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In order to investigate envelopes for singular surfaces, we introduce one- and
two-parameter families of framed surfaces and the basic invariants, respectively. By
using the basic invariants, the existence and uniqueness theorems of one- and
two-parameter families of framed surfaces are given. Then we define envelopes of
one- and two-parameter families of framed surfaces and give the existence conditions
of envelopes which are called envelope theorems. As an application of the envelope
theorems, we show that the projections of singular solutions of completely integrable
first-order partial differential equations are envelopes.
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1. Introduction

An envelope of a family of surfaces is a surface that is tangent to each member of
the family at some points. If the surfaces are regular, the tangent is well-defined (cf.
[2,3,5,14]). However, for singular surfaces, the classical definitions of envelopes are
vague. In [13], the first author clarified the definition of an envelope for r-parameter
families of frontals and Legendre mappings in the unit tangent bundle over R™+1.
When r < n, the envelope theorem is applicable. This idea can be applied to an
envelope of a family of singular surfaces. In this paper, we would like to clarify
the definitions of the envelopes for one- and two-parametric surfaces with singular
points in R3. As singular surfaces, we consider framed (base) surfaces. A framed
surface in the Euclidean space is a smooth surface with a moving frame (cf. [4]).
The framed surfaces may have singularities. It is a generalization of not only regular
surfaces but also frontals at least locally. For the basic results on the singularity
theory see [1,3,6,9].
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In § 2, we quickly review some definitions and theorems of framed surfaces. In
§ 3 and 4, we introduce one- and two-parameter families of framed surfaces and the
basic invariants, respectively. Then we define envelopes of one- and two-parameter
families of framed surfaces. We obtain that the envelopes are also framed base
surfaces. As one of the main results, we give the existence conditions of envelopes
which are called envelope theorems (theorems 3.13 and 4.8). The envelopes are
independent of rotated frames, reflected frames and the parameter change of the
framed surfaces. Moreover, we demonstrate the relations between envelopes of a
classical definition and a family of framed surfaces. As an application of the envelope
theorems, we show that the projections of singular solutions of completely integrable
first-order partial differential equations are envelopes. In § 5, we consider systems of
first-order partial differential equations which correspond to one-parameter families
of framed surfaces. In § 6, we also consider single first-order partial differential
equations which correspond to two-parameter families of framed surfaces. In [13],
under a condition, it could be proved that the projection of a singular solution of a
single completely integrable first-order partial differential equation is an envelope.
However, we can prove without the condition 3.(F) = 3, (F) (theorem 6.3) in this
paper.

All maps and manifolds considered in this paper are differentiable of class C'*°.

2. Framed surfaces

We quickly review some definitions and theorems of framed surfaces. For more
details see [4].

Let R3 be the 3-dimensional Euclidean space equipped with the inner product
a-b=aib; + azby + agbsz, where a = (aj,as,a3) and b= (by, by, b3) € R3. The
norm of a is given by |a| = v/a - a and the vector product is given by

€1 €2 €3
axb=det|a as as],
by by b3

where e;, ey, e3 are the canonical basis on R3. Let S? be the unit sphere in R?,
that is, S? = {a € R?||a| = 1}. We denote the set {(a,b) € S? x S?|a-b= 0} by
A. Then A is a 3-dimensional smooth manifold.

Let U be a simply connected domain in R2.

DEFINITION 2.1. We say that (z,n,s):U — R3®x A is a framed surface if
Ty, (U1, u2) - n(ur,uz) =0 for all (ui,us) € U and i = 1,2, where x,,(ui,us) =
(0x/0u;)(u1,uz). Moreover, = : U — R3 is a framed base surface if there exists
(n,s): U — A such that (x,n,s) is a framed surface.

We also say that (z,m):U — R3 x S? is a Legendre surface if @, (u,us) -
n(uy,uz) =0 for all (u1,uz) € U and i = 1,2. Moreover, x is a frontal if there
exists m: U — S? such that (x,n) is a Legendre surface.

By definition, a framed base surface is a frontal. At least locally, a frontal is a
framed base surface.

https://doi.org/10.1017/prm.2020.71 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2020.71

Enwvelopes of families of framed surfaces and singular solutions 1517

Let (z,m,s8):U —R®>x A be a framed surface. We denote #(uj,us) =
n(uy,us) X s(uy,usz). Then {n(uy,us), s(u1,us), t(ur,us)} is a moving frame along
@ (u1,us2). We have the following systems of differential equations:

T,

Ty, \ (a1 b s sl

() = G 2) ) o
n

(0 e fi—ei 0 gi—fi —g 0)|s], (2.1)
t

where a;, b;, €;, fi,g; - U — R, i = 1,2 are smooth functions and we call the functions
basic invariants of the framed surface. We denote the above matrices in equali-
ties (2.1) by G, F;,i = 1,2, respectively. We also call the matrices (G, Fy, Fa) basic
invariants of the framed surface (x,n, s). Note that (u1,us) is a singular point of
@ if and only if det G(uy,uz) = 0.

Since the integrability conditions @y, u, = Tuyu, and Fo .y, — Fiu, = F1Fe —
FoF1, the basic invariants should satisfy the following conditions:

Q1u, — b1g2 = a2y, — b2g1, eiu, — f192 = €2y, — fag1,
biu, — 291 = bay, — @102, frus — €291 = fou, — €192, (2.2)
ares + by fo = azer + baf1, J1us — €1f2 = Gou, — €2f1.

DEFINITION 2.2. Let (z,n,s), (Z,n,3) : U — R? x A be framed surfaces. We say
that (z,n, s) and (x,n,s) are congruent as framed surfaces if there exist a constant
rotation A € SO(3) and a translation a € R3 such that

T(uy,u2) = A(x(ur,u2)) + a,n(u, uz) = A(n(ui,usz)), s(ur,us) = A(s(ur,uz))
for all (uy,us) € U.

We have the existence and uniqueness theorems for the basic invariants of
framed surfaces (cf. [4]). For the existence and uniqueness theorems of frontals
see [12].

THEOREM 2.3 (Existence theorem for framed surfaces). Let a;,b;, e, fi,9:: U —
R,i=1,2 be smooth functions with the integrability conditions (2.2). Then there
exists a framed surface (z,m,s): U — R> x A whose associated basic invariants
are a;, by, €, fi, gi, i =1,2.

THEOREM 2.4 (Uniqueness theorem for framed surfaces). Let (z,n,s), (z,n,s) :
U — R3 x A be framed surfaces with the basic invariants (G, F1, Fa), (g~, .7?1,.7?2),
respectively. Then (x,n,s) and (x,n,s) are congruent as framed surfaces if and
only if the basic invariants (G, F1,Fa) and (_C’j, ]?1,]?2) coincide.
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DEFINITION 2.5. We define a smooth mapping CF = (JF, K HF): U — R? by

JF = det (“ b K = det h
as by )’ ea fa)’

1 ai  fi by el
_2{d6t<a2 f2>—det(b2 62>}.

We call CF = (JF, KT HF) a curvature of the framed surface.

HF

For the properties of the curvature of framed surfaces see [4].

3. One-parameter families of framed surfaces and envelopes

3.1. One-parameter families of framed surfaces

Let (z,m,s8): U x A —R3 x A be a smooth mapping, where U is a simply
connected domain in R? and A is an interval in R.

DEFINITION 3.1. We say that (z,n,s) : U x A — R3 x A is a one-parameter family
of framed surfaces if (x(-,\),n(-,\),s(-,\)) is a framed surface for each \ € A.

We denote t(u1, us, A) = n(uy, ug, A) X s(uy,uz, ). Then {n(uy,us, A), s(u1, us, \),
t(uy,us, A)} is a moving frame along @ (uy, us, A). For convenient, sometimes we use
the notation usz = .

We have the following systems of differential equations:

Loy 0 a1 b n Ny,
Ty, | = | 0 a2 b s, | su
Lysq C1 das b3 t tui
n
=0 e fi—e 0 gi—fi —gi 0)|s], (3.1)
t

where a;,b;,e;, fi,gi,c1 : U — R, i=1,2,3 are smooth functions and we call the
functions basic tnvariants of the one-parameter family of framed surfaces. We
denote the above matrices in equalities (3.1) by G, F;,i = 1,2, 3, respectively. We
also call the matrices (G, Fi, Fa, F3) basic invariants of the one-parameter family
of framed surfaces (x,n, s).

Since the integrability conditions @y,.; = Tu;u, and Fju, — Fju, = F;Fi —
FiFj, 4,J,k, € =1,2,3, the basic invariants should be satisfied the following
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conditions:

A1y, — b1g2 = a24, — bagu, lu, — f192 = €2uy — fog1,

biu, — a2g1 = boy, — @192, Jius — €291 = fou, — €192,

areg + by fa = ase; + by fi, J1u, — €1f2 = gou, — €2f1,

U1us — b193 = c1e1 + azu, — b3gi, €1uy — f193 = €34, — [f391,

4193 + bru, = c1f1 + bzu, + asgr, Jius — €391 = f3u, — €193, (3.2)
—aiez — by f3 = c1u, —azer — bz f1, G1us — €1f3 = g3u, — €3f1,

a2uy — bags = c1€2 + azu, — b3ga, €2us — f293 = €3u, — f392,

a293 + bauy = c1f2 + bzu, + asge, Jous — €392 = [3u, — €293,
—agez — by f3 = c1u, — azez — bz fo, G2us — €213 = G3uy — €32

DEFINITION 3.2. Let (z,n,s),(Z,7n,8) : U x A — R3 x A be one-parameter fam-
ilies of framed surfaces. We say that (x,nm,s) and (@,n,s) are congruent as
one-parameter families of framed surfaces if there exist a constant rotation A €
SO(3) and a translation a € R? such that

T(uy,uz, \) = A(x(uy, uz, \)) + a, n(ug, ug, \)
= A(n(ul’ U2, A))vg(ula Uz, >\) = A(S(u17 U2, A))

for all (uy,us, A) € U x A.

We have the existence and uniqueness theorems for the basic invariants of one-
parameter families of framed surfaces.

THEOREM 3.3 (Existence theorem for one-parameter families of framed surfaces).
Let a;,b;, ¢4, fiygi,c1 : U X A — R i =1,2,3 be smooth functions with the integra-
bility conditions (3.2). Then there exists a one-parameter family of framed surfaces
(x,m,8): U x A — R® x A whose associated basic invariants are a;, b;, e, fi, gi, c1,
i=1,2,3.

Proof. We denote that M (3) is the set of 3 x 3 matrices and I3 is the identity
matrix. Choose any fixed value (uy,, us,, us,) € U X A. We consider an initial value
problem,

Fy,(u1,uz,u3) = Fi(ur,ug, uz)F(ur,ug,u3), i =1,2,3, F(uy,,ug,,us,) = I3,

where F'(u1, us,u3) € M(3). By the integrability conditions F; ,, — Fj.u, = F;Fi —
FiFj, 4,3,k 0 =1,2,3, we have Fy vy = Fuyurs Fujus = Fusu, and Fuyuy = Fiypu, -
Since U x A is simply connected, there exists a solution F'(uq,us,us). Since
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Fi(u1,uz,ug) € 0(3), we have

aiz- (FYF) = (aiiF> F+ (Ft)aiiF = ((F:F))F + (F) (F:F)

=(F)((F)'+F)F=F"-0-F=0,

i=1,2,3. It follows that (F(uy,uz,u3)")F(u1,uz,u3) is constant. Therefore, we
have

(F(u1,uz,u3)")F(u1,us, uz) = (F(ui,, uzy, uzy)") F(u1,, uzy, us,) = I

We set F(uy,us,us) = (n(ul,ug,ug),s(ul,uQ,ug),t(ul,ug,ug))t. Since (0/0u;)
(detF'(uq,uz,uz)) =0, i =1,2,3, we have det F'(uy, ug, us) = detF(uy,, ug,, us,) =
detls = 1. Hence, F(u1,usg,us) is a special orthogonal matrix. Then ¢(uy, us, us) =
n(uy, us, us) X s(uy, us, us). Next we consider differential equations

Ty, = @18+ bit, Ty, = azs + bot, T,, = cin + azs + bst.

By the integrability conditions ®y,.; = ®u;u,,%J =1,2,3, there exists a solu-
tion x(u1,uz,us). It follows that (z,m,s): U x A — R3 x A is a one-parameter
family of framed surfaces whose associated basic invariants are a;,b;,e;, fi, gi, c1,
i=1,23. 0

LEMMA 3.4. If (x,n,s) and (x,n,s) are congruent as one-parameter families of

framed surfaces, then (G, F1, Fa, F3) = (G, F1,Fa, F3).

Proof. By definition 3.2 and a direct calculation, we obtain the lemma. O

LEMMA  3.5. If (g,fl,fg,fg) = (é, .%17.%27.%3) and (m,n,s)(ulo,u%,u;go) =
(z,n,35)(u1,, uzy, ug,) for a point (u1,,uz,,us,) € U X A, then (x,n,s) = (z,n,s).

Proof. Firstly, we show (n,s,t) = (7,3,t), where t =n x s and t =1 x 5. We
define a function f: U x A — R by

flur, ug, uz) = n(uy, ug, uz) - n(u, ug, uz)

+ s(ur, ug, ug) - (w1, ug, uz) + t(ur, ug, uz) - t(ur, us, usz).

By the definition of the basic invariants, we have

fu =(er =@)(s - 1) + (& — e)(n-3) + (i = fi) (¢ -7) + (i = fi)(n - T)

+(9i = 9:)(t-8) + (gi — gi)(s - 1),
1=1,2,3. By the assumption F; =F;, we have Sus(ur,uz,uz) =0 for all

(ur,ug,uz) €U x A and i=1,2,3. Moreover, by the assumption (x,n,s)
(U1, U2y, us,) = (T, M, 8)(u1,, uzy, us, ), we have f(ui,,us,,us,) = 3. It concludes
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that f(ur,ug,uz) =3 for all (uj,ug,us3) € U x A. Hence, we have n-n=s-8 =
t-t=1. Tt follows that n(ui,uz,us) = n(u,uz,uz), s(ui,us,uz) = 8(ur,uz,us)
and t(u1,uz, u3) = t(uy, us, uz) for all (u1,us,u3) € U x A.

Next, we show « =x. By the assumption G = 5, we have x,, =a1s+
bhit=a;s +51¥: Loy, Ty = 28 + bot = 625—1—32?: Ty, and T, = cin + azs +
bst = 170 + 35 + bst = T,,,. Then, we have (z—Z),, =0, i=1,2,3. Since
T(U1y, Uy, Usy) = Uy, Usy, U, ), We have x(uy,us,uz) = T(uy,us, uz) for all
(u1,u2,u3) € U x A. Therefore, we have (z,n,s) = (z,n,s). O

THEOREM 3.6 (Uniqueness theorem for one-parameter families of framed surfaces).
Let (x,n,s),(x,n,3) : U x A — R3 x A be one-parameter families of framed sur-
faces with the basic invariants (97}"1,}'2,]-"3),(&, .%1,.%2,.%3), respectively. Then
(xz,m,s) and (z,n,s) are congruent as one-parameter families of framed surfaces
if and only if the basic invariants (G, Fy, Fa, F3) and (é, ﬁl,ﬁg,ﬁg,) coincide.

Proof. By lemma 3.4, we have the necessary condition.
Conversely, for a fixed point (u1,,uz,,us,) € U x A, there exist A € SO(3) and
a € R? such that

(%, ﬁ,g) (u107 ’LL20, ’LL30) = (A$ “+ a, An, 148)(1“07 ’LLQO, ’LL30).

By lemmas 3.4 and 3.5, (z,n,s) and (&,n,s) are congruent as one-parameter
families of framed surfaces. O

3.2. Envelopes of one-parameter families of framed surfaces

Let F': W x A — R be a one-parameter family of functions, where W is a sim-
ply connected domain in R? and A is an interval in R. Then one of the classical
definitions of an envelope Ey is as follows. For instance see [2, 3].

DEFINITION 3.7. An envelope E; of F' is the discriminant set of F, that is, the set
of points given by

E;r ={weR?®| for some A € A, F(w,\) = Fx(w,\) = 0}.
If F(w,\) = Fx(w,\) =0, we say that w € E; with respect to .

EXAMPLE 3.8. Let F:R?® xR — R, F(wy, w2, w3, \) = (w; — A\)> — w3 be a one-
parameter family of functions. Then F' =0 is the image of a cuspidal edge for
each fixed A € R. For the definition and properties of cuspidal edges see [4,11].
Since F)\(wy,ws, w3, \) = —3(w; — A)?, the envelope of the family F is given by
Er = {(\, w2,0)} = zy-plane.

EXAMPLE 3.9. Let F:R?® x R — R, F(wy,ws, w3, \) = w; — (w3 — A\)? be a one-
parameter family of functions. Then F' = 0 is the image of a cuspidal edge for each
fixed A € R. Since F)(wy,wa,ws, \) = 2(ws — A), the envelope of the family F is
given by Er = {(0, w2, \)} = yz-plane.
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However, in the sense of the limit tangent plane of the cuspidal edge, yz-plane is
not tangent to the cuspidal edges, see [13]. Therefore, we would like to distinguish
them as envelopes. See examples 3.20 and 3.21.

Let (z,m,8):U x A — R? x A be a one-parameter family of framed surfaces
with the basic invariants (G, F1, Fa, F3). Let V C R? be an open subset and e : V —
U x A, e(p) = (u1(p),uz(p), A\(p)) be a smooth mapping. We denote E=xoe:
V — R3.

DEFINITION 3.10. We call E an envelope (and e a pre-envelope) for the one-
parameter family of framed surfaces (x,n,s), when the following conditions are
satisfied.

(i) The set of regular points of A:V — A is dense in V. (The variability
condition.)

(ii) Ep,(p) -n(e(p)) =0 for all p=(p1,p2) €V and i=1,2. (The tangency
condition.)

By definition, we have the following result.

PROPOSITION 3.11. Let (z,m,8) : U x A — R3 x A be a one-parameter family of
framed surfaces with the basic invariants a;, b;, €;, fi, gi,c1, 1 = 1,2,3. Suppose that
e:V — U x A is a pre-envelope and E : V — R3 is an envelope of (z,m,s). Then
(E,noe,s0¢e):V —R3x A is a framed surface with the basic invariants

a1 E ap az as a2
big by by b3 Uip, bor
eie | (p)=|e1 ex e3|(e(p) | uep | (), |e2E | )
fiE h 2 fs Apy foE
9k g1 g2 g3 92E

a; a2 as

by by b3 Ulpy

=ler e e3|(e(p) | vz | ()
h o fs Aps
g1 92 g3

and the curvature (JE, KE HE) is given by

@m—fwmwﬂwlwﬂ@

Ulpy  U2p,

+ det (al Z;) (e(p)) det (“1“

as ulpz

A
A
+ det <Z§ Zz) (e(p)) det (“2“ i”) (p),

U2p,

z@@:ww@maGmi%Q@

Uipy  U2p,
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wer (2 2 ey aee (72 3 ) o)
e f u 1 1
T det ( fj) (e(p)) det (u A;) »),

HE(p) =" (e(p)) det (“ “) ®)

Uipy  U2py
1 a1 fi b1 ex Utp,  Apy
g {aer (8 BY e —aen (32 C) o (S )
B 1 as fo . by ez Uzp,  Apy
3ot (22 ) et —aen (32 ) e paee (1 ) o)
Proof. Since FE is an envelope, E,, (p) - n(e(p)) =0 forall p € V and ¢ = 1,2. It fol-

lows that (E,noe,soe):V — R? x Ais a framed surface. By a direct calculation,
we have the basic invariants and the curvature of (F,noe,soe). O

> >

>

REMARK 3.12. By the integrability condition (3.2), if gi(e(p)) = g2(e(p)) =
gs(e(p)) = 0, then Kf(p) =0.

As one of the main results, we have the envelope theorem for one-parameter families
of framed surfaces.

THEOREM 3.13. Let (z,m,8): U x A —R3 x A be a one-parameter family of
framed surfaces with the basic invariants a;,b;, e;, fi, gi,c1, © = 1,2,3. Suppose that
e:V — U X A is a smooth mapping satisfying the variability condition. Then the
following statements are equivalent:

(1) e: V — U x A is a pre-envelope and E : V — R? is an envelope of (x,n, s).
(2) zA(e(p)) - nle(p)) =0 for allpe V.
(3) ci(e(p)) =0 forallpe V.

Proof. Suppose that e is a pre-envelope of (x,n, s). We denote © = (21, z2, x3) and
n = (ny,n2,n3). By a direct calculation, we have

Epi (p) = (m1u1 (e(p))ulpi (p) + T1u, (e(p))U'?Pz' (p) + m1/\(@(1)))>‘Pi (p)a
Tou, (e(P))u1p, (P) + T2u, (e(p))uzp, (p) + z2x(e(p)) Ap, (D),
3u, (€(P))urp, () + T3u, (e(p)up, (p) + 231 (e(p)) Ap; (p)) -

Since Ep, (p) -n(e(p)) =0 for all p € V and i = 1,2, we have

~—

(21, (e(p))n1(e(p) + 2u, (e(p))n2(e(p)) + 3u, (e(p))ns(e(p))) urp, (p)
+ (210, (e(p))n1 (e(p)) + 2u, (e(p))n2(e(p)) + L3u, (e(p))n3(e(p)) ) uzp, (p)
+ (z1a(e(p))ni(e(p)) + zax(e(p))na(e(p)) + zsa(e(p))ns(e(p))) Ap, (p) = 0.

—
—~
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By z,, -n =0 and xz,, - n = 0, we have

(211 (e(p))n1(e(p)) + 2a(e(p))n2(e(p)) + zsa(e(p))ns(e(p))) Ay

(p
i=1,2. By the variability condition, we have x)(e(p))- n(e(p)) =
p € V. The converse is given by a direct calculation. It follows that (1
are equivalent.

Moreover, since @y (u1, w2, A) - n(ug, us, A) = c1(uy, us, A) for all (uq,uz, \) € U x
A, (2) and (3) are equivalent. O

) =

0 for all
) and (2)

Let (z,m,8):U x A — R?x A be a one-parameter family of framed surfaces
with the basic invariants a;, b;, €;, fi, gi,c1, ¢ = 1,2,3. For the tangent plane of x,
spanned by s and ¢, there are other frames by rotations and reflections. We define
(§(u1, U9, )\), t(ul, ug, )\)) SIAN by

S(uy, ug, \) ~[cos O(uy,uz, ) —sinf(uy,usz, \) s(uy, ug, A)
t(uy,ug, N) ) \sin@(uy,ug, \)  cosO(uy,u, ) t(uy,ug, N)
where 6:U x A — R is a smooth function. Then (z,m,38): U x A — R3 x A is

also a one-parameter family of framed surfaces. By a direct calculation, the basic
invariants a;, b;, €;, f;,G,;,¢1 of (x,n,s) are given by

a;cosf —b;sinf,a;sinf + b; cos b, e; cost — f;sinf,
e;sin@ + ficosf,g;, —O0y,,c1, i =1,2,3,

where uz = A. We call the moving frame {n,3,%} a rotated frame along x by 6.
On the other hand, we define (8(uy,us2, A), t(u1,us, ) € A by

S(ug,ug, \) (1 0 cos O(uy,uz, A) —sinf(ug,uz, A) s(ug,ug, A)
Z(Ul,UQ,A) B 0 -1 Sin@(ul,UQ,)\) COS 9(U1,U2,/\) t(ul,u2,)\) ’
where 6: U x A — R is a smooth function. Then (z,m,3):U x A — R3 x A is

also a one-parameter family of framed surfaces. By a direct calculation, the basic
invariants a;, b;, €;, fi, g;, ¢1 of (x,m,s) are given by

a; cos — b; sinf, —a; sinf — b; cos b, e; cos — f;sin b,
—e;sind — ficos@,—g; +0,,,c1, i =1,2,3,
where uz = A\. We call the moving frame {n, s, %} a reflected frame along x by 6.

PrOPOSITION 3.14. Under the above notations, if e : V. — U x A is a pre-envelope
of (x,m,s), thene:V — U x A is also a pre-envelope of (x,m,s) and (x,n,s).

Proof. By theorem 3.13, we have c¢i(e(p)) =0 for all pe V. It follows that
¢i(e(p)) =0 and ¢1(e(p)) = 0 for all p € V. Hence, e is a pre-envelope of (x,n,3)
and (x,n,s). O

It follows that the envelope is independent of rotated frames and reflected frames
of the framed surfaces. Moreover, we demonstrate the envelope is independent of
the parameter change of the framed surfaces.
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Let U be a simply connected domain in R? and A be an interval in R.

DEFINITION 3.15. We say that a map & : UxA—UxA is a one-parameter
family of parameter change if ® is a diffeomorphism of the form ®(vy,vq, k) =

(¢1(’U1’027 k)7 ¢2(U17U27 k)’ @(k))

PROPOSITION 3.16. Let (z,m,8): U x A — R? x A be a one-parameter family of
framed surfaces with the basic invariants a;,bi,e;, fi, gi,c1, i =1,2,3. Suppose
that ® : U x A — U x A is a one-parameter family of parameter change. Then
(,n,8) =(xo®,nod s0®):U x A —R3xA is also a one-parameter family
of framed surfaces with the basic invariants

ay El 0 G1o, P20, O ap by 0
as by 0| = | b1, P20, O az by 0 | o®,
a3 by ¢ b1e dox @) \a3 b3
g1 .]il gl ¢1v1 ¢2U1 0 el fl g1
e fo G| = | Pt P20, O e2 fa ga|o®.
gg ]?L:; gg ¢1k ¢2k 90, €3 f3 93

Moreover, ife: V — U x A is a pre-envelope, E is an envelope, then O loe:V —
U x A is a pre-envelope and E is also an envelope of (Z,m,3).

PTOOf. Since g’vi (1}1, V2, k) = Loy ((I)(vla V2, k))¢1vz (vla V2, k) + Ty, (@(Ulv V2, k))¢2m
(v1,v2, k), @y, (U1, u2, \) - n(ug, ug, \) = 0 for all (uy1,us,A\) € U x Aandi =1,2, we
have &, (v1,v2, k) - (v, v9, k) = 0 for all (v1,vs,k) € U x A and i = 1,2. There-
fore, (Z,m,s) is a one-parameter family of framed surfaces. By a direct calculation,
we have the basic invariants Ei,gi,gi, ﬁ-,ﬁi,a, 1=1,2,3.

By the form of the diffeomorphism ® (v, ve, k) = (¢1(v1, v2, k), p2(v1,v2, k), 0(k)),
P 1:UxA—>UxA is given by the form & !(uy,ug,\) = (1 (us,us, ),
Po(ur,uz, \), o~ 1(N\)) for some smooth functions 7 and 5. It follows

that @' oe(p) = (1 (u1(p), uz(p), A(p)), Y2 (u1(p), u2(p), A(p)), ' (A(p))), where
e(p) = (u1(p), ua(p), \(p)). Since the set of regular points of p~toX:V — A is
dense in V', the variability condition holds. Moreover, we have

Ty (v1,v2, k) - n(vy,v2, k)
= (xy, (P(v1,v2, k)01, (v1, V2, k)T, (P(v1,v2, k)) P2, (v1,v2, k)
+ )\ (P(v1,v2, k)¢ (k) - n(P(v1,v2, k))
= ¢ (k) (®(v1,v2,k)) - n(P(v1, v2, k).
It follows that
z, (@ oe(p)) - (@ oe(p)) = ¢ (¢ (AD))zAle(p) - nle(p)) =0

for all p € V. By theorem 3.13, ® ! oe is a pre-envelope of (Z,7,3). Therefore,
Zod loe=xoPod loe=xo0e=F is also an envelope of (Z,n,3). O
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We give relations between the envelope E of a classical definition by using an
implicit function (definition 3.7) and the envelope E of a one-parameter family of
framed surfaces (definition 3.10).

PROPOSITION 3.17. Let (z,m,s):U x A —R3 x A be a one-parameter family
of framed surfaces. Suppose that F(w,\) =0 is an implicit function satisfying
F(x(uy,uz,\),\) =0 and (Fy,, Fu,, Fus ) (@(u1,u2, \), \) is parallel to n(uy, us, A)
for all (uy,ug,\) €U x A. If e : V — U x A is a pre-envelope and E : V — R3 is
an envelope of (x,m,s), then E(V) C Ey.

Proof. By differentiating F(x(uy, ua, A),\) = 0 with respect to A, we have
Fy,w1x + Fu,wax + Fysw3n + F\ = 0.
By the assumption, there exists a smooth function a : U x A — R such that
(Fuwy s Fuy, Fus ) (x(ug, ug, A), A) = a(ug, ug, \)n(uy, uz, \)

for all (u1,u2,\) € U x A. By theorem 3.13, we have x)(e(p)) - n(e(p)) = 0 for all
p € V. It follows that F)\(x(e(p)), A(p)) = 0 for all p € V. Therefore, E(p) € E; with
respect to A(p) for all p e V. |

PROPOSITION 3.18. Let (z,m,8) : U x A — R? x A be a one-parameter family of
framed surfaces, and let e : V. — U x A be a smooth mapping satisfying the vari-
ability condition. If rank(x,,, y,)(e(p)) = 2 for all p € V and trace of e lies in the
singular set of @, then e is a pre-envelope of (x,n,s) (and E is an envelope).

Proof. Since trace of e lies in the singular set of x, we have the condition

xlul $1U2 Tix
rank | o, Tou, T2 | (e(p)) < 3.
1‘3u1 $3U2 LEDY

By the assumption rank(x,,, .,)(e(p)) = 2, there exist smooth functions «, 3 :
V — R such that x)(e(p)) = a(p)xy, (e(p)) + B(p)xu,(e(p)). Tt follows that
zx(e(p)) - n(e(p)) = 0 for all p € V. Hence, e is a pre-envelope of (x,n, s). O

PROPOSITION 3.19. Let (z,m,s):U x A —R3 x A be a one-parameter family
of framed surfaces. Suppose that F(w,\) =0 is an implicit function satisfying
F(x(ui,uz,\),\) =0 and (Fy,, Fu,, Fus ) (@(u1,u2, \), \) is parallel to n(uy, uz, A)
for all (ui,u2,N) €U x A, and e: V — U x A, e(p) = (u1(p), uz2(p), A(p)) is a
smooth mapping satisfying the wvariability condition. If E(p) =xoe(p) € Ef
with respect to A(p), rank(@y, , Tu,)(e(p)) = 2 and (Fu,, Fu,, Fu,)(x(e(p)), A(p)) #
(0,0,0) for allp € V, then e is a pre-envelope of (x,n,s) (and E is an envelope).
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Proof. By differentiating F'(x(uy, ua, A),\) = 0 with respect to u; (i =1,2) and A,
we have

Fou 1w, + Fuy oy, + FuyT3u;, =0, Fyx1ix + Fu,@ox + Fy,x3x + F) = 0.

Since E(p) € E; with respect to A(p), we have F)(x(e(p)), A(p)) =0 for all p € V.
It follows that

Tluy Tou, T3, Fu, (x(e(p)), AM(p)) 0
LTiuy  T2us; L3us (e(p)) sz (m(e(p)), )‘(p)) =10
Tix  Tax T3 Fuy, (x(e(p)), AMp)) 0

By the assumption (Fi,, Fu,, Fus)(@(e(p)), A(p)) # (0,0,0), we have rank
dx(e(p)) < 3. Tt follows that e(p) belongs to the singular set of x. By Proposition
3.18, e is a pre-envelope of (x,n, s). O

EXAMPLE 3.20. Let (z,m,s) : R? x R — R? x A be

m(ul’u% )‘) = (u% + Aa“%“?)vn(ul,u% )‘)

1
== 7(7311,1,0,2)78(’&1,%@7)\) = (071,0)
u? + 4

Then (x,n,s) is a one-parameter family of framed surfaces and x is a
cuspidal edge for each fixed A € R. By a direct calculation, #(uq,us,\) =

(1/4/9u? +4)(—2,0,—3u;) and the basic invariants are given by
0 0 —up/9u? +4
0 1 0
g = )
L S S
Voui + 4 V9u? + 4
6
O -
9u? + 4
fl = 0 0 0 s fQ = ]:3 =0.
6
- 0
9u? +4

Since @y (u1,ug, A) - n(ug, ug, ) = —3uy/+1/9u? + 4, if we take e:R? — R? x R,
e(p1,p2) = (0, p1,p2), then the variability condition holds and xy(e(p)) - n(e(p)) =
0 for all p= (p1,p2) € R%. By theorem 3.13, e is a pre-envelope and F(p) =
x oe(p) = (p2,p1,0) is an envelope. Hence, xy-plane is an envelope of (x,n,s),
see example 3.8. Moreover, the curvature of the framed surface (E,noe,soe) is
given by (JE, KE HE) = (—1,0,0) by proposition 3.11.
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EXAMPLE 3.21. Let (z,m,s) : R? x R — R3 x A be

x(ur, uo, N) = (ud, ug, ud + N), n(uy, uz, \)
1

= m(—?’woﬂ)ﬁ(ul,uz,ﬂ = (0,1,0).

Then (x,n,s) is a one-parameter family of framed surfaces and x is a
cuspidal edge for each fixed A €R. By a direct calculation, #(uj,u2,\) =
(1/y/9u? + 4)(—2,0, —3uy) and the basic invariants are given by

0 0 7u1\/9u%+4

0 1 0
g = )
2, Bwm
V9u? +4 V9u? +4
6
0 -
ui + 4
Fi= 0 0 0 , Fa=F3=0.
6
- 0
9u? + 4

Since @y (u1,uz,\) - n(ug,ug,\) =2/y/9u? +4#£0 for all (ug,uz,\) € R? x R,
(z,n,s) does not have the envelope E by theorem 3.13. Hence, yz-plane is not
an envelope of (x,n,s), see example 3.9.

4. Two-parameter families of framed surfaces and envelopes

4.1. Two-parameter families of framed surfaces

Let (z,n,8) : U x A — R?® x A be a smooth mapping, where U and A are simply
connected domains in R%. We denote u = (uy,us) € U, A= (A1, \2) € A.

DEFINITION 4.1. We say that (z,m,s) : U x A — R3 x A is a two-parameter family
of framed surfaces if (z(-, A),n(-,A), s(-,A)) is a framed surface for each A € A.

We denote t(u, ) = n(u, \) x s(u, A). Then {n(u,\), s(u,\),t(u,\)} is a moving
frame along x(u, \). For convenient, sometimes we use the notations uz = A\; and
Uy — )\2.

We have the following systems of differential equations:

Loy 0 aq bl n N,
Loy _ 0 as by s s *
Ty c1 az by . ]’ tui
Ly 2 ag by v
n
= (0 € fl —e 0 9i — fz —Yi 0) S, (4 1)
t
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where a;, b;,¢e;, fi,gi,c1,c0 : U — Rji=1,2,3,4 are smooth functions and we call
the functions basic invariants of the two-parameter family of framed surfaces. We
denote the above matrices in equalities (4.1) by G, F;,i = 1,2, 3,4, respectively.
We also call the matrices (G, F1, Fa, F3, Fa) basic invariants of the two-parameter
family of framed surfaces (x,n, s).

Since the integrability conditions @y, = Tu;u, and Fj ., — Fju, = F;Fi —
FiFj, 1,5, k, £ =1,2,3,4, the basic invariants should be satisfied some conditions.
However, we omit them here.

DEFINITION 4.2. Let (z,n,s), (Z,n,3) : U x A — R3 x A be two-parameter fam-
ilies of framed surfaces. We say that (x,nm,s) and (2,n,s) are congruent as
two-parameter families of framed surfaces if there exist a constant rotation A €
SO(3) and a translation a € R? such that

z(u, ) = A(x(u, A) + a,n(u, \) = A(n(u, N)),s(u, \) = A(s(u, \))
for all (u,\) € U x A.

By the similar methods of the one-parameter families of framed surfaces, we have
the existence and uniqueness theorems for the basic invariants of two-parameter
families of framed surfaces.

THEOREM 4.3 (Existence theorem for two-parameters families of framed sur-
faces). Let a;,bi, e, fiygi,c1,c0 : U —Ri=1,2,3,4 be smooth functions with
the integrability conditions. Then there exists a two-parameter family of
framed surface (x,m,s):U x A — R® x A whose associated basic invariants are
ai,bi,ei,fi,gi,cl,CQ, 1= 1,2,3,4.

THEOREM 4.4 (Uniqueness theorem for two-parameters families of framed surfaces).
Let (z,n,s),(x,n,8) : U x A — R3 x A be two-parameter families of framed sur-
faces with the basic invariants (G, F1, Fa, F3,Fa), (G, .%1,.%2,.%3,.%4), respectively.
Then (x,m, s) and (x,n,s) are congruent as two-parameter families of framed sur-
faces if and only if the basic invariants (G, F1, Fo, F3,F4) and (5, .7?1,.7?2,]?3,]?4)
coincide.

4.2. Envelopes of two-parameter families of framed surfaces

Let F': W x A — R be a two-parameter family of functions, where W and A are
simply connected domains in R? and R?. Then one of the classical definitions of an
envelope Fy is as follows. For instance see [2, 3].

DEFINITION 4.5. An envelope Ey of F' is the discriminant set of F, that is, the set
of points given by

Er = {w € R®| for some A = (A1, \2) € A,
F(w,A) = Fi, (w,A) = Fi, (w, A) = 0}.

If F(w,\) = Fy,(w,\) = Fx,(w,\) =0, we say that w € E; with respect to \ =
(A1, A2).
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Let (x,m,8) : U x A — R3 x A be a two-parameter family of framed surfaces. Let
V C R? be an open subset and e : V. — U x A, e(p) = (u1(p), u2(p), \1(p), A2(p)) be
a smooth mapping. We denote £ =z oe:V — R3.

DEFINITION 4.6. We call E an envelope (and e a pre-envelope) for the two-
parameter family of framed surfaces (x,n,s), when the following conditions are
satisfied:

(i) The set of regular points of A:V — A is dense in V. (The variability
condition.)

(ii) Ep,(p) -n(e(p)) =0 for all p=(p1,p2) €V and i=1,2. (The tangency
condition.)

By definition, we have the following result.

PROPOSITION 4.7. Let (z,m,8): U x A — R® x A be a two-parameter family of
framed surfaces with the basic invariants a;, b;, e;, fi, gi,c1,¢2, 1 =1,2,3,4. Suppose
that e : V. — U x A is a pre-envelope and E : V — R3 is an envelope of (x,n,s).
Then (E,noe,s0¢):V — R3 x A is a framed surface.

By a direct calculation, we also have the basic invariants and the curvature of
the framed surface (E,n oe, s oe¢). Here, we omit them.

As one of the main results, we also have the envelope theorem for two-parameter
families of framed surfaces.

THEOREM 4.8. Let (x,mn,8) : U x A — R® x A be a two-parameter family of framed
surfaces with the basic invariants a;,b;,e;, fi, gi,c1,¢2, © =1,2,3,4. Suppose that
e:V — U x A is a smooth mapping satisfying the variability condition. Then the
following statements are equivalent:

(1) e: V — U x A is a pre-envelope and E : V — R? is an envelope of (x,n,s).
(2) zx, (e(p) - n(e(p)) = xxr,(e(p)) - n(e(p)) =0 forallp e V.
(3) c1(e(p)) = ca(e(p)) =0 forallpe V.

Proof. We denote « = (21, 22,23) and n = (n1,n2,n3). Suppose that e is a pre-
envelope of (x,n, s). By a direct calculation, we have

Ep,(p) = (21w, (e(p))u1p, (p) + Z1uy (e(p) ) uzp, (p) + 215, (e(p)) A1p, (P)
+ 15, (e(p))A2p, (P); T2u, (€(p))urp, (P) + T2u, (e(p))uzp, (p)
+ z2x, (6(P))A1p, (P) + Z2x, (€()) A2p, (P), @30, (€(p)) Uy, (P)
+ Zgu, (€(p) ) u2p, (p) + 37, (€()) A1p, (P) + 32, (€(D)) A2p, (),
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i =1,2. Since E,, (p) - n(e(p)) =0 for all p € V, we have
(%10 (e(p))n1(e(p)) + @20, (e(p))n2(e(P)) + T30, (€(p)) s (e(p))) uap, (p)

) )
+ (1uz (e(p))n1 (e(p) + 20, (€(p))n2(e(p)) + T30, (e(p))n3(e(p))) Uz, (P)
+ (15, (e(p))na (e(p) p))nz(e(p)) + 3x, (e(p))ns(e(p))) Awp, (p)
+ (2132 (e(p))n1(e(p) + w21, (e(p))n2(e(p)) + w3x, (e(p))n3(e(p))) A2p; (p) = 0,
t=1,2. By ¢, -n =0 and x,, - n = 0, we have

(Alpl (P)  Aap, (p )) <$A1(6( p)) - n(e(p)) ) <0)

Aipa(P) Aap, () ) \ @, (e(p)) - n(e(p)) 0/

By the variability condition, we have xy, (e(p)) - n(e(p)) = xx,(e(p)) - n(e(p)) =

for all p € V. The converse is given by a direct calculation. Hence, (1) and (2) are

)
(
(
(

)
) + Zax, (6
)

equivalent.
Moreover, since @y, (u,A) - n(u,A) = c1(u, A) and @y, (u, \) - n(u, \) = ca2(u, A)
for all (u,A\) € U x A, (2) and (3) are equivalent. O

Let (z,m,8):U x A — R3 x A be a two-parameter family of framed surfaces
with the basic invariants a;, b;, e;, fi, gi, c1,¢2, © = 1,2,3,4. For the tangent plane
of &(u, \), spanned by s(u A) and t(u, A), there are other frames by rotations and
reflections, where u = (u1,u2), A = (A1, A2). We define (S(u, \), t(u, \)) € A by

3(u, \) cosB(u, ) —sinf(u,\)\ [s(u,\)
tu,N) ) \sinfu,)) cosOu,N) ) \t(u,\) )’
where 6 : U x A — R is a smooth function. Then (z,m,3):U x A — R3 x A is

also a two-parameter family of framed surfaces. By a direct calculation, the basic
invariants a;, b;, €;, f;,G;,¢1,¢2 of (x,n,s) are given by

a;cosf —b;sinf,a;sinf + b; cos 0, e; cos — f;sinf,
e;sinf + ficosb,g; — 0y, c1,c0, 1 =1,2,3,4,

where ug = A1,uy = A2. We call the moving frame {n,s,t} a rotated frame along
x by 0. B
On the other hand, we define (s,t) € A by

S(u, \) (10 cosB(u,A) —sinf(u,A)\ [s(u,N)
tw,))) N0 =1/ \sinf(u,\)  cosO(u,A) ) \#(u,\) )’

where 6:U x A — R is a smooth function. Then (z,n,8): U x A — R3 x A is
also a two-parameter family of framed surfaces. By a direct calculation, the basic
invariants a;, b;, €, fi, g, ¢1, C2 of (x,n,s) are given by

a; cosf —b;sinf, —a; sinf — b; cos,e; cosf — f;sinf, —e; sinf — f; cos,
— 3g; +9U7‘,7017027 i = 1,2,3,4,

where uz = A1, uy = Ao. We call the moving frame {n,E,Z} a reflected frame along
x by 0. By theorem 4.8, we have the following result.

https://doi.org/10.1017/prm.2020.71 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2020.71

1532 M. Takahashi and H. Yu

PRrROPOSITION 4.9. Under the above notations, if e: V — U x A is a pre-envelope
of (,m,s), thene:V — U X A is also a pre-envelope of (x,m,8) and (x,n,s).

It follows that the envelope is independent of rotated frames and reflected frames
of the framed surfaces. Moreover, we demonstrate the envelope is independent of
the parameter change of the framed surfaces.

Let U and A be simply connected domains in R2.

DEFINITION 4.10. We say that a map ®: UxA—UxA is a two-parameter
family of parameter change if ® is a diffeomorphism of the form ®(v,k) =

(¢1(v, k), d2(v, k), p1(k), p2(k)), where v = (vi,v2), k = (k1, k2).
Then we have the following result by the similar calculation of proposition 3.16.

PROPOSITION 4.11. Let (z,m,8) : U x A — R3 x A be a two-parameter family of
Jramed surfaces with the basic invariants a;, b, e;, fi, gi,c1,¢2, © = 1,2,3,4. Sup-
pose that ® : U x A — U x A is a_two-parameter family of parameter change. Then
(Z,n,8) =(xo®nod sod): U xA—R>xA is also a two-parameter family
of framed surfaces with the basic invariants

@ b 0 1o, b2 0 0\ far b

a by 0 | P P20, O 0 az by <I>
a3 by a | | d b w1k Pom a3 bz c o
Gs by G Plks P2k Plhks P2ks) \Ga bs c2

a fi o G1o, P20, O 0 er fi g

& 2 G | P P20, O 0 ez fa g2 -
es fs 03 Ok, Dok, Pik, P2k, es f3 g3

e f1 D1ky  P2ky  Pika P2ke) \€a fi1 Ga

Moreover, ife: V — U x A is a pre-envelope, E is an envelope, then o loe:V —
U x A is a pre-envelope and E is also an envelope of (Z,m,s).

We can also give relations between the envelope Ej of a classical definition by
using an implicit function (definition 4.5) and the envelope E of a two-parameter
family of framed surfaces (definition 4.6). By the similar calculations of propositions
3.17-3.19, we have the following results.

PROPOSITION 4.12. Let (z,m,8):U x A — R3>x A be a two-parameter family
of framed surfaces. Suppose that F(w,\) =0 is an implicit function satisfy-
ing Fx(u,\),\) =0 and (Fuy,, Fu,, Fuw,)(x(u, A),A) is parallel to n(u, \) for all
(u,\) €U x A. Ife: V — U x A is a pre-envelope and E : V — R? is an envelope
of (x,m,s), then E(V) C E.

PROPOSITION 4.13. Let (z,m,s) : U x A — R3 x A be a two-parameter family of
framed surfaces, and let e : V — U x A be a smooth map satisfying the variability
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condition. If rank(xy, , @, )(e(p)) = 2 for allp € V and trace of e lies in the singular
set of @, then e is a pre-envelope of (x,n,s) (and E is an envelope).

PROPOSITION 4.14. Let (z,m,s8):U x A —R3 x A be a two-parameter fam-
ily of framed surfaces. Suppose that F(w,\) =0 is an implicit function sat-
isfying F(x(u,A),A) =0, (Fuy, Fuys Fug)(@®(u,X),\) is parallel to n(u,\) for
all (u,\)eUxA, and e:V —-Ux A, e(p) = (u(p),\(p)) is a smooth map-
ping salisfying the variability condition. If E(p) =z oe(p) € Er with respect to
AP), TanK(@, 20) (€(p)) = 2 and (Fu,, Fug, Fug ) (2(e(0); A(p)) # (0,0,0) for all
p €V, then e is a pre-envelope of (x,m,s) (and E is an envelope).

5. Singular solutions of systems of first-order partial differential
equations

As an application of the envelope theorem of one-parameter families of framed
surfaces, we show that the projection of a singular solution of a system of first-order
partial differential equations is an envelope.

We quickly review the theory of systems of first-order partial differential equa-
tions. For more details see [7]. We consider implicit function forms as differential
equations and n = 2,d = 2 in [7]. A system of first-order partial differential equa-
tions (or, briefly, an equation) is a submersion germ (F,G): (J1(R?% R),z2) —
(R%,0) on the 1-jet space of functions of 2-variables. Let @ be a canonical
contact 1-form on J!(R% R) which is given by 0 = dy — p1dz; — podws, where
(21, 2,9, p1,p2) is the canonical coordinate on J!'(R?,R). Let 7:J!(R? R) —
R? x R, 7(w1,22,y,p1,p2) = (T1,72,y) be the canonical projection. We define
a geometric solution of (F,G)=0 to be an immersion germ i: (L,ug) —
((F,G)7%(0),29) such that i*0 =0, that is, a Legendre submanifold which
is contained in (F,G)"'(0). We say that zo is a contact singular point if
9(T,,(F,G)~1(0)) = 0. By a direct calculation, 2 is a contact singular point if
and only if

Foy +pi by Fyy+pokFy Fp, F,
rank <2
Gwl +p1Gy sz +p2Gy Gp1 GPZ

at zp, see [7, proposition 1.2]. We denote the set of contact singular points by
Y.(F,G). We say that an equation (F,G) = 0 is involutory at z € ((F,G)71(0), z0)
if there is a Legendrian submanifold L tangent to ((F,G)'(0),20) at z. We
say that an equation (F,G) =0 is involutory if it is involutory at any point of
((F,G)71(0), z0). Then (F,G) = 0 is involutory if and only if

[F7G] = FG?J - GFy +F$1Gp1 - Fp1G11 +FI2GP2 - szG«’Ez
+p1(FyGp, — GyFp,) +pa(FyGp, — Gy, ) =0

for any 2 € (F,G)71(0), see [7,10].
Since single equations are automatically involutory, the notion of involutory is

essential for overdetermined systems of first-order partial differential equations
(cf. [10]).
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An equation (F,G) = 0 is said to be completely integrable at zy if there exists a
foliation by geometric solutions on (F,G)~*(0) around z, that is, there exists an
immersion germ I' : (R? x R, (ug, cp)) — ((F, G)~1(0), 20) such that T'(-, ¢) is a geo-
metric solution of F' = 0 for each ¢ € (R, ¢p). This means that T is a one-parameter
family of Legendre immersions. In this case, such a foliation is called a complete
solution of (F,G) =0 at z.

A geometric solution i : (L,ug) — ((F,G)~1(0),20) of (F,G) = 0 is called a sin-
gular solution of (F,G) = 0 at z if for any representative i : U — (F,G)~1(0) of i
and any open subset UcuU , Z|[~] is not contained in a leaf of any complete solutions
of (F,G) = 0.

Then we have the following results.

THEOREM 5.1 [7]. Let (F,G) : (J}(R?%,R),29) — (R?,0) be a system of first-order
partial differential equation germs. Then (F,G) =0 is completely integrable at
20 if and only if (F,G) =0 is involutory, and S.(F,G) =0 or X.(F,G) is a 2-
dimensional submanifold around zy. Moreover, if ¥.(F,G) # 0, then X.(F,G) is a
singular solution of FF =0 at zg.

PROPOSITION 5.2. Let (F,G): (JY(R% R), 29) — (R%0) be a system of first-
order partial differential equation germs. Suppose that T : (R? x R, (ug,co)) —
((F,G)~Y0), z0) is a complete solution of (F,G) =0 at zg. Then (z,n,s): (R? x
R, (ug,co)) — R3 x A is a one-parameter family of framed surfaces, where

x(uy,us,c) = o [(uy,us,c),
- - 1
n(ul,u2,c): ( p21(U17U270)7 1022('“1’“270)» )’
\/pl(u17u27c)+p2(u17u2>c)+1
(07lap2(u17u270))
1+p%(u1,u2,c)

s(ug,ug,c) =

and
F(u17u27c) = (xl(ula uz, C)7x2(ulau27 C)vy(ula uz, C)7p1(u1au2a C),pg(’ltl,'UQ, C))

Proof. Since I' is a complete solution of (F,G) = 0, we have I';, § = 0and I'; 6 =0
for fixed ¢ € (R, ¢p), that is,

Yu, (U1, Uz, €) — p1(ur, ug, €)1y, (U1, U2, ¢) — pa(u1, U2, €)Tay, (U1, ug, ¢) =0,

i=1,2. It follows that x,, (u1,ua,c) - n(uy,uz,c) =0 for all (ug,us,c) € (R? x R,
(uo, co)) and ¢ = 1,2. By definition, n(uy, us,c) - s(u1, uz,c¢) = 0 for all (u, us,c) €
(R? x R, (ug, co)). Hence, (z,m, s) is a one-parameter family of framed surfaces. [J

By using the envelope theorem (theorem 3.13), we have the following result.

THEOREM 5.3. Under the same assumptions in proposition 5.2, e: (R? qo) —
(R? x R, (ug,cq)) is a smooth mapping satisfying the variability condition. Then
e is a pre-envelope and E = x o e is an envelope of (x,m,s) if and only if E(q) €
7(X(F, G)) for all ¢ € (R?, q).
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Proof. By theorem 5.1, X.(F,G) is a 2-dimensional manifold around z; and a
singular solution of (F,G) = 0 at zy. Since (F,G) is a submersion at zg € %.(F, G),
F, #0or G, # 0 at zo. Without loss of generality, we may consider the following
cases:

(2) Fy#07 Gpl 7&0

at zg.
For the first case (1), we assume that

F(mlax2ayaplap2) =Y + f(anp17p2)a G(xlnyay7p1)p2) = —I + 9(1’2’]71’272)
by using implicit function theorem. Then we have

Z/(Ul,u%f?) = f(332(U17U27C)7P1(U1,U2,0)7]72(“1,UQ,C))v

71 (u1, uz,c) = g(wa(ur,uz, c), p1(u, uz, c), p2(u, uz, c)). (5.1)
It follows that
Ye = f:chZC + fp1p1c + fp2p267 Tic = Gz T2c + 9p,1P1c + 9paP2c-

Then we have

1
T M = ————(—P1(gr,T2c + gp,P1c + Gp,D2c)
’ p+ps+1 T
—P2T2¢ + fm21'26 + fplplc + fszQc)
1

————— ((—P192s — P2+ f2,) T2
Vpi+ps+1 ’ ’

+(=p19p, + for)P1c + (=P19ps + fpo)D2e) -
If e is a pre-envelope and E = x o e is an envelope of (x,n, s), then
((_plgmz —p2+ fzg)xQC + (_plgm + fp1 )plc + (_plgpz + fpz )p2c) (e(Q)) =0

for all ¢ € (R?,q) by theorem 3.13. Moreover, since I' is a complete solution and
equations (5.1), we have

Yus = P1T1uy + P2T2u15 Yus = P1T1uy T P2T2usy,
Yu, = f12x2u1 + fp1p1u1 + fp2p2u17 Yuy = frg$2u2 + fp1p1u2 + fp2p21L27

Tluy = Gz2%2u; + Ip1Plus + GpaP2urs Tlus = GzaT2us + IpiPlus + IpaP2us-

It follows that

(_plgaﬁz —p2+ facg)x2u1 + <_plgp1 + f;lh )plul =+ (_plgpz =+ fp2)p2u1 =0,
(=P19ay — P2 + fr2)T2uy + (=P19py + [p1)Prus + (=P19ps + fpa)P2us = 0.
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Hence, we have
L2uy;  Pluy  P2u,y

Tous Plus P2us | (—P192s — P2+ fan — P1Gpy + for — P19ps + [pa) (e(q))

T2c Pic P2c
0
=10
0
Since I' is an immersion, we have

(=P192> = P2+ fa3)(e(q)) = 0, (=P19p, + fp)(e(@)) = 0, (=P1gps + fro)(e(q)) = 0
for all ¢ € (R?,qo). By the definition of the contact singular set ¥.(F,G), if z €

Y.(F,G), then
rank —P1 .f332 — P2 fp1 fpz (Z) <9
-1 Gz Ipr  9p2

It follows that E(q) € m(3.(F,Q)) for all ¢ € (R?, qp).

Conversely, if E(q) € m(Z.(F,G)) for all ¢ € (R?,qp), then z.(e(q)) - n(e(q)) = 0
for all ¢ € (R2,0). By theorem 3.13, e is a pre-envelope of (z,n, s).

For the cases (2), we assume that

F(x1,22,y,p1,02) = =y + f(x1,22,p2), G(z1,22,Y,p1,p2) = —p1 + g(x1, 22, D2)

by using implicit function theorem. Then we have

y(UhUQ, C) = f(xl(ulau% C),3?2(“17”27C),pQ(uhumc))a
p1(u1,uz, ) = g(w1(ur, uz, c), v2(u1, ug, ), p2(u1, uz, c)). (5.2)

It follows that

Ye = lexlc + f:anQc + fpzp2¢:~

Then we have

1
\/j (_plxlc — P2Z2¢ + frlxlc + f:EQch + fszZc)

pi+pi+1

\/17 ((_pl + fﬂm)xlc + (_pQ + flz)JZQc + fp2p2c) .

pI+pi+1

T, -n=

If e is a pre-envelope and F = x o ¢ is an envelope of (x,n, s), then

((=p1 + fa)T1c + (P2 + foy)T2c + frop2e) (€(q)) =0

for all ¢ € (R?,qg) by theorem 3.13. Moreover, since I' is a complete solution and
equations (5.2), we have

Yu; = P1T1u; + P2T2uy Yus = P1T1us T D2T2us,

yu1 = f:clxlul + fZL’Q:EQ’U.l + fp2p2u17 yug = fx1x1u2 + fznguQ + fp2p2u2~
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It follows that

(_pl + fwl )xlul + (_pQ + fmz)l‘Qul + fp2p2u1 = Oa
(_pl + fm1)m1u2 + (_p2 + fIQ)l'Quz + fp2p2u2 =0.

Hence, we have

0
xlul xQUI p2u1 —P1 + fwl — P2 + f.’L'z
xlUQ x2u2 p2u2 f (e(q)) = 0
Tic T2c D2c P2 0

Since I' is an immersion, we have

(=p1 + far)(e(q)) = 0, (=p2 + fz,)(e(q)) = 0, fp,(e(q)) =0

for all ¢ € (R?,qp). By definition of the contact singular set ¥.(F,G), if z €
Y. (F,G), then

Ty T2 T 0
rank f 1 p1 f 2 b2 fpz (Z) <92
gm’l gl’z -1 gp2

It follows that E(q) € m(3.(F,Q)) for all ¢ € (R?, qp).
Conversely, if E(q) € m(2.(F,Q)) for all ¢ € (R?,qp), then z.(e(q)) - n(e(q)) =0
for all ¢ € (R?,0). By theorem 3.13, e is a pre-envelope of (z,n, s). O

EXAMPLE 5.4. Let (F,G) : J}(R?,R) — R? be

3
2
F(x17$2>y7p17p2> =Y + (3p1> B G(xlamQayaplaPQ) = P2
Then a complete solution I' : R? x R — (F,G)~1(0) is given by

3
[(uy,ug,c) = (u% + ¢, uz,u‘;’, 2u1,0) .

By proposition 5.2, (z,mn,s) : R? x R — R3 x A,

m(ul,U27C) = (U% +c, UQ,U?),TL('UJ,U,Q,C)

1
= ——(—3u1,0,2), s(ur,us,c) = (0,1,0)

V9u? +4

is a one-parameter family of framed surfaces. In this case, 3 (F,G) =
{(21,22,0,0,0)} is a 2-dimensional manifold. By theorem 5.3, xy-plane is an
envelope of (x,n,s), see example 3.20.
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EXAMPLE 5.5. Let (F,G) : JL(R? R) — R? be

2
2
F(x1,22,y,p1,02) = —x1 + <3p1> , G(x1,22,Y,p1,p2) = P2-

Then a complete solution I' : R? x R — (F,G)~1(0) is given by
2 3 3
F(u17u256) = ul?u2aul+c7§ula0 :

By proposition 5.2, (z,mn,8) : RZ x R — R3 x A,

x(u,uz, c) = (Ul ug, us + c), n(uy, uz, c)

1
= ——(—3u1,0,2), s(uy,us,c) = (0,1,0)

V9ui +4

is a one-parameter family of framed surfaces. In this case, X.(F,G) = (. Hence,
(z,m,s) does not have the envelope E by theorem 5.3, see example 3.21.

6. Singular solutions of single first-order partial differential equations

As an application of the envelope theorem of two-parameter families of framed sur-
faces, we show that the projection of a singular solution of a single first-order partial
differential equation is an envelope. In [13], under a condition, it could be proved
that the projection of a singular solution of a single completely integrable first-
order partial differential equation is an envelope. However, we can prove without
the condition X.(F) = X, (F') in this paper.

We quickly review the theory of first-order partial differential equations. For more
details see [8].

An equation is a submersion germ F : (J'(R2%,R),2) — (R,0). We define a
geometric solution of F =0 to be an immersion germ i: (L,ug) — (F~1(0), 20)
of a 2-dimensional manifold such that ¢*6 =0, that is, a Legendre submani-
fold which is contained in F~1(0). We say that zy is a contact singular point if
0(T., F~1(0)) = 0. It is easy to see that zq is a contact singular point if and only
it F=F, =Fy,, =F, +pi1Fy=F,, +pF, =0 at z5. We also say that z, is a
m-singular point if F' = F, = F,, =0 at 2. We denote the set of contact singular
points by X.(F'), the set of m-singular points by ¥, (F).

An equation F =0 is said to be completely integrable at zy if there exists a
foliation by geometric solution on F~1(0) around zg, that is, there exists an immer-
sion germ T : (R? x R2, (ug, cp)) — (F~1(0), 20) such that T'(-, ¢, ¢2) is a geometric
solution of F' = 0 for each (c1,c2) € (R?,¢g). This means that T is a two-parameter
family of Legendre immersions. In this case, such a foliation is called a complete
solution of FF =0 at zq.

A geometric solution i : (L,ug) — (F~1(0), z9) of F = 0 is called a singular solu-
tion of F = 0 at z if for any representative i : U — F~1(0) of i and any open subset
Uc U, 7|(7 is not contained in a leaf of any complete solutions of F' = 0.

Then we have the following results.
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THEOREM 6.1 [8]. Let F : (J1(R% R),z) — (R,0) be a first-order partial differ-
ential equation germs. Then F =0 is completely integrable at zy if and only
if Y(F)=10 or X.(F) is a 2-dimensional submanifold around zy. Moreover, if
Y.(F) #0, then £.(F) is a singular solution of F =0 at z.

PROPOSITION 6.2. Let F: (JY(R?,R), 29) — (R,0) be a first-order partial differ-
ential equation germs. Suppose that T : (R? x R?, (ug,co)) — (F~1(0),20) is a
complete solution of F =0 at zg. Then (z,n,s): (R? x R2, (ug,cp)) — R3 x A is
a two-parameter family of framed surfaces, where

x(u1, ug,c1,c2) = o I'(u1, uz, 1, c2),

- - 1
’n(ul,UQ,Cl,Cg) _ ( pzl(u17u27cl702)7 ]922(1/61,’112,61,62)7 )7
VD3 (u1, us, c1, ) + p3(ur, ug, c1,c2) + 1

(0,1, p2(ur,u2,c1,¢2))
V1 + p3(ur,uz, e, c2)

S(U1,U2701,C2) =

and
[(uy, ug, c1,c0) = (21 (u, uz, c1, c2), 2(u1, uz, 1, c2), y(ur, uz, c1, c2),
p1(u,uz,c1,c2), pa(ur, uz, c1, c2)).
Proof. Since I is a complete solution of F' = 0, we have I';, § =0 and I';_6 = 0 for
fixed (c1,c2) € (R%,¢p), that is,
Yu, (U1, u2, 1, 02) — p1(ur, us, c1, ¢2) 1, (w1, u2, €1, €2)
— pa(uy, uz, ci, 62)5621“, (u1,uz,c1,c2) =0,

i = 1,2. It follows that @, (u1, uz, c1, c2) - n(uy, uz, c1, c2) = 0 for all (uy,us,c1,c2) €
(R? x R2, (ug, o)) and i = 1,2. By definition, n(uy,us,c1,co) - s(uy,us, cy,cz) =
0 for all (ug,us,ci,ca) € (R? x R? (ug,co)). Hence, (x,n,s) is a two-parameter
family of framed surfaces. (]

By using the envelope theorem (theorem 4.8), we have the following result.

THEOREM 6.3. Under the same assumptions in proposition 6.2, suppose that e :
(R2,q0) — (R? x R2, (ug, co)) is a smooth mapping satisfying the variability condi-
tion. Then e is a pre-envelope and E = x o e is an envelope of (x,n,s) if and only

if E(q) € n(Xc(F)) for all ¢ € (R?,qo).

Proof. By theorem 6.1, £.(F) is a 2-dimensional manifold around zy and a singular
solution of F'=0 at zp. Since F' is a submersion at zy € X.(F), F, #0 at z.
Therefore, we may assume that

F(x1,22,y,p1,p2) = —y + f(21,72,p1,P2)
by implicit function theorem. Since

y(UhUQ,Cl,CQ) = f(xl(ulﬂluQv61782)"1:2(11“17”2561762)7 (61)

pl(u1, Uz, C1, 02),1?2(“17112701702))7
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we have ye, = fz,T1c, + fosT2c, + fpiP1c, + fpoD2c,, and hence

1
L, N = —FF—F—— ((_pl + f:v )mlci + (_PZ + fa: )x2ci + f Pic; + f p2ci) )
p%+p%+1 1 2 P1 p2

i=1,2. If e is a pre-envelope and F = x o e is an envelope of (x,n, s), then
((7p1 + .f-’El)IlCi + (7p2 + fz‘z)IQCq‘, + fP1p107‘, + fP2p261,) (e(Q)) =0

for all ¢ € (R?,qp), i = 1,2 by theorem 4.8. Moreover, since I' is a complete solution
and equation (6.1), we have

yul = plxlul +p2$2ul7 yuz = plxluz +p2x2u27
Yur, = forTruy + fos2uy + fpiPruy + fpoP2us s
Yuy = f:leluQ + fm2x2ug + fp1p1u2 + fp2p2u2'

It follow that

(_pl + fa:1 )xlui + (_p2 + fIz)mQ’U«i + fplplui + fpszui = 07

i = 1,2. Hence, we have

Tluy L2u;  Pluy  P2uy 0
—p1+ [z, — P2+ fu,
Lluy  T2us  Plus  P2us 0
I (e(q)) =
xlCl x?cl p101 p201 0
fpz 0

Tlcy L2cq Picsy DP2c,

Since I' is an immersion, we have

(=p1 + f2,)(e(9)) = 0, (=p2 + fa,)(e(q)) = 0, f, (e(q)) = 0, fp, (e(g)) = 0

for all ¢ € (R?, qp). It follows that E(q) € n(3.(F)) for all ¢ € (R?,qp).
Conversely, if E(q) € m(X.(F)) for all g € (R?,qp), then x,(e(q)) - n(e(q)) =0
for all ¢ € (R?,qp), i = 1,2. By theorem 4.8, e is a pre-envelope of (x,n, s). |

For concrete examples of completely integrable first-order partial differential
equations and their envelopes see [13]. However, these examples satisfied the condi-
tion Xo(F) = S,(F) = {z € JY(R? R)|F(2) = F,, (2) = F,,(2) = 0}. Here we give
an example that X.(F) # X, (F).

EXAMPLE 6.4. Let F : J}(R% R) — R be F(z1,22,y,p1,p2) = —y + p} = 0, where
n > 2 is a natural number. By a direct calculation, we have

EC(F) = {($1,$2,0,0,0)} C ETI’(F) = {(’Il,$2,070,p2)}.
A complete solution I' : R? x R? — F~1(0) is given by

n
n—1

_ n—1 n
I'(uy,ug,c1,c2) = ( uy o+ 017627U17U1,U2> .
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By proposition 6.2, (z,n,s) : R? x R? — R? x A,

n
n—1 n
n—lul +81,62,u1),

x(uy,ug,c1,02) = (

(—Ul, —U2, 1)
W ud 1
(07 1u UZ)

V14 u3

is a two-parameter family of framed surfaces. Since x., -n = x., -n =0 if and
only if u; =ug =0, we take a smooth mapping e:R? — R? x R? e(q1, q2) =
(0,0,q1,92). Then e satisfies the variability condition and hence a pre-envelope
by theorem 4.8. It follows that the envelope E : R? — R3 of (x,n,s) is given by
E(q1,92) =xoelq,q2) = (q1,42,0) € m(X.(F)), see theorem 6.3.

n(U17U2,C1,C2) =

S(U17U2,C1,02) =
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