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Abstract In 1991, Chicone and Jacobs showed the equivalence between the computation of the first-
order Taylor developments of the Lyapunov constants and the developments of the first Melnikov function
near a non-degenerate monodromic equilibrium point, in the study of limit cycles of small-amplitude
bifurcating from a quadratic centre. We show that their proof is also valid for polynomial vector fields
of any degree. This equivalence is used to provide a new lower bound for the local cyclicity of degree six
polynomial vector fields, so M(6) ≥ 44. Moreover, we extend this equivalence to the piecewise polynomial
class. Finally, we prove that Mc

p(4) ≥ 43 and Mc
p(5) ≥ 65.
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1. Introduction

In the last century, Hilbert presented a list of problems that almost all of them are solved.
One problem that remains open consists in determining the maximal number H(n) of
limit cycles, and their relative positions, of planar polynomial vector fields of degree n.
This problem is known as the second part of the 16th Hilbert’s problem. In the year of
1977, Arnol’d in [4] proposed a weakened version, focused on the study of the number of
limit cycles bifurcating from the period annulus of Hamiltonian systems.

In this work, we are interested in another local version, that consists in providing the
maximum number M(n) of small amplitude limit cycles bifurcating from an elementary
centre or an elementary focus, clearly M(n) ≤ H(n). In other words, M(n) is an upper
bound of the (local) cyclicity of such equilibrium points. For more details, see [49]. For
n = 2, Bautin proved that M(2) = 3, see [5]. For n = 3, the family of cubic systems
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without quadratic terms was studied in [7, 51]. The proof of Mh(3) = 5 can be found in
[54]. Żo�la̧dek in [55] shows the first evidence that M(3) ≥ 11. However, this problem has
been recently revisited by himself in [57]. The first proof of this fact was obtained some
years later by Christopher in [14], studying first-order perturbations of another cubic
centre also provided by Żo�la̧dek in [56].

In 2012, Giné conjectures that M(n) = n2 + 3n− 7, see [25, 26]. This suggests a higher
value for M(n) for polynomial vector fields of low degree. Gouveia and Torregrosa in [30]
show that M(5) ≥ 33, M(7) ≥ 61, M(8) ≥ 76, and M(9) ≥ 88. The first evidence that
this conjecture fails is given in [53]. Recently, a complete proof that M(3) ≥ 12 is provided
by Giné, Gouveia, and Torregrosa in [27]. Moreover, in the same paper, they show that
M(4) ≥ 21. For n = 6, the best lower bound was given in [42], proving that M(6) ≥ 40.
The first main result of this paper updates this value.

Theorem 1.1. The local cyclicity of monodromic equilibrium points for polynomial
vector fields of degree n = 6 is greater than or equal to 44. That is, M(6) ≥ 44.

In this work, we are also interested in piecewise polynomial vector fields. Andronov, in
[2] was the first to study such class of systems. In the last years, they have been widely
studied, since many problems of engineering, physics, and biology can be modelled by
them, see [1, 6]. One of the most studied situations in the plane is given by two vector
fields defined in two half-planes separated by a straight line. As in the case of the classical
qualitative theory of polynomial systems, the study of the number and location of the
isolated periodic orbits, also called limit cycles, have received special attention, see for
example [11, 17, 24, 34, 41, 43]. In particular, it can be seen as an extension of the
16th-Hilbert problem for planar piecewise polynomial vector fields, see [38].

Here, we study limit cycles bifurcating from the origin in the class of piecewise
differential equations of the form{

(ẋ, ẏ) = (P+(x, y, λ), Q+(x, y, λ)), when y ≥ 0,
(ẋ, ẏ) = (P−(x, y, λ), Q−(x, y, λ)), when y < 0,

where P±(x, y, λ) and Q±(x, y, λ) are polynomials in x and y. The straight line Σ =
{y = 0} divides the plane in two half-planes, Σ± = {(x, y) : ±y > 0}, and the trajectories
on Σ are defined following the Filippov convention, see [20]. Here we will consider only
limit cycles of crossing type, that is, when both vector fields point out in the same
direction on the separation line Σ. Then, we denote by Hc

p(n) the number of limit cycles
of crossing type for piecewise polynomial vector fields of degree n. Similarly, Mc

p(n)
counts the ones of small amplitude bifurcating from a monodromic equilibrium point.
The upper index c means for crossing limit cycles and the subscript p for piecewise class.
Clearly, M(n) ≤ H(n) and Mc

p(n) ≤ Hc
p(n).

For n = 1, Huan and Yang in [37] show a numerical evidence that Hc
p(1) ≥ 3. Llibre and

Ponce in [43] provide an analytical proof of this property. Using the averaging technique,
this lower bound was reobtained by Buzzi, Pessoa, and Torregrosa in [11]. Freire, Ponce,
and Torres also obtained the same number in [21]. In this last work, the three limit cycles
are explained by studying the full return map, two appear near the origin and the other
one far from it. But the three limit cycles appear nested and surrounding one sliding
segment. In fact, the two limit cycles of small amplitude appearing from an equilibrium
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point provide the lower bound Mc
p(1) ≥ 2. This value can be proved with the results in

[21] and we will recall it in the next section. Recently in [23], the three limit cycles have
been obtained near infinity in a Hopf type bifurcation.

For n = 2, using averaging theory of fifth-order, and perturbing the linear centre, Llibre
and Tang in [44] proved that Hc

p(2) ≥ 8. Recently, da Cruz, Novaes, and Torregrosa in [18]
improve this lower bound and, using local developments of the difference map, Gouveia
and Torregrosa in [29] provide the first high lower bounds for piecewise polynomial classes
of degrees three, four and five: Mc

p(3) ≥ 26, Mc
p(4) ≥ 40, and Mc

p(5) ≥ 58. Here we
update two of these lower bounds using averaging theory in our second main result.

Theorem 1.2. The local cyclicity for piecewise polynomial vector fields of degree four
and five is Mc

p(4) ≥ 43 and Mc
p(5) ≥ 65, respectively.

In this paper, we are interesting also in differential equations containing a privileged ε
that acts as a small perturbation of a periodic behaviour. Lagrange, in his study about the
three-body problem, formulated the idea of averaging. During some years, this method
was used in many fields without people bothering about proofs validity. In 1928, Fatou in
[19] gave the first analytic proof. Nowadays, in planar differential systems, the averaging
theory is also used for proving the existence of limit cycles which appear, after pertur-
bation, from a fully periodic neighbourhood. A similar mechanism, when the differential
equation is nonautonomous, used for the same purpose is the Melnikov method. More-
over, it is an excellent tool for studying global bifurcations that occur near homoclinic or
heteroclinic loops in one-parameter families.

Let us consider the perturbation of a Hamiltonian system

{
x′ = −Hy + εP (x, y, ε, λ),

y′ = Hx + εQ(x, y, ε, λ).
(1)

Then, the first Melnikov function writes as

M(h) =
∫

Γh

Q(x, y, 0, λ)dx− P (x, y, 0, λ)dy, (2)

where Γh = {H(x, y) = h2} are closed ovals. This first-order analysis is based on the
Implicit Function Theorem. In fact, for ε small enough, the simple zeros of M(h) corre-
spond to limit cycles of the perturbed system (1). That is, if h∗ satisfies that M(h∗) = 0
and M ′(h∗) �= 0 then, there exists an hyperbolic limit cycle of (1) that goes to Γh∗ when
h goes to h∗.

This result can be generalized also for the perturbation of centres, (ẋ, ẏ) = (Pc, Qc),
having an inverse integrating factor V (x, y). Then after a time rescaling the perturbed
system {

ẋ = Pc(x, y) + εP (x, y, ε, λ),

ẏ = Qc(x, y) + εQ(x, y, ε, λ),
(3)
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can be written as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x′ = −Hy + ε

P (x, y, ε, λ)
V (x, y)

,

y′ = Hx + ε
Q(x, y, ε, λ)
V (x, y)

.

(4)

So, the corresponding generalized first Melnikov function of (4), or also of (3), is

M(h) =
∫

Γh

Q(x, y, 0, λ)dx− P (x, y, 0, λ)dy
V (x, y)

. (5)

In this paper, we only consider the above Melnikov function for the study of perturba-
tions of periodic orbits near planar autonomous differential systems. In this case, there
are some works explaining the equivalence between Melnikov studies and the averaging
theory, see [9, 35]. For more details in this theory, we refer the reader to [10, 33, 50, 52].

This bifurcation mechanism can be used also in piecewise differential equations, see
[45–47]. Although this problem can be treated in a more general way, in this work, we
will consider a simplified version of it. We will study that only the perturbation in (3) is
defined by piecewise functions. This perturbation will be defined in two zones separated
by a straight line, that is, the differential equation to consider can be written as

(ẋ, ẏ) =

{
(Pc(x, y), Qc(x, y)) + ε (P+(x, y, ε, λ), Q+(x, y, ε, λ)), if y ≥ 0,
(Pc(x, y), Qc(x, y)) + ε (P−(x, y, ε, λ), Q−(x, y, ε, λ)), if y < 0.

(6)

Therefore, the piecewise generalized first Melnikov function of (6) is

Mp(h) =
1

H+
x (x0, 0)

M+(h) +
1

H−
x (x0, 0)

M−(h), (7)

where

M±(h) =
∫

Γ±
h

Q±(x, y, 0, λ)dx− P±(x, y, 0, λ)dy
V (x, y)

with Γ±
h = Γh ∩ {±y > 0}(x0, 0)Γhy = 0x0 > 0.Γ±

h = Γh ∩ {±y > 0}(x0, 0)Γhy = 0x0 >
0.Γ±

h = Γh ∩ {±y > 0}(x0, 0)Γhy = 0x0> 0.Γ±
h = Γh ∩ {±y > 0}(x0, 0)Γhy = 0x0> 0.Γ±

h

= Γh ∩ {±y > 0}(x0, 0)Γhy = 0x0 > 0. Clearly, in both piecewise regions, we have the
same centre having V (x, y) as an inverse integrating factor. The main results of this
work could be extended to perturbing piecewise centres but this is not the aim of this
paper.

From the mechanism described above, the functions (2), (5), and (7) provide the number
of limit cycles bifurcating from the period annulus up to first-order analysis. Another tool
for obtaining limit cycles bifurcating from the origin comes from the study of the Taylor
development of the return map, the so-called Lyapunov constants. In this context, the
perturbation terms of the non-degenerate linear centre, (ẋ, ẏ) = (−y, x), usually have
degree at least two because in this case, the Lyapunov constants are polynomials in the
perturbation parameters, [15]. Another small limit cycle bifurcates from the origin using
the classical Hopf bifurcation when the linear coefficients are added in the perturbation
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terms and the trace parameter change sign adequately. This bifurcation phenomenon is
also known as the degenerated Hopf bifurcation. More details on it can be seen in [3]. In
piecewise differential equations, a similar bifurcation can also be introduced, but adding
two limit cycles instead of only one. The linear terms are responsible for one of them and
the other is due to the existence of what is known as the sliding segment that appears
when the constant terms are added. The latter is known as the pseudo-Hopf bifurcation
and they are summarized in the next result.

Proposition 1.3 (Gouveia and Torregrosa [28]). Consider the perturbed system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ẋ = −(1 + c2)y +

∞∑
k+�=2

a+
k�x

ky�,

ẏ = x+ 2cy +
∞∑

k+�=2

b+k�x
ky�,

⎧⎪⎪⎨
⎪⎪⎩
ẋ = −y +

∞∑
k+�=2

a−k�x
ky�,

ẏ = d+ x+
∞∑

k+�=2

b−k�x
ky�,

for y ≥ 0 and y < 0, respectively. If a+
11 − a−11 + 2b+02 − 2b−02 + b+20 − b−20 �= 0 then there

exist c and d small enough such that two crossing limit cycles of small amplitude bifurcate
from the origin.

We notice that when c = d = 0, the expression a+
11 − a−11 + 2b+02 − 2b−02 + b+20 − b−20

defines the stability of the origin. So, we could define it as the first Lyapunov constant for
the piecewise perturbation of the linear centre. More details on the pseudo-Hopf bifurca-
tion are collected in [12, 21, 22]. In [14, 27, 29, 30], we can see that a good and simple tool
for studying the number of limit cycles of small amplitude bifurcating from the origin is
the first-order development of the Lyapunov constants. We notice that, in this case, the
Jacobian matrix of the vector field at the origin must be of non-degenerate monodromic
type.

Then, a natural question arises. Are there any relation between both mechanisms?
Chicone and Jacobs in 1991 provided a positive answer for quadratic families of vec-
tor fields, see [13]. But, their proof is also valid for polynomial vector fields of any degree.
Hence, we can say that the next result comes from their original work. These ideas appear
also in the works of Han and Yu, see [33, 36], where the Melnikov function in the Hopf
bifurcation is studied.

Theorem 1.4 (Chicone and Jacobs [13]). Let (ẋ, ẏ) = (Pc(x, y), Qc(x, y)) be a poly-
nomial vector field of degree n, with a non degenerated centre at the origin. Consider the
perturbed systems, in the class of polynomial vector fields of degree n,

(ẋ, ẏ) =

(
Pc(x, y) +

n∑
k+l=2

aklx
kyl, Qc(x, y) +

n∑
k+l=2

bklx
kyl

)
(8)

and

(ẋ, ẏ) =

(
Pc(x, y) + ε

n∑
k+l=2

aklx
kyl +O(ε2), Qc(x, y) + ε

n∑
k+l=2

bklx
kyl +O(ε2)

)
. (9)
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If we denote by L
[1]
k the first-order expansion, with respect to the parameters akl, bkl, for

the Taylor series of the Lyapunov constant Lk associated with (8) then, for ρ small, the
first Melnikov function of (9) is

M(ρ) =
N∑

k=1

L
[1]
k

⎛
⎝1 +

∞∑
j=1

αkj0ρ
j

⎞
⎠ ρ2k+2, (10)

with the Bautin ideal 〈L1, . . . , LN , . . .〉 = 〈L1, . . . , LN 〉.

We remark that the perturbations in the above result are taken without linear terms.
This restriction is due to the fact that the elements in the Bautin ideal should be poly-
nomials. A direct consequence is the first part of the next corollary. For the second part,
the classical Hopf bifurcation is necessarily to be used. As usual, O(ε2) denotes the terms
of degree at least 2 in the perturbative parameter ε.

Corollary 1.5. Let Am be the matrix corresponding to (L[1]
1 , . . . , L

[1]
m ) with respect

to the parameters (a20, a11, a02, . . . , b20, b11, b02, . . .) ∈ R
n2+3n−4, where each L

[1]
k is the

linear k-Lyapunov constant of system (8) and m ≤ N . Then, if rankAm = � and for ε
small enough, system (9) has �− 1 hyperbolic limit cycles of small amplitude bifurcating
from the origin. Additionally, adding the trace parameter, there are polynomial pertur-
bations of the centre (ẋ, ẏ) = (Pc(x, y), Qc(x, y)), exhibiting � hyperbolic limit cycles of
small amplitude in a small enough neighbourhood of the origin.

Recently, see [27, 29, 30], a detailed study of the return map of a differential equation
near a non-degenerated monodromic point located at the origin has been done. The
authors focus their attention not only on first-order Taylor developments, with respect
to parameters, of the coefficients of the return map with respect to the initial condition.
These papers are a continuation of the work given by Christopher in [14]. The degen-
erated Hopf bifurcation technique applies when L

[1]
k = uk for k = 1, . . . , N, and all uk

are new independent parameters. Then, the existence of N limit cycles of small ampli-
tude bifurcating from the origin is guaranteed. This approach fails when the rank does
not increase in each step. That is when at least one L[1]

k is a linear combination of the
previous ones. The main advantage of Theorem 1.4 is that we can compute easier the
expressions of L[1]

k than the coefficients of the series expansion of M. In [32], the study of
the multiplicity of zeros is also taken into account and moreover it provides upper bounds
for the number of limit cycles up to this perturbation order.

This paper is structured as follows. In § 2, for completeness, we prove Theorem 1.1
recovering the original proof for quadratic vector fields obtained in [13]. As a natural
application of it, we also prove Corollary 1.5. Then, we can get limit cycles of small
amplitude bifurcating from a centre equilibrium point. Finally, we extend Theorem 1.4
and Corollary 1.5 to the class of piecewise polynomial vector fields. In § 3, we show, with
a simple example of a polynomial vector field of degree 6, that the maximal computed
rank of the linear developments does not coincide with the subscript of the corresponding
Lyapunov constant. Then, the result using only linear parts given by Christopher in [14]
does not apply. But using Theorem 1.4, we provide more limit cycles of small amplitude.
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In § 4, we prove our first main result, Theorem 1.1, and we study the local cyclicity
problem for some vector fields of degrees 7, 8, and 10, proving that M(7) ≥ 60, M(8) ≥
70, and M(10) ≥ 97. Finally, § 5 is devoted to piecewise polynomial vector fields of
degrees 3, 4, and 5, proving our second main result Theorem 1.2. We also provide a new
proof of Mc

p(3) ≥ 26, different from the one published in [29], using now only first-order
developments.

2. The proof of Chicone–Jacobs’ result

This section is devoted to the proof of Theorem 1.4 and Corollary 1.5. The proof of
Theorem 1.4 for quadratic vector fields can be found in [13]. You can see it partially also
in [48]. Here we reproduce it but extended for every polynomial vector field of degree n.

Proof of Theorem 1.4. To simplify notation, we rewrite the perturbed parameters
in (8) and (9) as

(a20, a11, a02, . . . , b20, b11, b02, . . .) = (λ1, . . . , λm) ∈ R
m, with m = n2 + 3n− 4.

After a linear change if necessary, Equations (8) and (9), in the usual polar coordinates,
write as

dr

dθ
=

r2R3(θ) + · · · + rnRn+1(θ)
1 + rΘ3(θ) + · · · + rn−1Θn+1(θ)

(11)

where Ri and Θi are homogeneous trigonometric polynomials in sin θ, cos θ of degree i.We
define r(θ; ρ) the solution of the initial value problem defined by (11) with initial condition
r(0; ρ) = ρ. Then, from the first return map r(2π; ρ), we can define the displacement
function associated with (11) as

Δ(ρ) = r(2π; ρ) − ρ.

Clearly, the zeros of this function provide periodic orbits of the corresponding system in
Cartesian coordinates.

The Taylor series in ρ of the displacement function Δ1 associated with (8) is

Δ1(ρ, λ) =
N∑

k=1

Lk(λ)ρ2k+1

⎛
⎝1 +

∞∑
j=1

βkj(λ)ρj

⎞
⎠ . (12)

with βkj polynomials vanishing at zero. Similarly, the Taylor series in ε of the
displacement function Δ2 associated with (9) is

Δ2(ρ, ε) =
∞∑

k=1

dk(ρ)εk =
∞∑

k=1

1
k!

(
∂kd(ρ, ε)
∂εk

∣∣∣∣
ε=0

)εk. (13)

We notice that both Taylor series representation are only local, but with the Global
Bifurcation Lemma, see [13], the coefficients dk(ρ) are defined and being analytic on the
ρ-domain corresponding to the portion of the x−axis cut by the periodic trajectories
surrounding the centre at the origin of the system. We observe that the idea of Melnikov
theory is determining dk(ρ) under the condition dj(ρ) = 0 for all j < k.
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Writing the parameters λ as their Taylor series expansion in terms of a privileged
parameter ε, λl(ε) =

∑∞
j=1 λjlε

j , in (12), we have for each k and i,

Lk(λ(ε)) =
∞∑

j=1

L
(j)
k (λ(ε))εj and βki(λ(ε)) =

∞∑
j=1

βkijε
j .

Rearranging the Taylor series (12), for ε and ρ small enough, it follows that

Δ1(ρ, λ(ε)) =
N∑

k=1

∞∑
j=1

L
(j)
k εj

⎛
⎝1 +

∞∑
i=0

∞∑
j=1

βkijρ
jεi

⎞
⎠ ρ2k+1. (14)

As the first-orders in ε of Equation (8), changing λ by ελ, and Equation (9) coincide, the
coefficients of degree one in ε for (14) and (13) are equal. So,

d1(ρ) =
N∑

k=1

L
[1]
k

⎛
⎝1 +

∞∑
j=1

βkj0ρ
j

⎞
⎠ ρ2k+1.

It is well known that in the above expression the odd exponents in ρ corresponds to the
property that the first non vanishing Lyapunov constant has always an odd index, see [3].
For a proof that the Lyapunov constants of even indices are in the ideal of the odd ones,
we refer the reader to [16, 31]. Applying the ideas in [13, Sect. 4] to differential system
(4), we can write

d1(ρ) =
1

Hx(ρ, 0)
M(ρ),

where the function M is defined in (5).
The statement follows because, in our case, H(x, y) = (x2 + y2)/2 + · · · . �

Proof of Corollary 1.5. We study first the case when the trace parameter is zero.
In this case, it is well known that the Lyapunov constants are polynomials in the per-
turbation parameters, see [15]. Then we can compute the linear terms of the Lyapunov
constants with, for example, the classical mechanism described in [42]. Consequently,
Theorem 1.4 gets the expression of the first Melnikov function (10). Hence, if the rank
of the computed expressions is �, we have �− 1 simple zeros near ρ = 0 and there exists
a perturbed system exhibiting �− 1 limit cycles of small amplitude. Finally, adding the
trace parameter as in the classical Hopf bifurcation (see [40]), we get the total � limit
cycles as it is stated in the statement. �

We notice that the above two results can be easily generalized for piecewise vector
fields. Let us consider the piecewise version of the perturbed differential systems (8) and
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(9) given by

(ẋ, ẏ) =

(
Pc(x, y) +

n∑
k+l=2

a±klx
kyl, Qc(x, y) +

n∑
k+l=2

b±klx
kyl

)
(15)

and

(ẋ, ẏ) =

(
Pc(x, y) + ε

n∑
k+l=2

a±klx
kyl +O(ε2), Qc(x, y) + ε

n∑
k+l=2

b±klx
kyl +O(ε2)

)
. (16)

They are defined for the parameters a+
kl, b

+
kl and a−kl, b

−
kl, in the regions y ≥ 0 and y < 0,

respectively. Here, as previously, the unperturbed system (ẋ, ẏ) = (Pc(x, y), Qc(x, y))
has a non-degenerated centre at the origin.

The next corollary provides the piecewise extension of Theorem 1.4. So, its proof follows
closely to the proof of Theorem 1.4. In this case, the return map is also analytic in ρ and
all the steps are similar. The main difference is that the Taylor series of d1 in ρ have all
powers starting in 2, because now we have not the property of symmetry that vanishes
all the even terms in the developments. We remark that the perturbation in (16) has no
constant nor linear terms.

Corollary 2.1. Let L
[1]
k be the linear terms of the Lyapunov constants of a polynomial

piecewise vector field (15) near a monodromic equilibrium point. Then the corresponding
first Melnikov function (5) of (16) writes as

M(ρ) =
N∑

k=2

L
[1]
k

⎛
⎝1 +

∞∑
j=1

αkj0ρ
j

⎞
⎠ ρk+1,

being the Bautin ideal 〈L2, . . . , LN , . . .〉 = 〈L2, . . . , LN 〉.

Finally, similarly as for analytic perturbations here also the rank of the matrix provides
a lower bound for the number of limit cycles bifurcating from a monodromic equilibrium
point. But, using piecewise perturbations, we have two extra limit cycles of small ampli-
tude as we have shown in Proposition 1.3. Then we have at least as many limit cycles as
the number of linearly independent linear parts plus one.

Corollary 2.2. Let Am be the matrix corresponding to (L[1]
2 , . . . , L

[1]
m ) with respect

to the parameters (a±20, a
±
11, a

±
02, . . . , b

±
20, b

±
11, b

±
02, . . .) ∈ R

2n2+6n−8, where each L
[1]
k is

the linear part of the k-Lyapunov constant of system (15). Then, if rankAm = �, for
ε small enough, there exist perturbation parameters, (a±, b±), such that system (16)
has �− 1 limit cycles of small amplitude bifurcating from the origin. Additionally,
adding the trace parameter, there are piecewise polynomial perturbations of (ẋ, ẏ) =
(Pc(x, y), Qc(x, y)) exhibiting �+ 1 hyperbolic limit cycles of small amplitude in a small
enough neighbourhood of the origin.

We remark that the definition of the matrix Am for Corollaries 1.5 and 2.2 does
not coincide, because of the different definitions of the subscripts in the nonvanishing
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coefficients of the respectively Taylor developments in ρ. But the important property for
the number of the limit cycles of small amplitude is which is the value of its rank.

3. A first but not trivial example

In this section, we show the explicit linear developments of the Lyapunov constants in
a simple example provided by [39]. In the proof of the next result, we can see how
Corollary 1.5 is better than the direct use of the Lyapunov constants. We remark that,
most probably, the number of limit cycles presented will be the maximum using only
first-order analysis. We have chosen a vector field of a high degree to see better the
effectiveness of our results.

Proposition 3.1. Let us consider the system

(ẋ, ẏ) = (−y + x5y, x+ x4y2). (17)

Then, there exist polynomial perturbations of degree 6 such that from the origin of the
centre (17) bifurcate 16 limit cycles of small amplitude.

Proof. System (17) has a time-reversible centre at the origin. Because it is invariant
by the change (x, y, t) → (x, −y, −t). Additionally, it has also a rational first integral
obtained from its corresponding inverse integrating factor. They are, respectively,

H(x, y) =
(x2 + y2)5

(1 − x5)2
and V (x, y) =

x10 − 2x5 + 1
(x2 + y2)3/2

.

The next step is the computation of the linear terms of the Taylor developments of
the Lyapunov constants. We have computed L[1]

k for k = 1, . . . , 40 with, for example, the
algorithm described in [30]. As in the previous section, let An be the matrix corresponding
to (L[1]

1 , . . . , L
[1]
n ) with respect to the parameters (a20, a11, a02, . . . , b20, b11, b02, . . .) ∈

R
50. Then, the proof of the statement follows using Corollary 1.5 because rankA20 = 16.
We point out that we have checked that rankAk = k for k = 1, . . . , 12, but

rankA13 = 12. Additionally, that rankA14 = 13, rankAk = 14, for k = 15, . . . , 18,
rankA19 = 15, and rankAk = 16, for k = 20, . . . , 40. From these values, we can say that,
up to k = 40, there are no more limit cycles than the ones in the statement. More-
over, without Corollary 1.5, that is with the results in [14], only 12 limit cycles of small
amplitude can bifurcate from the origin.

The explicit expression of the necessary Lyapunov constants to get the statement are:

L
[1]
1 =

2
3

(3a30 + a12 + b21 + 3b03),

L
[1]
2 =

2
5

(b41 + a32 + b23 + 5b05 + a14 + 5a50),
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L
[1]
3 =

2
35

(33a20 + 7a02 − b11),

L
[1]
4 =

2
315

(161a40 − 21b31 − 9b13 + 29a22 + 21a04),

L
[1]
5 =

2
231

(21a60 − 7b33 − 5b15 + 5a24 + 7a06 + 7a42 − 21b51),

L
[1]
6 = − 2

715
(2661b03 + 873b21 + 901a12 + 2773a30),

L
[1]
7 = − 2

10725
(42775b05 + 8639a14 + 8755a32 + 8447b23 + 8051b41 + 44259a50),

L
[1]
8 = − 2

2127125
(−265929b11 + 1931573a02 + 9055937a20),

L
[1]
9 =

2
121246125

(−40561101b31 − 18052569b13 + 42963501a04 + 320497961a40

+ 58729949a22),

L
[1]
10 = − 2

24249225
(12806957a60 + 4471569a42 + 4628869a06 − 12806957b51

− 4471569b33 + 3270585a24 − 3270585b15),

L
[1]
11 =

2
663966875

(9725859717a12 + 29642231001a30 + 28891397801b03

+ 9538151417b21),

L
[1]
12 =

2
16599171875

(770680333485b05 + 789987106585a50 + 155267074197a14

+ 156791990497a32 + 147654869097b41 + 152709627597b23),

L
[1]
13 =

2
3137243484375

(158564044415887a20 + 33790154009423a02

− 4680685675639b11),

L
[1]
14 =

2
10108895671875

(44434290786711a04 + 332135401856251a40

+ 60777619220839a22 − 18692855217819b13 − 42136878469511b31),

L
[1]
15 =

2
3418644718125

(23966540375301a60 + 8360451650717a42

+ 6115824649905a24 − 23966540375301b51 − 8360451650717b33

− 6115824649905b15 + 8657859935137a06),

L
[1]
16 = − 2

3357597491015625
(3245412818709921797b03 + 1075093752985900449b21

+ 1088751590673845749a12 + 3300044169461702997a30),
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L
[1]
17 = − 2

430461216796875
(441743420639301995b05 + 85703797233564799b41

+ 87765192673441699b23 + 89435736465275399a32

+ 88812279725145499a14 + 449630929414297095a50),

L
[1]
18 = − 2

56468685076171875
(63431621172437564093a20

− 1883311935706466021b11 + 13503765373476308497a02),

L
[1]
19 = − 2

621155535837890625
(464272204405895182111a40

+ 84747082997571253579a22 − 59162027050841642971b31

− 26101104368457380559b13 + 61867863575213428971a04),

L
[1]
20 = − 2

35654327757094921875
(5933622583442761308861a60

+ 1503042242167592202705a24 − 2059684414443886787537b33

+ 2125467391558746447037a06 − 1503042242167592202705b15

− 5933622583442761308861b51 + 2059684414443886787537a42). �

4. Local cyclicity for systems of degrees 6, 7, 8, and 10

In this section, we use Corollary 1.5 to study lower bounds for the cyclicity in some centres
of low degree, n = 6, 7, 8, and 10. Next result proves Theorem 1.1. The other propositions
do not provide better lower bounds for the local cyclicity in the indicated degrees. But
we have decided to be added here because the centres and their perturbation studies
are new. From the proofs, it seems that the number of limit cycles that bifurcate from
the origin will be the maximum values for first-order studies. We have computed some
more terms than the necessary to prove the statements. In all cases, we show that only
studying first-order developments and using the technique described in [14] the results
on lower bounds for the cyclicity are worst. We have not studied degrees n = 3, 4, 5, 9
because we do not have new centres having this special property. Unfortunately, we have
not improved the lower bounds previously obtained in [27, 30].

Proposition 4.1. There are polynomial perturbations of degree 6 such that from the
origin of the centre⎧⎪⎨
⎪⎩
ẋ = −y +

128
15

x6 − 128
15

x5y − 416
45

x4y2 +
448
45

x3y3 − 256
15

x2y4 +
256
45

xy5 +
8
9
y6,

ẏ = 2x− 896
45

x5y − 1664
45

x4y2 +
96
5
x3y3 − 512

45
x2y4 +

112
45

xy5 +
32
15
y6,

(18)
bifurcate at least 44 limit cycles of small amplitude.

Proof. The vector field in the statement and the proof that it has a centre at the
origin is given by Giné in [25]. The proof of the statement follows from Corollary 1.5
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computing L
[1]
k , for k = 1, . . . , 80, and checking that rankAk = 44, for k = 52, . . . , 80.

We notice that rankAk = k, for k = 1, . . . , 32. Because of the size, we only show the
linear developments of the first three Lyapunov constants:

L
[1]
1 =

4
3

(2a12 + b21) + 4(a30 + b03),

L
[1]
2 =

4
5

(2a32 + 4a14 + b41 + 2b23) + 4(a50 + 4b05),

L
[1]
3 =

512
1575

(488a02 − 86a11 + 236a20 − 118b02 + 172b11 − 61b20). �

Remark 4.2. We notice that for the centre (18) we have also computed 44 Lyapunov
constants up to fourth-order and, using [30], we can prove only the existence of 41 limit
cycles of small amplitude bifurcating from the origin.

Proposition 4.3. There are polynomial perturbations of degree 7 such that from the
origin of the centre⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −2527
3

x6y − 2968
3

x5y2 − 4186
3

x4y3 − 2800
3

x3y4 − 553x2y5 + 56xy6

+
184
3
x3y +

88
3
x2y2 + 48xy3 − y,

ẏ = 672x7 + 1484x6y +
2219

3
x5y2 +

5684
3

x4y3 − 742
3
x3y4 +

1148
3

x2y5

− 315xy6 − 28y7 − 58x4 − 44x3y − 104
3
x2y2 − 44

3
xy3 + 10y4 + x,

bifurcate at least 60 limit cycles of small amplitude.

Proof. The system in the statement has a centre at the origin because it has a rational
first integral of the form H(x(x2 + y2), y(x2 + y2)), where

H(x, y) =
(42x− 7y − 1)3ψ(x, y)

(448x2 + 336xy + 63y2 − 44x− 12y + 1)3(1183x2 − 68x+ 1)
(19)

with ψ(x, y) = 1 0752x3 + 29568x2y + 17640xy2 + 3024y3 − 1600x2 − 2760xy − 576y2 +
74x+ 57y − 1. The original cubic polynomial vector field having a centre at the origin is
given in [8].

The proof follows also from Corollary 1.5 computing L[1]
k , for k = 1, . . . , 80, and check-

ing that rankA63 = 60. We notice that rankAk = k, for k = 1, . . . , 55. We show only the
first three Lyapunov constants:

L
[1]
1 =

1
3

(a12 + b21) + a30 + b03,

L
[1]
2 =

1
45

(1664a02 + 352a11 + 9a14 + 3952a20 + 9a32 + 45a50 + 968b02 + 45b05

+ 1064b11 + 616b20 + 9b23 + 9b41),
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L
[1]
3 =

2192
105

(a04 + 176a13 + 15a16 + 1392a22 + 528a31 + 9a34 + 6800a40 + 15a52

+ 105a70 + 880b04 + 105b07 + 912b13 + 528b22 + 15b25 + 1072b31 + 880b40

+ 9b43 + 15b61). �

Proposition 4.4. There are polynomial perturbations of degree 8 such that from the
origin of the centre⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
54
175

x8 +
18
35
x7y − 54

175
x6y2 +

894
175

x5y3 − 2x4y4

+
66
25
x3y5 − 26

35
x2y6 − 342

175
xy7 +

16
25
y8 − y,

ẏ = −198
175

x7y − 1254
175

x6y2 − 586
175

x5y3 − 258
35

x4y4

− 22
5
x3y5 +

18
25
x2y6 − 382

175
xy7 +

162
175

y8 + x,

bifurcate at least 70 limit cycles of small amplitude.

Proof. We consider the centre with quartic homogeneous nonlinearities given in
[25] but written in polar coordinates, (x, y) = (r cos θ, r sin θ). Then, with the change
R = r3/5 and recovering again new Cartesian coordinates, we obtain the system in the
statement of degree 8. Then it has also a centre at the origin. The proof of the statement
follows again from Corollary 1.5 computing L

[1]
k , for k = 1, . . . , 130, and checking that

rankA87 = 70. We notice that rankAk = k, for k = 1, . . . , 45. The first three Lyapunov
constants are

L
[1]
1 =

1
3

(a12 + b21) + a30 + b03,

L
[1]
2 =

1
5

(a14 + a32 + 5a50 + 5b05 + b23 + b41),

L
[1]
3 =

1
35

(5a16 + 3a34 + 5a52 + 35a70 + 35b07 + 5b25 + 3b43 + 5b61). �

Proposition 4.5. There are polynomial perturbations of degree 10 such that from the
origin of the centre⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
6
25
x10 +

2
5
x9y +

8
25
x8y2 +

152
25

x7y3 − 28
25
x6y4 +

44
5
x5y5 − 8

5
x4y6

+
24
25
x3y7 +

6
25
x2y8 − 54

25
xy9 +

16
25
y10 − y,

ẏ = −6
5
x9y − 182

25
x8y2 − 104

25
x7y3 − 352

25
x6y4 − 164

25
x5y5 − 28

5
x4y6

− 136
25

x3y7 +
48
25
x2y8 − 46

25
xy9 +

18
25
y10 + x,

bifurcate at least 97 limit cycles of small amplitude.
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Proof. The centre in the statement is obtained following the same procedure than in
the proof of Proposition 4.4 but with the change R = r3/9. The proof of the existence
of such limit cycles of small amplitude follows again from Corollary 1.5 computing L[1]

k ,
for k = 1, . . . , 130, and checking that rankA126 = 97. We notice that rankAk = k, for
k = 1, . . . , 58. Curiously, the expressions of the first three Lyapunov constants coincide
with the ones of the previous proposition. �

5. Perturbing piecewise systems of degrees 3, 4, and 5

This section is devoted to proving Theorem 1.2. We also show that there are other cubic
centres having cyclicity also higher or equal than 26 as it was proved in [29] but using
second-order developments. The following result only uses first-order analysis. The best
lower bound for the local cyclicity, up to our knowledge, for piecewise quadratic vector
fields is [18]. As we have no new nor better results for n = 2 we have concentrated our
efforts to high degrees. But, the computational difficulties arise for n ≥ 6 even using
the parallelization algorithms. This is why we have stopped in degree five polynomial
piecewise differential equations. So we do not write them here again.

As in the previous section, we have computed some more Lyapunov constants than
the strictly necessary to get the proofs. With the aim to convince ourselves that we have
obtained the optimal results for first-order studies. From the proofs, it can be seen also
that the classical study using only the return map and the Lyapunov constants provide
worse results. See again [29].

The general perturbed system considered in this section is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ẋ, ẏ) =

(
Pc(x, y) +

n∑
k+�=0

a+
k�x

ky�, Qc(x, y) +
n∑

k+�=0

b+k�x
ky�

)
for y ≥ 0,

(ẋ, ẏ) =

(
Pc(x, y) +

n∑
k+�=0

a−k�x
ky�, Qc(x, y) +

n∑
k+�=0

b−k�x
ky�

)
for y < 0.

(20)

Proposition 5.1. There exist polynomial piecewise perturbations of degree n = 3 as
(20) such that 26 crossing limit cycles of small amplitude bifurcate from the origin of
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −y +
168
125

x2 +
8252
125

xy − 2968
125

y2

− 44436
625

x3 − 533631
625

x2y +
592508

625
xy2 +

69552
625

y3,

ẏ = x− 4974
125

x2 +
9164
125

xy +
2874
125

y2

+
232848

625
x3 − 910392

625
x2y +

385231
625

xy2 +
407064

625
y3.

Proof. The system in the statement is the Bondar–Sadovskĭı cubic centre system given
by the rational first integral (19), see again [8], but rotated with the matrix(

3/5 −4/5
4/5 3/5

)
.
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The proof of the statement follows from Corollary 2.2 computing L[1]
k , for k = 2, . . . , 32,

and checking that rankA28 = 25. We notice that rankAk = k − 1, for k = 2, . . . , 24.
Because of the size, we only show the linear developments of the first three Lyapunov
constants:

L
[1]
2 =

2
3

(a+
11 − a−11 + b+20 − b−20 + 2b+02 − 2b−02),

L
[1]
3 =

1
9000

(126000πa−02 − 25200πa−11 + 1125πa−12 + 163800πa−20 + 3375πa−30

+ 126000πa+
02 − 25200πa+

11 + 1125πa+
12 + 163800πa+

20 + 3375πa+
30

− 135900πb−02 + 3375πb−03 + 18900πb−11 − 85500πb−20 + 1125πb−21 − 135900πb+02

+ 3375πb+03 + 18900πb+11 − 85500πb+20 + 1125πb+21 − 577664a−11 + 577664a+
11

− 1155328b−02 − 577664b−20 + 1155328b+02 + 577664b+20),

L
[1]
4 =

1
2812500

(4738650000πa−02 − 947730000πa−11 + 42309375πa−12

+ 6160245000πa−20 + 126928125πa−30 + 4738650000πa+
02 − 947730000πa+

11

+ 42309375πa+
12 + 6160245000πa+

20 + 126928125πa+
30 − 5110972500πb−02

+ 126928125πb−03 + 710797500πb−11 − 3215512500πb−20 + 42309375πb−21

− 5110972500πb+02 + 126928125πb+03 + 710797500πb+11 − 3215512500πb+20

+ 42309375πb+21 + 1547032000a−02 − 84000000a−03 − 14072769976a−11

+ 3736000a−12 + 2604141664a−20 − 37356000a−21 + 41772000a−30

− 1547032000a+
02 + 84000000a+

03 + 14072769976a+
11 − 3736000a+

12

− 2604141664a+
20 + 37356000a+

21 − 41772000a+
30 − 27939203952b−02

+ 68208000b−03 + 628004832b−11 + 4644000b−12 − 14413096320b−20

+ 42424000b−21 + 9390000b−30 + 27939203952b+02 − 68208000b+03

− 628004832b+11 − 4644000b+12 + 14413096320b+20 − 42424000b+21 − 9390000b+30).
�

We remark that, in the above result, we have rotated because, without it, the local
cyclicity takes a lower value, up to first-order analysis. We have not proved that this
rotation plays any special role. Except that the entries of the matrix are small rational
numbers. With other rotation matrices, the result will be generically the same. This
example shows how the separation straight line change the local cyclicity of the origin.

Proposition 5.2. There exist polynomial piecewise perturbations of degree n = 4 as
(20) such that 43 crossing limit cycles of small amplitude bifurcate from the origin of
system {

ẋ = x4 − 6x2y2 + y4 + x3 − 3xy2 + x2 − y2 − y,

ẏ = 4x3y − 4xy3 + 3x2y − y3 + 2xy + x.

https://doi.org/10.1017/S0013091522000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000128


372 Luiz F. S. Gouveia and Joan Torregrosa

Proof. The above vector field has a centre at the origin because it is the holomorphic
system of degree four ż = i z + z2 + z3 + z4, but written in Cartesian coordinates, z =
x+ i y. The proof follows also from Corollary 2.2 computing L[1]

k , for k = 2, . . . , 60, and
checking that rankA60 = 42. We notice that rankAk = k − 1, for k = 2, . . . , 38. Because
of the size, we only show the linear developments of the first three Lyapunov constants:

L
[1]
2 =

2
3

(a+
11 − a−11 + b+20 − b−20),

L
[1]
3 =

1
8
π(a+

02 + a−02 + a+
12 + a−12 + 3a+

30 + 3a−30 + 3b+03 + 3b−03

− 4b+20 − 4b−20 + b+21 + b−21),

L
[1]
4 = 8b+20 − 8b−20 + 4a+

02 − 4a−02 − 6b+21 + 6b−21 + 4b+22 − 4b−22 − 2a+
11

+ 2a−11 + 4a+
12 − 4a−12 + 4a+

13 − 4a−13 − 16a+
20 + 16a−20 + 6a+

30

− 6a−30 + 6a+
31 − 6a−31 − 4b+03 + 4b−03 + 16b+04 − 16b−04 − 14b+11 + 14b−11.

�

Proposition 5.3. There exist polynomial piecewise perturbations of degree n = 5 as
(20) such that 65 crossing limit cycles of small amplitude bifurcate from the origin of
system{

ẋ = x5 − 10x3y2 + 5xy4 + x4 − 6x2y2 + y4 + x3 − 3xy2 + x2 − y2 − y,
ẏ = 5x4y − 10x2y3 + y5 + 4x3y − 4xy3 + 3x2y − y3 + 2xy + x.

Proof. The vector field in the statement is, written in Cartesian coordinates (z = x+
i y), the holomorphic system of degree five ż = i z + z2 + z3 + z4 + z5. The proof follows
again from Corollary 2.2 computing L[1]

k , for k = 2, . . . , 80, and checking that rankA72 =
64. We notice that rankAk = k − 1, for k = 2, . . . , 58. Because of the size, we only show
the linear developments of the first three Lyapunov constants:

L
[1]
2 =

2
3

(a+
11 − a−11 + 2(b+02 − 2b−02) + b+20 − b−20),

L
[1]
3 =

1
8
π(a+

12 + a−12 + 3(a+
30 + a−30) − b+02 − b−02 + 3(b+03 + b−03)

− 4(b+20 + b−20) + b+21 + b−21),

L
[1]
4 =

2
15

(3b+40 − 3b−40 + 3b−21 − 3b+21 + 4b+20 − 4b−20 + 2b−03 − 2b+03 − 7b+11 + 7b−11

− 3a−30 + 3a+
30 − 8b−04 + 8b+04 − 8a+

20 + 8a−20 + 3a+
31 − 3a−31 + 2a+

13 − 2a−13

− 6b−02 + 6b+02 + 2a+
12 − 2a−12 + 2b+22 − 2b−22 − a+

11 + a−11 − 12a+
02 + 12a−02).
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