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Abstract

We compute the g = 1, n = 1 B-model Gromov–Witten invariant of an elliptic

curve E directly from the derived category Dbcoh(E). More precisely, we carry out the

computation of the categorical Gromov–Witten invariant defined by Costello using as

target a cyclic A∞ model of Dbcoh(E) described by Polishchuk. This is the first non-trivial

computation of a positive-genus categorical Gromov–Witten invariant, and the result

agrees with the prediction of mirror symmetry: it matches the classical (non-categorical)

Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.
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1. Introduction

1.1 The initial form of mirror symmetry, as described in 1991 by Candelas, de la Ossa, Green

and Parkes [CdGP91], centered on the surprising prediction that the genus-zero Gromov–Witten

invariants of a quintic 3-fold X̌ could be computed by solving a differential equation governing

the variation of Hodge structure associated to another space, the so-called mirror quintic X.

Many other such mirror pairs (X, X̌) were later found in physics, satisfying similar relationships

between the genus-zero Gromov–Witten invariants of X̌ and the variation of Hodge structure

of X.
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1.2 A far-reaching generalization of mirror symmetry was proposed several years later by

Kontsevich [Kon95] in his address to the 1994 International Congress of Mathematicians. He

conjectured that the more fundamental relationship between the spaces X and X̌ in a mirror

pair should be the existence of a derived equivalence between the derived category Dbcoh(X) of

coherent sheaves on X and the Fukaya category Fuk(X̌) of X̌. This statement became known as

the homological mirror symmetry conjecture.

1.3 Implicit in Kontsevich’s proposal was the idea that the equality of numerical invariants

predicted by the original version of mirror symmetry should follow tautologically from the

homological mirror symmetry conjecture. To achieve this one needs to construct categorical

Gromov–Witten invariants: invariants associated to an A∞ triangulated category C , with the

property that they recover the classical Gromov–Witten invariants of the space X̌ when the target

category C is taken to be Fuk(X̌). Once one has such invariants, evaluating them on Dbcoh(X)

yields new invariants of X, the so-called B-model Gromov–Witten invariants of X. These

invariants are defined for any genus, not just for genus zero. (The genus-zero B-model invariants

are expected to match the data of the variation of Hodge structures used before.) The categorical

nature of the construction automatically implies, for a pair of spaces (X, X̌) which satisfies

homological mirror symmetry, that the B-model invariants of X match the Gromov–Witten

invariants of X̌.

1.4 Genus-zero categorical Gromov–Witten invariants satisfying the desired properties were

defined in 2015 by Ganatra, Perutz and Sheridan [GPS15] following ideas of Saito [Sai83a,

Sai83b] and Barannikov [Bar01]. However, according to the authors, this approach does not

extend to positive genus.

For arbitrary genus Costello [Cos09] proposed a definition of categorical invariants associated

to a cyclic A∞-algebra (or category), following ideas of Kontsevich and Soibelman [KS09].

Unfortunately many details of [Cos09] were left open, and computing explicit examples turned

out to be a difficult task. Costello (unpublished) computed one example where the target algebra

is the ground field (corresponding to the case where the target space X is a point). No other

explicit computations of Costello’s invariants exist. Costello and Li [CL12] wrote:

A candidate for the B-model partition function associated to a Calabi–Yau category

was proposed in [Cos07, Cos05, KS09] based on a classification of a class of 2-

dimensional topological field theories. Unfortunately, it is extremely difficult to

compute this B-model partition function.

1.5 In this paper we compute the g = 1, n = 1 B-model categorical invariant of an elliptic

curve Eτ , starting from Costello’s definition and using as input an A∞ model of the derived

category Dbcoh(Eτ ) proposed by Polishchuk [Pol11]. It is the first computation of a categorical

Gromov–Witten invariant with non-trivial target and positive genus.

More precisely, for a complex number τ in the upper-half plane H, let Eτ denote the elliptic

curve of modular parameter τ , Eτ = C/Z⊕Zτ . For each such τ we compute a complex number

FB
1,1(τ), the corresponding B-model categorical invariant. Regarding the result as a function of

τ , we obtain the so-called B-model Gromov–Witten potential, a complex-valued function on the

upper half plane.
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1.6 Mirror symmetry predicts the result of the above computation. There is a standard way to
collect the classical g = 1, n = 1 Gromov–Witten invariants of an elliptic curve in a generating
power series, the A-model Gromov–Witten potential FA

1,1(q). The result is known through work
of Dijkgraaf [Dij95]:

FA
1,1(q) = − 1

24E2(q).

Here E2 is the standard Eisenstein holomorphic, quasi-modular form of weight 2, expanded at
q = exp(2πiτ). In this computation, the inserted class at the one puncture is [pt]PD, the Poincaré
dual class of a point.

The prediction of mirror symmetry is that the A- and B-model potentials should match after
the Kähler and complex moduli spaces are identified via the mirror map, which in the case of
elliptic curves takes the form

q = exp(2πiτ).

Thus the prediction of mirror symmetry is that the B-model potential should equal

FB
1,1(τ) = − 1

24E2(τ).

1.7 To get our computation off the ground we need a cyclic A∞-algebra model of the derived
category Dbcoh(Eτ ). Such an algebra was described by Polishchuk [Pol11], using structure
constants that are modular, almost holomorphic forms. We denote this A∞-algebra by Aτ .
We will use both Polishchuk’s original algebra, and a gauge-equivalent modification of it whose
structure constants are quasi-modular, holomorphic forms. The interplay between calculations
in these two models, via the Kaneko–Zagier theory of quasi-modular forms, will form a central
part of our final computation.

1.8 Like in the classical Gromov–Witten calculation, in order to get a non-trivial answer in
the B-model computation we need to insert a certain Hochschild class [ξ] ∈ HH−1(Aτ ) at the
puncture, mirror dual to [pt]PD. This class will be represented by the Hochschild chain in A⊗1

τ ,

ξ =
1

τ − τ̄
dz̄.

(The identification of Eτ with C/Z ⊕ Zτ yields a well-defined class dz̄ in H1(Eτ ,OEτ ). This
group is a direct summand of Aτ . Therefore ξ is a well-defined element of homological degree
(−1) of the algebra Aτ , and as such it gives rise to a class in HH−1(Aτ ).)

The following theorem is the main result of this paper.

Theorem 1.9. With insertion of the class [ξ], Costello’s categorical Gromov–Witten invariant
of Aτ at g = 1, n = 1 equals

FB
1,1(τ) = − 1

24E2(τ).

1.10 We interpret this result in two ways. On the one hand, we think of it as confirmation
of the mirror symmetry prediction at g = 1 as in § 1.6. On the other hand, through the prism of
homological mirror symmetry we can view our result as a statement about the Fukaya category
of the family Ěρ which is the mirror to the family Eτ of elliptic curves. Indeed, from work of
Polishchuk and Zaslow [PZ98] we know that homological mirror symmetry holds for elliptic
curves. The authors construct an equivalence

Dbcoh(Eτ ) ∼= Fuk(Ěρ),
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where Ě is the 2-torus mirror to Eτ , endowed with a certain complexified Kähler class ρ.
Therefore our computation, which is a priori about Dbcoh(Eτ ), can be reinterpreted as a
calculation about Fuk(Ěρ). From this perspective we regard Theorem 1.9 as verification of the
prediction that Costello’s categorical Gromov–Witten invariants of the Fukaya category agree
(in this case) with the classical ones of the underlying space, as computed by Dijkgraaf.

1.11 There is one important aspect of Costello’s work that we have suppressed in the above
discussion. In order to extract an actual Gromov–Witten potential from a cyclic A∞-algebra
A (as opposed to a line in a certain Fock space) we need to choose a splitting of the Hodge
filtration on the periodic cyclic homology of A. The correct splitting is forced on us by mirror
symmetry. The Hochschild and cyclic homology of Aτ agree with those of Eτ , as they are derived
invariants. Under this identification, a splitting of the Hodge filtration is the choice of a splitting
of the natural projection

H1
dR(Eτ ) → H1(Eτ ,OEτ ) = HH−1(Aτ ).

Mirror symmetry imposes the requirement that the lift of [ξ] must be invariant under monodromy
around the cusp, which in turn uniquely determines the lifting. It is with this choice that we
carry out the computations in Theorem 1.9. See § 9 for more details.

1.12 There is another approach to higher-genus invariants in the B-model, due to Costello
and Li [CL12, Li11, Li12, Li16], inspired by the Bershadsky–Cecotti–Ooguri–Vafa (BCOV)
construction in physics [BCOV94].

These other invariants also depend on a choice of splitting of the Hodge filtration. In their
works Costello and Li analyzed the BCOV-type invariants of elliptic curves obtained from
arbitrary splittings of the Hodge filtration and showed that these invariants satisfy the Virasoro
constraints. Moreover, they studied a family of splittings depending on a parameter σ ∈ H
and proved the modularity of the corresponding BCOV potentials. The monodromy invariant
splitting that we consider corresponds to the limiting splitting σ → i∞. We have learned the
idea that this is the correct one for mirror symmetry from conversations with Costello and Li.

1.13 The BCOV-type invariants have the advantage that they give a more geometric definition
of B-model Gromov–Witten invariants for Calabi–Yau spaces, and are also more easily computed
than the original categorical ones of Costello [Cos09]. In fact, for elliptic curves Li was able to
establish mirror symmetry at arbitrary genus for BCOV B-model invariants, and to directly
compute the potential functions in any genus and for arbitrary insertions.

However, the BCOV-type invariants are fundamentally different from the ones we study in
this paper, in that they are not a priori categorical: knowing homological mirror symmetry does
not allow one to conclude the equality of the A- and B-model invariants. Moreover, the BCOV
approach does not immediately generalize to other non-geometric situations wherein one only
has a category, and not an underlying space.

1.14 Outline of the paper
Section 2 outlines Dijkgraaf’s computation in the classical setting. Section 3 discusses mirror
symmetry in the geometric setting. The next two sections review modular forms, Kaneko–Zagier
theory, and Polishchuk’s A∞-algebra. Costello’s general formalism is outlined in § 6, and the
next section contains a roadmap for the computation for elliptic curves. Section 8 describes a
computation, essentially due to Costello, of the string vertices for χ = −1. The last two sections
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present two different ways to compute the Gromov–Witten invariant FB
1,1 that we want. The first

method involves reducing the problem to a very large linear algebra computation, which is then
solved by computer. The second method, presented in § 10, gives a purely mathematical deduction
of the result, using a comparison between computations in the holomorphic and modular gauges,
respectively.

1.15 Standing assumptions
We work over the field of complex numbers C. Throughout the paper we will need to use various
comparison results between algebraic homology theories (Hochschild, cyclic) and geometric ones
(Hodge, de Rham). Most of these comparison results are in the literature; however, some appear
to be known only to specialists but are not published. In particular, we have not been able to
find in the literature a comparison between the algebraic Getzler–Gauss–Manin connection and
the classical geometric one. We tacitly assume that they agree, but this should be considered a
conjectural result. (A similar assumption is made in [GPS15].)

2. The classical invariants

In this section we outline Dijkgraaf’s computation [Dij95] of the classical g = 1, n = 1 Gromov–
Witten invariants of elliptic curves.

2.1 Let Ě = R2/Z2 denote the two-dimensional torus, endowed with any complex structure
making it into an elliptic curve. (The specific choice of complex structure will not matter.) We
upgrade Ě to a symplectic manifold by choosing any symplectic form ω in H2(Ě,R) whose area
is one.

We also fix a point P0 ∈ Ě, which we think of as determining the origin of the group structure
of Ě.

2.2 For any β ∈ H2(Ě,Z), let M1,1(Ě, β) be the moduli space of stable maps from a stable
genus-one curve with one marked point to Ě with homology class β. It has virtual real dimension
two. If β = d · [Ě] for some integer d > 0 then

M1,1(Ě, β) = M1,1(Ě, β)

and the virtual dimension agrees with the actual dimension. In fact the moduli space M1,1(Ě, β)
parametrizes in this case the pairs (f, P ) where f : E → Ě is a degree-d isogeny onto Ě from
another elliptic curve E, and P is any point on E. (There are only finitely many such isogenies
possible, therefore dimRM1,1(X,β) = 2.)

2.3 To compute an actual numerical Gromov–Witten invariant we need to insert a cohomology
class at the marked point, so that the integrand is a 2-form. Inserting a ψ-class from M1,1 gives
zero, so the only choice left is to pull-back a 2-form α from Ě = T 2 via the evaluation map

ev1 : M1,1(Ě, β) → Ě.

The natural choice used is to take α = [pt]PD, the Poincaré dual class to a point. If we think of
this point as being P0, then the associated Gromov–Witten invariant for β = d · [Ě] will compute
the number of isogenies f : E → Ě, up to isomorphism. (Inserting α has the effect of requiring
P to map to P0.) This number is well known – it equals the sum (

∑
k | d k) of divisors of d. This

can be seen by counting the number of matrices with integer coefficients, of determinant d, up
to SL(2,Z) conjugation.

1279

https://doi.org/10.1112/S0010437X20007174 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007174
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2.4 One encapsulates the result of this computation into the classical Gromov–Witten potential
of the A-model

FA
1,1(q) =

∑
β∈H2(Ě,Z)

〈α〉Ě,β1,1 q
〈β,ω〉 = − 1

24
+
∑
d>1

∑
k | d

kqd.

(The leading coefficient of −1/24 arises from a computation on M1,1 which we will omit.) This
formula equals − 1

24E2(q) under the change of variables τ = (1/2πi) log(q), where E2 is the
Eisenstein holomorphic, quasi-modular normalized form of weight 2; see § 4 for details on modular
forms.

3. Geometric mirror symmetry

In this section we discuss the identifications that mirror symmetry prescribes between structures
of the A- and the B-models for elliptic curves. We place ourselves in the classical geometric
context, where one deals with spaces and not with categories.

3.1 At its core mirror symmetry is an identification between two families of geometric structures,
the A-model and the B-model. The A-model is usually a trivial family of complex manifolds,
endowed with a varying complexified Kähler class (this notion is a generalization of the usual
Kähler class; see below). The B-model family is a varying family of complex manifolds. The
mirror map is an isomorphism

MKähler ∼= M cx

between the moduli space MKähler of complexified Kähler classes and the moduli space M cx of
complex structures. This isomorphism is not defined everywhere, but only in the neighborhood
of certain limit points of these spaces, the so-called large volume and large complex structure
limit points.

3.2 In the case of elliptic curves both the A- and the B-model families have descriptions in
terms of familiar structures. We begin by describing the A-model family.

Let Ě denote the 2-torus R2/Z2 endowed with some complex structure, as in § 2. The moduli
space of complexified Kähler structures on Ě is defined to be

MKähler(Ě) = (H2(Ě,R)/H2(Ě,Z))⊕ i ·
{
A ∈ H2(Ě,R)

∣∣∣∣ ∫
Ě
A > 0

}
.

In other words, a complexified Kähler class ρ on Ě can be written as ρ = b + iA where b is a
form in H2(Ě,R)/H2(Ě,Z) and A ∈ H2(Ě,R) represented by a symplectic form with positive
area.

The moduli space MKähler is naturally isomorphic to H/Z. The correspondence ρ ↔ τ
thus identifies a neighborhood of i · ∞ in MKähler(Ě) (the large volume limit point) with a
neighborhood of the cusp in the moduli space of complex structures of elliptic curves (the large
complex structure limit point).

The map ρ ↔ τ is the mirror map for elliptic curves described by Polishchuk and
Zaslow [PZ98]. We have used it in order to identify the A- and B-model potentials in § 1.6.

Due to the periodicity of b and Re(τ) and the positivity of A and Im(τ), it often makes
more sense to use exponential coordinates on MKähler and M cx. We will write q = exp(2πiρ) or
q = exp(2πiτ) depending on the context, with the hope that this will not cause any confusion.
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3.3 On the A-model side the trivial bundle over MKähler with fiber H1−•(Ě,C) carries the
structure of a graded variation of polarized semi-infinite Hodge structures (VSHS), in the sense
of [Bar01, GPS15]. We shall only need parts of this structure: a graded fiberwise pairing (the
Poincaré pairing 〈− , −〉P given by wedge and integrate) and a flat connection, the Dubrovin
connection ∇D (see [GPS15]),

∇q∂q(x) = q∂q(x)− x ∪ ω,

where ω ∈ H2(Ě,C) is the unique symplectic form such that
∫
Ě ω = 1.

3.4 We have a similar structure of polarized VSHS over M cx coming from the B-model. The fiber
over τ ∈ M cx of the underlying vector bundle is the graded vector space HH •−1(Eτ ). The
fiberwise pairing is given by the Mukai pairing 〈− , −〉M; see [Căl05]. We recall the formula for
the Mukai pairing. The Hochschild–Kostant–Rosenberg isomorphism gives an identification

HH •(Eτ ) ∼=
⊕
q−p=•

Hp(Eτ ,Ω
q
Eτ

).

The Mukai pairing then becomes

〈u, v〉M =
1

2πi

∫
Eτ

(−1)|u|u ∧ v,

where |u| = q for u ∈ Hp(Eτ ,Ω
q
Eτ

). See Ramadoss [Ram08] for an explanation of this sign. The
factor of 1/2πi arises from the comparison of the Serre duality pairing (the residue pairing) with
the wedge-and-integrate pairing. Note that this factor is missing in the comparison [GPS15,
Conjecture 1.14]. Also note that the Todd class of an elliptic curve is trivial, so there is no
correction from it as in [Căl05].

The connection is the Gauss–Manin connection ∇GM after identifying HH •(Eτ ) ∼=⊕
q−p=•H

p(Eτ ,Ω
q
Eτ

) further with H•dR(Eτ ) as Z/2Z-graded vector spaces; see [Gri68]. (We
are using the fact that the Hodge–de Rham spectral sequence degenerates on Eτ .)

3.5 The mirror map gives an isomorphism between the A-model polarized VSHS and the B-
model one. The following theorem identifies the classes [Ω] ∈ HH 1(Eτ ) and [ξ] ∈ HH−1(Eτ ) which
correspond to the classes 1 ∈H0(Ěρ) and [pt]PD ∈H2(Ěρ), respectively, under this isomorphism.

Proposition 3.6. Under the mirror map ρ↔ τ the class 1 ∈ H0(Ěρ) corresponds to the class
of the global holomorphic volume form

[Ω] = [2πi · dz] ∈ HH 1(Eτ ).

Similarly, the class [pt]PD ∈ H2(Ěρ) corresponds to the class

[ξ] =
1

τ − τ̄
[dz̄] ∈ HH−1(Eτ ).

Proof. Because we are only interested in what happens in a neighborhood of the large complex
limit point we have well-defined forms dz and dz̄ which give bases of H0(Eτ ,Ω

1
Eτ

) and
H1(EτOEτ ), respectively, on each elliptic curve Eτ . The classes [Ω] and [ξ] are therefore pointwise
multiples of these forms. The goal is to identify which multiples they are.

In the A-model we have

〈1,∇D
q∂q(1)〉P = 〈1,−[ω]〉P = −1.
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The relationships q = exp(2πiρ) and ρ↔ τ force the identification

q∂q =
1

2πi
∂τ .

Therefore in the B-model we require

〈Ω,∇GM
(1/2πi)∂τ

Ω〉M = −1.

A straightforward calculation with periods shows that

∇GM
∂τ (dz) =

1

τ − τ̄
(dz − dz̄)

and this forces the class [Ω] to equal [2πi · dz].
Similarly, the A-model identity

〈1, [pt]PD〉P = 1

forces the equality

〈[Ω], [ξ]〉M = 1,

which in turn implies

[ξ] =
1

τ − τ̄
[dz̄]

as stated in § 1.8. 2

3.7 We conclude this section with a discussion of the splitting of the Hodge filtration on the

de Rham cohomology H1
dR(Eτ ). For an elliptic curve Eτ the Hodge filtration is expressed by

the short exact sequence

0 → H0(Eτ ,Ω
1
Eτ ) → H1

dR(Eτ ) → H1(Eτ ,OEτ ) → 0,

or, equivalently, by the sequence

0 → HH 1(Eτ ) → H1
dR(Eτ ) → HH−1(Eτ ) → 0.

We have natural basis vectors [dz] and [ξ] of the first and last vector spaces in this sequence.

Thus choosing a splitting of the Hodge filtration means picking a lift [ξ + f(τ) dz] of [ξ] from

HH−1(Eτ ) = H1(Eτ ,OEτ )

to H1
dR(Eτ ) for every τ .

Mirror symmetry prescribes that the correct lift must be invariant under monodromy around

the cusp. The following lemma characterizes this lift.

Lemma 3.8. The following conditions are equivalent for a family [ξ̃]geom of lifts of the family of

Hochschild classes [ξ]:

(i) the lift [ξ̃]geom is invariant under monodromy around the cusp for all τ ∈ H;

(ii) the family [ξ̃]geom is flat with respect to the Gauss–Manin connection.
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Proof. Fix an identification of Eτ with C/Z⊕Zτ . This determines a basis A,B of cycles in H1(Eτ )
corresponding to the paths from 0 to 1 and from 0 to τ , respectively. Under the monodromy
τ 7→ τ + 1 around the cusp the basis (A,B) maps to (A,A+B).

Let A∗, B∗ denote the basis in H1
dR(Eτ ) dual to the basis (A,B). Then under the same

monodromy the pair (A∗, B∗) maps to (A∗ −B∗, B∗) (the inverse transpose matrix). We have

dz = A∗ + τB∗,

dz̄ = A∗ + τ̄B∗.

It follows that the invariant cocycle B∗ is expressed in the (dz, dz̄) basis as

B∗ =
1

τ − τ̄
(dz − dz̄).

For a class [ξ̃] ∈H1
dR(Eτ ) to be invariant under monodromy around the cusp it must be a multiple

of B∗. And indeed there exists a unique monodromy invariant lift of [ξ] from

HH−1(Eτ ) = H1
dR(Eτ )/HH 1(Eτ )

to H1
dR(Eτ ), namely

−B∗ =
1

τ − τ̄
(dz̄ − dz).

By definition of the Gauss–Manin connection, since −B∗ is a topological cohomology class, it is
∇GM-flat and this condition uniquely identifies the family in (ii). 2

3.9 We will also need in § 10 the explicit form of the Kodaira–Spencer class,

KS(∂τ ) = − 1

τ − τ̄
∂

∂z
dz̄ ∈ H1(Eτ , TEτ ).

This follows from the relationship between the Kodaira–Spencer class and the Gauss–Manin
connection, given by the formula

∇GM
∂τ ([Ω]) mod H1,0(Eτ ) = KS(∂τ ) y [Ω].

4. Quasi-modular forms and Kaneko–Zagier theory

Before we can describe Polishchuk’s A∞ model for the derived category of an elliptic curve
we need to review the theory of quasi-modular, holomorphic forms and its relationship to
the theory of almost holomorphic, modular forms. Their interplay is described by Kaneko–Zagier
theory; see [KZ15, 5.1] and [KZ95].

4.1 The ring of holomorphic, modular forms for the group Γ = SL(2,Z) is isomorphic to
C[E4, E6], where E4 and E6 are the Eisenstein modular forms of weights 4 and 6, respectively.
(Since there are competing systems of notation in the literature we reserve the notation Ek to
mean the corresponding normalized form, in the sense that the function has been rescaled to
satisfy limτ→i·∞Ek(τ) = 1.)

4.2 For the purposes of this paper we need to consider certain functions on H which are not
at the same time holomorphic and modular. Of particular interest to us is the Eisenstein form
E2: it is still holomorphic, but it does not satisfy the usual transformation law with respect
to Γ; see [KZ15, 4.1]. We will call elements of the ring M̃(Γ) = C[E2, E4, E6] quasi-modular
holomorphic forms; the weight of such a form is defined by declaring the weight of E2k to be 2k.
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4.3 While the form E2 is not modular, the simple modification

E∗2(τ) = E2(τ)− 3

π2

2πi

τ − τ̄
is; it satisfies the same transformation rule as regular modular forms of weight 2 with respect to
the group Γ. However, E∗2 is no longer holomorphic. The functions in the ring O(H)[1/(τ − τ̄)]
which are modular in the above sense (for arbitrary weights) and satisfy a suitable growth

condition at the cusp form a ring M̂(Γ). Its elements will be called almost holomorphic modular
forms. One can show that

M̂(Γ) = C[E∗2 , E4, E6].

4.4 The rings M̃(Γ) and M̂(Γ) are closed under the actions of certain differential operators.
The former is closed under the action of ∂τ , while the latter is closed under

∂̂τ = ∂τ +
wt

τ − τ̄
,

where wt denotes the weight of the form on which ∂̂τ acts.
The following theorem is the main result of Kaneko–Zagier theory [KZ95].

Theorem 4.5. The operator
ϕ : M̂(Γ) → M̃(Γ)

which maps an almost holomorphic, modular form

F (τ, τ̄) =
∑
m>0

Fm(τ)

(τ − τ̄)m

to its ‘constant term’ part F0(τ) is a differential ring isomorphism. Its inverse will be denoted by

KZ : M̃(Γ) → M̂(Γ).

5. Polishchuk’s algebra and its holomorphic modification

In this section we review Polishchuk’s cyclic A∞-algebra Aτ associated to an elliptic curve Eτ .
This presentation uses almost holomorphic, modular forms. The main result of this section asserts
that the A∞-algebra Ahol

τ obtained by replacing these structure constants by their images under
the homomorphism ϕ of Theorem 4.5 yields an algebra which is gauge equivalent to Aτ and
varies holomorphically with τ .

5.1 For τ ∈ H, let Eτ be the corresponding elliptic curve. We will denote its origin by P0. The
derived category Dbcoh(Eτ ) of coherent sheaves on the elliptic curves Eτ is compactly generated
by the object F = O ⊕ L, where L is the degree-one line bundle L = O(P0). Therefore the
differential graded (dg) algebra

Adg
τ = RHom•Eτ (F ,F )

is derived equivalent to Eτ . By homological perturbation we can transfer the dg-algebra structure
from Adg

τ to a quasi-equivalent A∞-algebra structure on

Aτ = H•(Adg
τ ) = Ext•Eτ (F ,F ).

The graded vector space Aτ is concentrated in cohomological degrees zero and one, and

dimA0
τ = dimA1

τ = 3.
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5.2 Polishchuk [Pol11] explicitly computes an A∞ structure on Aτ using a particular choice of

homotopy between Aτ and Adg
τ . In order to express his result Polishchuk chooses a basis for the

six-dimensional algebra Aτ consisting of:
• the identity morphisms idO : O → O and idL : L → L in A0

τ ;
• the morphisms ξ : O → O[1] and ξL : L → L[1] in A1

τ given by ξ = dz̄, and similarly for ξL;
• the degree-zero morphism θ : O → L in A0

τ given by the theta function θ = θ(z, τ);
• an explicit dual morphism η : L → O[1] in A1

τ given by the formula in [Pol11, 2.2].

5.3 For our purposes it will be more convenient to work with a slightly modified basis for Aτ ,
obtained by dividing the elements of degree one in Polishchuk’s basis (η, ξ and ξL) by the factor
τ − τ̄ . We leave the degree-zero elements unchanged. The rescaled elements will still be denoted
by η, ξ, ξL; they differ by a factor of 1/2πi from the ones that Polishchuk considers in [Pol11,
2.5, Remark 2]).

With this rescaling the new element ξ agrees with the expression in § 1.8.

5.4 At this point we need to decide which sign conventions to use for the A∞ axioms. There
are (at least) two such conventions in the literature. In this paper we will use the so-called
shifted signs, which are more common in the symplectic geometry literature and are easier to
use. See [Cho08] for a discussion of these two conventions and of ways to translate between them.
Note, however, that Polishchuk [Pol11] uses in the unshifted sign convention; we will make the
change to the shifted convention as we go. Following [Cho08], we will denote by |x|′ the shifted
degree of an element x ∈ Aτ , |x|′ = |x| − 1.

5.5 Once we have fixed a global holomorphic volume form Ω on Eτ as in Proposition 3.6 we get
an induced symmetric non-degenerate pairing on Aτ arising from Serre duality. Correcting it by
the shifted sign conventions, we obtain a skew-symmetric pairing on Aτ given by

〈ξ, idO〉 = −1, 〈ξL, idL〉 = −1,

〈idO , ξ〉 = 1, 〈idL, ξL〉 = 1,

〈θ, η〉 = 1, 〈η, θ〉 = −1.

All other pairings between basis elements are zero. This pairing will give the cyclic structure
on Aτ .

5.6 We will now describe Polishchuk’s formulas for the multiplications

µk : A[1]⊗k → A[2].

These operations are non-trivial only when k is even. The first product µ2 is the usual Yoneda
product on the Ext algebra Aτ , with a sign adjustment: the only non-zero products (apart from
the obvious ones involving id and idL) are θη = −ξ and ηθ = ξL. (We will use reverse notation
for composition of morphisms, so that θη means η ◦ θ. The same convention shall be used for the
higher products, in line with Polishchuk’s conventions.)

5.7 An important feature of Polishchuk’s formulas is that they respect cyclic symmetry with
respect to the inner product on Aτ . We will say that a homogeneous map (of some degree)

ck : A⊗k → C
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is cyclic if it is invariant under cyclic rotation of its arguments, up to a Koszul sign determined
by the shifted degrees of its arguments. The products µk will be cyclic in the sense that the
tensors

ck(x1, . . . , xk) = 〈µk−1(x1, . . . , xk−1), xk〉

are cyclic in the above sense. An A∞-algebra endowed with a pairing of degree d which makes
the maps ck cyclic will be said to be Calabi–Yau of degree d, or CY[d], or cyclic of degree d.

5.8 All the higher multiplications of Aτ can be deduced from a single one using this cyclic
symmetry. The complete list is presented in [Pol11, Theorem 2.5.1], but for reference we list the
formula for only one such multiplication. Explicitly, let a, b, c, d be non-negative integers, and
let s = a+ b+ c+ d. Then for s odd we have

µk(ξ
a
L, η, ξ

b, θ, ξcL, η, ξ
d) = (−1)a+b+(s+1

2 ) 1

a!b!c!d!
· 1

(2πi)s+1
· ga+c,b+d · η,

and zero otherwise. In this formula k = s+ 3, and

ga+c,b+d ∈ M̂(Γ)s+1

is a certain almost holomorphic modular form of weight s + 1 defined by Polishchuk
in [Pol11, 1.1].

5.9 We associate a notion of weight to the basis elements of Aτ as follows:

wt(id) = wt(idL) = 0,

wt(θ) = wt(η) = 1/2,

wt(ξ) = wt(ξL) = 1.

Note that with respect to these assignments of weights the multiplications µk are of total weight
zero, and the inner product 〈−,−〉 is of total weight −1.

5.10 Even though the dependence on τ ∈ H of the family of elliptic curves Eτ is holomorphic,
the associated family of A∞-algebras Aτ does not depend holomorphically on τ : the structure
constants ga+c,b+d are not holomorphic. We think of the multiplications {µk} as giving a 2-cocycle
µ∗ in the Hochschild cochain CC•(Aτ ). (The differential in this complex is [µ∗, − ].) The failure
of holomorphicity is measured by the 2-cochain ∂̄µ∗.

The following result shows that the anti-holomorphic dependence of this family is nevertheless
trivial to first order (i.e. it is zero in Hochschild cohomology). The proof is a straightforward
computation.

Theorem 5.11. Let CC•(Aτ ) denote the Hochschild cochain complex of Aτ , with differential
[µ∗, − ]. Let ψ3 : Aτ [1]⊗3

→ Aτ [1] be the cyclic Hochschild 1-cochain defined by

ψ3(ξ, θ, ξL) = − 1

2πi
· 1

(τ − τ̄)2
· θ

and its cyclic rotations with respect to the pairing. Then we have

∂̄µ∗ = [µ∗, ψ3].
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5.12 The deformation induced by ∂̄µ is trivial not just to first order: the bounding element ψ3

can be integrated to an A∞ quasi-isomorphism

f : Aτ → Ahol
τ ,

from Aτ to a holomorphic family Ahol
τ of A∞-algebras over H. The process is similar to

integrating pseudo-isotopies of A∞-algebras; see [Fuk10, Proposition 9.1]. We will now present
the construction of the algebras Ahol

τ and of the A∞ quasi-isomorphism f .
The holomorphic family Ahol

τ has the same underlying vector space as Aτ and the same
basis. Its structure constants are obtained simply by applying the map ϕ of Theorem 4.5 to the
structure constants of Aτ , so that, for example, the multiplications of Ahol

τ are obtained by cyclic
symmetry from

µholk (ξaL, η, ξ
b, θ, ξcL, η, ξ

d) = (−1)a+b+(s+1
2 ) 1

a!b!c!d!
· 1

(2πi)s+1
· ϕ(ga+c,b+d) · η.

Since ϕ is a ring map, the maps {µholk } also satisfy the A∞ relations.

5.13 One can explicitly compute ϕ(ga,b) using the recurrence formulas in [Pol11, Proposition
2.6.1(ii)]. For example, we have

ϕ(g1,0) = ϕ(e∗2) = ϕ

(
e2 −

2πi

τ − τ̄

)
= e2,

ϕ(g2,1) = ϕ

(
−g2

1,0 +
5

6
g3,0

)
= −e2

2 +
5

6
· 3! · e4 = −e2

2 + 5e4.

In general, ga,b is a polynomial expression with rational coefficients in e∗2k; ϕ(ga,b) is obtained by
replacing e∗2 by e2 in the same expression, leaving all the other terms unchanged.

The following theorem describes recursively the construction of the maps fn which assemble
to give a quasi-equivalence Aτ ∼= Ahol

τ . The proof is a straightforward (though tedious) inductive
calculation.

Theorem 5.14. Inductively define multilinear maps

fn : Aτ [1]⊗n → Ahol
τ [1]

by setting f1 = id and

fn :=
∑

i>1,j>1,k>1,i+j+k=n

∫
ψ3(fi ⊗ fj ⊗ fk) dτ̄ .

Here the integration symbol
∫

(. . .) dτ̄ is formally applied to the coefficients of the tensors, and
is defined by ∫

1

(τ − τ̄)m
dτ̄ :=

1

(m− 1)

1

(τ − τ̄)m−1
for m > 2.

Then the maps {fn}n>1 form a cyclic A∞ quasi-isomorphism

f : Aτ → Ahol
τ .
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6. Costello’s formalism

In this section we review Costello’s general definition of categorical Gromov–Witten invariants. In
the next section we will specialize this construction to the case of the g = 1, n = 1 invariant of
an elliptic curve.

6.1 Let A be a cyclic A∞-algebra whose pairing is of degree d as in § 5.7, and let HH = HH•(A)[d]
denote the shifted Hochschild homology of A. The categorical Gromov–Witten potential that we
ultimately want to construct is an element

F cat ∈ Sym(u−1HH[u−1])JλK.

Here λ is a formal variable used to keep track of the Euler characteristics of curves and u is the
usual formal variable of degree −2 which appears in the definition of cyclic homology. It is a
placeholder for keeping track of insertions of ψ classes.

The invariant F cat depends not only on the algebra A, but also on a further choice: a splitting
of the Hodge filtration on the periodic cyclic homology HP•(A) of A. The construction of F cat

proceeds in two stages. First one constructs an abstract invariant F abs which only depends
on A. It is a state in the homology of a certain Fock space associated to A. The choice of
splitting of the Hodge filtration is then used to identify the homology of the Fock space with
Sym(u−1HH[u−1])JλK and hence to extract F cat from F abs.

6.2 The potential thus constructed is invariant under cyclic quasi-equivalence. If A′ is another
cyclic A∞-algebra and f is a cyclic quasi-equivalence A ∼= A′, then f induces an isomorphism
HP•(A) ∼= HP•(A

′) of filtered vector spaces. The original splitting s of the Hodge filtration
on HP•(A) then determines a splitting s′ of the Hodge filtration on HP•(A

′). The invariance of
the Gromov–Witten invariants means that the potential associated to (A, s) is the same as that
associated to (A′, s′) under the obvious identifications.

6.3 Individual Gromov–Witten invariants can be read off from F cat as coefficients of its power
series expansion. For example, in the next section we will want to compute the g = 1, n = 1
invariant of Polishchuk’s algebra Aτ . The Euler characteristic of the curves in M1,1 is χ = −1;
thus we are interested in the λ−χ = λ1 part of F cat. We want to insert the Hochschild class [ξ]
(and no ψ-classes). This means that the Gromov–Witten invariant we are interested in is the
coefficient of [Ω]u−1λ in the power series expansion of F cat: here [Ω] is the class in HH 1(Aτ )
which is Mukai dual to [ξ] (Proposition 3.6), and we have used u−1 to denote no ψ-class insertions
(one ψ class would give u−2, etc.).

We begin by describing the structures on the cyclic chain complex of A that will be needed
for the construction of F abs.

6.4 The circle action on Hochschild chains
Let V denote the shifted Hochschild cochain complex of A,

V = (CC•(A), b)[d],

whose homology is HH. Connes’ B operator is a degree-one operator on V . It gives a homological
circle action on the dg vector space V . We use it to form the periodic cyclic complex

VTate = (CC•(A)((u)), b+ uB)[d]
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and its negative cyclic subcomplex

V hS1
= (CC•(A)JuK, b+ uB)[d].

The homology of these complexes are the (shifted by d) periodic and negative cyclic homology
of A, respectively.

6.5 The Mukai pairing
The Mukai pairing [CW10] is a non-degenerate symmetric pairing of degree 2d on HH.
Shklyarov [Shk13] and Sheridan [She20] construct a lift of the Mukai pairing to the chain level.
It is a symmetric bilinear form of degree 2d on V ,

〈− , −〉M : V ⊗ V → C[2d].

We will discuss this pairing further in § 7.4.

6.6 The higher residue pairing
The chain-level Mukai pairing on V induces a C((u)) sesquilinear pairing of degree 2d on VTate,

〈− , −〉hres : VTate × VTate → C((u))[2d],

the higher residue pairing 1 (see [She20, Definition 2 and § 5.42] for details). For α, β ∈ CC•(A),
i, j ∈ Z the higher residue pairing is given by

〈αui, βuj〉hres = (−1)i〈α, β〉M · ui+j .

Laurent power series only have finitely many negative powers of u, hence the above formula
extends by sesquilinearity to all of VTate.

The higher residue pairing is a chain map with respect to b+uB, which makes it descend to
a pairing on periodic cyclic homology. The space VTate is filtered by powers of u, and the pairing
respects this filtration. In particular, for x, y ∈ HC−• (A) we have 〈x, y〉hres ∈ CJuK.

The constant term of the power series 〈x, y〉hres equals the Mukai pairing 〈x, y〉M of the
reductions of x and y to Hochschild homology. However, the power series 〈x, y〉hres can have
higher powers of u which are not computed by the above homology Mukai pairing.

6.7 The ordinary residue pairing
We will also consider the residue pairing, the C-valued pairing of degree 2d−2 on VTate obtained
by taking the coefficient of u−1 (the residue) in the higher residue pairing. It is skew-symmetric,
and restricts to zero on the dg subspace V hS1

. We will think of V hS1
as a Lagrangian subspace

of the symplectic vector space VTate.

6.8 Weyl algebra and Fock module
We associate a Weyl algebra W to the symplectic vector space VTate and a Fock space F to its
Lagrangian subspace V hS1

. Explicitly, W is defined as

W = T •(VTate)/([x, y]− 〈x, y〉res),

where [x, y] is the graded commutator of x, y ∈ T •(VTate), and F is the quotient of W by the
left ideal generated by V hS1 ⊂ V Tate. It is an irreducible left W-module.

1 This is called higher residue pairing since the pairing yields possibly higher powers of u.

1289

https://doi.org/10.1112/S0010437X20007174 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007174
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6.9 String vertices
Sen and Zwiebach [SZ94] note that there are certain distinguished singular chains Sg,n, the
string vertices, on the uncompactified moduli spaces of curves Mg,n. They play the role of
approximations of the fundamental classes of the compactified spaces Mg,n. The string vertices
can be defined by recursive relations encapsulated in a differential equation known as the quantum
master equation; see [Cos09, Theorem 1]. We will discuss string vertices in § 8.

Moreover, Kontsevich and Soibelman argue that chains on moduli spaces of curves act on
the cyclic chain complex of any Calabi–Yau A∞-algebra. This action will be further explained
in § 7.4.

6.10 Deformed Fock module
Costello’s main observation in [Cos09] is that the action of the string vertices Sg,n on cyclic
chains can be used to deform the module structure on F . The result is a WJλK-module F def

which is a deformation of F over CJλK.
The deformed module F def is constructed as follows. The standard Fock module F is the

quotient of W by the left ideal generated by the relations

αuk = 0 for all α ∈ V, k > 0.

The module F def is obtained by taking the quotient of W by the left ideal Idef generated by the
deformed relations

αuk =
∑
g,n

ρ(ι(Sg,n))(αuk)λ2g−2+n

for all α ∈ V , k > 0. Here ι is a certain operator on chains that will be described in § 8, and ρ
denotes the action of singular chains on cyclic chains.

Costello argues that for reasonable A∞-algebras, for which the Hodge filtration splits in the
sense of Definition 6.13 below, the homology H•(F def) is a flat deformation of the Fock module
H•(F ) over the classical (non-dg) Weyl algebra H•(W).

6.11 Fock modules over classical Weyl algebras are rigid, and thus the above deformation must
be trivial at the level of homology. This implies that there is an isomorphism

H•(F
def)

∼−→ H•(F )JλK

of H•(W)JλK-modules, unique up to multiplication by a power series in CJλK which begins with 1.
By its construction the module H•(F def) has a canonical generator 1 (it is a quotient of

H•(WJλK) by a certain ideal). Costello defines the abstract Gromov–Witten potential

F abs ∈ H•(F )JλK

to be the image of 1 under the above isomorphism. The ambiguity from the above power series
will not play a role for us because we only care about the leading term of F abs (the λ1 term).

6.12 Splitting of the Hodge filtration
In order to extract a concrete categorical Gromov–Witten potential

F cat ∈ Sym(u−1HH[u−1])JλK

from the abstract one we need to choose a splitting of the Hodge filtration, a notion we now
make precise.
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Endow the graded vector space HH with a trivial circle operator and define HHTate = HH((u)).

The homology level Mukai pairing on HH induces a higher residue pairing on HHTate defined

by the same formula as the higher residue pairing. The higher residue pairing on HHTate respects

the grading with respect to powers of u. This grading induces a decreasing filtration on HHTate,

similar to the one on H•(VTate).

Definition 6.13. A splitting of the Hodge filtration on the periodic cyclic homology of A is an

isomorphism of filtered vector spaces

HHTate
∼−→ H•(VTate)

which respects the higher residue pairings.

6.14 Choosing a splitting of the Hodge filtration is equivalent to assigning to each x ∈ HHi(A)

a lift x̃ ∈ HC−i (A). This assignment is required to satisfy the property that for x, y ∈ HH•(A) we

have

〈x̃, ỹ〉hres = 〈x, y〉M.

In other words, we impose the condition that the higher residue pairing evaluated on lifts of

elements in HH must have no higher powers of u.

6.15 Endowing the graded vector space HHTate with the residue Mukai pairing makes it into

a symplectic vector space, and HHhS
1

is a Lagrangian subspace. This yields a corresponding

Weyl algebra WH and Fock space FH . The latter can be identified with Sym(u−1HH[u−1]) as

a WH -module via the action on the generator 1: negative powers of u act by multiplication,

non-negative powers of u act by differentiation.

A choice of splitting of the Hodge filtration induces an isomorphism of Weyl algebras

WH
∼−→ H•(W)

and a corresponding isomorphism of Fock modules

S : Sym(u−1HH[u−1])JλK ∼= FH
∼−→ H•(F )JλK.

The categorical Gromov–Witten potential F cat that we ultimately want is defined to be

F cat = S−1(F abs),

the preimage under S of the abstract Gromov–Witten potential.

7. A roadmap to the computation

We specialize Costello’s formalism described in the previous section to the computation of the

g = 1, n = 1 invariant of elliptic curves. We complete the main calculation of Theorem 1.9,

assuming a few intermediate computations which we put off to §§ 8–10.
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7.1 Fix a complex number τ ∈ H and consider the cyclic A∞-algebra Aτ discussed in § 5,

whose pairing has degree d = 1. We are interested in computing the coefficient of [Ω]u−1λ in the

potential F cat obtained from Aτ , using a splitting of the Hodge filtration on the periodic cyclic

homology of Aτ which matches at the geometric level the one described in Lemma 3.8.

As explained above, the computation proceeds in three steps.

(i) We first compute the string vertices S0,3 and S1,1. (These are the only pairs (g, n) with Euler

characteristic −1.) The answer will be expressed as certain linear combinations of ribbon

graphs, using a model for chains on decorated moduli spaces of curves due to Kontsevich

and Soibelman [KS09].

(ii) We then find an explicit splitting of the Hodge filtration on HP•(A) by choosing a particular

lift [ξ̃] ∈ HC−−1(A) of the class [ξ] ∈ HH−1(A). This splitting is chosen to match the geometric

one in Lemma 3.8.

(iii) We complete the computation by combining the results of (i) and (ii) into a calculation

with Fock modules.

In this section we will outline these steps, leaving the details of the explicit computations

to §§ 8–10.

7.2 The string vertices

We want to represent singular chains on Mg,n by linear combinations of ribbon graphs, using

classical results by Strebel [Str84] and Penner [Pen87] that compare the ribbon graph complex

and the singular chain complex C•(Mg,n). For technical reasons explained below, the classical

ribbon graph complex is not flexible enough and we need a generalization described by Kontsevich

and Soibelman in [KS09, § 11.6]. The details will be discussed in § 8.
The main reason this generalization is needed is so that we can write a combinatorial model

for the quantum master equation, which at the level of singular chains was described in [Cos09].
The combinatorial equation can then be solved recursively, degree by degree in λ. The first few
terms of the solution are as follows:

and

We refer to § 8 for the meaning of these diagrams. The operator ι which turns an output into an

input will also be discussed in § 8.

7.3 The correct lift

The class [Ω] ∈ HH1(Aτ ) has a canonical lift to cyclic homology, therefore the only information

needed to specify a splitting of the Hodge filtration for Aτ is to choose a lift [ξ̃] ∈ HC−−1(Aτ )

of the Hochschild homology class [ξ] ∈ HH−1(Aτ ) defined in Proposition 3.6. Such a lift will have

the form

ξ̃ = ξ + α · u+O(u2)
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for some chain α ∈ CC1(Aτ ) that satisfies

b(α) = −B(ξ) = −1⊗ ξ.
For degree reasons any choice of α satisfying this condition will uniquely determine a lift ξ̃: the
higher-order terms can always be filled in to satisfy (b + uB)(ξ̃) = 0, and these further choices
do not change the class [ξ̃] in HP−1(Aτ ).

We will argue in § 9 that the correct lift is characterized by the system of equations{
b(α) = −1⊗ ξ,
b1|1(∂τµ

∗ | α) = 0.

Here b1|1 is the operator defined in [She20, 3.11] and ∂τµ
∗ is the derivative of the multiplications

{µk} of Aτ , viewed as a Hochschild 2-cocycle in HH2(Aτ ).
These equations are linear in α; we will argue in § 9 that large-scale computer calculations

allow us to solve this system explicitly. Alternatively, in the same section we will argue by
theoretical means that this system admits a solution, and this solution is unique up to a b-exact
term.

7.4 The action of singular chains on cyclic chains
Kontsevich–Soibelman construct an action of their generalized ribbon graphs (thought of as
chains on moduli spaces of curves) on the Hochschild chain complex of an A∞-algebra A.
Specifically, to a ribbon graph Γ with m inputs and n outputs they associate a map

ρ(Γ) : CC•(A)⊗m → CC•(A)⊗n

of a certain degree depending on Γ. For example, the chain-level Mukai pairing is the degree-2d
map associated to the following graph of genus zero, two inputs and no outputs:

Similarly, the coproduct on the shifted Hochschild homology of a cyclic A∞-algebra (induced by
the product on Hochschild cohomology, under the Calabi–Yau identification of cohomology with
shifted homology) is given by the following graph with one input and two outputs:

7.5 The Fock space computation
We are interested in the coefficient of [Ω]u−1λ1 in the series

F cat ∈ Sym(u−1HH[u−1])JλK.

Since the subspace HH[[u]] ⊂ WH of the Weyl algebra acts by derivation on the Fock module
Sym(u−1HH[u−1])JλK, this coefficient can be recovered as the constant coefficient of λ1 in [ξ]·F cat,
where we have denoted by · the action of WH .

Since F cat is the preimage of the generator 1 of H•(F def) under the isomorphism of WH -
modules

S : Sym(u−1HH[u−1])JλK ∼= H•(F )JλK ∼−→ H•(F
def),

the element [ξ] · F cat is the unique element in Sym(u−1HH[u−1])JλK satisfying

S([ξ] · F cat) = [ξ̃] · 1 = [ξ̃].

(We have used here the fact that the isomorphism WH
∼= H•(W) induced by the splitting maps

[ξ] ∈ WH to [ξ̃], and the second · above refers to the action of H•(W).)
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7.6 Write the lift [ξ̃] of [ξ] as

ξ̃ = ξ + αu+ βu2

by collecting in βu2 the terms with powers of u greater than two. Consider ξ̃ = ξ̃u0 as a chain-level
element in F def . In this module the deformed relations (6.10) give the equality

ξ̃ = ξ̃u0 = (T̃1(ξ̃) + T̃2(ξ̃) + T̃3(ξ̃))λ+O(λ2),

where T1, T2, T3 are the results of inserting ξ̃ into the three ribbon graphs that appear in the
expressions for the string vertices S0,3 and S1,1 as in § 7.2:

Since T̃2(ξ̃) only depends on the chain α, we will sometimes denote it by T2(α).

7.7 Having explicit formulas for the operations µk of the algebra Aτ and for the chain α allows
us to compute the values of the three expressions above. This will be done with a computer
calculation in § 9, and the result is that T2(ξ̃) = T3(ξ̃) = 0 and

T1(ξ̃) = 1
2(ξu−1)(ξu−1) ∈ W.

Thus in F def we have the equality

ξ̃ = 1
2(ξu−1)(ξu−1)λ+O(λ2).

7.8 As written above, the expression on the right-hand side is not explicitly in the image of
S, because the classes ξ are not (b+ uB)-closed while the classes in the image of S always are.
However, we know abstractly that this must be the case, because the map S is an isomorphism
of dg modules. So all we need to do is to rewrite the expression (ξu−1)(ξu−1) using the Weyl
algebra relations to make it appear as the image under S of an element in WH .

Note that (ξ̃u−1)(ξ̃u−1) is the image under S of ([ξ]u−1)([ξ]u−1). For degree reasons the
terms α and βu are in the left ideal Idef mod λ2 (inserting them into any of the ribbon graphs
in S0,3 and S1,1 gives zero). Thus we have the equality in F def

(ξu−1)(ξu−1) = (ξ̃u−1 − α− βu)(ξ̃u−1 − α− βu)

= (ξ̃u−1)(ξ̃u−1)− (α+ βu)(ξ̃u−1)

= (ξ̃u−1)(ξ̃u−1)− 〈α, ξ〉M.

Here we have used the Weyl algebra relation

(α+ βu)(ξ̃u−1) = (ξ̃u−1)(α+ βu) + 〈α+ βu, ξ̃u−1〉res = 〈α, ξ〉M.
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7.9 We put together all the previous computations to get

[ξ] · F cat = S−1(ξ̃) = 1
2([ξ]u−1)([ξ]u−1)λ− 1

2〈α, ξ〉Mλ+O(λ2),

and therefore the categorical Gromov–Witten invariant we want (the constant coefficient of λ in
[ξ] · F cat) is

FB
1,1(τ) = −1

2〈α, ξ〉M.

We will argue in § 9 that

〈α, ξ〉M = 1
12E2(τ),

thus completing the computation of Theorem 1.9:

FB
1,1(τ) = − 1

24E2(τ).

8. String vertices

In this section we discuss the quantum master equation on chains on moduli spaces of curves,
and the construction of string vertices as linear combinations of ribbon graphs with rational
coefficients.

8.1 Let M fr
g,n denote the coarse moduli space of smooth, genus-g curves with n framed

(parametrized), ordered outgoing boundaries. The wreath product group (S1)n n Σn acts on
the space M fr

g,n, where the circles (S1)n act by rotation of the framing, and the symmetric group

Σn acts by permutation of the boundaries. Denote by Mg,n = M fr
g,n/((S

1)n n Σn) the quotient
space, parametrizing smooth, genus-g curves with n unframed, unordered outgoing boundaries.
Let C•(Mg,n) be the normalized singular chain complex of Mg,n with rational coefficients.

There is a degree-one operator

∆ : C•(Mg,n) → C•+1(Mg+1,n−2),

defined as the sum of all the possible ways of sewing pairs of boundary components, with a full
S1 twist. Twist-sewing also defines an odd bracket

{−,−} : C•(Mg1,n1)⊗ C•(Mg2,n2) → C•+1(Mg1+g2,n1+n2−2),

where the gluing is performed by choosing one boundary from the first surface and one from the
second surface.

Theorem 8.2 (Costello [Cos09, § 4, Theorem 1]). There exists, for each pair of integers g > 0,
n > 0 with 2− 2g − n < 0, a chain Sg,n ∈ C•(Mg,n) of degree 6g − 6 + 2n such that:

(i) S0,3 is a 0-chain of degree 1
3! ;

(ii) for all g, n > 0 and 2− 2g − n > 0 we have

∂Sg,n +
∑

g1+g2=g
n1+n2=n+2

1

2
{Sg1,n1 , Sg2,n2}+ ∆Sg−1,n+2 = 0.

Furthermore, such a collection {Sg,n} is unique up to homotopy in the sense of [Cos09, § 8].
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8.3 The equation in part (ii) of the theorem is a form of the quantum master equation for chains

on moduli spaces; see [Cos09]. It was first discovered by Sen and Zwiebach [SZ94]. The singular

chains Sg,n solving the quantum master equation are called string vertices.

8.4 In order to perform explicit computations we need to use a combinatorial model for

chains on moduli spaces of curves for which the twist-sewing operations make sense. Such a

combinatorial model is described by Kontsevich and Soibelman [KS09, § 11.6]. Their construction

gives a chain model Ccomb
• (M fr

g,m,n) for the moduli space M fr
g,m,n of genus-g curves with m inputs

and n outputs which are ordered and framed. The moduli space Mg,m,n = M fr
g,m,n/((S

1)nnΣm,n)

is defined as before. In the following, we shall make the identification of Mg,n with Mg,0,n.

However, the ribbon graph model only exists for m > 1 – ribbon graphs must have at least

one incoming boundary component. To remedy this, Costello notes that there is a map

ι : C•(Mg,0,n) → C•(Mg,1,n−1),

obtained by switching the designation of one of the outgoing boundaries in Mg,0,n to ‘incoming’

and summing over all such choices of outgoing boundary.

8.5 We can describe the chains Sg,n combinatorially, via the map ι. Taking coinvariants of the

(S1)n n Σ1,n−1 action on Ccomb
• (M fr

g,1,n−1) produces a combinatorial model of C•(Mg,1,n−1) of

the form

Ccomb
• (Mg,1,n−1) = ((u−1

1 , . . . , u−1
n )Ccomb

• (M fr
g,1,n−1)[u−1

1 , . . . , u−1
n ])Σ1,n−1 .

More details can be found in [Cos09, § 5].

Thus, a chain in Ccomb
• (Mg,1,n−1) is a decorated ribbon graph whose input and outputs

are labeled by negative powers of u. For example, the chains ι(S0,3) and ι(S1,1) that we have

described in § 7.2 are elements in C•(M0,1,2) and C•(M1,1,0), respectively. The vertices labeled

with a cross are input vertices, which for Kontsevich–Soibelman are in the set Vin. The white

vertices (little circles) in ι(S0,3) denote output vertices in Vout.

8.6 We now explain where the coefficients that appear in the chains defined in (7.2) come from.
For

the coefficient is 1
2 instead of 1

3! because when applying the map ι there are three choices of

outgoing boundary to turn to an incoming one.

Next we compute ι(∆(S0,3)) ∈ Ccomb
• (M1,1,0) in the moduli space of genus-one curves with

one unparametrized input boundary component and zero outgoing boundary components. Since(
3
2

)
= 3, the chain ∆(S0,3) is 1

2 = 3 · 1
6 times the result of self-sewing of any two boundary

components. Self-sewing of two outgoing boundary components can be described combinatorially:
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8.7 The string vertex ι(S1,1), being a degree-two chain in Ccomb
2 (M1,1,0), must be a linear

combination of the form

for some a, b ∈ Q. (These are all the possible ribbon graphs of even degree in Ccomb
• (M1,1,0).)

Denote by ∂ the boundary operator on Ccomb
• (M1,1,0), and by D the circle operator which

is of degree one. The total differential on the equivariant complex Ccomb
• (M1,1,0) is given by

(∂ + uD). Then the quantum master equation for n = 1, g = 1 becomes

(∂ + uD)S1,1 + ∆(S0,3) = 0.

One can check that

and all other terms are zero. Putting these together with the quantum master equation, we
conclude that the coefficients a, b satisfy{

2b+ 1
2 = 0,

6a+ b = 0.

Solving this gives the combinatorial model of the string vertex S1,1:

8.8 This computation is essentially due to Costello (unpublished). He used it to compute the
categorical Gromov–Witten invariant at g = 1, n = 1 of a point (we take the A∞-algebra A to
be C). At g = 1, n = 1 the insertion of the ψ-class gives the coefficient 1/24 in the first term of
ι(S1,1). This agrees with the geometric computation that∫

M1,1

ψ =
1

24
.

9. The computer calculation

In § 7 we have argued that the computation of Theorem 1.9 can be reduced to finding the correct
chain α which gives the lift ξ̃, and computing the values T2(ξ̃) = T3(ξ̃) = 0,

T1(ξ̃) = 1
2(ξu−1)(ξu−1),
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and

〈α, ξ〉M = 1
12E2(τ).

In this section we describe our initial approach to computing these values, by reducing the
question of computing them to a large linear algebra problem which can be solved by computer.
In the next section we will give a purely mathematical deduction of Theorem 1.9.

9.1 The fact that T3(ξ̃) = 0 and

T1(ξ̃) = 1
2(ξu−1)(ξu−1)

follows easily from the Kontsevich–Soibelman definition of the action of ribbon graphs on cyclic
chains of Aτ . Roughly speaking, one inserts Hochschild chains at each face of a graph (marked
by a cross), labels each half edges by a basis element of Aτ , then contracts these tensors using
the inner product on Aτ for every edge, and the cyclic A∞ structure on every vertex.

For example, the fact that

follows form the fact that for any choice of basis vectors x, y of the algebra Aτ we have

c5(ξ, x, y, x∨, y∨) = 0,

where x∨, y∨ are dual basis vectors of x, y with respect to the pairing of the algebra Aτ . (This
corresponds to the fact that we need to label the leg of the graph labeled with a cross with
ξ, label the other half-edges of the graph by basis elements of the algebra, and evaluate the
corresponding cyclic operations at the vertices and the duals of the pairing at the edges.)

Similarly, for the ribbon graph that appears in S0,3 the input edge is labeled ξ; the other two
half edges adjacent to the trivalent vertex will be labeled idO in order to get a non-trivial cyclic
c3, and then the output is read at the output vertices as two copies of ξu−1.

9.2 We next need to understand the conditions that single out the correct lift

ξ̃ = ξ + αu+O(u2) ∈ HC−−1(Aτ )

of the class ξ ∈ HH−1(Aτ ). As mentioned before, for degree reasons the only choice to be made
is that of the chain α ∈ CC1(Aτ ). This chain must satisfy

b(α) = −B(ξ) = −1⊗ ξ,

and any choice of α satisfying this equation can be extended to a class [ξ̃] ∈ HC−−1(Aτ ) which is

uniquely determined by α. Therefore we will talk about the lift [ξ̃] determined by α.
The following proposition will specify the correct choice of α to match the geometric splitting

in Lemma 3.8.

Proposition 9.3. Fix τ0 ∈ H and consider the set of chains α ∈ CC1(Aτ0) satisfying

b(α) = −B(ξ) = −1⊗ ξ.
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(i) Among these chains there exists a unique one (up to b-exact chains) αGM with the property
that the chain

b1|1(∂τµ
∗ | αGM) ∈ CC−1(Aτ0)

is b-exact, where b1|1 is the operator defined in [She20, 3.11] and ∂τµ
∗ is the derivative of

the operations {µk}, viewed as a Hochschild 2-cocycle in HH2(Aτ0).

(ii) Let [ξ̃] be the lift of [ξ] to periodic cyclic homology corresponding to the unique chain in (i).
Then its image under the Hochschild–Kostant–Rosenberg (HKR) isomorphism matches the
class [ξ̃]geom of Lemma 3.8.

Proof. (i) In the proof of Lemma 3.8 we constructed a family [ξ] of classes in HH−1(Eτ ) and a
family of lifts [ξ̃]geom ∈ H1

dR(Eτ ), both parametrized by τ ∈ H. This family of lifts is uniquely
characterized by the local condition that it is Gauss–Manin flat.

Locally around τ0 ∈ H pick representatives ξ̃ of the images [ξ̃] in HC−−1(Aτ0) of the geometric

classes [ξ̃]geom ∈ H1
dR(Eτ ) under the inverse HKR isomorphism. Each such ξ̃ will be of the form

ξ̃ = ξ + αGM · u+O(u2)

for some chain αGM ∈ CC1(Aτ ) which depends on τ . Since [ξ̃] depends smoothly on τ we can
choose αGM to also depend smoothly on τ .

We have assumed that the geometric Gauss–Manin connection ∇GM is identified with the
algebraic Getzler–Gauss–Manin connection ∇GGM under HKR. The chain-level Getzler–Gauss–
Manin connection applied to a family of chains x ∈ CC•(Aτ ) is given by the following formula
(see [She20, Definition 3.32]):

∇GGM
∂τ (x) = ∂τ (x)− u−1b1|1(∂τµ

∗ | x)−B1|1(∂τµ
∗ | x).

Thus ∇GGM(ξ̃) has the form

∇GGM(ξ̃) = −b1|1(∂τµ
∗ | αGM) +O(u).

The flatness of the family [ξ̃]geom implies that b1|1(∂τµ
∗ | αGM) is b-exact.

This shows that a family α with the required property exists, at least locally around each
τ0. We will now show uniqueness. Let α and α′ be two chains satisfying the desired properties.
Their difference is a Hochschild cycle,

b(α− α′) = −1⊗ ξ + 1⊗ ξ = 0,

so it gives a class [α− α′] ∈ HH 1(Aτ ) for each τ . The chain ∂τµ
∗ ∈ CC2(Aτ0) is a cocycle, and

its class in Hochschild cohomology is the negative of the Kodaira–Spencer class

KS(∂τ ) = −[∂τµ
∗] ∈ HH2(Aτ0).

(Note that the comparison between the algebraic and geometric Kodaira–Spencer classes has a
factor of −1 built in; see [She20, 3.32].) Moreover, under the comparison assumption (§ 1.15), at
homology level the class

[b1|1(∂τµ
∗ | α− α′)] ∈ HH−1(Aτ0)

agrees with the contraction −KS(∂τ ) y [α− α′]. By assumption the former is b-exact.
Therefore we have

KS(∂τ ) y [α− α′] = 0
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in HH−1(Aτ0). But for elliptic curves, contraction with KS(∂τ ) is an isomorphism HH1(Eτ )
∼−→

HH−1(Eτ ). We conclude that [α − α′] = 0 in HH−1(Eτ ), and thus αGM is unique up to b-exact
chains. (This uniqueness argument was suggested to us by Sheridan.)

(ii) This follows immediately from the arguments above for the proof of (i) and the uniqueness
of [ξ̃]geom. 2

9.4 For a fixed value of τ ∈ H the conditions

b(α) = −1⊗ ξ

and
b1|1(∂τµ

∗ | α) = 0

are linear in α. The structure constants of the multiplications µk of Aτ can be computed using
the formulas in [Pol11, 1.2], and their derivatives with respect to τ can be computed explicitly
as well. For example, we have

g21 = 5
6g30 − g2

10,

g41 = 7
10g50 − 4g10g30,

∂τg10 =
g21

2πi
− 2g10

τ − τ̄
.

These are then used to write the linear operators b and b1|1 in the basis for Aτ described in (5.3).
The resulting matrices allow us to express the equations b(α) = −1 ⊗ ξ and b1|1(∂τµ

∗ | α) = 0,
and a solution α can be found in A⊗9

τ ⊕A⊗7
τ ⊕ · · ·A⊗3

τ . We then use L1 optimization techniques
to find such a solution with a small number of non-zero terms; the best such solution we found
has 92 non-zero terms.

9.5 To complete the calculation of the potential we need to follow the procedure outlined
in [KS09, § 11.6] to compute the result of inserting the various chains into the corresponding
ribbon graphs.

Evaluating the insertion of α is a large-scale computation which needs to be done by
computer, but follows the same outline as the ones above. The results are

as required, completing the proof of Theorem 1.9.

9.6 In the next section we will need to prove that the potential function FB
1,1(τ) admits a finite

limit at the cusp (i.e. as τ → i ·∞). Since the structure constants of Polishchuk’s algebra Aτ do
extend to the cusp (in our basis, see [Pol11, 2.5, Remark 2]), the result would follow immediately
if we could argue that a choice for the chain α can be found which also has a finite limit at the
cusp.

Unfortunately we will not be able to prove directly the existence of such a chain. Instead we
will use an auxiliary lift [ξ̃′] of the family [ξ] of Hochschild homology classes. This lift will not
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be Gauss–Manin flat, but by its very construction it will have a finite limit at the cusp. Using
the lift [ξ̃′] instead of the correct Gauss–Manin flat lift in the computations will not compute the
correct Gromov–Witten potential. However, comparing the result of this ‘wrong’ computation
with the correct one will allow us to conclude that FB

1,1(τ) extends to the cusp.

9.7 The desired family of chains

α′ ∈ A⊗3
τ ⊕A⊗5

τ ⊕A⊗7
τ

which determines the lifts ξ̃′ can be written explicitly. Taking

α′ = idLθη +
1

4
· idOθη +

1

2E4(τ)
(9E2(τ) · idLηξξθ

+ 60 · (θηξξθηξ + ηξθηξξθ)− 12 · (ξθηξξθη + ξξθηξθη + idOξθηξξξ)

+ 36 · idOξξθηξξ − 24 · idOξξξθηξ − 60 · idLηξξξξθ),

one can check by direct calculation that we have

b(α′) = −1⊗ ξ = −B(ξ).

It is obvious from the above formulas that the chain α′ extends to the cusp: its coefficients have
finite limit at τ = i · ∞.

10. Proof of the main theorem

In this final section we give a purely mathematical proof of Theorem 1.9, without relying on
computer calculations. The main idea is to carry out the same computation in two different
gauges, Polishchuk’s modular gauge and the holomorphic gauge described in § 5, and with three
different splittings of the Hodge filtration. Comparing the results of these computations will
allow us to determine the Gromov–Witten potential FB

1,1(τ).

10.1 In a nutshell the computation of the categorical Gromov–Witten invariant FB
1,1(τ) and of

some of its variants can be reduced to the following three steps.

(i) Fix an A∞ model Aτ or Ahol
τ of the derived category of the elliptic curve Eτ .

(ii) Construct a splitting of the Hodge filtration by finding a solution α of the equation

b(α) = −B(ξ).

(This α determines a lift [ξ̃] of [ξ] as in § 9.)

(iii) Compute the final invariant as

FB
1,1(τ, α) = T2(α)− 1

2〈α, ξ〉M,

where

and
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(Since we do not want to rely on computer calculations, we cannot assume that T2(α) = 0 as we
have done before.)

In this section we will use three different choices for the chain α in the above process, which
give three different splittings of the Hodge filtration and consequently three different potentials
(only one of which is of interest from the point of view of mirror symmetry; see below). We remark
that in our case, any lift of [ξ] to a negative cyclic class [ξ̃] satisfies the symplectic condition of
Definition 6.13 for degree reasons.

10.2 The first choice of α is the chain αGM described in Proposition 9.3. For this choice the

corresponding lifting [ξ̃] is Gauss–Manin flat. The chain αGM is characterized by the condition

b1|1(∂τµ
∗ | αGM) = 0.

Using it in the above procedure yields the correct Gromov–Witten potential we are interested
in:

FB
1,1(τ) = FB

1,1(τ, αGM).

In a sense that will be made precise below, the chain αGM depends in a holomorphic, but
not modular fashion on τ . Thus using it with the holomorphic A∞ model Ahol

τ will allow us to
deduce that FB

1,1(τ) is holomorphic in τ .

10.3 The second choice of α is the 11-term chain α′ described in § 9.7. The resulting potential
FB

1,1(τ, α′) has the property that it extends to the cusp. Comparing it with FB
1,1(τ) will allow us

to deduce that this potential also admits a finite limit at the cusp.

10.4 Finally, the third choice of chain α is a modular version αmod of αGM. It is a solution of
the equation

b1|1(∂̂τµ
∗ | αGM) = 0,

where ∂̂τ is the natural differential operator on almost holomorphic, modular forms described
in § 4.4. Using it in the modular model Aτ yields a new potential

FB,mod
1,1 (τ) = FB

1,1(τ, αmod).

By its very construction it will be obvious that FB,mod
1,1 is modular.

In Proposition 10.15 we will argue that we have

FB
1,1(τ)− FB,mod

1,1 (τ) =
1

4πi(τ − τ̄)
.

The following theorem is a refinement of the statement of our main result, Theorem 1.9.

Theorem 10.5. The Gromov–Witten potential function FB
1,1 : H → C satisfies the following

properties:

(a) FB
1,1 is holomorphic;

(b) FB
1,1 extends to the cusp;

(c) the function

FB,mod
1,1 (τ) = FB

1,1(τ)− 1

4πi(τ − τ̄)

is modular of weight 2.
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Therefore we have

FB
1,1(τ) = − 1

24E2(τ).

Proof. The proof of the fact that the potential FB
1,1 satisfies conditions (a)–(c) above is the

content of Propositions 10.10, 10.11, and 10.15. The final statement of the theorem follows from
the fact that − 1

24E2(τ) is the unique function on H that satisfies conditions (a)–(c). 2

10.6 In the remainder of this section we give precise arguments for the fact that the potential
FB

1,1(τ) satisfies conditions (a)–(c) of Theorem 10.5. We begin with a lemma which shows that the
term T2(α) used in the definition of the potential is not affected by changing α by any multiple
of the class [Ω] ∈ HH 1(Aτ ) defined in Proposition 3.6.

Lemma 10.7. We have

Proof. The Calabi–Yau structure of Aτ gives an identification

HH •(Aτ ) ∼= HH 1−•(Aτ ).

This turns the former into a graded commutative Frobenius algebra with pairing given by the
Mukai pairing on homology. In turn this yields a two-dimensional topological field theory.

Moreover, under this identification the class [Ω] ∈ HH 1(Aτ ) is matched with a multiple of
1 ∈ HH 0(Aτ ). The field theory interpretation implies that

The term TrHH •(Aτ )(1) is the supertrace of multiplication by 1 in the Hochschild cohomology
ring HH •(Aτ ), which is zero (the Euler characteristic of the graded vector space HH•(Aτ )). 2

10.8 Let α1(τ), α2(τ) be two families of solutions of the equation b(α) = −B(ξ). Then for every
τ the chain α1(τ)− α2(τ) is b-closed, and therefore it defines a class [α1(τ)− α2(τ)] ∈ HH1(Aτ )
which must be a multiple c(τ) · [Ω] of [Ω].

Corollary 10.9. The difference between the potentials obtained from α1 and α2 is

FB
1,1(τ, α1)− FB

1,1(τ, α2) = −c(τ)

2
.

Proof. We have

FB
1,1(τ, α1)− FB

1,1(τ, α2) = T2(α1 − α2)− 1

2
〈α1 − α2, ξ〉M

= T2(c(τ) · [Ω])− 1

2
〈c(τ) · [Ω], [ξ]〉M

= −c(τ)

2
. 2
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Proposition 10.10. The categorical Gromov–Witten invariant FB
1,1(τ) is a holomorphic

function on H. Moreover, it is an element of weight 2 in the graded ring M̃(Γ)(0) obtained

by localizing M̃(Γ) at the multiplicative set of elements of homogeneous weight.

Proof. By (6.2) and Theorem 5.14 it will be enough to prove the statement when using the algebra
Ahol
τ that we defined in (5.12) as the chosen A∞ model of the derived category of the elliptic

curve Eτ . Therefore we fix the algebra A = Ahol
τ .

In Proposition 9.3 we have argued that the equations defining the chain αGM can always be
solved locally around every τ0 ∈ H, and the solution is unique up to b-exact chains. Moreover,
the corresponding lift of [ξ] will be Gauss–Manin flat. The proof of this result did not depend
on the specific algebra we used, only on the fact that the section ξ of the family {Aτ}τ∈H was flat
with respect to differentiation by ∂τ . Using any local choice αGM of such α allows us to define
FB

1,1 locally on H.
The action of ribbon graphs on CC•(A) is a chain map, in the sense that it intertwines

the ∂ operator on ribbon graphs and the b operator on chains. Both ribbon graphs involved
in the definition of the potential are trivalent, therefore they are sent to zero by ∂. This implies
that modifying αGM by a b-exact chain does not change the result of its insertion in these two
graphs. We conclude that the locally defined potentials glue to a well-defined global potential on
the entire upper half plane H.

The structure constants of the algebra Ahol
τ are holomorphic, quasi-modular forms in the

ring M̃(Γ). All the operations used to compute the Gromov–Witten potential (differentiating,

solving linear systems, inserting chains into ribbon graphs) always keep us inside M̃(Γ)(0). (We

need to allow for divisions by homogeneous weight elements of M̃(Γ) in order to solve linear

systems.) We conclude that FB
1,1(τ) is an element of M̃(Γ)(0), and an easy computation shows

that its weight is 2. 2

Proposition 10.11. The potential FB
1,1(τ) extends to the cusp: the limit

lim
τ→i·∞

FB
1,1(τ)

exists and is finite.

Proof. We use the modular gauge Aτ . The structure constants of this family of A∞-algebras
extend to the cusp [Pol11, 2.5, Remark 2]. The chain α′ defined in (9.7) also extends to the cusp.
The terms T2(α′) and 〈α′, ξ〉M are (very complicated) polynomial expressions in the structure
constants of the algebra and the coefficients of α′. Therefore the potential FB

1,1(τ, α′) obtained
from the chain α′ extends to the cusp.

The chains α′ and αGM both satisfy b(α) = −B(ξ), thus we are in the setup of Corollary 10.9.
If we argue that the function c(τ) defined by the equality

[αGM − α′] = c(τ) · [Ω]

extends to the cusp, we will be able to conclude that

FB
1,1(τ) = FB

1,1(τ, α′)− c(τ)

2

also extends to the cusp, which is what we need to prove.
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The expression b1|1(∂τµ
∗ | α′) is a polynomial expression in the structure constants of Aτ ,

their derivatives, and the coefficients of α′, all of which have limits at the cusp; therefore this
expression also extends to the cusp. Using the defining property of αGM that

b1|1(∂τµ
∗ | αGM) = 0,

we conclude that b1|1(∂τµ
∗ | α′ − αGM) also extends to the cusp.

By HKR we conclude that

−KS(∂τ ) y c(τ) · [Ω]

extends to the cusp. The class KS(∂τ ) was computed in § 3.9,

KS(∂τ ) = − 1

τ − τ̄
∂

∂z
dz̄

and therefore

−KS(∂τ ) y [Ω] =
1

τ − τ̄
∂

∂z
dz̄ y [2πi · dz] =

2πi

τ − τ̄
dz̄ = 2πi · ξ.

It follows that c(τ) admits a finite limit at the cusp. 2

10.12 From now on we will position ourselves in the modular gauge – we take Polishchuk’s
algebra Aτ as the A∞ model for the elliptic curve.

Fix any τ ∈ H. We have already shown that the equation

b1|1(∂τµ
∗ | α) = 0

along with b(α) = −B(ξ) defines a unique (up to b-exact terms) chain αGM which we used to
define the potential FB

1,1(τ).

However, the resulting chain αGM is not modular. The point where modularity breaks down
is in the computation of ∂τµ

∗: even though the coefficients of µ∗ are in the ring M̂(Γ) of almost
holomorphic modular forms, the coefficients of ∂τµ

∗ are no longer modular.

10.13 This observation suggests how to modify the above computation so that all the

intermediate computations (and the result) stay in M̂(Γ). Namely, if we replace the equation
above with

b1|1(∂̂τµ
∗ | αmod) = 0,

where ∂̂τ is the natural differential operator on M̂(Γ),

∂̂τ = ∂τ +
wt

τ − τ̄
,

the solution αmod will depend in a modular, almost holomorphic way on τ .

Note that locally around every point in H such a solution αmod exists and is unique up to a
b-exact chain because the operator KZ of Theorem 4.5 induces an isomorphism between solutions
αmod of the above equation and solutions α of the original equation,

b1|1(∂τµ
∗ | α).
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10.14 We use the solution αmod to define a new potential,

FB,mod
1,1 (τ) = FB

1,1(τ, αmod).

As the operator KZ is a differential ring isomorphism, it follows that we have

FB,mod
1,1 = KZ(FB

1,1),

and, in particular, FB,mod
1,1 is a modular form in M̂(Γ)(0) of weight 2.

Proposition 10.15. We have

FB
1,1(τ)− FB,mod

1,1 =
1

4πi(τ − τ̄)
.

Therefore FB
1,1(τ) satisfies condition (c) of Theorem 10.5.

Proof. Consider the difference
δ = αGM − αmod.

It is a b-closed chain in CC1(Aτ ), thus it gives a class [δ] in HH1(Aτ ). We will show that

[δ] = − 1

2πi(τ − τ̄)
[Ω].

Corollary 10.9 then implies the result.
The chains αGM and αmod define lifts of ξ which we denote by ξ̃ and ξ̃mod, respectively. The

former is flat with respect to the Gauss–Manin connection. The main idea is to calculate

∇GM
∂τ ([ξ]mod)

in two different ways, and to compare the results.
The definition of the Getzler–Gauss–Manin connection

∇GGM
∂τ (x) = ∂τ (x)− u−1b1|1(∂τµ

∗ | x)−B1|1(∂τµ
∗ | x)

implicitly assumes that we have chosen a connection on the family Aτ of A∞-algebras over H with
the property that the basis elements of Aτ are flat for this connection. This allows us to write
expressions like ∂τ (x), by which we mean that we write x in this chosen basis and differentiate
the coefficients.

However there is no reason to insist on the use of such a connection – any connection ∇ will
work to define the Getzler–Gauss–Manin connection, at least at the level of homology; see [She20,
Corollary 3.36] for a proof of this fact. We just need to replace the formula above by

∇GGM
∂τ (x) = ∇∂τ (x)− u−1b1|1(∇∂τµ∗ | x)−B1|1(∇∂τµ∗ | x),

where now we think of applying ∇∂τ to arbitrary tensors.
We will use two different connections ∇std and ∇mod on the bundle Aτ over H. The first,

∇std, is the standard connection for which the basis vectors idO , idL, θ, η, ξ, ξL are flat. Computing
∇GGM∂τ (ξ̃) using ∇std yields

∇GGM
∂τ (ξ̃mod) = ∇std

∂τ (ξ)− b1|1(∇std
∂τ µ

∗ | αmod) +O(u)

= −b1|1(∂τµ
∗ | αmod) +O(u).
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Define a second connection, ∇mod, on the bundle Aτ of A∞-algebras by the formula

∇mod
∂τ (x) = −wt(x)

τ − τ̄
x

for any basis vector x of Aτ , where the weight of basis elements was defined in § 5.9. A straight-
forward computation shows that

∇mod
∂τ µk = ∂̂τµk,

where the left-hand side refers to the differentiation of the tensor µk with respect to the
connection ∇, while the right-hand side refers to the differentiation of the structure constants of
the same tensor using the operator ∂̂τ .

Computing ∇GGM
∂τ

(ξ̃mod) using the connection ∇mod yields

∇GGM
∂τ (ξ̃mod) = ∇mod

∂τ (ξ)− b1|1(∇mod
∂τ µ∗ | αmod) +O(u)

= − 1

τ − τ̄
ξ − b1|1(∂̂τµ

∗ | αmod) +O(u)

= − 1

τ − τ̄
ξ +O(u).

Equating the two calculations above yields

b1|1(∂τµ
∗ | δ) = b1|1(∂τµ

∗ | αGM − αmod) = − 1

τ − τ̄
ξ +O(u).

Passing to Hochschild homology, we get

[∂τµ
∗] y [δ] = − 1

τ − τ̄
[ξ].

Since [δ] = c(τ) · [Ω] for some c(τ), under the HKR isomorphism this becomes

−KS(∂τ ) y (c(τ) · [Ω]) = −2πi · c(τ) · KS(∂τ ) y [dz] = − 1

(τ − τ̄)2
dz̄,

which forces c(τ) to equal

c(τ) = − 1

2πi(τ − τ̄)
. 2

Remark 10.16. It is worth noting that the modular splitting obtained from the chain αmod

corresponds to the complex conjugate splitting from complex algebraic geometry. This follows
from a direct computation.
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