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In order to investigate envelopes for singular surfaces, we introduce one- and
two-parameter families of framed surfaces and the basic invariants, respectively. By
using the basic invariants, the existence and uniqueness theorems of one- and
two-parameter families of framed surfaces are given. Then we define envelopes of
one- and two-parameter families of framed surfaces and give the existence conditions
of envelopes which are called envelope theorems. As an application of the envelope
theorems, we show that the projections of singular solutions of completely integrable
first-order partial differential equations are envelopes.

Keywords: Envelope; family of framed surfaces; singular solution

2010 Mathematics Subject Classification: Primary 58K05; 57R45; 53A05; 53A55;
35F25; 35F55

1. Introduction

An envelope of a family of surfaces is a surface that is tangent to each member of
the family at some points. If the surfaces are regular, the tangent is well-defined (cf.
[2,3,5,14]). However, for singular surfaces, the classical definitions of envelopes are
vague. In [13], the first author clarified the definition of an envelope for r-parameter
families of frontals and Legendre mappings in the unit tangent bundle over R

n+1.
When r � n, the envelope theorem is applicable. This idea can be applied to an
envelope of a family of singular surfaces. In this paper, we would like to clarify
the definitions of the envelopes for one- and two-parametric surfaces with singular
points in R

3. As singular surfaces, we consider framed (base) surfaces. A framed
surface in the Euclidean space is a smooth surface with a moving frame (cf. [4]).
The framed surfaces may have singularities. It is a generalization of not only regular
surfaces but also frontals at least locally. For the basic results on the singularity
theory see [1,3,6,9].
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In § 2, we quickly review some definitions and theorems of framed surfaces. In
§ 3 and 4, we introduce one- and two-parameter families of framed surfaces and the
basic invariants, respectively. Then we define envelopes of one- and two-parameter
families of framed surfaces. We obtain that the envelopes are also framed base
surfaces. As one of the main results, we give the existence conditions of envelopes
which are called envelope theorems (theorems 3.13 and 4.8). The envelopes are
independent of rotated frames, reflected frames and the parameter change of the
framed surfaces. Moreover, we demonstrate the relations between envelopes of a
classical definition and a family of framed surfaces. As an application of the envelope
theorems, we show that the projections of singular solutions of completely integrable
first-order partial differential equations are envelopes. In § 5, we consider systems of
first-order partial differential equations which correspond to one-parameter families
of framed surfaces. In § 6, we also consider single first-order partial differential
equations which correspond to two-parameter families of framed surfaces. In [13],
under a condition, it could be proved that the projection of a singular solution of a
single completely integrable first-order partial differential equation is an envelope.
However, we can prove without the condition Σc(F ) = Σπ(F ) (theorem 6.3) in this
paper.

All maps and manifolds considered in this paper are differentiable of class C∞.

2. Framed surfaces

We quickly review some definitions and theorems of framed surfaces. For more
details see [4].

Let R
3 be the 3-dimensional Euclidean space equipped with the inner product

a · b = a1b1 + a2b2 + a3b3, where a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R
3. The

norm of a is given by |a| =
√

a · a and the vector product is given by

a × b = det

⎛⎝e1 e2 e3

a1 a2 a3

b1 b2 b3

⎞⎠ ,

where e1,e2,e3 are the canonical basis on R
3. Let S2 be the unit sphere in R

3,
that is, S2 = {a ∈ R

3||a| = 1}. We denote the set {(a, b) ∈ S2 × S2|a · b = 0} by
Δ. Then Δ is a 3-dimensional smooth manifold.

Let U be a simply connected domain in R
2.

Definition 2.1. We say that (x,n, s) : U → R
3 × Δ is a framed surface if

xui
(u1, u2) · n(u1, u2) = 0 for all (u1, u2) ∈ U and i = 1, 2, where xui

(u1, u2) =
(∂x/∂ui)(u1, u2). Moreover, x : U → R

3 is a framed base surface if there exists
(n, s) : U → Δ such that (x,n, s) is a framed surface.

We also say that (x,n) : U → R
3 × S2 is a Legendre surface if xui

(u1, u2) ·
n(u1, u2) = 0 for all (u1, u2) ∈ U and i = 1, 2. Moreover, x is a frontal if there
exists n : U → S2 such that (x,n) is a Legendre surface.

By definition, a framed base surface is a frontal. At least locally, a frontal is a
framed base surface.
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Let (x,n, s) : U → R
3 × Δ be a framed surface. We denote t(u1, u2) =

n(u1, u2) × s(u1, u2). Then {n(u1, u2), s(u1, u2), t(u1, u2)} is a moving frame along
x(u1, u2). We have the following systems of differential equations:

(
xu1

xu2

)
=
(
a1 b1
a2 b2

)(
s
t

)
,

⎛⎝nui

sui

tui

⎞⎠
=
(
0 ei fi − ei 0 gi − fi −gi 0

)⎛⎝n
s
t

⎞⎠ , (2.1)

where ai, bi, ei, fi, gi : U → R, i = 1, 2 are smooth functions and we call the functions
basic invariants of the framed surface. We denote the above matrices in equali-
ties (2.1) by G,Fi, i = 1, 2, respectively. We also call the matrices (G,F1,F2) basic
invariants of the framed surface (x,n, s). Note that (u1, u2) is a singular point of
x if and only if det G(u1, u2) = 0.

Since the integrability conditions xu1u2 = xu2u1 and F2,u1 −F1,u2 = F1F2 −
F2F1, the basic invariants should satisfy the following conditions:⎧⎪⎨⎪⎩

a1u2 − b1g2 = a2u1 − b2g1,

b1u2 − a2g1 = b2u1 − a1g2,

a1e2 + b1f2 = a2e1 + b2f1,

⎧⎪⎨⎪⎩
e1u2 − f1g2 = e2u1 − f2g1,

f1u2 − e2g1 = f2u1 − e1g2,

g1u2 − e1f2 = g2u1 − e2f1.

(2.2)

Definition 2.2. Let (x,n, s), (x̃, ñ, s̃) : U → R
3 × Δ be framed surfaces. We say

that (x,n, s) and (x̃, ñ, s̃) are congruent as framed surfaces if there exist a constant
rotation A ∈ SO(3) and a translation a ∈ R

3 such that

x̃(u1, u2) = A(x(u1, u2)) + a, ñ(u1, u2) = A(n(u1, u2)), s̃(u1, u2) = A(s(u1, u2))

for all (u1, u2) ∈ U .

We have the existence and uniqueness theorems for the basic invariants of
framed surfaces (cf. [4]). For the existence and uniqueness theorems of frontals
see [12].

Theorem 2.3 (Existence theorem for framed surfaces). Let ai, bi, ei, fi, gi : U →
R, i = 1, 2 be smooth functions with the integrability conditions (2.2). Then there
exists a framed surface (x,n, s) : U → R

3 × Δ whose associated basic invariants
are ai, bi, ei, fi, gi, i = 1, 2.

Theorem 2.4 (Uniqueness theorem for framed surfaces). Let (x,n, s), (x̃, ñ, s̃) :
U → R

3 × Δ be framed surfaces with the basic invariants (G,F1,F2), (G̃, F̃1, F̃2),
respectively. Then (x,n, s) and (x̃, ñ, s̃) are congruent as framed surfaces if and
only if the basic invariants (G,F1,F2) and (G̃, F̃1, F̃2) coincide.
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Definition 2.5. We define a smooth mapping CF = (JF ,KF ,HF ) : U → R
3 by

JF = det
(
a1 b1
a2 b2

)
,KF = det

(
e1 f1
e2 f2

)
,

HF = − 1
2

{
det
(
a1 f1
a2 f2

)
− det

(
b1 e1
b2 e2

)}
.

We call CF = (JF ,KF ,HF ) a curvature of the framed surface.

For the properties of the curvature of framed surfaces see [4].

3. One-parameter families of framed surfaces and envelopes

3.1. One-parameter families of framed surfaces

Let (x,n, s) : U × Λ → R
3 × Δ be a smooth mapping, where U is a simply

connected domain in R
2 and Λ is an interval in R.

Definition 3.1. We say that (x,n, s) : U × Λ → R
3 × Δ is a one-parameter family

of framed surfaces if (x(·, λ),n(·, λ), s(·, λ)) is a framed surface for each λ ∈ Λ.

We denote t(u1, u2, λ) = n(u1, u2, λ) × s(u1, u2, λ). Then {n(u1, u2, λ), s(u1, u2, λ),
t(u1, u2, λ)} is a moving frame along x(u1, u2, λ). For convenient, sometimes we use
the notation u3 = λ.

We have the following systems of differential equations:

⎛⎝xu1

xu2

xu3

⎞⎠ =

⎛⎝ 0 a1 b1
0 a2 b2
c1 a3 b3

⎞⎠⎛⎝n
s
t

⎞⎠ ,

⎛⎝nui

sui

tui

⎞⎠
=
(
0 ei fi − ei 0 gi − fi −gi 0

)⎛⎝n
s
t

⎞⎠ , (3.1)

where ai, bi, ei, fi, gi, c1 : U → R, i = 1, 2, 3 are smooth functions and we call the
functions basic invariants of the one-parameter family of framed surfaces. We
denote the above matrices in equalities (3.1) by G,Fi, i = 1, 2, 3, respectively. We
also call the matrices (G,F1,F2,F3) basic invariants of the one-parameter family
of framed surfaces (x,n, s).

Since the integrability conditions xuiuj
= xujui

and Fi,uk
−Fj,u�

= FjFi −
FiFj , i, j, k, � = 1, 2, 3, the basic invariants should be satisfied the following
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conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1u2 − b1g2 = a2u1 − b2g1,

b1u2 − a2g1 = b2u1 − a1g2,

a1e2 + b1f2 = a2e1 + b2f1,

a1u3 − b1g3 = c1e1 + a3u1 − b3g1,

a1g3 + b1u3 = c1f1 + b3u1 + a3g1,

−a1e3 − b1f3 = c1u1 − a3e1 − b3f1,

a2u3 − b2g3 = c1e2 + a3u2 − b3g2,

a2g3 + b2u3 = c1f2 + b3u2 + a3g2,

−a2e3 − b2f3 = c1u2 − a3e2 − b3f2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1u2 − f1g2 = e2u1 − f2g1,

f1u2 − e2g1 = f2u1 − e1g2,

g1u2 − e1f2 = g2u1 − e2f1,

e1u3 − f1g3 = e3u1 − f3g1,

f1u3 − e3g1 = f3u1 − e1g3,

g1u3 − e1f3 = g3u1 − e3f1,

e2u3 − f2g3 = e3u2 − f3g2,

f2u3 − e3g2 = f3u2 − e2g3,

g2u3 − e2f3 = g3u2 − e3f2.

(3.2)

Definition 3.2. Let (x,n, s), (x̃, ñ, s̃) : U × Λ → R
3 × Δ be one-parameter fam-

ilies of framed surfaces. We say that (x,n, s) and (x̃, ñ, s̃) are congruent as
one-parameter families of framed surfaces if there exist a constant rotation A ∈
SO(3) and a translation a ∈ R

3 such that

x̃(u1, u2, λ) = A(x(u1, u2, λ)) + a, ñ(u1, u2, λ)

= A(n(u1, u2, λ)), s̃(u1, u2, λ) = A(s(u1, u2, λ))

for all (u1, u2, λ) ∈ U × Λ.

We have the existence and uniqueness theorems for the basic invariants of one-
parameter families of framed surfaces.

Theorem 3.3 (Existence theorem for one-parameter families of framed surfaces).
Let ai, bi, ei, fi, gi, c1 : U × Λ → R, i = 1, 2, 3 be smooth functions with the integra-
bility conditions (3.2). Then there exists a one-parameter family of framed surfaces
(x,n, s) : U × Λ → R

3 × Δ whose associated basic invariants are ai, bi, ei, fi, gi, c1,
i = 1, 2, 3.

Proof. We denote that M(3) is the set of 3 × 3 matrices and I3 is the identity
matrix. Choose any fixed value (u10 , u20 , u30) ∈ U × Λ. We consider an initial value
problem,

Fui
(u1, u2, u3) = Fi(u1, u2, u3)F (u1, u2, u3), i = 1, 2, 3, F (u10 , u20 , u30) = I3,

where F (u1, u2, u3) ∈M(3). By the integrability conditions Fi,uk
−Fj,u�

= FjFi −
FiFj , i, j, k, � = 1, 2, 3, we have Fu1u2 = Fu2u1 , Fu1u3 = Fu3u1 and Fu2u3 = Fu3u2 .
Since U × Λ is simply connected, there exists a solution F (u1, u2, u3). Since
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Fi(u1, u2, u3) ∈ o(3), we have

∂

∂ui

(
(F t)F

)
=
(

∂

∂ui
F

)t

F +
(
F t
) ∂

∂ui
F =

(
(FiF )t

)
F +

(
F
)t(FiF

)
= (F t)

(
(Fi)t + Fi

)
F = F t · 0 · F = 0,

i = 1, 2, 3. It follows that (F (u1, u2, u3)t)F (u1, u2, u3) is constant. Therefore, we
have

(F (u1, u2, u3)t)F (u1, u2, u3) = (F (u10 , u20 , u30)
t)F (u10 , u20 , u30) = I3.

We set F (u1, u2, u3) =
(
n(u1, u2, u3), s(u1, u2, u3), t(u1, u2, u3)

)t. Since (∂/∂ui)
(detF (u1, u2, u3)) = 0, i = 1, 2, 3, we have detF (u1, u2, u3) = detF (u10 , u20 , u30) =
detI3 = 1. Hence, F (u1, u2, u3) is a special orthogonal matrix. Then t(u1, u2, u3) =
n(u1, u2, u3) × s(u1, u2, u3). Next we consider differential equations

xu1 = a1s + b1t, xu2 = a2s + b2t, xu3 = c1n + a3s + b3t.

By the integrability conditions xuiuj
= xujui

, i, j = 1, 2, 3, there exists a solu-
tion x(u1, u2, u3). It follows that (x,n, s) : U × Λ → R

3 × Δ is a one-parameter
family of framed surfaces whose associated basic invariants are ai, bi, ei, fi, gi, c1,
i = 1, 2, 3. �

Lemma 3.4. If (x,n, s) and (x̃, ñ, s̃) are congruent as one-parameter families of
framed surfaces, then (G,F1,F2,F3) = (G̃, F̃1, F̃2, F̃3).

Proof. By definition 3.2 and a direct calculation, we obtain the lemma. �

Lemma 3.5. If (G,F1,F2,F3) = (G̃, F̃1, F̃2, F̃3) and (x,n, s)(u10 , u20 , u30) =
(x̃, ñ, s̃)(u10 , u20 , u30) for a point (u10 , u20 , u30) ∈ U × Λ, then (x,n, s) = (x̃, ñ, s̃).

Proof. Firstly, we show (n, s, t) = (ñ, s̃, t̃), where t = n × s and t̃ = ñ × s̃. We
define a function f : U × Λ → R by

f(u1, u2, u3) = n(u1, u2, u3) · ñ(u1, u2, u3)

+ s(u1, u2, u3) · s̃(u1, u2, u3) + t(u1, u2, u3) · t̃(u1, u2, u3).

By the definition of the basic invariants, we have

fui
=(ei − ẽi)(s · ñ) + (ẽi − ei)(n · s̃) + (fi − f̃i)(t · ñ) + (f̃i − fi)(n · t̃)

+ (gi − g̃i)(t · s̃) + (g̃i − gi)(s · t̃),

i = 1, 2, 3. By the assumption Fi = F̃i, we have fui
(u1, u2, u3) = 0 for all

(u1, u2, u3) ∈ U × Λ and i = 1, 2, 3. Moreover, by the assumption (x,n, s)
(u10 , u20 , u30) = (x̃, ñ, s̃)(u10 , u20 , u30), we have f(u10 , u20 , u30) = 3. It concludes
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that f(u1, u2, u3) = 3 for all (u1, u2, u3) ∈ U × Λ. Hence, we have n · ñ = s · s̃ =
t · t̃ = 1. It follows that n(u1, u2, u3) = ñ(u1, u2, u3), s(u1, u2, u3) = s̃(u1, u2, u3)
and t(u1, u2, u3) = t̃(u1, u2, u3) for all (u1, u2, u3) ∈ U × Λ.

Next, we show x = x̃. By the assumption G = G̃, we have xu1 = a1s +
b1t = ã1s̃ + b̃1t̃ = x̃u1 , xu2 = a2s + b2t = ã2s̃ + b̃2t̃ = x̃u2 and xu3 = c1n + a3s +
b3t = c̃1ñ + ã3s̃ + b̃3t̃ = x̃u3 . Then, we have (x − x̃)ui

= 0, i = 1, 2, 3. Since
x(u10 , u20 , u30) = x̃(u10 , u20 , u30), we have x(u1, u2, u3) = x̃(u1, u2, u3) for all
(u1, u2, u3) ∈ U × Λ. Therefore, we have (x,n, s) = (x̃, ñ, s̃). �

Theorem 3.6 (Uniqueness theorem for one-parameter families of framed surfaces).
Let (x,n, s), (x̃, ñ, s̃) : U × Λ → R

3 × Δ be one-parameter families of framed sur-
faces with the basic invariants (G,F1,F2,F3), (G̃, F̃1, F̃2, F̃3), respectively. Then
(x,n, s) and (x̃, ñ, s̃) are congruent as one-parameter families of framed surfaces
if and only if the basic invariants (G,F1,F2,F3) and (G̃, F̃1, F̃2, F̃3) coincide.

Proof. By lemma 3.4, we have the necessary condition.
Conversely, for a fixed point (u10 , u20 , u30) ∈ U × Λ, there exist A ∈ SO(3) and

a ∈ R
3 such that

(x̃, ñ, s̃)(u10 , u20 , u30) = (Ax + a, An, As)(u10 , u20 , u30).

By lemmas 3.4 and 3.5, (x,n, s) and (x̃, ñ, s̃) are congruent as one-parameter
families of framed surfaces. �

3.2. Envelopes of one-parameter families of framed surfaces

Let F : W × Λ → R be a one-parameter family of functions, where W is a sim-
ply connected domain in R

3 and Λ is an interval in R. Then one of the classical
definitions of an envelope EI is as follows. For instance see [2,3].

Definition 3.7. An envelope EI of F is the discriminant set of F , that is, the set
of points given by

EI = {w ∈ R
3 | for some λ ∈ Λ, F (w, λ) = Fλ(w, λ) = 0}.

If F (w, λ) = Fλ(w, λ) = 0, we say that w ∈ EI with respect to λ.

Example 3.8. Let F : R
3 × R → R, F (w1, w2, w3, λ) = (w1 − λ)3 − w2

3 be a one-
parameter family of functions. Then F = 0 is the image of a cuspidal edge for
each fixed λ ∈ R. For the definition and properties of cuspidal edges see [4,11].
Since Fλ(w1, w2, w3, λ) = −3(w1 − λ)2, the envelope of the family F is given by
EI = {(λ,w2, 0)} = xy-plane.

Example 3.9. Let F : R
3 × R → R, F (w1, w2, w3, λ) = w3

1 − (w3 − λ)2 be a one-
parameter family of functions. Then F = 0 is the image of a cuspidal edge for each
fixed λ ∈ R. Since Fλ(w1, w2, w3, λ) = 2(w3 − λ), the envelope of the family F is
given by EI = {(0, w2, λ)} = yz-plane.
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However, in the sense of the limit tangent plane of the cuspidal edge, yz-plane is
not tangent to the cuspidal edges, see [13]. Therefore, we would like to distinguish
them as envelopes. See examples 3.20 and 3.21.

Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family of framed surfaces

with the basic invariants (G,F1,F2,F3). Let V ⊂ R
2 be an open subset and e : V →

U × Λ, e(p) = (u1(p), u2(p), λ(p)) be a smooth mapping. We denote E = x ◦ e :
V → R

3.

Definition 3.10. We call E an envelope (and e a pre-envelope) for the one-
parameter family of framed surfaces (x,n, s), when the following conditions are
satisfied.

(i) The set of regular points of λ : V → Λ is dense in V . (The variability
condition.)

(ii) Epi
(p) · n(e(p)) = 0 for all p = (p1, p2) ∈ V and i = 1, 2. (The tangency

condition.)

By definition, we have the following result.

Proposition 3.11. Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family of

framed surfaces with the basic invariants ai, bi, ei, fi, gi, c1, i = 1, 2, 3. Suppose that
e : V → U × Λ is a pre-envelope and E : V → R

3 is an envelope of (x,n, s). Then
(E,n ◦ e, s ◦ e) : V → R

3 × Δ is a framed surface with the basic invariants⎛⎜⎜⎜⎜⎝
a1E

b1E

e1E

f1E

g1E

⎞⎟⎟⎟⎟⎠ (p) =

⎛⎜⎜⎜⎜⎝
a1 a2 a3

b1 b2 b3
e1 e2 e3
f1 f2 f3
g1 g2 g3

⎞⎟⎟⎟⎟⎠ (e(p))

⎛⎝u1p1

u2p1

λp1

⎞⎠ (p),

⎛⎜⎜⎜⎜⎝
a2E

b2E

e2E

f2E

g2E

⎞⎟⎟⎟⎟⎠ (p)

=

⎛⎜⎜⎜⎜⎝
a1 a2 a3

b1 b2 b3
e1 e2 e3
f1 f2 f3
g1 g2 g3

⎞⎟⎟⎟⎟⎠ (e(p))

⎛⎝u1p2

u2p2

λp2

⎞⎠ (p)

and the curvature (JF
E ,K

F
E ,H

F
E ) is given by

JF
E (p) =JF (e(p)) det

(
u1p1 u2p1

u1p2 u2p2

)
(p)

+ det
(
a1 b1
a3 b3

)
(e(p)) det

(
u1p1 λp1

u1p2 λp2

)
(p)

+ det
(
a2 b2
a3 b3

)
(e(p)) det

(
u2p1 λp1

u2p2 λp2

)
(p),

KF
E (p) =KF (e(p)) det

(
u1p1 u2p1

u1p2 u2p2

)
(p)
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+ det
(
e1 f1
e3 f3

)
(e(p)) det

(
u1p1 λp1

u1p2 λp2

)
(p)

+ det
(
e2 f2
e3 f3

)
(e(p)) det

(
u2p1 λp1

u2p2 λp2

)
(p),

HF
E (p) =HF (e(p)) det

(
u1p1 u2p1

u1p2 u2p2

)
(p)

− 1
2

{
det
(
a1 f1
a3 f3

)
(e(p)) − det

(
b1 e1
b3 e3

)
(e(p))

}
det
(
u1p1 λp1

u1p2 λp2

)
(p)

− 1
2

{
det
(
a2 f2
a3 f3

)
(e(p)) − det

(
b2 e2
b3 e3

)
(e(p))

}
det
(
u2p1 λp1

u2p2 λp2

)
(p).

Proof. Since E is an envelope, Epi
(p) · n(e(p)) = 0 for all p ∈ V and i = 1, 2. It fol-

lows that (E,n ◦ e, s ◦ e) : V → R
3 × Δ is a framed surface. By a direct calculation,

we have the basic invariants and the curvature of (E,n ◦ e, s ◦ e). �

Remark 3.12. By the integrability condition (3.2), if g1(e(p)) = g2(e(p)) =
g3(e(p)) = 0, then KF

E (p) = 0.

As one of the main results, we have the envelope theorem for one-parameter families
of framed surfaces.

Theorem 3.13. Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family of

framed surfaces with the basic invariants ai, bi, ei, fi, gi, c1, i = 1, 2, 3. Suppose that
e : V → U × Λ is a smooth mapping satisfying the variability condition. Then the
following statements are equivalent:

(1) e : V → U × Λ is a pre-envelope and E : V → R
3 is an envelope of (x,n, s).

(2) xλ(e(p)) · n(e(p)) = 0 for all p ∈ V .

(3) c1(e(p)) = 0 for all p ∈ V .

Proof. Suppose that e is a pre-envelope of (x,n, s). We denote x = (x1, x2, x3) and
n = (n1, n2, n3). By a direct calculation, we have

Epi
(p) =

(
x1u1(e(p))u1pi

(p) + x1u2(e(p))u2pi
(p) + x1λ(e(p))λpi

(p),

x2u1(e(p))u1pi
(p) + x2u2(e(p))u2pi

(p) + x2λ(e(p))λpi
(p),

x3u1(e(p))u1pi
(p) + x3u2(e(p))u2pi

(p) + x3λ(e(p))λpi
(p)
)
.

Since Epi
(p) · n(e(p)) = 0 for all p ∈ V and i = 1, 2, we have(

x1u1(e(p))n1(e(p)) + x2u1(e(p))n2(e(p)) + x3u1(e(p))n3(e(p))
)
u1pi

(p)

+
(
x1u2(e(p))n1(e(p)) + x2u2(e(p))n2(e(p)) + x3u2(e(p))n3(e(p))

)
u2pi

(p)

+
(
x1λ(e(p))n1(e(p)) + x2λ(e(p))n2(e(p)) + x3λ(e(p))n3(e(p))

)
λpi

(p) = 0.
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By xu1 · n = 0 and xu2 · n = 0, we have(
x1λ(e(p))n1(e(p)) + x2λ(e(p))n2(e(p)) + x3λ(e(p))n3(e(p))

)
λpi

(p) = 0,

i = 1, 2. By the variability condition, we have xλ(e(p)) · n(e(p)) = 0 for all
p ∈ V . The converse is given by a direct calculation. It follows that (1) and (2)
are equivalent.

Moreover, since xλ(u1, u2, λ) · n(u1, u2, λ) = c1(u1, u2, λ) for all (u1, u2, λ) ∈ U ×
Λ, (2) and (3) are equivalent. �

Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family of framed surfaces

with the basic invariants ai, bi, ei, fi, gi, c1, i = 1, 2, 3. For the tangent plane of x,
spanned by s and t, there are other frames by rotations and reflections. We define
(s(u1, u2, λ), t(u1, u2, λ)) ∈ Δ by(

s(u1, u2, λ)
t(u1, u2, λ)

)
=

(
cos θ(u1, u2, λ) − sin θ(u1, u2, λ)
sin θ(u1, u2, λ) cos θ(u1, u2, λ)

)(
s(u1, u2, λ)
t(u1, u2, λ)

)
,

where θ : U × Λ → R is a smooth function. Then (x,n, s) : U × Λ → R
3 × Δ is

also a one-parameter family of framed surfaces. By a direct calculation, the basic
invariants ai, bi, ei, f i, gi, c1 of (x,n, s) are given by

ai cos θ − bi sin θ, ai sin θ + bi cos θ, ei cos θ − fi sin θ,

ei sin θ + fi cos θ, gi − θui
, c1, i = 1, 2, 3,

where u3 = λ. We call the moving frame {n, s, t} a rotated frame along x by θ.
On the other hand, we define (s̃(u1, u2, λ), t̃(u1, u2, λ)) ∈ Δ by(
s̃(u1, u2, λ)

t̃(u1, u2, λ)

)
=

(
1 0
0 −1

)(
cos θ(u1, u2, λ) − sin θ(u1, u2, λ)
sin θ(u1, u2, λ) cos θ(u1, u2, λ)

)(
s(u1, u2, λ)
t(u1, u2, λ)

)
,

where θ : U × Λ → R is a smooth function. Then (x,n, s̃) : U × Λ → R
3 × Δ is

also a one-parameter family of framed surfaces. By a direct calculation, the basic
invariants ãi, b̃i, ẽi, f̃i, g̃i, c̃1 of (x,n, s̃) are given by

ai cos θ − bi sin θ,−ai sin θ − bi cos θ, ei cos θ − fi sin θ,

− ei sin θ − fi cos θ,−gi + θui
, c1, i = 1, 2, 3,

where u3 = λ. We call the moving frame {n, s̃, t̃} a reflected frame along x by θ.

Proposition 3.14. Under the above notations, if e : V → U × Λ is a pre-envelope
of (x,n, s), then e : V → U × Λ is also a pre-envelope of (x,n, s) and (x,n, s̃).

Proof. By theorem 3.13, we have c1(e(p)) = 0 for all p ∈ V . It follows that
c1(e(p)) = 0 and c̃1(e(p)) = 0 for all p ∈ V . Hence, e is a pre-envelope of (x,n, s)
and (x,n, s̃). �

It follows that the envelope is independent of rotated frames and reflected frames
of the framed surfaces. Moreover, we demonstrate the envelope is independent of
the parameter change of the framed surfaces.
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Let Ũ be a simply connected domain in R
2 and Λ̃ be an interval in R.

Definition 3.15. We say that a map Φ : Ũ × Λ̃ → U × Λ is a one-parameter
family of parameter change if Φ is a diffeomorphism of the form Φ(v1, v2, k) =
(φ1(v1, v2, k), φ2(v1, v2, k), ϕ(k)).

Proposition 3.16. Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family of

framed surfaces with the basic invariants ai, bi, ei, fi, gi, c1, i = 1, 2, 3. Suppose
that Φ : Ũ × Λ̃ → U × Λ is a one-parameter family of parameter change. Then
(x̃, ñ, s̃) = (x ◦ Φ,n ◦ Φ, s ◦ Φ) : Ũ × Λ̃ → R

3 × Δ is also a one-parameter family
of framed surfaces with the basic invariants⎛⎜⎝ã1 b̃1 0

ã2 b̃2 0

ã3 b̃3 c̃1

⎞⎟⎠ =

⎛⎜⎝φ1v1 φ2v1 0
φ1v2 φ2v2 0
φ1k φ2k ϕ′

⎞⎟⎠
⎛⎝a1 b1 0
a2 b2 0
a3 b3 c1

⎞⎠ ◦ Φ,

⎛⎜⎝ẽ1 f̃1 g̃1

ẽ2 f̃2 g̃2

ẽ3 f̃3 g̃3

⎞⎟⎠ =

⎛⎜⎝φ1v1 φ2v1 0
φ1v2 φ2v2 0
φ1k φ2k ϕ′

⎞⎟⎠
⎛⎝e1 f1 g1
e2 f2 g2
e3 f3 g3

⎞⎠ ◦ Φ.

Moreover, if e : V → U × Λ is a pre-envelope, E is an envelope, then Φ−1 ◦ e : V →
Ũ × Λ̃ is a pre-envelope and E is also an envelope of (x̃, ñ, s̃).

Proof. Since x̃vi
(v1, v2, k) = xu1(Φ(v1, v2, k))φ1vi

(v1, v2, k) + xu2(Φ(v1, v2, k))φ2vi

(v1, v2, k), xui
(u1, u2, λ) · n(u1, u2, λ) = 0 for all (u1, u2, λ) ∈ U × Λ and i = 1, 2, we

have x̃vi
(v1, v2, k) · ñ(v1, v2, k) = 0 for all (v1, v2, k) ∈ Ũ × Λ̃ and i = 1, 2. There-

fore, (x̃, ñ, s̃) is a one-parameter family of framed surfaces. By a direct calculation,
we have the basic invariants ãi, b̃i, ẽi, f̃i, g̃i, c̃1, i = 1, 2, 3.

By the form of the diffeomorphism Φ(v1, v2, k)=(φ1(v1, v2, k), φ2(v1, v2, k), ϕ(k)),
Φ−1 : U × Λ → Ũ × Λ̃ is given by the form Φ−1(u1, u2, λ) = (ψ1(u1, u2, λ),
ψ2(u1, u2, λ), ϕ−1(λ)) for some smooth functions ψ1 and ψ2. It follows
that Φ−1 ◦ e(p) = (ψ1(u1(p), u2(p), λ(p)), ψ2(u1(p), u2(p), λ(p)), ϕ−1(λ(p))), where
e(p) = (u1(p), u2(p), λ(p)). Since the set of regular points of ϕ−1 ◦ λ : V → Λ̃ is
dense in V , the variability condition holds. Moreover, we have

x̃k(v1, v2, k) · ñ(v1, v2, k)

= (xu1(Φ(v1, v2, k))φ1k
(v1, v2, k)xu2(Φ(v1, v2, k))φ2k

(v1, v2, k)

+ xλ(Φ(v1, v2, k))ϕ′(k)) · n(Φ(v1, v2, k))

= ϕ′(k)xλ(Φ(v1, v2, k)) · n(Φ(v1, v2, k)).

It follows that

x̃k(Φ−1 ◦ e(p)) · ñ(Φ−1 ◦ e(p)) = ϕ′(ϕ−1(λ(p)))xλ(e(p)) · n(e(p)) = 0

for all p ∈ V . By theorem 3.13, Φ−1 ◦ e is a pre-envelope of (x̃, ñ, s̃). Therefore,
x̃ ◦ Φ−1 ◦ e = x ◦ Φ ◦ Φ−1 ◦ e = x ◦ e = E is also an envelope of (x̃, ñ, s̃). �
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We give relations between the envelope EI of a classical definition by using an
implicit function (definition 3.7) and the envelope E of a one-parameter family of
framed surfaces (definition 3.10).

Proposition 3.17. Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family

of framed surfaces. Suppose that F (w, λ) = 0 is an implicit function satisfying
F (x(u1, u2, λ), λ) = 0 and (Fw1 , Fw2 , Fw3)(x(u1, u2, λ), λ) is parallel to n(u1, u2, λ)
for all (u1, u2, λ) ∈ U × Λ. If e : V → U × Λ is a pre-envelope and E : V → R

3 is
an envelope of (x,n, s), then E(V ) ⊂ EI .

Proof. By differentiating F (x(u1, u2, λ), λ) = 0 with respect to λ, we have

Fw1x1λ + Fw2x2λ + Fw3x3λ + Fλ = 0.

By the assumption, there exists a smooth function a : U × Λ → R such that

(Fw1 , Fw2 , Fw3)(x(u1, u2, λ), λ) = a(u1, u2, λ)n(u1, u2, λ)

for all (u1, u2, λ) ∈ U × Λ. By theorem 3.13, we have xλ(e(p)) · n(e(p)) = 0 for all
p ∈ V . It follows that Fλ(x(e(p)), λ(p)) = 0 for all p ∈ V . Therefore, E(p) ∈ EI with
respect to λ(p) for all p ∈ V . �

Proposition 3.18. Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family of

framed surfaces, and let e : V → U × Λ be a smooth mapping satisfying the vari-
ability condition. If rank(xu1 ,xu2)(e(p)) = 2 for all p ∈ V and trace of e lies in the
singular set of x, then e is a pre-envelope of (x,n, s) (and E is an envelope).

Proof. Since trace of e lies in the singular set of x, we have the condition

rank

⎛⎝x1u1 x1u2 x1λ

x2u1 x2u2 x2λ

x3u1 x3u2 x3λ

⎞⎠ (e(p)) < 3.

By the assumption rank(xu1 ,xu2)(e(p)) = 2, there exist smooth functions α, β :
V → R such that xλ(e(p)) = α(p)xu1(e(p)) + β(p)xu2(e(p)). It follows that
xλ(e(p)) · n(e(p)) = 0 for all p ∈ V . Hence, e is a pre-envelope of (x,n, s). �

Proposition 3.19. Let (x,n, s) : U × Λ → R
3 × Δ be a one-parameter family

of framed surfaces. Suppose that F (w, λ) = 0 is an implicit function satisfying
F (x(u1, u2, λ), λ) = 0 and (Fw1 , Fw2 , Fw3)(x(u1, u2, λ), λ) is parallel to n(u1, u2, λ)
for all (u1, u2, λ) ∈ U × Λ, and e : V → U × Λ, e(p) = (u1(p), u2(p), λ(p)) is a
smooth mapping satisfying the variability condition. If E(p) = x ◦ e(p) ∈ EI

with respect to λ(p), rank(xu1 ,xu2)(e(p)) = 2 and (Fw1 , Fw2 , Fw3)(x(e(p)), λ(p)) �=
(0, 0, 0) for all p ∈ V , then e is a pre-envelope of (x,n, s) (and E is an envelope).
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Proof. By differentiating F (x(u1, u2, λ), λ) = 0 with respect to ui (i = 1, 2) and λ,
we have

Fw1x1ui
+ Fw2x2ui

+ Fw3x3ui
= 0, Fw1x1λ + Fw2x2λ + Fw3x3λ + Fλ = 0.

Since E(p) ∈ EI with respect to λ(p), we have Fλ(x(e(p)), λ(p)) = 0 for all p ∈ V .
It follows that⎛⎜⎝x1u1 x2u1 x3u1

x1u2 x2u2 x3u2

x1λ x2λ x3λ

⎞⎟⎠ (e(p))

⎛⎜⎝Fw1(x(e(p)), λ(p))
Fw2(x(e(p)), λ(p))
Fw3(x(e(p)), λ(p))

⎞⎟⎠ =

⎛⎜⎝0
0
0

⎞⎟⎠ .

By the assumption (Fw1 , Fw2 , Fw3)(x(e(p)), λ(p)) �= (0, 0, 0), we have rank
dx(e(p)) < 3. It follows that e(p) belongs to the singular set of x. By Proposition
3.18, e is a pre-envelope of (x,n, s). �

Example 3.20. Let (x,n, s) : R
2 × R → R

3 × Δ be

x(u1, u2, λ) = (u2
1 + λ, u2, u

3
1),n(u1, u2, λ)

=
1√

9u2
1 + 4

(−3u1, 0, 2), s(u1, u2, λ) = (0, 1, 0).

Then (x,n, s) is a one-parameter family of framed surfaces and x is a
cuspidal edge for each fixed λ ∈ R. By a direct calculation, t(u1, u2, λ) =
(1/
√

9u2
1 + 4)(−2, 0,−3u1) and the basic invariants are given by

G =

⎛⎜⎜⎜⎜⎝
0 0 −u1

√
9u2

1 + 4

0 1 0

− 3u1√
9u2

1 + 4
0 − 2√

9u2
1 + 4

⎞⎟⎟⎟⎟⎠ ,

F1 =

⎛⎜⎜⎜⎜⎜⎝
0 0

6
9u2

1 + 4

0 0 0

− 6
9u2

1 + 4
0 0

⎞⎟⎟⎟⎟⎟⎠ , F2 = F3 = 0.

Since xλ(u1, u2, λ) · n(u1, u2, λ) = −3u1/
√

9u2
1 + 4, if we take e : R

2 → R
2 × R,

e(p1, p2) = (0, p1, p2), then the variability condition holds and xλ(e(p)) · n(e(p)) =
0 for all p = (p1, p2) ∈ R

2. By theorem 3.13, e is a pre-envelope and E(p) =
x ◦ e(p) = (p2, p1, 0) is an envelope. Hence, xy-plane is an envelope of (x,n, s),
see example 3.8. Moreover, the curvature of the framed surface (E,n ◦ e, s ◦ e) is
given by (JF

E ,K
F
E ,H

F
E ) = (−1, 0, 0) by proposition 3.11.
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Example 3.21. Let (x,n, s) : R
2 × R → R

3 × Δ be

x(u1, u2, λ) = (u2
1, u2, u

3
1 + λ),n(u1, u2, λ)

=
1√

9u2
1 + 4

(−3u1, 0, 2), s(u1, u2, λ) = (0, 1, 0).

Then (x,n, s) is a one-parameter family of framed surfaces and x is a
cuspidal edge for each fixed λ ∈ R. By a direct calculation, t(u1, u2, λ) =
(1/
√

9u2
1 + 4)(−2, 0,−3u1) and the basic invariants are given by

G =

⎛⎜⎜⎜⎜⎝
0 0 −u1

√
9u2

1 + 4

0 1 0

2√
9u2

1 + 4
0 − 3u1√

9u2
1 + 4

⎞⎟⎟⎟⎟⎠ ,

F1 =

⎛⎜⎜⎜⎜⎜⎝
0 0

6
9u2

1 + 4

0 0 0

− 6
9u2

1 + 4
0 0

⎞⎟⎟⎟⎟⎟⎠ , F2 = F3 = 0.

Since xλ(u1, u2, λ) · n(u1, u2, λ) = 2/
√

9u2
1 + 4 �= 0 for all (u1, u2, λ) ∈ R

2 × R,
(x,n, s) does not have the envelope E by theorem 3.13. Hence, yz-plane is not
an envelope of (x,n, s), see example 3.9.

4. Two-parameter families of framed surfaces and envelopes

4.1. Two-parameter families of framed surfaces

Let (x,n, s) : U × Λ → R
3 × Δ be a smooth mapping, where U and Λ are simply

connected domains in R
2. We denote u = (u1, u2) ∈ U, λ = (λ1, λ2) ∈ Λ.

Definition 4.1. We say that (x,n, s) : U × Λ → R
3 × Δ is a two-parameter family

of framed surfaces if (x(·, λ),n(·, λ), s(·, λ)) is a framed surface for each λ ∈ Λ.

We denote t(u, λ) = n(u, λ) × s(u, λ). Then {n(u, λ), s(u, λ), t(u, λ)} is a moving
frame along x(u, λ). For convenient, sometimes we use the notations u3 = λ1 and
u4 = λ2.

We have the following systems of differential equations:⎛⎜⎜⎝
xu1

xu2

xu3

xu4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 a1 b1
0 a2 b2
c1 a3 b3
c2 a4 b4

⎞⎟⎟⎠
⎛⎝n

s
t

⎞⎠ ,

⎛⎝nui

sui

tui

⎞⎠

=
(
0 ei fi − ei 0 gi − fi −gi 0

)⎛⎝n
s
t

⎞⎠ , (4.1)
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where ai, bi, ei, fi, gi, c1, c2 : U → R, i = 1, 2, 3, 4 are smooth functions and we call
the functions basic invariants of the two-parameter family of framed surfaces. We
denote the above matrices in equalities (4.1) by G,Fi, i = 1, 2, 3, 4, respectively.
We also call the matrices (G,F1,F2,F3,F4) basic invariants of the two-parameter
family of framed surfaces (x,n, s).

Since the integrability conditions xuiuj
= xujui

and Fi,uk
−Fj,u�

= FjFi −
FiFj , i, j, k, � = 1, 2, 3, 4, the basic invariants should be satisfied some conditions.
However, we omit them here.

Definition 4.2. Let (x,n, s), (x̃, ñ, s̃) : U × Λ → R
3 × Δ be two-parameter fam-

ilies of framed surfaces. We say that (x,n, s) and (x̃, ñ, s̃) are congruent as
two-parameter families of framed surfaces if there exist a constant rotation A ∈
SO(3) and a translation a ∈ R

3 such that

x̃(u, λ) = A(x(u, λ)) + a, ñ(u, λ) = A(n(u, λ)), s̃(u, λ) = A(s(u, λ))

for all (u, λ) ∈ U × Λ.

By the similar methods of the one-parameter families of framed surfaces, we have
the existence and uniqueness theorems for the basic invariants of two-parameter
families of framed surfaces.

Theorem 4.3 (Existence theorem for two-parameters families of framed sur-
faces). Let ai, bi, ei, fi, gi, c1, c2 : U → R, i = 1, 2, 3, 4 be smooth functions with
the integrability conditions. Then there exists a two-parameter family of
framed surface (x,n, s) : U × Λ → R

3 × Δ whose associated basic invariants are
ai, bi, ei, fi, gi, c1, c2, i = 1, 2, 3, 4.

Theorem 4.4 (Uniqueness theorem for two-parameters families of framed surfaces).
Let (x,n, s), (x̃, ñ, s̃) : U × Λ → R

3 × Δ be two-parameter families of framed sur-
faces with the basic invariants (G,F1,F2,F3,F4), (G̃, F̃1, F̃2, F̃3, F̃4), respectively.
Then (x,n, s) and (x̃, ñ, s̃) are congruent as two-parameter families of framed sur-
faces if and only if the basic invariants (G,F1,F2,F3,F4) and (G̃, F̃1, F̃2, F̃3, F̃4)
coincide.

4.2. Envelopes of two-parameter families of framed surfaces

Let F : W × Λ → R be a two-parameter family of functions, where W and Λ are
simply connected domains in R

3 and R
2. Then one of the classical definitions of an

envelope EI is as follows. For instance see [2,3].

Definition 4.5. An envelope EI of F is the discriminant set of F , that is, the set
of points given by

EI = {w ∈ R
3 | for some λ = (λ1, λ2) ∈ Λ,

F (w, λ) = Fλ1(w, λ) = Fλ2(w, λ) = 0}.
If F (w, λ) = Fλ1(w, λ) = Fλ2(w, λ) = 0, we say that w ∈ EI with respect to λ =
(λ1, λ2).
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Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family of framed surfaces. Let

V ⊂ R
2 be an open subset and e : V → U × Λ, e(p) = (u1(p), u2(p), λ1(p), λ2(p)) be

a smooth mapping. We denote E = x ◦ e : V → R
3.

Definition 4.6. We call E an envelope (and e a pre-envelope) for the two-
parameter family of framed surfaces (x,n, s), when the following conditions are
satisfied:

(i) The set of regular points of λ : V → Λ is dense in V . (The variability
condition.)

(ii) Epi
(p) · n(e(p)) = 0 for all p = (p1, p2) ∈ V and i = 1, 2. (The tangency

condition.)

By definition, we have the following result.

Proposition 4.7. Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family of

framed surfaces with the basic invariants ai, bi, ei, fi, gi, c1, c2, i = 1, 2, 3, 4. Suppose
that e : V → U × Λ is a pre-envelope and E : V → R

3 is an envelope of (x,n, s).
Then (E,n ◦ e, s ◦ e) : V → R

3 × Δ is a framed surface.

By a direct calculation, we also have the basic invariants and the curvature of
the framed surface (E,n ◦ e, s ◦ e). Here, we omit them.

As one of the main results, we also have the envelope theorem for two-parameter
families of framed surfaces.

Theorem 4.8. Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family of framed

surfaces with the basic invariants ai, bi, ei, fi, gi, c1, c2, i = 1, 2, 3, 4. Suppose that
e : V → U × Λ is a smooth mapping satisfying the variability condition. Then the
following statements are equivalent:

(1) e : V → U × Λ is a pre-envelope and E : V → R
3 is an envelope of (x,n, s).

(2) xλ1(e(p)) · n(e(p)) = xλ2(e(p)) · n(e(p)) = 0 for all p ∈ V .

(3) c1(e(p)) = c2(e(p)) = 0 for all p ∈ V .

Proof. We denote x = (x1, x2, x3) and n = (n1, n2, n3). Suppose that e is a pre-
envelope of (x,n, s). By a direct calculation, we have

Epi
(p) =

(
x1u1(e(p))u1pi

(p) + x1u2(e(p))u2pi
(p) + x1λ1(e(p))λ1pi

(p)

+ x1λ2(e(p))λ2pi
(p), x2u1(e(p))u1pi

(p) + x2u2(e(p))u2pi
(p)

+ x2λ1(e(p))λ1pi
(p) + x2λ2(e(p))λ2pi

(p), x3u1(e(p))u1pi
(p)

+ x3u2(e(p))u2pi
(p) + x3λ1(e(p))λ1pi

(p) + x3λ2(e(p))λ2pi
(p)
)
,
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i = 1, 2. Since Epi
(p) · n(e(p)) = 0 for all p ∈ V , we have(

x1u1(e(p))n1(e(p)) + x2u1(e(p))n2(e(p)) + x3u1(e(p))n3(e(p))
)
u1pi

(p)

+
(
x1u2(e(p))n1(e(p)) + x2u2(e(p))n2(e(p)) + x3u2(e(p))n3(e(p))

)
u2pi

(p)

+
(
x1λ1(e(p))n1(e(p)) + x2λ1(e(p))n2(e(p)) + x3λ1(e(p))n3(e(p))

)
λ1pi

(p)

+
(
x1λ2(e(p))n1(e(p)) + x2λ2(e(p))n2(e(p)) + x3λ2(e(p))n3(e(p))

)
λ2pi

(p) = 0,

i = 1, 2. By xu1 · n = 0 and xu2 · n = 0, we have(
λ1p1(p) λ2p1(p)

λ1p2(p) λ2p2(p)

)(
xλ1(e(p)) · n(e(p))

xλ2(e(p)) · n(e(p))

)
=
(

0
0

)
.

By the variability condition, we have xλ1(e(p)) · n(e(p)) = xλ2(e(p)) · n(e(p)) = 0
for all p ∈ V . The converse is given by a direct calculation. Hence, (1) and (2) are
equivalent.

Moreover, since xλ1(u, λ) · n(u, λ) = c1(u, λ) and xλ2(u, λ) · n(u, λ) = c2(u, λ)
for all (u, λ) ∈ U × Λ, (2) and (3) are equivalent. �

Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family of framed surfaces

with the basic invariants ai, bi, ei, fi, gi, c1, c2, i = 1, 2, 3, 4. For the tangent plane
of x(u, λ), spanned by s(u,λ) and t(u, λ), there are other frames by rotations and
reflections, where u = (u1, u2), λ = (λ1, λ2). We define (s(u, λ), t(u, λ)) ∈ Δ by(

s(u, λ)

t(u, λ)

)
=

(
cos θ(u, λ) − sin θ(u, λ)

sin θ(u, λ) cos θ(u, λ)

)(
s(u, λ)

t(u, λ)

)
,

where θ : U × Λ → R is a smooth function. Then (x,n, s) : U × Λ → R
3 × Δ is

also a two-parameter family of framed surfaces. By a direct calculation, the basic
invariants ai, bi, ei, f i, gi, c1, c2 of (x,n, s) are given by

ai cos θ − bi sin θ, ai sin θ + bi cos θ, ei cos θ − fi sin θ,

ei sin θ + fi cos θ, gi − θui
, c1, c2, i = 1, 2, 3, 4,

where u3 = λ1, u4 = λ2. We call the moving frame {n, s, t} a rotated frame along
x by θ.

On the other hand, we define (s̃, t̃) ∈ Δ by(
s̃(u, λ)

t̃(u, λ)

)
=

(
1 0

0 −1

)(
cos θ(u, λ) − sin θ(u, λ)

sin θ(u, λ) cos θ(u, λ)

)(
s(u, λ)

t(u, λ)

)
,

where θ : U × Λ → R is a smooth function. Then (x,n, s̃) : U × Λ → R
3 × Δ is

also a two-parameter family of framed surfaces. By a direct calculation, the basic
invariants ãi, b̃i, ẽi, f̃i, g̃i, c̃1, c̃2 of (x,n, s̃) are given by

ai cos θ − bi sin θ,−ai sin θ − bi cos θ, ei cos θ − fi sin θ,−ei sin θ − fi cos θ,

− gi + θui
, c1, c2, i = 1, 2, 3, 4,

where u3 = λ1, u4 = λ2. We call the moving frame {n, s̃, t̃} a reflected frame along
x by θ. By theorem 4.8, we have the following result.
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Proposition 4.9. Under the above notations, if e : V → U × Λ is a pre-envelope
of (x,n, s), then e : V → U × Λ is also a pre-envelope of (x,n, s) and (x,n, s̃).

It follows that the envelope is independent of rotated frames and reflected frames
of the framed surfaces. Moreover, we demonstrate the envelope is independent of
the parameter change of the framed surfaces.

Let Ũ and Λ̃ be simply connected domains in R
2.

Definition 4.10. We say that a map Φ : Ũ × Λ̃ → U × Λ is a two-parameter
family of parameter change if Φ is a diffeomorphism of the form Φ(v, k) =
(φ1(v, k), φ2(v, k), ϕ1(k), ϕ2(k)), where v = (v1, v2), k = (k1, k2).

Then we have the following result by the similar calculation of proposition 3.16.

Proposition 4.11. Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family of

framed surfaces with the basic invariants ai, bi, ei, fi, gi, c1, c2, i = 1, 2, 3, 4. Sup-
pose that Φ : Ũ × Λ̃ → U × Λ is a two-parameter family of parameter change. Then
(x̃, ñ, s̃) = (x ◦ Φ,n ◦ Φ, s ◦ Φ) : Ũ × Λ̃ → R

3 × Δ is also a two-parameter family
of framed surfaces with the basic invariants⎛⎜⎜⎜⎜⎜⎝

ã1 b̃1 0

ã2 b̃2 0

ã3 b̃3 c̃1

ã4 b̃4 c̃2

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
φ1v1 φ2v1 0 0

φ1v2 φ2v2 0 0

φ1k1 φ2k1 ϕ1k1 ϕ2k1

φ1k2 φ2k2 ϕ1k2 ϕ2k2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
a1 b1 0

a2 b2 0

a3 b3 c1

a4 b4 c2

⎞⎟⎟⎟⎟⎠ ◦ Φ,

⎛⎜⎜⎜⎜⎜⎝
ẽ1 f̃1 g̃1

ẽ2 f̃2 g̃2

ẽ3 f̃3 g̃3

ẽ4 f̃4 g̃4

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
φ1v1 φ2v1 0 0

φ1v2 φ2v2 0 0

φ1k1 φ2k1 ϕ1k1 ϕ2k1

φ1k2 φ2k2 ϕ1k2 ϕ2k2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
e1 f1 g1

e2 f2 g2

e3 f3 g3

e4 f4 g4

⎞⎟⎟⎟⎟⎠ ◦ Φ.

Moreover, if e : V → U × Λ is a pre-envelope, E is an envelope, then Φ−1 ◦ e : V →
Ũ × Λ̃ is a pre-envelope and E is also an envelope of (x̃, ñ, s̃).

We can also give relations between the envelope EI of a classical definition by
using an implicit function (definition 4.5) and the envelope E of a two-parameter
family of framed surfaces (definition 4.6). By the similar calculations of propositions
3.17–3.19, we have the following results.

Proposition 4.12. Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family

of framed surfaces. Suppose that F (w, λ) = 0 is an implicit function satisfy-
ing F (x(u, λ), λ) = 0 and (Fw1 , Fw2 , Fw3)(x(u, λ), λ) is parallel to n(u, λ) for all
(u, λ) ∈ U × Λ. If e : V → U × Λ is a pre-envelope and E : V → R

3 is an envelope
of (x,n, s), then E(V ) ⊂ EI .

Proposition 4.13. Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter family of

framed surfaces, and let e : V → U × Λ be a smooth map satisfying the variability
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condition. If rank(xu1 ,xu2)(e(p)) = 2 for all p ∈ V and trace of e lies in the singular
set of x, then e is a pre-envelope of (x,n, s) (and E is an envelope).

Proposition 4.14. Let (x,n, s) : U × Λ → R
3 × Δ be a two-parameter fam-

ily of framed surfaces. Suppose that F (w, λ) = 0 is an implicit function sat-
isfying F (x(u, λ), λ) = 0, (Fw1 , Fw2 , Fw3)(x(u, λ), λ) is parallel to n(u, λ) for
all (u, λ) ∈ U × Λ, and e : V → U × Λ, e(p) = (u(p), λ(p)) is a smooth map-
ping satisfying the variability condition. If E(p) = x ◦ e(p) ∈ EI with respect to
λ(p), rank(xu1 ,xu2)(e(p)) = 2 and (Fw1 , Fw2 , Fw3)(x(e(p)), λ(p)) �= (0, 0, 0) for all
p ∈ V , then e is a pre-envelope of (x,n, s) (and E is an envelope).

5. Singular solutions of systems of first-order partial differential
equations

As an application of the envelope theorem of one-parameter families of framed
surfaces, we show that the projection of a singular solution of a system of first-order
partial differential equations is an envelope.

We quickly review the theory of systems of first-order partial differential equa-
tions. For more details see [7]. We consider implicit function forms as differential
equations and n = 2, d = 2 in [7]. A system of first-order partial differential equa-
tions (or, briefly, an equation) is a submersion germ (F,G) : (J1(R2,R), z0) →
(R2, 0) on the 1-jet space of functions of 2-variables. Let θ be a canonical
contact 1-form on J1(R2,R) which is given by θ = dy − p1dx1 − p2dx2, where
(x1, x2, y, p1, p2) is the canonical coordinate on J1(R2,R). Let π : J1(R2,R) →
R

2 × R, π(x1, x2, y, p1, p2) = (x1, x2, y) be the canonical projection. We define
a geometric solution of (F,G) = 0 to be an immersion germ i : (L, u0) →
((F,G)−1(0), z0) such that i∗θ = 0, that is, a Legendre submanifold which
is contained in (F,G)−1(0). We say that z0 is a contact singular point if
θ(Tz0(F,G)−1(0)) = 0. By a direct calculation, z0 is a contact singular point if
and only if

rank

(
Fx1 + p1Fy Fx2 + p2Fy Fp1 Fp2

Gx1 + p1Gy Gx2 + p2Gy Gp1 Gp2

)
< 2

at z0, see [7, proposition 1.2]. We denote the set of contact singular points by
Σc(F,G). We say that an equation (F,G) = 0 is involutory at z ∈ ((F,G)−1(0), z0)
if there is a Legendrian submanifold L tangent to ((F,G)−1(0), z0) at z. We
say that an equation (F,G) = 0 is involutory if it is involutory at any point of
((F,G)−1(0), z0). Then (F,G) = 0 is involutory if and only if

[F,G] = FGy −GFy + Fx1Gp1 − Fp1Gx1 + Fx2Gp2 − Fp2Gx2

+ p1(FyGp1 −GyFp1) + p2(FyGp2 −GyFp2) = 0

for any z ∈ (F,G)−1(0), see [7,10].
Since single equations are automatically involutory, the notion of involutory is

essential for overdetermined systems of first-order partial differential equations
(cf. [10]).
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An equation (F,G) = 0 is said to be completely integrable at z0 if there exists a
foliation by geometric solutions on (F,G)−1(0) around z0, that is, there exists an
immersion germ Γ : (R2 × R, (u0, c0)) → ((F,G)−1(0), z0) such that Γ(·, c) is a geo-
metric solution of F = 0 for each c ∈ (R, c0). This means that Γ is a one-parameter
family of Legendre immersions. In this case, such a foliation is called a complete
solution of (F,G) = 0 at z0.

A geometric solution i : (L, u0) → ((F,G)−1(0), z0) of (F,G) = 0 is called a sin-
gular solution of (F,G) = 0 at z0 if for any representative ĩ : U → (F,G)−1(0) of i
and any open subset Ũ ⊂ U , ĩ|Ũ is not contained in a leaf of any complete solutions
of (F,G) = 0.

Then we have the following results.

Theorem 5.1 [7]. Let (F,G) : (J1(R2,R), z0) → (R2, 0) be a system of first-order
partial differential equation germs. Then (F,G) = 0 is completely integrable at
z0 if and only if (F,G) = 0 is involutory, and Σc(F,G) = ∅ or Σc(F,G) is a 2-
dimensional submanifold around z0. Moreover, if Σc(F,G) �= ∅, then Σc(F,G) is a
singular solution of F = 0 at z0.

Proposition 5.2. Let (F,G) : (J1(R2,R), z0) → (R2, 0) be a system of first-
order partial differential equation germs. Suppose that Γ : (R2 × R, (u0, c0)) →
((F,G)−1(0), z0) is a complete solution of (F,G) = 0 at z0. Then (x,n, s) : (R2 ×
R, (u0, c0)) → R

3 × Δ is a one-parameter family of framed surfaces, where

x(u1, u2, c) = π ◦ Γ(u1, u2, c),

n(u1, u2, c) =
(−p1(u1, u2, c),−p2(u1, u2, c), 1)√
p2
1(u1, u2, c) + p2

2(u1, u2, c) + 1
,

s(u1, u2, c) =
(0, 1, p2(u1, u2, c))√

1 + p2
2(u1, u2, c)

and

Γ(u1, u2, c) = (x1(u1, u2, c), x2(u1, u2, c), y(u1, u2, c), p1(u1, u2, c), p2(u1, u2, c)).

Proof. Since Γ is a complete solution of (F,G) = 0, we have Γ∗
u1
θ = 0 and Γ∗

u2
θ = 0

for fixed c ∈ (R, c0), that is,

yui
(u1, u2, c) − p1(u1, u2, c)x1ui

(u1, u2, c) − p2(u1, u2, c)x2ui
(u1, u2, c) = 0,

i = 1, 2. It follows that xui
(u1, u2, c) · n(u1, u2, c) = 0 for all (u1, u2, c) ∈ (R2 × R,

(u0, c0)) and i = 1, 2. By definition, n(u1, u2, c) · s(u1, u2, c) = 0 for all (u1, u2, c) ∈
(R2 × R, (u0, c0)). Hence, (x,n, s) is a one-parameter family of framed surfaces. �

By using the envelope theorem (theorem 3.13), we have the following result.

Theorem 5.3. Under the same assumptions in proposition 5.2, e : (R2, q0) →
(R2 × R, (u0, c0)) is a smooth mapping satisfying the variability condition. Then
e is a pre-envelope and E = x ◦ e is an envelope of (x,n, s) if and only if E(q) ∈
π(Σc(F,G)) for all q ∈ (R2, q0).
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Proof. By theorem 5.1, Σc(F,G) is a 2-dimensional manifold around z0 and a
singular solution of (F,G) = 0 at z0. Since (F,G) is a submersion at z0 ∈ Σc(F,G),
Fy �= 0 or Gy �= 0 at z0. Without loss of generality, we may consider the following
cases:

(1) Fy �= 0, Gx1 �= 0

(2) Fy �= 0, Gp1 �= 0

at z0.
For the first case (1), we assume that

F (x1, x2, y, p1, p2) = −y + f(x2, p1, p2), G(x1, x2, y, p1, p2) = −x1 + g(x2, p1, p2)

by using implicit function theorem. Then we have

y(u1, u2, c) = f(x2(u1, u2, c), p1(u1, u2, c), p2(u1, u2, c)),

x1(u1, u2, c) = g(x2(u1, u2, c), p1(u1, u2, c), p2(u1, u2, c)). (5.1)

It follows that

yc = fx2x2c + fp1p1c + fp2p2c, x1c = gx2x2c + gp1p1c + gp2p2c.

Then we have

xc · n =
1√

p2
1 + p2

2 + 1
(−p1(gx2x2c + gp1p1c + gp2p2c)

−p2x2c + fx2x2c + fp1p1c + fp2p2c)

=
1√

p2
1 + p2

2 + 1
((−p1gx2 − p2 + fx2)x2c

+(−p1gp1 + fp1)p1c + (−p1gp2 + fp2)p2c) .

If e is a pre-envelope and E = x ◦ e is an envelope of (x,n, s), then

((−p1gx2 − p2 + fx2)x2c + (−p1gp1 + fp1)p1c + (−p1gp2 + fp2)p2c) (e(q)) = 0

for all q ∈ (R2, q0) by theorem 3.13. Moreover, since Γ is a complete solution and
equations (5.1), we have

yu1 = p1x1u1 + p2x2u1 , yu2 = p1x1u2 + p2x2u2 ,

yu1 = fx2x2u1 + fp1p1u1 + fp2p2u1 , yu2 = fx2x2u2 + fp1p1u2 + fp2p2u2 ,

x1u1 = gx2x2u1 + gp1p1u1 + gp2p2u1 , x1u2 = gx2x2u2 + gp1p1u2 + gp2p2u2 .

It follows that

(−p1gx2 − p2 + fx2)x2u1 + (−p1gp1 + fp1)p1u1 + (−p1gp2 + fp2)p2u1 = 0,

(−p1gx2 − p2 + fx2)x2u2 + (−p1gp1 + fp1)p1u2 + (−p1gp2 + fp2)p2u2 = 0.
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Hence, we have⎛⎜⎝x2u1 p1u1 p2u1

x2u2 p1u2 p2u2

x2c p1c p2c

⎞⎟⎠(−p1gx2 − p2 + fx2 − p1gp1 + fp1 − p1gp2 + fp2

)
(e(q))

=

⎛⎜⎝0

0

0

⎞⎟⎠ .

Since Γ is an immersion, we have

(−p1gx2 − p2 + fx2)(e(q)) = 0, (−p1gp1 + fp1)(e(q)) = 0, (−p1gp2 + fp2)(e(q)) = 0

for all q ∈ (R2, q0). By the definition of the contact singular set Σc(F,G), if z ∈
Σc(F,G), then

rank

(
−p1 fx2 − p2 fp1 fp2

−1 gx2 gp1 gp2

)
(z) < 2.

It follows that E(q) ∈ π(Σc(F,G)) for all q ∈ (R2, q0).
Conversely, if E(q) ∈ π(Σc(F,G)) for all q ∈ (R2, q0), then xc(e(q)) · n(e(q)) = 0

for all q ∈ (R2, 0). By theorem 3.13, e is a pre-envelope of (x,n, s).
For the cases (2), we assume that

F (x1, x2, y, p1, p2) = −y + f(x1, x2, p2), G(x1, x2, y, p1, p2) = −p1 + g(x1, x2, p2)

by using implicit function theorem. Then we have

y(u1, u2, c) = f(x1(u1, u2, c), x2(u1, u2, c), p2(u1, u2, c)),

p1(u1, u2, c) = g(x1(u1, u2, c), x2(u1, u2, c), p2(u1, u2, c)). (5.2)

It follows that

yc = fx1x1c + fx2x2c + fp2p2c.

Then we have

xc · n =
1√

p2
1 + p2

2 + 1
(−p1x1c − p2x2c + fx1x1c + fx2x2c + fp2p2c)

=
1√

p2
1 + p2

2 + 1
((−p1 + fx1)x1c + (−p2 + fx2)x2c + fp2p2c) .

If e is a pre-envelope and E = x ◦ e is an envelope of (x,n, s), then

((−p1 + fx1)x1c + (−p2 + fx2)x2c + fp2p2c) (e(q)) = 0

for all q ∈ (R2, q0) by theorem 3.13. Moreover, since Γ is a complete solution and
equations (5.2), we have

yu1 = p1x1u1 + p2x2u1 , yu2 = p1x1u2 + p2x2u2 ,

yu1 = fx1x1u1 + fx2x2u1 + fp2p2u1 , yu2 = fx1x1u2 + fx2x2u2 + fp2p2u2 .
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It follows that

(−p1 + fx1)x1u1 + (−p2 + fx2)x2u1 + fp2p2u1 = 0,

(−p1 + fx1)x1u2 + (−p2 + fx2)x2u2 + fp2p2u2 = 0.

Hence, we have⎛⎜⎝x1u1 x2u1 p2u1

x1u2 x2u2 p2u2

x1c x2c p2c

⎞⎟⎠(−p1 + fx1 − p2 + fx2

fp2

)
(e(q)) =

⎛⎜⎝0

0

0

⎞⎟⎠ .

Since Γ is an immersion, we have

(−p1 + fx1)(e(q)) = 0, (−p2 + fx2)(e(q)) = 0, fp2(e(q)) = 0

for all q ∈ (R2, q0). By definition of the contact singular set Σc(F,G), if z ∈
Σc(F,G), then

rank

(
fx1 − p1 fx2 − p2 0 fp2

gx1 gx2 −1 gp2

)
(z) < 2.

It follows that E(q) ∈ π(Σc(F,G)) for all q ∈ (R2, q0).
Conversely, if E(q) ∈ π(Σc(F,G)) for all q ∈ (R2, q0), then xc(e(q)) · n(e(q)) = 0

for all q ∈ (R2, 0). By theorem 3.13, e is a pre-envelope of (x,n, s). �

Example 5.4. Let (F,G) : J1(R2,R) → R
2 be

F (x1, x2, y, p1, p2) = −y +
(

2
3
p1

)3

, G(x1, x2, y, p1, p2) = p2.

Then a complete solution Γ : R
2 × R → (F,G)−1(0) is given by

Γ(u1, u2, c) =
(
u2

1 + c, u2, u
3
1,

3
2
u1, 0

)
.

By proposition 5.2, (x,n, s) : R
2 × R → R

3 × Δ,

x(u1, u2, c) = (u2
1 + c, u2, u

3
1),n(u1, u2, c)

=
1√

9u2
1 + 4

(−3u1, 0, 2), s(u1, u2, c) = (0, 1, 0)

is a one-parameter family of framed surfaces. In this case, Σc(F,G) =
{(x1, x2, 0, 0, 0)} is a 2-dimensional manifold. By theorem 5.3, xy-plane is an
envelope of (x,n, s), see example 3.20.
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Example 5.5. Let (F,G) : J1(R2,R) → R
2 be

F (x1, x2, y, p1, p2) = −x1 +
(

2
3
p1

)2

, G(x1, x2, y, p1, p2) = p2.

Then a complete solution Γ : R
2 × R → (F,G)−1(0) is given by

Γ(u1, u2, c) =
(
u2

1, u2, u
3
1 + c,

3
2
u1, 0

)
.

By proposition 5.2, (x,n, s) : R
2 × R → R

3 × Δ,

x(u1, u2, c) = (u2
1, u2, u

3
1 + c),n(u1, u2, c)

=
1√

9u2
1 + 4

(−3u1, 0, 2), s(u1, u2, c) = (0, 1, 0)

is a one-parameter family of framed surfaces. In this case, Σc(F,G) = ∅. Hence,
(x,n, s) does not have the envelope E by theorem 5.3, see example 3.21.

6. Singular solutions of single first-order partial differential equations

As an application of the envelope theorem of two-parameter families of framed sur-
faces, we show that the projection of a singular solution of a single first-order partial
differential equation is an envelope. In [13], under a condition, it could be proved
that the projection of a singular solution of a single completely integrable first-
order partial differential equation is an envelope. However, we can prove without
the condition Σc(F ) = Σπ(F ) in this paper.

We quickly review the theory of first-order partial differential equations. For more
details see [8].

An equation is a submersion germ F : (J1(R2,R), z0) → (R, 0). We define a
geometric solution of F = 0 to be an immersion germ i : (L, u0) → (F−1(0), z0)
of a 2-dimensional manifold such that i∗θ = 0, that is, a Legendre submani-
fold which is contained in F−1(0). We say that z0 is a contact singular point if
θ(Tz0F

−1(0)) = 0. It is easy to see that z0 is a contact singular point if and only
if F = Fp1 = Fp2 = Fx1 + p1Fy = Fx2 + p2Fy = 0 at z0. We also say that z0 is a
π-singular point if F = Fp1 = Fp2 = 0 at z0. We denote the set of contact singular
points by Σc(F ), the set of π-singular points by Σπ(F ).

An equation F = 0 is said to be completely integrable at z0 if there exists a
foliation by geometric solution on F−1(0) around z0, that is, there exists an immer-
sion germ Γ : (R2 × R

2, (u0, c0)) → (F−1(0), z0) such that Γ(·, c1, c2) is a geometric
solution of F = 0 for each (c1, c2) ∈ (R2, c0). This means that Γ is a two-parameter
family of Legendre immersions. In this case, such a foliation is called a complete
solution of F = 0 at z0.

A geometric solution i : (L, u0) → (F−1(0), z0) of F = 0 is called a singular solu-
tion of F = 0 at z0 if for any representative ĩ : U → F−1(0) of i and any open subset
Ũ ⊂ U , ĩ|Ũ is not contained in a leaf of any complete solutions of F = 0.

Then we have the following results.
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Theorem 6.1 [8]. Let F : (J1(R2,R), z0) → (R, 0) be a first-order partial differ-
ential equation germs. Then F = 0 is completely integrable at z0 if and only
if Σc(F ) = ∅ or Σc(F ) is a 2-dimensional submanifold around z0. Moreover, if
Σc(F ) �= ∅, then Σc(F ) is a singular solution of F = 0 at z0.

Proposition 6.2. Let F : (J1(R2,R), z0) → (R, 0) be a first-order partial differ-
ential equation germs. Suppose that Γ : (R2 × R

2, (u0, c0)) → (F−1(0), z0) is a
complete solution of F = 0 at z0. Then (x,n, s) : (R2 × R

2, (u0, c0)) → R
3 × Δ is

a two-parameter family of framed surfaces, where

x(u1, u2, c1, c2) = π ◦ Γ(u1, u2, c1, c2),

n(u1, u2, c1, c2) =
(−p1(u1, u2, c1, c2),−p2(u1, u2, c1, c2), 1)√
p2
1(u1, u2, c1, c2) + p2

2(u1, u2, c1, c2) + 1
,

s(u1, u2, c1, c2) =
(0, 1, p2(u1, u2, c1, c2))√

1 + p2
2(u1, u2, c1, c2)

and

Γ(u1, u2, c1, c2) = (x1(u1, u2, c1, c2), x2(u1, u2, c1, c2), y(u1, u2, c1, c2),

p1(u1, u2, c1, c2), p2(u1, u2, c1, c2)).

Proof. Since Γ is a complete solution of F = 0, we have Γ∗
u1
θ = 0 and Γ∗

u2
θ = 0 for

fixed (c1, c2) ∈ (R2, c0), that is,

yui
(u1, u2, c1, c2) − p1(u1, u2, c1, c2)x1ui

(u1, u2, c1, c2)

− p2(u1, u2, c1, c2)x2ui
(u1, u2, c1, c2) = 0,

i = 1, 2. It follows that xui
(u1, u2, c1, c2) · n(u1, u2, c1, c2) = 0 for all (u1, u2, c1, c2) ∈

(R2 × R
2, (u0, c0)) and i = 1, 2. By definition, n(u1, u2, c1, c2) · s(u1, u2, c1, c2) =

0 for all (u1, u2, c1, c2) ∈ (R2 × R
2, (u0, c0)). Hence, (x,n, s) is a two-parameter

family of framed surfaces. �

By using the envelope theorem (theorem 4.8), we have the following result.

Theorem 6.3. Under the same assumptions in proposition 6.2, suppose that e :
(R2, q0) → (R2 × R

2, (u0, c0)) is a smooth mapping satisfying the variability condi-
tion. Then e is a pre-envelope and E = x ◦ e is an envelope of (x,n, s) if and only
if E(q) ∈ π(Σc(F )) for all q ∈ (R2, q0).

Proof. By theorem 6.1, Σc(F ) is a 2-dimensional manifold around z0 and a singular
solution of F = 0 at z0. Since F is a submersion at z0 ∈ Σc(F ), Fy �= 0 at z0.
Therefore, we may assume that

F (x1, x2, y, p1, p2) = −y + f(x1, x2, p1, p2)

by implicit function theorem. Since

y(u1, u2, c1, c2) = f(x1(u1, u2, c1, c2), x2(u1, u2, c1, c2), (6.1)

p1(u1, u2, c1, c2), p2(u1, u2, c1, c2)),
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we have yci
= fx1x1ci

+ fx2x2ci
+ fp1p1ci

+ fp2p2ci
, and hence

xci
· n =

1√
p2
1 + p2

2 + 1
((−p1 + fx1)x1ci

+ (−p2 + fx2)x2ci
+ fp1p1ci

+ fp2p2ci
) ,

i = 1, 2. If e is a pre-envelope and E = x ◦ e is an envelope of (x,n, s), then

((−p1 + fx1)x1ci
+ (−p2 + fx2)x2ci

+ fp1p1ci
+ fp2p2ci

) (e(q)) = 0

for all q ∈ (R2, q0), i = 1, 2 by theorem 4.8. Moreover, since Γ is a complete solution
and equation (6.1), we have

yu1 = p1x1u1 + p2x2u1 , yu2 = p1x1u2 + p2x2u2 ,

yu1 = fx1x1u1 + fx2x2u1 + fp1p1u1 + fp2p2u1 ,

yu2 = fx1x1u2 + fx2x2u2 + fp1p1u2 + fp2p2u2 .

It follow that

(−p1 + fx1)x1ui
+ (−p2 + fx2)x2ui

+ fp1p1ui
+ fp2p2ui

= 0,

i = 1, 2. Hence, we have⎛⎜⎜⎜⎜⎝
x1u1 x2u1 p1u1 p2u1

x1u2 x2u2 p1u2 p2u2

x1c1 x2c1 p1c1 p2c1

x1c2 x2c2 p1c2 p2c2

⎞⎟⎟⎟⎟⎠
⎛⎜⎝−p1 + fx1 − p2 + fx2

fp1

fp2

⎞⎟⎠ (e(q)) =

⎛⎜⎜⎜⎜⎝
0

0

0

0

⎞⎟⎟⎟⎟⎠ .

Since Γ is an immersion, we have

(−p1 + fx1)(e(q)) = 0, (−p2 + fx2)(e(q)) = 0, fp1(e(q)) = 0, fp2(e(q)) = 0

for all q ∈ (R2, q0). It follows that E(q) ∈ π(Σc(F )) for all q ∈ (R2, q0).
Conversely, if E(q) ∈ π(Σc(F )) for all q ∈ (R2, q0), then xci

(e(q)) · n(e(q)) = 0
for all q ∈ (R2, q0), i = 1, 2. By theorem 4.8, e is a pre-envelope of (x,n, s). �

For concrete examples of completely integrable first-order partial differential
equations and their envelopes see [13]. However, these examples satisfied the condi-
tion Σc(F ) = Σπ(F ) = {z ∈ J1(R2,R)|F (z) = Fp1(z) = Fp2(z) = 0}. Here we give
an example that Σc(F ) �= Σπ(F ).

Example 6.4. Let F : J1(R2,R) → R be F (x1, x2, y, p1, p2) = −y + pn
1 = 0, where

n � 2 is a natural number. By a direct calculation, we have

Σc(F ) = {(x1, x2, 0, 0, 0)} ⊂ Σπ(F ) = {(x1, x2, 0, 0, p2)}.
A complete solution Γ : R

2 × R
2 → F−1(0) is given by

Γ(u1, u2, c1, c2) =
(

n

n− 1
un−1

1 + c1, c2, u
n
1 , u1, u2

)
.
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By proposition 6.2, (x,n, s) : R
2 × R

2 → R
3 × Δ,

x(u1, u2, c1, c2) =
(

n

n− 1
un−1

1 + c1, c2, u
n
1

)
,

n(u1, u2, c1, c2) =
(−u1,−u2, 1)√
u2

1 + u2
2 + 1

,

s(u1, u2, c1, c2) =
(0, 1, u2)√

1 + u2
2

is a two-parameter family of framed surfaces. Since xc1 · n = xc2 · n = 0 if and
only if u1 = u2 = 0, we take a smooth mapping e : R

2 → R
2 × R

2, e(q1, q2) =
(0, 0, q1, q2). Then e satisfies the variability condition and hence a pre-envelope
by theorem 4.8. It follows that the envelope E : R

2 → R
3 of (x,n, s) is given by

E(q1, q2) = x ◦ e(q1, q2) = (q1, q2, 0) ∈ π(Σc(F )), see theorem 6.3.
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