)

dz
− (ω1 + 3ω2)

3ω1

dC̄1(1)

dz
− (6ω2 + 18ω3 + 1)

18ω1

dC̄0(1)

dz
− dC̄2(1)

dz

+ω3

ω1

dN1(1)

dz
+ ω2

ω1

dN2(1)

dz
− ω3

ω1
N0(1) − ω2

ω1
N1(1) − N2(1) − W1(1)

2ω1
− W0(1)

54ω1
= 0,

dW3(0)

dz
= 0, W3(0) = 0,

dN3(0)

dz
= 0,

dC̄3(0)

dz
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)
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IVANČIĆ, F., SHEU, T.W.H. & SOLOVCHUK, M. 2019 The free surface effect on a chemotaxis-diffusion-

convection coupling system. Comput. Meth. Appl. Mech. Engng 356, 387–406.
KELLER, E.F. & SEGEL, L.A. 1971 Model for chemotaxis. J. Theor. Biol. 30 (2), 225–234.
KESSLER, J.O., HOELZER, M.A., PEDLEY, T.J. & HILL, N.A. 1994 Functional patterns of swimming

bacteria. In Mechanics and Physiology of Animal Swimming (ed. L. Maddock, Q. Bone & J.M.V. Rayner),
pp. 3–12. Cambridge University Press.

923 A14-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2007/files/comer.pdf
https://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2007/files/comer.pdf
https://doi.org/10.1017/jfm.2021.508


Stability analysis of chemotaxis system

KO, W.H. & CHASE, L.L. 1973 Aggregation of zoospores of Phytophthora palmivora. J. Gen. Microbiol.
78, 79–82.

KOWALCZYK, R., GAMBA, A. & PREZIOSI, L. 2004 On the stability of homogeneous solutions to some
aggregation models. J. Discrete Continuous Dyn. Syst. 4 (1), 203–220.

KUZNETSOV, A.V. 2005 Investigation of the onset of thermo-bioconvection in a suspension of oxytactic
microorganisms in a shallow fluid layer heated from below. Theor. Comput. Fluid Dyn. 19 (4), 287–299.

LEE, H.G. & KIM, J. 2015 Numerical investigation of falling bacterial plumes caused by bioconvection in a
three-dimensional chamber. Eur. J. Mech. (B/Fluids) 52, 120–130.

LIU, J.G. & LORZ, A. 2011 A coupled chemotaxis-fluid model: global existence. Ann. Inst. Henri Poincaré
28, 643–652.

MA, M., GAO, M., TONG, C. & HAN, Y. 2016 Chemotaxis-driven pattern formation for a
reaction-diffusion-chemotaxis model with volume-filling effect. Comput. Math. Appl. 72, 1320–1340.

METCALFE, A.M. & PEDLEY, T.J. 1998 Bacterial bioconvection: weakly nonlinear theory for pattern
selection. J. Fluid Mech. 370, 249–270.

METCALFE, A.M. & PEDLEY, T.J. 2001 Falling plumes in bacterial bioconvection. J. Fluid Mech.
445, 121–149.

PATLAK, C.S. 1953 Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338.
PEDLEY, T.J., HILL, N.A. & KESSLER, J.O. 1988 The growth of bioconvection patterns in a uniform

suspension of gyrotactic micro-organisms. J. Fluid Mech. 195, 223–237.
PEDLEY, T.J. & KESSLER, J.O. 1992 Hydrodynamic phenomena in sus-pensions of swimming

microorganisms. Annu. Rev. Fluid Mech. 24, 313–358.
TUVAL, I., CISNEROS, L., DOMBROWSKI, C., WOLGEMUTH, C.W., KESSLER, J.O. & GOLDSTEIN, R.E.

2005 Bacterial swimming and oxygen transport near contact lines. Proc. Natl Acad. Sci. USA 102 (7),
2277–2282.

923 A14-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.508

	1 Introduction
	2 Mathematical model
	2.1 Steady-state solutions

	3 Linear stability analysis
	3.1 Analytical solutions

	4 Results and discussions
	4.1 Vary Le; other parameters are fixed
	4.2 Vary Fr; other parameters are fixed
	4.3 Vary Ca; other parameters are fixed
	4.4 Vary SH; other parameters are fixed
	4.5 Variation of 

	5 Conclusions
	A Appendix A. Solutions of 
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


