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Departamento de Matemáticas, Universidad de Oviedo,

C/ Calvo Sotelo, s/n, 33007 Oviedo, Spain
e-mail: cmartinez@uniovi.es

and IVAN SHESTAKOV
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Abstract. Let F be a field of characteristic different of 2 and let M1|1(F)(+) denote
the Jordan superalgebra of 2 × 2 matrices over the field F. The aim of this paper is to
classify irreducible (unital and one-sided) Jordan bimodules over the Jordan superalgebra
M1|1(F)(+).
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1. Introduction. We will assume in the paper that all algebras are over a field F,
charF �= 2.

The theory of bimodules over simple Jordan algebras, developed by N. Jacobson (see
[3]), was extended to Jordan superalgebras in a series of papers (see [6, 8, 9, 10, 11, 12, 14,
15, 16]).

Let’s remember that a superalgebra J = J0̄ + J1̄ is a Z2-graded algebra. So J0̄ is a sub-
algebra of J ( J0̄J0̄ ⊆ J0̄), J1̄ is a module over J0̄ ( J0̄J1̄, J1̄J0̄ ⊆ J1̄) and J1̄J1̄ ⊆ J0̄. Elements
lying in J0̄ ∪ J1̄ are called homogeneous elements; more exactly, they are called even if
they lie in J0̄ and odd if they lie in J1̄. The parity of a homogenous element a is zero if the
element a is even and one if it is odd and is represented as |a|.

A Jordan superalgebra is a superalgebra J = J0̄ + J1̄ satisfying the following two
homogeneous identities:

(i) xy = (−1)|x||y|yx,

(ii) (xy)(zu) + (−1)|y||z|(xz)(yu) + (−1)|y||u|+|z||u|(xu)(yz)

= ((xy)z)u + (−1)|u||z|+|u||y|+|z||y|((xu)z)y + (−1)|x||y|+|x||z|+|x||u|+|z||u|((yu)z)x,

for arbitrary homogeneous elements x, y, z, u in J .
A Jordan superalgebra J is called simple if it has no nontrivial graded ideals and

J2 �= 0. For more information about (simple) Jordan superalgebras we refer the reader to
[4, 5, 7, 13].

If A = A0̄ + A1̄ is an associative superalgebra, that is, an associative algebra that has
a Z2 grading, then we can define a new operation • given by: a • b = 1

2 (ab + (−1)|a||b|ba)

for arbitrary homogeneous elements a, b ∈ A. The superalgebra obtained in this way with
the same underlying vector space and the same gradding of A and with the new product •
is a Jordan superalgebra that is denoted A(+)
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In particular, if we take A = M1|1(F), the superalgebra of 2×2 matrices over the field F,
with even part the set of diagonal matrices and its even part equal to the set of off-diagonal
matrices,

A0̄ =
{(

a 0

0 d

)}
, A1̄ =

{(
0 b

c 0

)}

the corresponding Jordan superalgebra J = A(+) = M1|1(F)(+) is a simple Jordan superal-
gebra.

If V is a Z2-graded vector space and there exist bilinear maps V × J → V , J × V → V ,
we say that V is a Jordan bimodule over the Jordan superalgebra J if the split null extension
V + J is a Jordan superalgebra, where the multiplication in the split null extension extends
the one of J , V · V = (0) and the multiplication of elements of J and V is given by the
bilinear maps (see [11]).

In the superalgebras setting, for each bimodule we can define the opposite module. Let
V = V0̄ + V1̄ be a Jordan bimodule over a Jordan superalgebra J . Take copies V op

1̄
and V op

0̄
of v1̄ and V0̄ with different parity. Then V op = V op

1̄
+ V op

0̄
becomes a Jordan J -bimodule

defining the action of J on V op by

avop = (−1)|a|(av)op, vopa = (va)op.

If J is a unital Jordan superalgebra and V is a bimodule such that the identity of J , 1, acts
as the identity on V , then we say that J is a unital Jordan bimodule over J .

A one-sided Jordan bimodule over J is a bimodule V such that {J , V , J} = (0), where
{x, v, y} = (xv)y + x(vy) − (−1)|x||v|v(xy) represents the triple Jordan product in J + V and
x, y ∈ J , v ∈ V are homogeneous elements. Let’s denote U(x, y) the operator given by
vU(x, y) = {x, v, y} and D(x, y) = R(x)R(y) − (−1)|x||y|R(y)R(x).

It is well known that every Jordan bimodule decomposes as a direct sum of unital and
one-sided Jordan bimodules.

The aim of this paper is to give the classification of unital Jordan bimodules (already
announced by the authors some time ago) and one-sided modules over the simple Jordan
superalgebra J = M1|1(F)(+).

2. Unital bimodules. In this section, J will denote the Jordan superalgebra
J = M (+)

1|1 . We will fix the canonical basis {e, f , x, y}, where e = e11, f = e22, x = e12, y =
e21. Then J0̄ = Fe + Ff , J1̄ = Fx + Fy, ef = 0, e2 = e, f 2 = f , [x, y] = e − f .

For arbitrary elements α, β, γ ∈ F, let us call V(α, β, γ ) the four-dimensional
Z2-graded vector space V = F(v, w, z, t) with V0̄ = F(v, w), V1̄ = F(z, t) and the action
of J over V defined by

ve = v, vf = 0, vx = z, vy = t,

we = 0, wf = w, wx = (γ − 1)z − 2αt, wy = 2βz − (γ + 1)t,

ze = 1
2 z, zf = 1

2 z, zx = αv, zy = 1
2 (γ + 1)v + 1

2 w,

te = 1
2 t, tf = 1

2 t, tx = 1
2 (γ − 1)v − 1

2 w, ty = βv. (2.1)

Let us note that R(x)2 = αIV , R(y)2 = βIV and R(x)R(y) + R(y)R(x) = γ IV .
It can be also checked that vU(x, y) = w.
To start we will prove that V(α, β, 0) is a Jordan bimodule for arbitrary α, β ∈ F.
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LEMMA 2.1. V(α, β, 0) is a (unital) Jordan bimodule over J.

Proof. Let us define an embedding i : M1|1(F) → M2|2(F) via

e →
(

I2 0

0 0

)
, f →

(
0 0

0 I2

)
, x →

(
0 I2

A 0

)
, y →

(
0 B

I2 0

)
,

where

A =
(

0 0

0 2α

)
, B =

(
2β 0

0 0

)
.

Let’s denote v the element of M2|2(F) given by v =
(

E 0
0 0

)
, where E =

(
0 1
0 0

)
.

Consider the J -submodule of M2|2(F) with basis {v, w = vU(x, y), z = vx, t = vy}.
This bimodule is isomorphic to V(α, β, 0).

Now let us consider arbitrary elements α, β, γ ∈ F. We can take elements α′, β ′ ∈ F
such that γ 2 − 4αβ − 1 = −4α′β ′ − 1, that is, γ 2 = 4(αβ − α′β ′).

LEMMA 2.2. There is an isomorphism ϕ : M1|1(F)(+) −→ M1|1(F)(+) such that for
every v ∈ V(α, β, γ ) we have vR(ϕ(x))2 = α′v, vR(ϕ(y))2 = β ′v and v(R(ϕ(x))R(ϕ(y)) +
R(ϕ(y))R(ϕ(x))) = 0.

Proof. From γ 2 − 4αβ = −4α′β ′, it follows that the matrices

A′ =
(

0 2α′

−2β ′ 0

)
, A =

(
γ −2α

2β −γ

)

have the same determinant and both of them have zero trace.
Consequently, the two matrices are similar, that is, there exists an invertible matrix

P (without loss of generality we can assume that |P| = 1) such that A′ = PAP−1.

If P =
( a b

c d

)
we only need to consider the automorphism ϕ of M1|1(F)(+) given by

ϕ(e) = e, ϕ( f ) = f , ϕ(x) = ax + by, ϕ(y) = cx + dy.

Note that from the previous lemma it follows that V(α, β, γ ) is a unital module over
M1|1(F)(+) and that there is a semi-isomorphism between V(α, β, γ ) and V(α′, β ′, 0).
In fact, if γ 2 − 4αβ = γ ′2 − 4α′β ′, then the bimodules V(α, β, γ ) and V(α′, β ′, γ ′) are
semi-isomorphic.

Hence, we have proved the following result.

THEOREM 2.3. (a) For arbitrary elements α, β, γ ∈ F, the action of J = M1|1(F)(+)

over the graded vector space V = F(v, w, z, t) given by (1.1) defines a structure of unital
J-bimodule V(α, β, γ ).

(b) Given α, β, γ, α′, β ′, γ ′ ∈ F, the J bimodules V(α, β, γ ) and V(α′, β ′, γ ′) are
isomorphic if and only if α = α′, β = β ′ and γ = γ ′

LEMMA 2.4. If γ 2 − 4αβ − 1 �= 0 then the bimodule V = V(α, β, γ ) is irreducible. If
γ = 1 and α = 0 then Fw + Fwy is the only proper submodule of V = V(α, β, γ ). In all
other cases, Fw + Fwx is the only proper submodule of V = V(α, β, γ ).
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Proof. Let (0) �= V ′ a nonzero submodule of V = V(α, β, γ ). Then V ′ ∩ V0̄ �= (0),
since otherwise V ′x = V ′y = (0).

Applying to an arbitrary element ṽ in V ′ the following Jordan identity: R(x)R(e)R(y) −
R(y)R(e)R(x) − R([x, y]e) − R(xe)R(y) + R(ye)R(x) − R([x, y])R(e) = 0, we get that
ṽ(R(e) − R(e − f )R(e)) = 0.

But the odd part of V = V(α, β, γ ) lies in the 1
2 -Peirce component of e and f , so ṽ = 0.

That is, if V ′ ∩ V0̄ = (0), then V ′ = (0).
If {e, V ′, e} �= (0), then v ∈ V ′ and so V ′ = V .
If {e, V ′, e} = (0), then V ′ ∩ V0̄ = Fw. But wU(x, y) = (γ 2 − 4αβ − 1)v ∈ V ′. So v ∈

V ′, that is, V = V ′ if γ 2 − 4αβ − 1 �= 0. This proves irreducibility of V = V(α, β, γ ) when
γ 2 − 4αβ − 1 �= 0.

So from now on we assume that γ 2 − 4αβ − 1 = 0
Now let’s consider the case γ = 1 and α = 0. Then wU(x, y) = wx = 0 and wy = 2βz −

2t and V ′ = F(w, wy).
Otherwise, wx = (γ − 1)z − 2αt �= 0 and wy = 2βz − (γ + 1)t implies that (γ + 1)

wx − 2αwy = (γ 2 − 4αβ − 1)z − 0t = 0, that is, F(w, wx) = V ′.

NOTATION. If γ 2 − 4αβ − 1 = 0, let’s denote V ′(α, β, γ ) the only proper nonzero
submodule of V = V(α, β, γ ) (that can be expressed as F(w, wx) except when α = 0, γ = 1
that can be expressed as F(w, wy)) and Ṽ(α, β, γ ) = V(α, β, γ )/V ′(α, β, γ ).

Now we can prove the classification result.

THEOREM 2.5. Every irreducible finite dimensional unital Jordan bimodule over J =
M1|1(F)(+) is, up to opposite grading, isomorphic to one of the bimodules V = V(α, β, γ ),
if γ 2 − 4αβ − 1 �= 0, or to V ′(α, β, γ ) or Ṽ(α, β, γ ) if γ 2 − 4αβ − 1 = 0.

Proof. Let V be an irreducible unital finite dimensional J -bimodule. Up to opposite,
we can assume that V0̄ = {e, V0̄, e} + {f , V0̄, f } and V1̄ = {e, V1̄, f }.

The operators R(x)2, R(y)2, R(x)R(y) + R(y)R(x) commute with the action of J . By
Schur’s Lemma they act as scalars α, β, γ , respectively.

We claim that for every subspace W of {e, V0̄, e} the vector space U = W +
WU(J1̄, J1̄) + WJ1̄ is a J -bimodule. Indeed, since W ⊆ {e, V0̄, e}, we have that WJ1̄ ⊆
{e, V1̄, f } and WU(J1̄, J1̄) ⊆ {f , V0̄, f }. Hence each summand W , WU(J1̄, J1̄) and WJ1̄ is
invariant under multiplication by e and f , so under multiplication by J0̄.

Now using that R(J1̄)R(J1̄) ⊆ U(J1̄, J1̄) + D(J1̄, J1̄) + R(J0̄), we get that WR(J1̄)R(J1̄)

⊆ WU(J1̄, J1̄) + WD(J1̄, J1̄) + WR(J0̄) ⊆ U . That implies that WR(J)R(J) ⊆ U .
So, we only need to prove that WU(J1̄, J1̄)R(J1̄) ⊆ WJ1̄. But U(J1̄, J1̄) ⊆ R(J1̄)R(J1̄) +

R(J0̄) and R(J1̄)R(J1̄)R(J1̄) ⊆ R(J)R(J) + D(J1̄, J1̄)R(J1̄). Now using that D(J1̄, J1̄) acts as
an scalar multiplication we gets what we wanted.

In the same way, we can prove that for every W ⊆ {f , V0̄, f }, the subspace W +
WU(J1̄, J1̄) + WJ1̄ is a J -bimodule.

Since we assume V to be irreducible, it follows that dimF{e, V0̄, e} ≤ 1 and
dimF{f , V0̄, f } ≤ 1, dim V1̄ ≤ 2.

If γ 2 − 4αβ − 1 �= 0, let us show that V � V(α, β, γ ), where R(x)2 acts on V as αIV ,
R(y)2 acts as βIV and R(x)R(y) + R(y)R(x) acts as γ IV . We have already seen that V0̄ �=
(0). The operator U(x, y)2 acts on V0̄ as the multiplication by γ 2 − 2αβ − 1. This implies
that both {e, V0̄, e} and {f , V0̄, f } are different of zero (multiplication by U(x, y) exchange
them both).
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Choose 0 �= v ∈ {e, V0̄, e}. We know that w = vU(x, y) ∈ {f , V0̄, f }. Let us prove
that vx, vy ∈ V1̄ are linearly independent. Suppose that vy = λvx, λ ∈ F. Then
vR(y)R(x) = (vy)x = λ(vx)x = λαv and vU(x, y) = vR(x)R(y) − vR(y)R(x) − vR([x, y]) =
v(R(x)R(y) + R(y)R(x)) − 2vR(y)R(x) − vR(e − f ) = (γ − 2λα − 1)v, that is, vU(x, y) ∈
Fv, which is a contradiction.

Hence F(v, w = vU(x, y), vx, vy) is a J -bimodule and the multiplication table coin-
cides with the one of V(α, β, γ ).

Now let’s consider the case γ 2 − 4αβ − 1 = 0. In this case, V0̄U(x, y)2 = (0). If
{e, V0̄, e} �= (0) and 0 �= v ∈ {e, V0̄, e}, then w = vU(x, y) = 0. Indeed, if w = vU(x, y) �=
0, then V is generated by w, wU(x, y), wx, wy. But wU(x, y) = vU(x, y)2 = 0. So,
dimF V0̄ ≤ 1, which contradicts v, w ∈ V0̄. Hence w = vU(x, y) = 0. This says that V �
V ′(α, β, γ ).

If { f , V0̄, f } �= (0), then V � V̄(α, β, γ ), what proves the theorem.

3. One sided modules. Let S = S(J) be the unital universal associative enveloping
algebra of the Jordan algebra J = M (+)

1|1 . Denote x = e12, y = e21, e = e11, f = e22, v = e −
f , then J = algJord〈x, y〉 and S = algAs〈x, y〉. Let also a ◦ b denote ab + ba, then we have x ◦
e = x, y ◦ e = y, [x, y] = v. Observe that x2, y2 lie in the center Z(S) of S. Moreover, we
have

[x ◦ y, x] = [ y, x2] = 0,

[x ◦ y, y] = [x, y2] = 0,

hence x ◦ y ∈ Z(S).

LEMMA 3.1. Let A = F[x2, y2], B = F[x2, y2, x ◦ y].
(1) The algebra S is a free B-module with free generators 1, x, y, xy.
(2) The center Z(S) = B.
(3) B = A[x ◦ y], where (x ◦ y)2 = 1 + 4x2y2.

Proof. We have yx = x ◦ y − xy, xyx = (x ◦ y)x − x2y, yxy = (x ◦ y)y − y2x, (xy)2 =
(x ◦ y)xy − x2y2, which proves that S is spanned over B by elements 1, x, y, xy. Let z = α +
βx + γ y + δxy ∈ Z(S) with α, β, γ, δ ∈ B, then 0 = [x, z] = γ [x, y] + δx[x, y] = γ v + δxv.
Multiplying by v, we get γ + δx = 0, which gives γ = δ = 0. Similarly, we get β = 0, hence
Z(S) = B. The similar argument shows that if α + βx + γ y + δxy = 0 then α = β = γ =
δ = 0, which proves (1). Finally,

(x ◦ y)2 = (xy)2 + (yx)2 + 2x2y2 = [x, y]xy + [ y, x]yx + 4x2y2

= v2 + 4x2y2 = 1 + 4x2y2,

proving (3).

The algebra S has a natural Z2-grading induced by the grading of J :

S0̄ = B + Bxy, S1̄ = Bx + By.

The category of one-sided Jordan J -superbimodules is isomorphic to the category of
right associative Z2-graded S-modules. In particular, irreducible superbimodules over J
correspond to irreducible Z2-graded S-modules.

Let M = M0̄ + M1̄ be an irreducible Z2-graded S-module and ϕ : S → EndFM be
the corresponding representation. Then ϕ(B) lies in the even part of the centralizer D
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of S-module M , which is a graded division algebra (see, for example, [2]). Denote
α = ϕ(x2), β = ϕ(y2), γ = ϕ(x ◦ y), K = F(α, β, γ ), then K is a field, K = F(α, β) +
F(α, β)γ where γ 2 = 4αβ + 1. Moreover, the graded algebra S̄ = ϕ(S) has dimension at
most 4 over K.

The algebra S̄ and the module M may be considered over the field K, then M is a
faithful irreducible graded module over the K-algebra S̄. By [1, Lemma 4.2], M , up to
opposing grading, is isomorphic to a minimal graded right ideal of S̄. Since dimK S̄ ≤ 4,
we have dimK M ≤ 2. Moreover, the case dimK M = 1 can appear only when S̄ = K which
is impossible since [ϕ(x), ϕ(y)] �= 0. Therefore, dimK S̄ = 4 and dimK M = 2.

Observe also that by the density theorem for graded modules (see, for example, [2]),
S̄ is a dense graded subalgebra of the algebra EndDM ⊆ Endgr

K M = M1|1(K). Clearly, this
implies that S̄ = M1|1(K).

Consider the elements a = γ+1
2 − xy, b = xy − γ−1

2 ∈ B. We have a2 = a, b2 = b, a +
b = 1, hence up to change of indices ϕ(a) = e11, ϕ(b) = e22.

We will separate the two cases:

1. Let first γ �= ±1. Chose an element m ∈ M0̄ ∪ M1̄ such that ma = m, then we have
m = γ+1

2 m − mxy, which gives

mxy = γ−1
2 m, βmx = γ−1

2 my. (3.1)

In particular, mxy �= 0, m′ = mx �= 0, and M = Km + Km′. We have by (3.1)

m′x = αm;
my = 2β

γ−1 mx = 2β

γ−1 m′;
m′y = mxy = γ−1

2 m.

2. Let now γ = ±1, then a = 1 − xy, b = xy or a = −xy, b = xy + 1. Choose for γ = 1
an element m ∈ M0̄ ∪ M1̄ such that m = mb �= 0, then m′ = mx �= 0 and again M = Km +
Km′. We have

m′x = αm;
my = mby = mxyy = βmx = βm′;
m′y = mxy = m.

Similarly, choosing for γ = −1 an element m ∈ M0̄ ∪ M1̄ such that ma = m, we get

m′x = αm;
my = −βm′;
m′y = −m.

The condition γ 2 = 1 is equivalent to αβ = 0, therefore we will distinguish seven different
cases: γ �= ±1; γ = ±1 : α = 0, β �= 0; α �= 0, β = 0; α = β = 0.

The corresponding graded homomorpnism ϕ : S → M1|1(K) is defined for γ �= ±1 by
the conditions

ϕ(x) =
(

0 α

1 0

)
, ϕ(y) =

(
0 γ−1

2
2β

γ−1 0

)
,
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and for γ = ±1 by

ϕ(x) =
(

0 α

1 0

)
, ϕ(y) =

(
0 ±β

±1 0

)
(αβ = 0).

Resuming, we have

THEOREM 3.2. Let M be an irreducible one-sided Jordan bimodule over J =
M1|1(F)(+). Then there exists an extension field K = F(α, β, γ ) with γ 2 = 4αβ + 1 such
that dimK M = 2, M = Km + Km′, and, up to opposite grading, the action of J on M is
given as follows:

1. γ �= ±1 (or αβ �= 0).

m · x = 1
2 m′;

m′ · x = 1
2αm;

m · y = β

γ−1 m′;
m′ · y = mxy = γ−1

4 m.

2. γ = ±1 (or αβ = 0).

m · x = 1
2 m′;

m′ · x = 1
2αm;

m · y = ± 1
2βm′;

m′ · y = ± 1
2 m.

In the second case, we have six subclasses: both for γ = 1 and for γ = −1 the subcases
α = 0, β �= 0; α �= 0, β = 0; α = β = 0.

The module M is finite dimensional if and only if the elements α, β are algebraic
over F. In particular, if the field F is algebraically closed and M is finite dimensional, then
K = F.
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