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ABSTRACT

Adverse weather-related risk is a main source of crop production loss and a
big concern for agricultural insurers and reinsurers. In response, weather risk
hedging may be valuable, however, due to basis risk it has been largely un-
successful to date. This research proposes the Lévy subordinated hierarchical
Archimedean copula model in modelling the spatial dependence of weather
risk to reduce basis risk. The analysis shows that the Lévy subordinated hi-
erarchical Archimedean copula model can improve the hedging performance
through more accurate modelling of the dependence structure of weather risks
and is more efficient in hedging extreme downside weather risk, compared to
the benchmark copula models. Further, the results reveal that more effective
hedging may be achieved as the spatial aggregation level increases. This re-
search demonstrates that hedging weather risk is an important risk manage-
ment method, and the approach outlined in this paper may be useful to insurers
and reinsurers in the case of agriculture, as well as for other related risks in the
property and casualty sector.
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1. INTRODUCTION

Weather risk is described as the operational and financial variabilities caused
by adverse meteorological conditions, and is a major environmental issue and
a key economic factor. Possible changes in climate increase concerns of more
frequent and severe extreme natural hazards occurring over larger areas and
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affecting more people (IPCC, 2007; Hellmuth et al., 2009). The Property &
Casualty (P&C) insurance sector is highly focused on managing catastrophic
losses due to extreme weather risk (Dong et al., 1996; Priest, 1996; Odening and
Shen, 2012), and the agriculture sector is one of the most exposed industries
to weather-related risks. For example, some research estimates adverse weather
may be responsible for at least 70% of agricultural loss, including crop and live-
stock production (USDA, 2014). Compared to other lines of business in the
P&C sector, agricultural insurers and reinsurers have also been shown to bear
higher loss ratios (Woodard and Garcia, 2008b), and this may become more
pronounced in the future due to additional exposure to weather risk resulting
from the increase of climate variability and uncertainty (Turvey et al., 2006).

A major challenge facing the agricultural sector is that weather risk is sys-
tematic and undiversifiable in the sense that it is outside the control of human
management, and at times weather risk can be widespread and spatially cor-
related, impacting many farms within a region (Woodard et al., 2012; Porth
et al., 2015). Therefore, weather risk will not be eliminated by pooling, and
must be managed through various risk transfer techniques. Agricultural insur-
ance schemes have played an important role in helping to stabilize a producer’s
income by minimizing the economic effects caused by adverse weather events.
To alleviate an insurer’s exposure to large potential losses, private reinsurance
is often purchased in addition to pooling to help diversify its portfolio of crop
risks (Miranda and Glauber, 1997). For example, Porth et al. (2015) show that
risk transfer (private reinsurance) is necessary in order to help ensure the sol-
vency of crop insurance companies in Canada. Further, a study from Qatar Re
shows that almost 80% of the global downside risk for agricultural insurers are
reinsured (Schneider and Roth, 2013). In Canada, many of the provincial gov-
ernment crop insurance companies receive reinsurance protection from a unique
Federal-Provincial Reinsurance Fund, and many provinces also purchase rein-
surance from the private market. Similarly, in the United States, the private crop
insurance companies receive reinsurance protection through the StandardRein-
surance Agreement, and many also purchase private reinsurance. Despite the
important role that risk transfer plays in the sustainability of crop insurance
programs, relatively little research has investigated optimal reinsurance strate-
gies in the context of agriculture (see, for example, Porth et al., 2013; 2015).

Beyond reinsurance, limited research has been conducted regarding efficient
strategies to hedge systemicweather risk (see, for example,Woodard andGarcia,
2008b), and this may be valuable in the case of agriculture, as well as for other
catastrophic weather risks that play a prominent role in the P&C sector. For
example, some research has shown that introducing weather derivatives (WDs)
into risk management policies leads to higher firm value (Pérez-González and
Yun, 2013), and incorporating climate risk information has also been shown
to improve the stock market efficiency (Hong et al., 2016). While most of the
WDs are customized products transacted over-the-counter, the organized mar-
kets are becomingmore popular withmany types ofWDs traded on theChicago
Mercantile Exchange (CME). Therefore, one objective of this paper is to
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develop and compare different weather risk hedging strategies for application
to insurers and reinsurers, using agriculture as an example. A main focus of
the research is on investigating the spatial dependence and aggregation level of
systemic weather risks across a country and their impact on hedging.

In some cases, hedging weather risks with financial instruments may be ad-
vantageous over traditional reinsurance. Alternatively, it may be complimen-
tary to private reinsurance in some cases, as part of an overall risk-layering
framework, potentially reducing cost and improving market efficiency (Cum-
mins et al., 2004; Golden et al., 2007). For example, financial instruments do
not require loss checking and adjusting, thereby saving administration costs.
Further, financial weather instruments may reduce information asymmetry, in-
cluding adverse selection andmoral hazard, which is a concern in crop insurance
and reinsurance (Goodwin, 2001). This is because the indemnities of financial
weather instruments are triggered based on a specific weather event rather than
actual farm losses, which is a more transparent approach that is not subject
to manipulation, etc. Furthermore, from a statistical inference viewpoint, the
modelling and pricing of financial weather instruments may face less challenges,
since large volumes of reliable and extensive weather data records are typically
available in daily frequency. In contrast, agricultural underwriting is often faced
with the challenge of shortness of data, given that only one yield or loss obser-
vation is recorded each year, and due to crop rotation and other factors, the time
series may also suffer from missing data (Coble et al., 2011; 2013; Porth et al.,
2014b). Therefore, weather hedging via financial engineering tools may provide
new opportunities for risk management to the agricultural sector, including in-
surers and reinsurers.

In developing various weather risk hedging strategies, a focus of this research
is on refining the statistical modelling of weather variables. This is an essential,
yet, challenging task for financial weather instrument pricing and hedging, ow-
ing to the non-stationarity, seasonality and multidimensionality of the weather
data (Dischel andBarrieu, 2002; Carriquiry andOsgood, 2012), aswell as the in-
complete nature of the market (Alexandridis and Zapranis, 2013). In this paper,
Fourier series is used to capture the seasonalities in both the original tempera-
ture series as well as in the volatilities of the data, in addition to the exponen-
tial generalized autoregressive conditional heteroskedasticity (EGARCH(1,1))
process (Nelson, 1991). In addition, spatial dependence has been shown to be a
critical factor in modelling weather risk and pricing WDs (Erhardt, 2015), and
hence, has attracted substantial attention in the literature (Barth et al., 2011;
Šaltytė Benth and Šaltytė, 2011; Härdle and Osipenko, 2012; Benth and Benth,
2013; Okhrin et al., 2013a; Erhardt and Smith, 2014; Erhardt, 2015). In particu-
lar, failure to consider the dependence structure for weather variable modelling
andWDpricing may lead to substantial basis risk in the resulting hedging strat-
egy if the spatial correlations are not taken into account. To overcome the high-
dimensionality of the weather data andmodel the spatial dependence of weather
events, this paper proposes a new copula family called the Lévy subordinated
hierarchical Archimedean copula (LSHAC)model (Hering et al., 2010;Mai and
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Scherer, 2012; Zhu et al., 2016; 2017). To the best of our knowledge, this is the
first paper to employ the LSHAC for modelling the geographical dependence
of weather events. The empirical results show that the proposed LSHACmodel
is successful in addressing the high-dimensional nature of weather risk mod-
elling, providing better estimation compared to the Archimedean copula (AC)
and traditional hierarchical Archimedean copula (HAC). Finally, in this paper,
we also propose a pricing framework based on the conditional Esscher trans-
form method (Gerber and Shiu, 1994; Bühlmann et al., 1996) to address the
challenge of instrument pricing in an incomplete market. In addition to basis
risk, difficulties in pricing has also contributed to the unsuccessful implementa-
tion of weather risk hedging.

To examine the modelling framework proposed in this paper, an empirical
analysis is conducted using 50 years temperature processes from eight provinces
in Canada. The focus is on temperature, rather than precipitation because pre-
vious studies argue that temperature has a higher correlation with crop pro-
duction compared to precipitation, therefore, making it better suited for crop
insurance hedging (Lobell and Burke, 2008; Woodard and Garcia, 2008a). Us-
ing the refined statistical modelling of the weather data proposed in this paper,
four hedging strategies are developed and compared. In assessing the effective-
ness of the various hedging strategies, we are interested in the following three
problems: (1) the necessity of hedging weather risk; (2) the importance of the
assumed underlying dependence structure; (3) the geographical aggregation ef-
fect on hedging effectiveness. The results indicate that hedging weather risk is
an important risk management approach, and the LSHAC model can improve
the hedging performance through more accurate modelling of the dependence
structure of weather risks. Moreover, the results reveal significant geographical
aggregation benefits in weather risk hedging, which means that more effective
hedging may be achieved as the spatial aggregation level increases.

The remainder of this paper is organized as follows. Section 2 briefly de-
scribes the proposed modes and the modelling methodology. In Section 3, the
modelling and pricing procedure proposed preceding section is introduced in
more detail using Canadian daily temperature data. Section 4 presents a simu-
lation result on assessing the effectiveness of the various weather hedging strate-
gies for insurers and reinsurers. Section 5 concludes the paper and Appendix A
displays plots of standardized residuals.

2. GENERAL MODELLING FRAMEWORK

This section outlines the general modelling and pricing framework used in this
paper to investigate the spatial dependence and aggregation level for developing
an appropriate weather risk hedging approach. Figure 1 provides a snapshot of
the proposed framework.An empirical application of this framework toCanada
weather data will be presented in Section 3.
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FIGURE 1: Flow chart of the general modelling framework.

The multivariate daily average temperature (DAT) model is constructed in-
volving two steps. First, the marginal dynamic for each region i is analysed with
Fourier series to capture the seasonalities in both the original temperature series
as well as in the volatilities of the data, together with the EGARCH(1,1) process.
Second, the dependence structure between different regions is constructed using
a proposed LSHAC model, which is shown to have better estimation perfor-
mance compared to the AC and HACmodels. Next, the weather index data are
simulated according to the estimated joint distribution, and the corresponding
WDs are priced under a risk neutral measure. Finally, various weather hedging
strategies are developed and their relative efficiencies are assessed.

2.1. Temperature dynamics

Let Yi (t) be the daily temperature (i.e. DAT) at time t in region i, i = 1, . . . , d,
where d denotes the total number of regions and t is measured in unit of days.
Prompted by the non-stationarity and seasonality nature of theDAT,we adopt a
model similar to that inAlexandridis andZapranis (2013), Okhrin et al. (2013a),
Campbell andDiebold (2005), Dupuis (2012; 2014), i.e. by assuming the dynam-
ics of Yi (t) can be modelled by the sum of the following three components:

Yi (t) = �i (t) + �i (t) + ϒi (t), (1)
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where the deterministic trend �i is modelled by the linear function with coeffi-
cients (γ0,i , γ1,i ; i = 1, . . . , d):

�i (t) = γ0,i + γ1,i
t

365
, (2)

the seasonality factor �i is modelled by K sine and cosine Fourier terms with
coefficients (ak,i , bk,i ; k = 1, . . . , K, i = 1, . . . , d) and a repeating step function
d(t) that cycles through 1, . . . , 365 (we drop February 29 for all leap years):

�i (t) =
K∑
k=1

(
ak,i sin

(
2πk

d(t)
365

)
+ bk,icos

(
2πk

d(t)
365

))
, (3)

and the cyclical dynamics of the data ϒi is captured by L autoregressive lags
with parameters (ρl,i ; l = 1, . . . , L, i = 1, . . . , d):

ϒi (t) =
L∑
l=1

ρl,iYi (t − l) + σi (t)zi (t). (4)

Here, zi (t) is a stationary iid process withmean 0 and variance 1 and the residual
volatility σi (t) is modelled by

logσ 2
i (t) = ωi + ξi

(
|zi (t − 1)| − E(|zi (t − 1)|)

)
+ κi zi (t − 1) + ηi logσ 2

i (t − 1)

+
S∑

s=1

(
αs,i sin

(
2πs

d(t)
365

)
+ βs,icos

(
2πs

d(t)
365

))
. (5)

After removing the trend as well as seasonal and cyclical effects, the loga-
rithm of the residual conditional variance is modelled by an exponential gen-
eralized autoregressive conditional heteroskedasticity (EGARCH(1,1)) process
(Nelson, 1991), together with an additional leverage term to capture asymmetric
volatility clustering in the daily temperature (Dupuis, 2014). More specifically,
it contains a GARCH coefficient, ηi , associated with a lagged log variance term,
an ARCH coefficient, ξi , associated with the magnitude of lagged standardized
innovations, and a leverage coefficient, κi , associated with the signed, lagged
standardized innovations. Furthermore, when modelling the temperature resid-
ual volatility in Equation (5), we also add S sine and cosine terms to capture the
seasonality of the volatility.

In the empirical estimation to be discussed in Section 3, parameters are ob-
tained using the following two-stage estimation procedure:

1. Apply the least square estimation method to Equations (2) and (3), i.e.,
the coefficients of the trend (γ0,i , γ1,i ; i = 1, . . . , d) and seasonality (ak,i ,
bk,i ; k = 1, . . . , K, i = 1, . . . , d).
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2. Use the maximum likelihood estimation method to calibrate Equations (4)
and (5), i.e., the cyclical lags (ρl,i ; l = 1, . . . , L, i = 1, . . . , d) and the volatil-
ity parameters ωi , ξi , κi , ηi , αs,i , βs,i ; s = 1, . . . , S; i = 1, . . . , d.1

2.2. Spatial temperature modelling with LSHAC

Recall that a key objective of this paper is to construct an efficient way of hedg-
ing weather risk across various regions. A multivariate model that adequately
captures the spatial dependence of weather variables is of paramount impor-
tance in minimizing the spatial basis risk, and hence leads to a more effective
hedging strategy. The preceding section postulates a plausible (marginal) dis-
tribution for modelling weather data for a single region. By taking into con-
sideration the trend, the seasonality and the cyclicality of the inherent nature
of the weather data, we obtain the stationary process zi (t) with mean 0 and
variance 1 for regions i = 1, . . . , d. The next step is to conduct the probability
transformation to zi (t) and get the pseudo samples, u = (u1, . . . , ud)′. This in
turn facilitates us in utilizing the copula method (Joe, 1997) to create a joint
distribution of weather data.

Copula models have been widely used in the area of risk management
and the design and pricing of insurance contracts (see, for example, McNeil
et al., 2010; Avanzi et al., 2011; Shi and Frees, 2011; Arbenz and Canestraro,
2012; Embrechts and Hofert, 2013; Goodwin and Hungerford, 2014; Shi, 2014;
Hürlimann, 2014; Abdallah et al., 2015; Yang et al., 2015; Chuliá et al., 2016).

One of the popular copulas is known as the AC. AC provides a convenient
way of modelling high-dimensional dependence due to its simplicity, involving
only one parameter. Let C : [0, 1]d → [0, 1] be a d-dimensional AC defined as

C(u1, u2, . . . , ud) = ψ
(
ψ−1(u1) + · · · + ψ−1(ud)

)
, (6)

where ψ ∈ G = {ψ : [0, ∞) → [0, 1] | lim
u→∞ ψ(u) = 0, ψ(0) =

1, (−1)k
dk

duk
ψ(u) ≥ 0, k ∈ N}, is called the completely monotonic (c.m.) gen-

erator and ψ−1 is its inverse, defined as ψ−1(u) = inf{t : ψ(t) ≤ u}. In view of
Equation (6), the distributions of u1, u2, . . . , ud are invariant upon permutation,
and this exchangeable structure severely restricts the modelling capability of AC
models.

The HAC, which nests random variables into a hierarchy, has been proposed
to address the problem of exchangeability. A general modelling framework and
properties of the HAC is given by Savu and Trede (2010). Sampling algorithms
for the HAC are provided by Whelan (2004) and McNeil (2008). Estimation is
developed by Savu and Trede (2010) for the HAC with a known structure, and
Okhrin et al. (2013b) for the HAC with a recursive estimation procedure. The
HACmodels are applied to determine the spatial dependence of weather events
in China by Okhrin et al. (2013a). Although more general and flexible, there
are compatible conditions that are very difficult to check empirically to ensure
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that the resulting HAC yields a valid copula function. As a result, almost all
applications of the HAC models rely on the Gumbel copula (GM) or the Clay-
ton copula (CL), which have been verified to fulfil the compatible conditions.
However, if the HAC models are constructed from mixed generators involving
different families, one must verify the compatible conditions on a case-by-case
basis, which significantly restricts the empirical application of the HAC models
(Embrechts et al., 2003).

In view of the aforementioned difficulties, Hering et al. (2010) circumvent
this hard-to-check compatible condition by constructing the HAC models via
Lévy Subordinators. Mai and Scherer (2012) include the LSHAC model in a
h-extendible framework. Zhu et al. (2016) provide the estimation methodology
and empirically test the efficiency of the LSHACmodels. The advantage of this
model is that c.m. generators constructed with Lévy subordinators automati-
cally satisfy the compatible conditions. For a thorough review of Lévy processes,
refer to Tankov (2004). LSHACmodels enlarge theHAC family, flexible inmod-
elling the tail dependence and are suitable to construct different hierarchical
structures depending on the properties of the data. Therefore, in this paper, we
utilize the LSHAC model to estimate the dependence structure of the spatial
temperature process. This is the first paper to use the LSHAC for modelling the
geographical dependence of weather events. The empirical results in Section 3
show that the LSHACmodels have better estimation performance compared to
ACs and HAC models.

2.3. Esscher transform and pricing formulas

When the market is complete, a unique risk neutral measure can be obtained by
changing the process of the underlying asset into amartingale, and the securities
can be priced as the expectation of the discounted derivative payoff under the
risk neutral measure. However, the WD market is incomplete and there exists
more than one equivalent risk neutral measure (Tankov, 2004). Therefore, tra-
ditional arbitrage-free theory cannot be applied in pricing securities written on
weather indices, since the underlying assets cannot be traded.

The pricing methodology employed in this paper uses a martingale measure
based on the conditional Esscher transform (Bühlmann et al., 1996; Gerber and
Shiu, 1994), which has been widely used in financial and insurance securities
pricing in incomplete markets (Siu et al., 2004; Li et al., 2010; Yang, 2011). We
define a Ft-adapted stochastic process {ζt|t = 1, 2, . . . ,T} as follows:

ζT =
T∏
t=1

exp
(
θY(t)

)
EP

(
exp(θY(t))|Ft−1

) , (7)

where θ is the parameter of the Esscher transform representing the market price
of risk (MPR) charged for the WDs. Usually, θ describes the risk preferences of
policyholders. Hence, a new martingale measure with respect to θ , Qθ , can be
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defined as

dQθ

dP
|FT= ζT. (8)

The Esscher transform has several advantages. First and foremost, the Esscher
transform changes the jump size (i.e., the price of jump risk) of the process under
Qθ (Tankov, 2004; Hubalek and Neilsen, 2006). Second, the Esscher transform
leads to a minimal entropy martingale measure in certain situations, which is
closest to the original physical measure (Frittelli, 2000; Tankov, 2004; Hubalek
and Neilsen, 2006). Finally, many distributions stay invariant under the Esscher
transform in the sense that their density functions retain their original form.
This makes the Esscher transform easy to obtain and apply for pricing in a
practical sense.

3. EMPIRICAL ANALYSIS OF WEATHER RISK IN CANADA

In this section, we analyse the systemic weather risk in Canada following the
modelling framework described in Section 2. First, the dataset used in this study
is described in Section 3.1. Next, the marginal dynamics and spatial dependence
of the data are estimated and analysed in Section 3.2.

3.1. Data

TheDATdata used in this paper includes theAdjusted andHomogenizedCana-
dian Climate data, obtained from Environment Canada covering 50 years from
1962 to 2011. This dataset contains daily temperature series for eight provinces
in Canada, including Alberta (AB), Saskatchewan (SK), British Columbia
(BC), Manitoba (MB), Ontario (ON), New Brunswick (NB), Nova Scotia (NS)
and Quebec (QC). The geographical locations of these provinces are pictured in
Figure 2. These eight provinces were selected because they contain more than
98.72% of the farms and 99.26% of the aggregate farm incomes in Canada, and
include most agricultural insurance programs in Canada. In addition, there are
sixWD trading cities among these eight provinces, including Calgary (AB), Ed-
monton (AB), Vancouver (BC), Toronto (ON), Montreal (QC) and Winnipeg
(MB).

The descriptive statistics of DAT for the eight provinces are summarized in
Table 1. We observe that the weather risk conditions vary across the provinces.
For example, the 0.01 quantile of temperature is −29.75 ◦C inMB, while in BC,
it is −15.39 ◦C. A good understanding of the heterogeneity of weather risks
across provinces provides an opportunity for insurers and reinsurers to diversify
their risk portfolios and develop efficient hedging strategies.
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TABLE 1

DESCRIPTIVE STATISTICS OF CANADA’S DAT (IN CELSIUS) FROM 1962 TO 2011 FOR PROVINCES ALBERTA
(AB), SASKATCHEWAN (SK), BRITISH COLUMBIA (BC), MANITOBA (MB), ONTARIO (ON), NEW

BRUNSWICK (NB), NOVA SCOTIA (NS), AND QUEBEC (QC). THE FOLLOWING STATISTICS ARE REPORTED:
MEAN, STANDARD DEVIATION (SD), SKEWNESS, KURTOSIS, QUANTILES Qα , FOR α ∈ {1%, 5%, 95%, 99%}.

AB BC MB NB NS ON QC SK

Mean −1.44 4.49 0.84 2.50 4.98 1.49 −1.49 −1.02
SD 6.83 5.58 14.28 8.15 7.14 8.35 6.59 9.10
Skewness −1.60 −1.61 −0.39 −0.54 −0.45 −0.93 −1.03 −1.26
Kurtosis 6.11 6.38 2.05 3.37 2.57 3.08 3.86 4.34
Q0.01 −25.82 −15.39 −29.75 −19.57 −12.74 −20.88 −20.83 −29.25
Q0.05 −16.02 −6.64 −24.38 −13.40 −7.90 −15.24 −15.29 −20.90
Q0.95 6.06 10.59 19.73 14.70 14.81 11.24 6.97 9.57
Q0.99 8.18 12.33 22.36 19.04 16.86 13.48 9.85 11.99

FIGURE 2: Map of Canada by provinces. (Color online)

3.2. Empirical estimation results

In this section, the statistical framework described in Section 2 is applied to the
Canada’s DAT. Based on the estimation method and the assumptions provided
in Section 2, the marginal parameters from Equations (1)–(5) are calibrated. In
particular, K = S= 5 are selected based on the Bayesian information criterion
(BIC), and a large value of L = 25 to capture the long-memory dynamics of
the data, following Campbell and Diebold (2005). The estimation results are
displayed in Tables 2 and 3. As we can see from these results, the parameters
associated with the trend and seasonality are mostly significant, even at 1%.2
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FIGURE 3: Hierarchical structure of the temperature process for eight Canadian provinces.

Note that only standard errors (instead of t-statistics tests as in Table 2) from
the second-stage estimation are displayed in Table 3. The plots and histograms
of standardized residuals of marginal distributions depicted in Appendix A are
also reasonable.

We next consider the spatial dependence of the temperature process, which
will be modelled via the LSHACmodel. To estimate the LSHACmodel, we first
need to determine its hierarchical structure. We achieve this via the hierarchical
clustering analysis.3 The resulting structure is displayed in Figure 3 and it can
be described as follows:4

• The structure emanates from the outer copula (Cψ0 ) at level 0.
• At level 1, the structure is classified into two subgroups:

– The first subgroup contains five provinces in thewest and central territories
of Canada (including BC, AB, SK, MB and ON), and is nested together
into the inner copula Cψ1,1 .

– The second subgroup contains three provinces in the east (including NB,
NS and QC), and is nested into Cψ1,2 .

• At level 2, provinces from the west, central and east parts of Canada are
grouped in to different subgroups:
– Western provinces (including BC, AB and SK) are nested together byCψ2,1 .
– Central provinces (including MB and ON) are grouped together by Cψ2,2 .
– Eastern provinces NB and NS are first nested together by Cψ2,3 , and then

grouped into Cψ1,2 with QC.
• At level 3, AB and SK are nested together into the inner copula Cψ3,1 .

Note that the hierarchal structure given in Figure 3 is consistent with our
intuition, the grouping corresponds to the geographical positioning of the eight
provinces as shown in Figure 2. For example, BC, AB and SK are three neigh-
bouring provinces in the western part of Canada, and are grouped together. The
two provinces in central Canada, MB and ON, are in the same subgroup. The
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TABLE 2

ESTIMATION RESULTS FOR TREND AND SEASONALITIES OF THE TEMPERATURE PROCESSES FROM EIGHT PROVINCES IN CANADA.

AB BC MB NB NS ON QC SK

γ0 −0.4008∗∗∗ 0.5497∗∗∗ 0.0077 0.1709 1.2334∗∗∗ 0.0805∗∗ −0.6440∗∗∗ −0.2989∗

(−6.1949) (5.6363) (0.9779) (0.5585) (9.2569) (2.1018) (−8.1870) (−1.6322)
γ1 0.0069∗∗∗ 0.0046∗∗ 0.0052∗∗∗ 0.0129∗ 0.0096∗∗∗ 0.0085∗∗∗ 0.0118∗∗∗ 0.0059

(3.3348) (2.1192) (6.5826) (1.5110) (4.8826) (4.6717) (4.8042) (0.6624)
a1 −0.5287∗∗∗ −0.4997∗∗∗ −0.5980∗∗∗ −0.5159∗∗∗ −2.0170∗∗∗ −1.2076∗∗∗ −0.6833∗∗∗ −0.6261∗∗

(−13.7720) (−3.6025) (−4.5120) (−3.2592) (−8.7616) (−13.1300) (−10.1789) (−2.2041)
a2 −0.6826∗∗∗ −0.3067∗∗∗ −0.0591∗ −0.4222∗∗∗ −0.1791∗∗∗ −0.6498∗∗∗ −0.9943∗∗∗ −0.5182∗∗∗

(−20.0283) (−5.3970) (−1.6660) (−7.2132) (−3.4302) (−16.5442) (−18.3130) (−8.0884)
a3 −0.2620∗∗∗ −0.2192∗∗∗ −0.0305∗ −0.5499∗∗∗ −0.2624∗∗∗ −0.2727∗∗∗ −0.2618∗∗∗ −0.4039∗∗∗

(−9.7751) (−5.1215) (−1.5207) (−7.8703) (−8.4693) (−5.8027) (−10.1954) (−10.5486)
a4 −0.2996∗∗∗ −0.1368∗∗∗ 0.0869∗∗∗ −0.2309∗∗∗ −0.1957∗∗∗ −0.2771∗∗∗ −0.3729∗∗∗ −0.1395∗∗∗

(−11.2673) (−2.4942) (2.4261) (−3.6448) (−5.3594) (−7.3879) (−12.4646) (−3.2425)
a5 −0.2321∗∗∗ −0.1489∗∗∗ 0.0299 −0.0984∗∗ −0.1674∗∗∗ −0.2016∗∗∗ −0.1616∗∗∗ −0.1596

(−10.8223) (−8.5903) (0.5983) (−1.8075) (−5.6869) (−10.0537) (−3.1475) (−0.4629)
b1 −0.5773∗∗∗ −0.7336∗∗∗ −3.0324∗∗∗ −1.8110∗∗∗ −1.8133∗∗∗ −1.6122∗∗∗ −1.3150∗∗∗ −1.4010∗∗∗

(−17.0991) (−6.0453) (−21.6726) (−12.2987) (−18.6990) (−21.1921) (−18.9708) (−7.3192)
b2 −0.0690∗∗∗ −0.0652 −0.2830∗∗∗ −0.1305∗ −0.3357∗∗∗ −0.1222∗∗∗ 0.0757 −0.1391∗∗∗

(−2.9722) (−0.8347) (−8.5661) (−1.3778) (−11.3798) (−4.3676) (1.1964) (−2.9171)
b3 −0.1569∗∗∗ −0.1146∗∗∗ −0.0673 −0.3568∗∗∗ −0.0187∗∗ 0.0148∗ 0.0671∗∗ −0.0974

(−6.6929) (−5.4422) (−0.6067) (−6.4060) (−1.8564) (1.5786) (1.7236) (−0.4371)
b4 −0.0851∗∗∗ −0.0923∗∗∗ 0.0243∗∗∗ 0.1721∗∗ 0.0301 −0.0808∗∗∗ −0.0306∗∗∗ −0.0554

(−2.9107) (−2.6565) (2.6040) (1.7412) (1.1035) (−3.5836) (−2.6599) (−0.5106)
b5 −0.0418∗∗ −0.0064 0.0311 −0.2742∗∗∗ 0.1047∗∗∗ 0.0213∗∗∗ 0.0192 −0.0518

(−1.9540) (−0.2568) (0.6119) (−3.5671) (2.7798) (3.2318) (0.6352) (−0.3869)

Values of t statistics are displayed in the parentheses. “***” means significant at 0.01 level, “**” means significant at 0.05 level, and “*” means significant at 0.1 level.
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TABLE 3

ESTIMATION RESULTS FOR VOLATILITIES OF THE TEMPERATURE PROCESSES FROM EIGHT PROVINCES IN
CANADA.

AB BC MB NB NS ON QC SK

ω 0.3951 0.0680 0.4229 0.5216 0.5616 0.2451 0.3697 0.4145
[0.0314] [0.0023] [0.0169] [0.0555] [0.0799] [0.0238] [0.0274] [0.0179]

ξ 0.0889 0.2036 0.0379 0.0578 0.0920 0.0502 0.0934 0.0645
[0.0066] [0.0117] [0.0040] [0.0054] [0.0050] [0.0057] [0.0070] [0.0017]

η 0.6722 0.4252 0.7539 0.7313 0.5128 0.7696 0.6692 0.6672
[0.0220] [0.1960] [0.0513] [0.0743] [0.0450] [0.0168] [0.0169] [0.0226]

κ 0.0460 −0.0018 0.0178 0.0147 0.0617 0.0445 0.0595 0.0314
[0.0045] [0.0004] [0.0055] [0.0019] [0.0069] [0.0027] [0.0030] [0.0087]

α1 0.1147 0.1717 −0.0108 0.0554 0.1676 0.0504 0.0753 0.0917
[0.0076] [0.0440] [0.0015] [0.0147] [0.0272] [0.0037] [0.0062] [0.0326]

α2 0.0472 0.0334 0.0133 −0.0183 0.0120 −0.0047 0.0551 0.0323
[0.0069] [0.0053] [0.0045] [0.0029] [0.0032] [0.0010] [0.0075] [0.0068]

α3 −0.0352 −0.0776 −0.0175 0.0046 0.0080 −0.0299 −0.0003 −0.0359
[0.0019] [0.0203] [0.0092] [0.0015] [0.0003] [0.0044] [0.0000] [0.0038]

α4 −0.0639 −0.0373 0.0118 −0.0062 0.0296 −0.0162 −0.0442 −0.0382
[0.0055] [0.0035] [0.0014] [0.0003] [0.0138] [0.0025] [0.0050] [0.0051]

α5 −0.0731 −0.2010 0.0116 −0.0062 −0.0999 −0.0305 −0.0356 −0.0236
[0.0250] [0.0630] [0.0038] [0.0015] [0.0114] [0.0083] [0.0064] [0.0072]

β1 0.1400 0.3361 0.1672 0.0669 0.2937 0.1074 0.1000 0.2232
[0.0031] [0.0601] [0.0180] [0.0157] [0.0427] [0.0151] [0.0024] [0.0788]

β2 0.1536 0.2572 −0.0030 0.0809 0.1310 0.1127 0.1796 0.1249
[0.0100] [0.0664] [0.0001] [0.0115] [0.0033] [0.0124] [0.0124] [0.0239]

β3 0.1103 0.1675 0.0153 0.0586 0.0998 0.0456 0.0606 0.0696
[0.0280] [0.0592] [0.0017] [0.0072] [0.0147] [0.0066] [0.0052] [0.0097]

β4 0.0210 0.0454 −0.0160 −0.0105 0.0711 0.0108 0.0190 0.0298
[0.0025] [0.0071] [0.0020] [0.0015] [0.0127] [0.0020] [0.0079] [0.0029]

β5 −0.0174 0.0226 −0.0037 −0.0122 −0.0287 −0.0015 0.0287 0.0171
[0.0026] [0.0043] [0.0006] [0.0029] [0.0053] [0.0002] [0.0072] [0.0027]

Standard errors are displayed in the square brackets below.

three provinces in the eastern part of Canada, namely, QC, NB and NS, are
grouped together into another subgroup. This hierarchical structure provides
information about weather risks in different geographical regions. In addition,
this structure also indicates similar relationships between different provinces.
The correlation matrix of the pseudo samples obtained following Section 2.2 is
produced in Table 4. We can see that weather risks in regions within the same
subgroup are more closely related compared to regions in other subgroups. This
implies that it is important for insurance companies to consider the dependence
structure of the risk portfolio they hold in order to develop any targeted hedging
strategies.

According to Theorem 2.1 of Hering et al. (2010), the copulas at each node
can be constructed by composing an outer copula to the Lévy subordinator.
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TABLE 4

CORRELATION MATRIX OF PSEUDO SAMPLES OF PROVINCES TRANSFORMED FROM
TEMPERATURE DATA.

AB BC MB NB NS ON QC SK

AB 1.00
BC 0.44 1.00
MB 0.06 −0.05 1.00
NB 0.07 0.05 −0.09 1.00
NS 0.08 0.06 −0.04 0.42 1.00
ON 0.02 0.05 0.10 0.00 −0.05 1.00
QC 0.10 0.10 −0.09 0.47 0.29 0.27 1.00
SK 0.51 0.24 0.35 0.05 0.07 −0.01 0.05 1.00

TABLE 5

GENERATOR FUNCTIONS, UPPER TAIL DEPENDENCE (λu ) AND LOWER TAIL
DEPENDENCE (λl ) OF ARCHIMEDEAN COPULA GENERATORS.

Family ψ(u) λu λl Parameter

GM ψGM(u) = exp
( − x

1
θ

)
2 − 2

1
θ 0 θ ≥ 1

CL ψCL(u) = (1 + u)−
1
θ 0 2− 1

θ θ > 0

CL: Clayton family, GM: Gumbel family.

TABLE 6

EXAMPLES OF LÉVY SUBORDINATORS.

Subordinator �(u) Parameters

G �G = alog(1 + u/b) a > 0, b > 0
St �St = ua a > 1
IG �IG = a

√
2u + b2 − ab a > 0, b > 0

G: Gamma process, St: Stable process, IG: Inverse Gaussian process.

Therefore, the LSHACs are highly flexible with a large number of candidate
models. For example, in the modelling of this paper, the outer copulas of the
LSHAC are selected as a GM or CL as listed in Table 5. The Lévy subordi-
nators are chosen from the three processes listed in Table 6, including Gamma
process (G), Stable process (St) and the Inverse Gaussian process (IG). As a
consequence, to calibrate the eight-dimensional LSHAC model with seven AC
generators in Figure 3, we have 2 × 36 = 1, 458 models to choose from. In-
stead of going through all of the combinations, the estimation begins from the
second level of the structure (i.e., start from estimating the optimal copulas
of Cψ2,1,Cψ2,2,Cψ2,3 andCψ3,1 ), and the St copula is found to provide the best
fit. Therefore, the Lévy subordinators for Cψ2,1,Cψ2,2,Cψ2,3 andCψ3,1are fixed as
St, reducing the candidate models to 18. It is important to emphasize that the
GM and CL generators are selected for the outer copula in order to model
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the asymmetric tail dependence of the data. For example, conditional on an
extreme low temperature in MB, the neighbouring province of ON is highly
probable to have a very low temperature too, indicating a lower tail depen-
dence property. Similarly, an upper tail dependence means that extreme high
temperatures tend to appear together for neighbouring provinces. The GM cop-
ula has upper tail dependence and the CL copula has lower tail dependence, as
shown in the third and fourth columns in Table 5. Therefore, the LSHAC mod-
els potentially have the ability to capture the clusters of the extreme values in
the data.

The estimation results are displayed in Table 7. The first seven columns de-
scribe the LSHACmodel, particularly how to choose the ACs at each node. The
first nine LSHACmodels are constructed with the GMas their outer generators
(denoted as GM–LSHAC), and the last nine LSHAC models are constructed
with the CL as their outer generators (denoted as CL–LSHAC). Of interest, the
first LSHAC model in Table 7 degenerates to the case of the traditional All–
GM–HACmodel. The log-likelihood function values (LLF), as well as the BIC
values for each model are shown in the subsequent two columns. In our analy-
sis, we use the AC, including GM and CL, as benchmarks. The improvements in
BIC of the LSHACmodels compared to theHAC (BIC Imp) are also displayed.
In particular, a positive sign indicates better performance, while a negative sign
indicates worse performance. The last column in the table shows the number of
parameters in each copulamodel (# Para.).We obtain the following information
based on the estimation results:

• The first LSHAC model in the table, which is highlighted in bold with a “†”,
is constructed in such a way that the copula at each node in the structure
in Figure 3 is a GM generator, denoted as All–GM–HAC. This is currently
the most common HAC model used in empirical analysis, such as Okhrin
et al. (2013a), which uses an All–GM–HAC model to estimate the depen-
dence structure of the temperature process in China. However, the estima-
tion ability of this model is limited, and all except one of the LSHACmodels
in Table 7 are superior to this model. This is mainly because it restricts the
copula at each node of the structure as a GM copula. Therefore, this paper
introduces a more flexible LSHAC model with a large number of candidates
to improve the estimation.

• Based on BIC values, all LSHAC models perform better than the AC, and
most of the estimated LSHAC’s are better than the traditional All–GM–
HAC. In particular, the best LSHAC model has a 310.94 improvement in
BIC, and is constructed with the CL copula as the outer generator, G Lévy
subordinator for the first copula in the first level, and St Lévy subordinator
for the remainder of the copulas in the structure. It is highlighted in bold
with a “�” in the parentheses, and its structure is displayed in Figure A5
of Appendix B. In particular, details of the copula structure with the cor-
responding seven AC generators are displayed in Equations (B.1)–(B.8) of
Appendix B.
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TABLE 7

LSHAC ESTIMATION RESULTS FOR THE EIGHT-DIMENSIONAL HIERARCHICAL STRUCTURE IN FIGURE 3.

Archimedean Copula LLF BIC BIC Imp. # Para.

Gumbel Copula (GM) 912.82 −908.72 – 1
Clayton Copula (CL) 1306.83 −1303.73 – 1

LSHAC Model

Cψ0 Cψ11 Cψ12 Cψ21 Cψ22 Cψ23 Cψ31 LLF BIC BIC Imp. # Para.

GM St St St St St St 2145.47 −2132.47† – 7
GM St IG St St St St 2199.08 −2145.76 +14.29 8
GM St G St St St St 2083.23 −2029.91 −102.56 8
GM IG St St St St St 2346.85 −2293.53 +161.06 8
GM IG IG St St St St 2411.04 −2357.73 +225.26 9
GM IG G St St St St 2283.11 −2229.79 +97.32 9
GM G St St St St St 2362.44 −2309.12 +176.65 8
GM G IG St St St St 2426.77 −2373.45 +240.98 9
GM G G St St St St 2298.63 −2245.31 +112.84 9

CL St St St St St St 2466.08 −2245.31 +112.84 7
CL St IG St St St St 2422.83 −2369.51 +237.04 8
CL St G St St St St 2288.64 −2235.32 +102.85 8
CL IG St St St St St 2496.16 −2442.84 +310.37 8
CL IG IG St St St St 2440.12 −2386.80 +254.33 9
CL IG G St St St St 2̇319.58 −2266.26 +133.79 9
CL G St St St St St 2496.73 −2443.41� +310.94 8
CL G IG St St St St 2458.30 −2404.98 +272.51 9
CL G G St St St St 2320.20 −2266.88 +134.41 9

The first seven columns describe copulas at each node in the LSHAC model. The next column refers to the
log-likelihood function values of different models (LLF), the Bayesian Information Criterion (BIC) is shown
next, followed by the improvement in BIC of the LSHACmodels compared to the first LSHAC, i.e., traditional
All–GM–HACmodel (BIC Imp.). In particular, a positive sign indicates better performance relative to the All–
GM–HAC, while a negative sign indicates worse performance. The last column shows the number of parameters
in each copula model (# Para.). The first nine LSHAC models are constructed with the GM as their outer
generators (denoted as GM–LSHAC), and the last nine LSHAC models are constructed with the CL as their
outer generators (denoted as CL–LSHAC). All–GM–HAC is highlighted in bold with a “†”. The BIC of the
best model is highlighted in bold with a “�” in the parentheses.

• Finally, comparing the results of the GM–LSHAC models and the CL–
LSHACmodels, theCL–LSHACmodels are found to perform slightly better.
This may be explained by the difference in the tail dependence properties. To
be more specific, the CL copula, as shown in Table 5, has lower tail depen-
dence, meaning that it can capture clustering of extreme low temperatures. In
contrast, the GM copula only has upper tail dependence. The results show
that lower tail dependence models (i.e., CL–LSHAC models) have better fit-
ting results, indicating that the clustering of extreme low temperatures may
be more important than extreme high temperature in Canada.
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4. HEDGING WEATHER RISKS

A hedging example is considered in this section, in which the insurer’s weather
exposures are hedged with index-based instruments. The purpose of this exam-
ple is two-fold. First, by applying the statistical model proposed in Section 3,
the LSHAC dependence assumption is assessed for improvements in weather
risk hedging through reducing basis risk. Second, four hedging strategies are
developed to investigate the impact of geographical aggregation levels on the
effectiveness of the weather hedge. It should be pointed out that in our analy-
sis of the hedging effectiveness, we do not take into consideration the parameter
uncertainty. The estimated parameters from Section 3 are assumed to be the true
parameters when assessing the effectiveness of the various strategies for hedg-
ing weather risk. The issue with the parameter uncertainty can be addressed via
methods such as bootstrapping or Bayesian analysis.

A financial weather contract is a weather contingent contract that pays
claims based on future realization of weather events determined from certain
weather indices. It can take the form of either a WD or a weather index-based
insurance (WIBI) product. Both WD’s and WIBI products are triggered by the
outcome of the underlying weather index. The differences between WD and
WIBI are primarily a concern for regulators and policymakers (Dischel and
Barrieu, 2002). Therefore, in this example, we do not identify the differences
between the two (such as using the same pricing methodology) unless necessary
and collectively refer to both as WDs.

Indices based on temperature have been shown to exhibit strong correlation
with crop yield (Parodi, 2014), and temperature-based derivatives have been
shown to be effective at hedging weather risks that are traded on the CME
(Woodard and Garcia, 2008a,b). It follows, therefore, that temperature indices
could serve as feasible proxies to assess the weather risk exposure of the insur-
ance company. The most popular weather index, heating degree days (HDD),
is defined as the difference between the DAT and the base temperature (T̃) if
DAT falls below T̃; otherwise, its value is zero. Other popular temperature in-
dices include Cooling Degree Days (CDD) and Cumulative Average Tempera-
ture (CAT). CDD is set to zero if the DAT is smaller than T̃; otherwise, it is the
difference between the DAT and the base temperature T̃. CAT is calculated by
summing DAT over the contract period. In this paper, we focus on WDs that
are based on HDD.

The setup of our numerical experiment is as follows. Let us first focus on
the insurer’s exposure to weather risks. The farmers are interested in insuring
against their crop yield losses by purchasing weather-based (insurance) con-
tracts (i.e. WIBI) from the insurer. We assume the insurer is a nationwide com-
pany that has underwritten a representativeWIBI to each of the eight provinces
in Canada. The WIBI for each province i is based on seasonal accumulated
HDD (AccHDD) over the growing season (May–October). The payout ofWIBI
is given by (Pi − Ki )+ = max(0, Pi − Ki ), where Pi is the AccHDD in province
i and Ki is a pre-determined constant. By denoting [t1, t2] as the range of the
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growing season, then

Pi =
t2∑
t=t1

HDDt. (9)

This implies that the total risk exposure of the insurer is given by the portfolio
of WIBI underwritten to the eight provinces, thus highlighting the importance
of spatial dependence of the weather risks. By denoting XExp as the total risk
exposure random variable of the insurer, then we have

XExp = c
8∑
i=1

(Pi − Ki )+, (10)

where c is a proportional constant so as the risk exposure is modelled according
to a portfolio totalling $1,000 million. This is consistent with the agriculture
insurance premium in Canada of $1,090 million in 2008 (Mahul and Stutley,
2010; Agriculture and Agri-Food Canada (AAFC), 2012).

4.1. Hedging strategies

In practice, there exists a number of ways that can be used by the insurer to
hedge its total weather risk exposure XExp. A most direct approach is through
reinsurance. Another possible solution is via the capital market which is our
main interest. In particular, we assume that the hedging instrument adopted by
the insurer is the WD. Because WD is traded over-the-counter, the insurer has
the flexibility of designing a WD with any appropriate payoff structure. Given
this flexibility, we develop four hedging strategies, with various levels of geo-
graphical aggregation, and assess their relative effectiveness.

Additional assumptions on our proposed hedging strategies are as follows:

• Only non-linear hedging strategies involving WDs with payout resembling a
call option are considered.

• The prices of the of WDs (and WIBI) are calculated under Q measure with
Esscher transform, while the hedging performances are examined under P
measure.

• The hedging strategy is developed based on a budget constraint, such that
the price of the hedging portfolio is no more than the total premium received
from underwriting WIBI.

• Our objective is to find an appropriate hedging portfolio XHedge involving
WDs that minimizes the volatility of the insurer’s resulting risk exposure.

• The hedging portfolio can be any subset of B where

B =
{
AB, SK,BC,MB,ON,NB,NS,QC

}
.
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More specifically, the insurer could use a WD with payout that depends on
the weather index of any individual province or weather indices of any com-
bination of provinces. The insurer could also use a fewWDs, not just a single
WD to hedge its weather risk.Without any prior information, the insurer has
28 choices to construct the hedging portfolio. The hierarchical structure cor-
responds to the LSHAC, on the other hand, provides valuable information
on the spatial dependence of the weather risks, and this information can be
exploited in the design of the hedging strategy.

We now describe the four hedging strategies:
Strategy 1: Local hedging strategy
By local hedging, we mean that the insurer hedges its weather risks by only

resorting to a WD with payout based on a single province. Suppose XHedge
1,g , g ∈

B denotes the hedging instrument adopted by the insurer. We assume that the
payout of the hedging instrument is given by

XHedge
1,g = γg(Pg − Kg)+, (11)

where γg can be interpreted as the face value (or the number of units) of theWD.
Let XHP

1,g be the hedged portfolio, i.e. the value of the portfolio after hedging.
Then we have

XHP
1,g = XHedge

1,g − XExp + EQ(XExp) − EQ
(
XHedge
1,g

)
. (12)

The optimal value of γg is determined as the solution to the following variance
minimization problem:

min
γg

√
VarP

(
XHP
1,g

)
,

subject to EQ(XHedge
1,g ) ≤ EQ

(
XExp) . (13)

In addition to the local hedging, we also consider more complicated strate-
gies that reflect the spatial structure of the weather risks.We refer these strategies
as “global hedging strategies”. In theory, the higher the geographical aggrega-
tion level of the hedge, the more offsetting of risks in the portfolio (i.e. natural
diversification). Therefore, the risk that is remaining ismore systematic in nature
and may be better suited for hedging. Therefore, global hedging strategies with
different levels of spatial aggregation in the hedging portfolios are proposed to
investigate the geographical aggregation effect.

Strategy 2: Three parts global hedging strategy
This strategy exploits the hierarchical structure of Figure 3 by considering a

hedging portfolio that comprises of three parts. Let XHedge
2 denote the hedging

portfolio, then

XHedge
2 = XHedge

2,g2,1
+ XHedge

2,g2,2
+ XHedge

2,g2,3
,
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Map of Canada by Province

Cψ0

Cψ1,1

Cψ2,1

BC Cψ3,1

AB SK

Cψ2,2

MB ON

Cψ1,2

Cψ2,3

NB NS

QC
ψ2,1

N

C

FIGURE 4: Illustration of the three parts global hedging strategy, where the eight provinces are partitioned
into three groups based on the hierarchical structure of Figure 3 and neighbouring provinces are put into the

same hedging portfolios. (Color online)

where

XHedge
2,g2, j

=
⎛⎝ ∑
g j∈g2, j

ωg j Pgj −
∑
g j∈g2, j

δg j Kgj

⎞⎠
+

, j = 1, 2, 3.

Here, g2,1 = {AB, SK,BC}, g2,2 = {MB,ON}, g2,3 = {NB,NS,QC} and δg j is
defined to reflect the number of regions (i.e. provinces) in each group:

δg j =
{

1
3 j = 1 or 3,
1
2 j = 2.

Figure 4 displays the geographical location of these partitions and also demon-
strates how these partitions relate to the hierarchical structure of the LSHAC.

Hence, the corresponding hedged portfolio is XHP
2 = XHedge

2 − XExp +
EQ(XExp)−EQ(XHedge

2 ). For the above hedging strategy, the parametersωg j , j =
1, 2, 3 have yet to be specified. These parameters can be obtained optimally by
solving the following optimization problem:

min
ωg j , j=1,2,3

√
VarP(XHP

2 ),

subject to EQ(XHedge
2 ) ≤ EQ(XExp),

3∑
j=1

∑
g j∈g2, j

ωg j = 1.

Strategy 3: Two parts global hedging strategy
The twoparts global hedging strategy increases the geographical aggregation

level by partitioning the eight provinces into two parts based on the hierarchi-
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Map of Canada by Province
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CψC 2 CψCC 2,2
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C

FIGURE 5: Illustration of the two parts global hedging strategy, where the eight provinces are partitioned into
two groups based on the hierarchical structure of Figure 3, and neighbour provinces are put into the same

hedging portfolios. (Color online)

cal structure in Figure 3. Analogously denoting XHedge
3 as the corresponding

hedging portfolio, we have

XHedge
3 = XHedge

3,g3,1
+ XHedge

3,g3,2
,

where

XHedge
3,g3,k

=
⎛⎝ ∑
gk∈g3,k

ωgk Pgk −
∑
gk∈g3,k

δgkKgk

⎞⎠
+

, k = 1, 2,

g3,1 = {AB, SK,BC,MB,ON}, g3,2 = {NB,NS,QC}, and δgk is defined as

δgk =
{

1
5 j = 1,
1
3 j = 2.

Similarly, Figure 5 provides a graphical representation of the partition and their
relationship to the hierarchical structure of the LSHAC.

As in the previous strategy, the resulting hedged portfolio becomes XHP
3 =

XHedge
3 −XExp+EQ(XExp)−EQ(XHedge

3 ) so that the corresponding optimization
problem becomes

min
ωgk ,k=1,2

√
VarP(XHP

3 ),

subject to EQ(XHedge
3 ) ≤ EQ(XExp),

2∑
k=1

∑
gk∈g3,k

ωgk = 1.

Strategy 4: One part global hedging strategy
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The final one part global hedging strategy aggregates all eight provinces into
a single hedging portfolio. Therefore, this hedging strategy has the highest ge-
ographical aggregation level, which may have the most natural diversification
effect. Let XHedge

4 represent the hedging portfolio, then

XHedge
4 =

⎛⎝∑
g∈B

ωg Pg −
∑
g∈B

δgKg

⎞⎠
+

,

where δg = 1/8. The hedged portfolio is similarly given by XHP
4 = XHedge

4 −
XExp+EQ(XExp)−EQ(XHedge

4 ), and thus the optimization problem is formulated
as

min
ωg,g∈B

√
VarP(XHP

4 ),

subject to EQ(XHedge
4 ) ≤ EQ(XExp),∑

g∈B
ωg = 1.

4.2. Hedging effectiveness

In this section, the results of the different hedging strategies are discussed. To as-
sess the effectiveness of each hedging strategy, there are several problems that are
of interest, including (1) the implication of a hedged vs. unhedged portfolio (i.e.
the necessity of hedging weather risk); (2) the importance of the assumed under-
lying dependence structure; (3) the geographical aggregation effect on hedging
effectiveness. First, we gauge the effectiveness of the various hedging strategies
using the following three criteria:

1. Weather risk variance reduction: Following Li and Hardy (2011), we define
the hedging efficiency of hedging strategy j , denoted by Efj in term of its
effect on risk reduction. More specifically, this is defined as

Efj = 1 − VarP(XHP
j )

VarP(XExp)
, j = 1, . . . , 4, (14)

so that Efj is bounded between 0 and 1. If Efj is close to one, then the
hedging portfolio is an efficient strategy in the sense that it is extremely ef-
fective at reducing the volatility of the insurer’s risk exposure. On the other
hand, a small value of Efj signifies inefficiency of the hedging portfolio. In
the extreme case with Efj = 0, then the hedging portfolio has no impact on
the risk exposure of the insurer. This is equivalent to the “naked” position
of the insurer in that the insurer does not hedge.
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2. Weather risk value-at-risk (VaR): For each hedged portfolio, XHP
∗ , we cal-

culate its VaR at the 1% level, defined as VaR0.01 = F−1
XHP∗

(0.01), where the
subscript “*” denotes a certain hedging strategy. As the 1% quantile of the
hedged portfolio, VaR0.01 characterizes the left tail of the hedged portfolio
distribution. Therefore, a high value of VaR0.01 indicates a better hedging
strategy. To compare the hedging effectiveness, we also calculate the VaR0.01
of the unhedged portfolio.

3. Weather risk conditional tail expectation (CTE): The 1% level CTE, also
called Expected Shortfall, of a random variable X, defined as CTE0.01 =
E(X|X < VaR0.01), calculates the average losses that have exceededVaR0.01,
providing more information about the extreme scenarios. As a result, CTE
is sometimes preferred by risk managers in practice (Acerbi and Tasche,
2002). Therefore, we calculate and compare theCTE0.01 of each hedged (and
unhedged) portfolio to see the hedging effectiveness.

The first criterion measures the weather hedging efficiency in terms of the vari-
ance reduction effect, while the second and the third focus on the reduction in
the downside risk, i.e., the worst-case scenario of the portfolio. We use the CL
assumption as a benchmark model since it performs better than the GM (see
Table 7). We discuss the hedging results of each strategy with different MPR
parameters (Turvey, 2005) by assuming θ to be {0, 0.1, 0.3, 0.5}. The results
of the different hedging strategies are displayed in Tables 8, 9, and Figures 6
and 7.

Necessity of hedging weather risk
An efficient hedging strategy should achieve a large reduction in risk, and

help the insurance company maintain stable future cash flows. Table 8 dis-
plays the hedging efficiencies of different hedging strategies. It is obvious that
all strategies are able to reduce the portfolio risks significantly under both de-
pendence structure assumptions, since they have reduced the dispersion of the
portfolios. The best hedge, i.e., three-part global hedge, has hedging efficiency
of more than 95% for both dependence structure assumptions and all MPR
assumptions. In fact, even the hedge with the worst performance, i.e., the local-
SK strategy, it can still reduce the variance by at least 43%. The relative per-
formances of the local hedging strategy, global hedging strategy, as well as the
unhedged position, are highlighted and contrasted in both Figures 6 and 7. In
these two figures, the simulated distributions of unexpected cash flows for dif-
ferent hedging strategies (MPR assumption: θ = 0) are plotted based on the CL
assumption and the LSHAC copula assumption, respectively.

Importance of dependence structures
It is important to understand the impact of introducing the dependence

structure in the statistical modelling of temperature with respect to improving
hedging performance. In particular, under all MPR assumptions the LSHAC
model has better hedging performance compared to the CL assumption. Table 8
shows that under each MPR assumption, the LSHAC models achieve higher
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TABLE 8

HEDGING EFFICIENCIES OF FOUR STRATEGIES.

ton C

θ = 0 θ = 0.1 θ = 0.3 θ = 0.5 θ = 0 θ = 0.1 θ = 0.3 θ = 0.5

Local

AB 0.4668 0.4668 0.4668 0.4668 0.4961 0.4961 0.4961 0.4961
BC 0.7147 0.7147 0.7147 0.7147 0.7335 0.7335 0.7335 0.7335
MB 0.7442 0.7442 0.7442 0.7442 0.7371 0.7371 0.7371 0.7371
NB 0.8454 0.8454 0.8454 0.8454 0.8533 0.8533 0.8533 0.8533
NS 0.8461 0.8461 0.8461 0.8461 0.8441 0.8441 0.8441 0.8441
ON 0.7865 0.7865 0.7865 0.7865 0.7288 0.7288 0.7288 0.7288
QC 0.6148 0.6148 0.6148 0.6148 0.5140 0.5140 0.5140 0.5140
SK 0.4319 0.4319 0.4319 0.4319 0.4390 0.4390 0.4390 0.4390

Global
Three parts 0.9761 0.9771 0.9584 0.9123 0.9836 0.9819 0.9599 0.9767
Two parts 0.9286 0.9286 0.9280 0.9154 0.9151 0.9151 0.9121 0.9029
One part 0.9101 0.9101 0.9101 0.9101 0.9128 0.9128 0.9128 0.9128

Local hedging strategies have eight choices, i.e. the insurance company can select the HDD from eight provinces to hedge the weather
risks. Clayton and LSHAC copula assumptions are compared. In addition, results for different MPR assumptions are displayed.
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TABLE 9

VAR0.01 AND CTE0.01 OF SIMULATED DISTRIBUTIONS OF UNEXPECTED CASH FLOWS FOR FOUR STRATEGIES.

Clayton LSHAC

θ = 0 θ = 0.1 θ = 0.3 θ = 0.5 θ = 0 θ = 0.1 θ = 0.3 θ = 0.5

Local

AB VaR −215.76 −253.21 −263.73 −70.24 −215.91 −251.97 −237.88 −68.90
CTE −232.09 −269.54 −280.05 −86.56 −231.26 −267.32 −253.22 −84.25

BC
VaR −117.73 −107.28 −106.20 −136.61 −116.59 −104.56 −104.71 −135.42
CTE −123.43 −112.98 −111.90 −142.31 −121.85 −109.82 −109.97 −140.68

MB
VaR −57.91 −81.54 −158.66 −207.92 −58.20 −81.55 −160.38 −208.96
CTE −63.72 −87.36 −164.47 −213.74 −63.87 −87.21 −166.04 −214.63

NB
VaR −73.63 −69.75 −120.09 −168.22 −73.34 −68.97 −120.41 −167.94
CTE −79.74 −75.86 −126.19 −174.33 −79.62 −75.25 −126.68 −174.22

NS
VaR −57.17 −70.97 −138.96 −187.84 −57.14 −71.17 −139.67 −188.25
CTE −63.23 −77.03 −145.02 −193.90 −62.88 −76.91 −145.41 −193.99

ON
VaR −104.99 −92.35 −99.77 −139.52 −110.24 −101.87 −110.70 −142.12
CTE −110.35 −97.72 −105.14 −144.89 −115.38 −107.02 −115.85 −147.27

QC
VaR −200.06 −249.49 −288.34 −63.56 −211.44 −265.68 −354.64 −73.14
CTE −216.28 −265.72 −304.57 −79.79 −226.53 −280.77 −369.73 −88.23

SK VaR −150.37 −150.37 −150.37 −130.28 −150.88 −150.88 −150.88 −130.80
CTE −155.99 −155.99 −155.99 −135.90 −155.86 −155.86 −155.86 −135.79

Global

Three parts VaR −15.49 −17.29 −47.52 −39.48 −13.50 −18.84 −46.36 −9.54
CTE −20.00 −22.65 −52.39 −42.88 −18.53 −24.01 −49.80 −16.30

Two parts
VaR −20.95 −26.48 −94.60 −147.23 −22.86 −30.78 −103.78 −155.46
CTE −23.73 −29.25 −97.39 −149.73 −25.51 −33.42 −106.30 −157.88

One part VaR −25.21 −34.18 −108.79 −158.04 −25.14 −33.73 −108.80 −157.36
CTE −28.38 −37.34 −111.96 −161.20 −28.47 −37.06 −112.13 −160.69

Local hedging strategies have eight choices, i.e. the insurance company can select the HDD from eight provinces to hedge the weather risks. The Clayton copula
and LSHAC dependent structure assumptions are compared. In addition, results for different MPR assumptions are displayed. (million $)
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FIGURE 6: Simulated distributions of unexpected cash flows for different hedging strategies based on the
Clayton copula assumption (MPR assumption: θ = 0). The first figure shows the actual counting frequencies,
and the second figure shows the normalized frequencies with fitted kernel density curves. The dashed line is

for the unhedged portfolio, the dotted line is for the best local hedging strategy and the solid line is for the best
global hedging strategy. (Color online)
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FIGURE 7: Simulated distributions of unexpected cash flows for different hedging strategies based on the
LSHAC copula assumption (MPR assumption: θ = 0). The first figure shows the actual counting frequencies,
and the second figure shows the normalized frequencies with fitted kernel density curves. The dashed line is

for the unhedged portfolio, the dotted line is for the best local hedging strategy and the solid line is for the best
global hedging strategy. (Color online)
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hedging efficiencies relative to the CL assumption. In addition, the LSHAC
model in general can reduce the downside risk of the portfolio further than the
CL, which is shown in Table 9.

Geographical aggregation effect
The empirical results imply that hedging strategies with higher geographi-

cal aggregation levels are more effective. More specifically, we find that hedg-
ing strategies with higher levels of aggregation have superior performance in
hedging systematic weather risk. It is interesting to note that the local hedg-
ing strategy has the lowest level of geographical aggregation among all hedging
strategies, and also has the worst performance compared to the global hedging
strategies, while global hedging strategies are more effective. These results are
consistent with previous work byWoodard andGarcia (2008a,b), which showed
that agricultural hedging can be improved as the spatial aggregation of the risk
exposure and hedging instrument increases.

5. CONCLUDING REMARKS

Adverse weather is a main source of crop production loss and a large con-
cern for agricultural insurers and reinsurers. A main source of agricultural in-
surance market failure has been attributed to the systemic nature of weather
risks (Miranda and Glauber, 1997; Woodard and Garcia, 2008b), which can be
widespread and spatially correlated at times. Therefore, weather risks cannot be
diversified by pooling alone, and various risk transfer techniques must be con-
sidered. In response, weather risk hedging throughWDs orWIBI products may
be valuable. However, due to basis risk weather risk hedging has been largely
unsuccessful to date.

In this paper, we study the systemic weather risk in Canada and develop
different weather risk hedging strategies that may be considered by agricultural
insurers and reinsurers. In developing the weather risk hedging strategies, the
statistical modelling of weather variables was refined. This is an essential, yet,
challenging task for financial weather instrument pricing and hedging, owing to
the non-stationarity, seasonality and multidimensionality of the weather data,
as well as the incomplete nature of the market. In this paper, Fourier series was
used to capture the seasonalities in both the original temperature series as well
as in the volatilities of the data, in addition to the EGARCH(1,1) process. To
overcome the high-dimensionality of the weather data and model the spatial
dependence of weather events in order to reduce basis risk and improve the effi-
ciency of weather hedging, this paper proposed a new copula family called the
LSHAC model. This was the first paper to employ the LSHAC for modelling
the geographical dependence of weather events. Finally, a pricing framework
was proposed based on the conditional Esscher transform method to address
the challenge of instrument pricing in an incomplete market, which has also
contributed to the unsuccessful implementation of weather risk hedging in ad-
dition to basis risk.
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To examine the modelling framework proposed in this paper, an empirical
analysis was conducted using 50 years of temperature data corresponding to
eight provinces in Canada. Using the refined statistical modelling of the weather
data proposed in this paper, four weather hedging strategies were developed
and compared. In assessing the effectiveness of the various hedging strategies,
three problems were considered: (1) the necessity of hedging weather risk; (2)
the importance of the assumed underlying dependence structure; and (3) the
geographical aggregation effect on hedging effectiveness. The results lend sup-
port to the importance of capturing the appropriate dependence structure of
weather risk, which leads to more efficient hedging strategies. Moreover, the
analysis shows that the LSHAC model can improve the hedging performance
through more accurate modelling of the dependence structure of weather risks
and is more efficient in hedging extreme downside weather risk, compared to
the benchmark copula models. Further, the results reveal that more effective
hedging may be achieved as the spatial aggregation level increases. This re-
search demonstrates that hedging weather risk is an important risk manage-
ment method, and the approach outlined in this paper may be useful to insurers
and reinsurers in the case of agriculture, as well as for other related risk in the
property and casualty sector.
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NOTES

1. One limitation of the two-stage estimation procedure is that the second-stage estimation
tends to underestimate the standard errors. Therefore, in the empirical results in Section 3.2, only
standard errors (instead of t-statistics tests) from the second-stage estimation are displayed, be-
cause in the two-stage estimation procedure, showing t-statistics of the second stage is not useful.

2. To save space, the estimation results of the 25 cyclical lags (ρl,i ; l = 1, . . . , L, i = 1, . . . , d)
are not included but are available upon request. It is shown from the estimated results for cyclical
lags that although, for some provinces (AB and ON), higher order autoregressive coefficients are
necessary, for most of the cases, using three to four lags are sufficient to capture the long memory
of the temperature data.

3. For a detailed introduction of hierarchical clustering analysis, refer to Ward (1963), Székely
and Rizzo (2005) and Zhang et al. (2013). For detailed algorithms of grouping method for the
LSHAC, refer to Zhu et al. (2016).

4. To improve computational efficiency, we use the most recent 10 years of the pseudo samples
to estimate the dependence structure.
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APPENDIX A. STANDARDIZED RESIDUALS OF
MARGINAL DISTRIBUTIONS

This appendix display the plots (Figures A1 and A2) and histograms (Figures A3 and A4) of
the standard residuals of marginal distributions.

APPENDIX B. THE BEST ESTIMATED LSHAC
MODEL

The structure of best estimated LSHAC model based on BIC (the model highlighted
in bold with a � in the parentheses of Table 7) is displayed in Figure A5. The cop-
ula model with the corresponding seven Archimedean copula generators are displayed in
Equations (B.1)–(B.8).

C(AB, . . . ,QC) = Cψ0

(
Cψ1,1

(
Cψ2,1(BC,Cψ3,1(AB,SK)),Cψ2,2(MB,ON)

)
,

Cψ1,2

(
Cψ1,2(Cψ2,3(NB,NS),QC)

) )
. (B.1)
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FIGURE A1: Plots of standardized residuals of marginal distributions. Plots are for, from up to down, AB,
BC, MB and NB, respectively. (Color online)
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FIGURE A2: Plots of standardized residuals of marginal distributions. Plots are for, from up to down, NS,
ON, QC and SK, respectively. (Color online)
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FIGURE A3: Histograms of standardized residuals of marginal distributions. (a) AB, (b) BC, (c) MB, (d) NB.
(Color online)

ψ0,1(u) = ψCL(u) = (1 + u)− 1
θ0 , (B.2)

ψ1,1(u) = ψCL◦G(u) = (1 + a1,1log(1 + u/b1,1))
− 1

θ0 , (B.3)

ψ1,2(u) = ψCL◦St(u) = (1 + ua1,2)− 1
θ0 , (B.4)

ψ2,1(u) = ψCL◦G◦St(u) = (1 + a1,1log(1 + ua2,1/b1,1))
− 1

θ0 , (B.5)

ψ2,2(u) = ψCL◦G◦St(u) = (1 + a1,1log(1 + ua2,2/b1,1))
− 1

θ0 , (B.6)

ψ2,3(u) = ψCL◦St◦St(u) = (1 + ua1,2·a2,3)− 1
θ0 , (B.7)

ψ3,1(u) = ψCL◦G◦St◦St(u) = (1 + a1,1log(1 + ua2,1·a3,1/b1,1))
− 1

θ0 . (B.8)
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FIGURE A4: Histograms of standardized residuals of marginal distributions. (a) NS, (b) ON, (c) QC, (d) SK.
(Color online)
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FIGURE A5: The best estimated LSHAC model for the eight Canadian temperature processes.
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