JORDAN BIMODULES OVER THE SUPERALGEBRA $M_{1|1}$

CONSUELO MARTÍNEZ

Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo, s/n, 33007 Oviedo, Spain e-mail: cmartinez@uniovi.es

and IVAN SHESTAKOV

Instituto de Matemática e Estatística, Universidade de São Paulo R. do Matão, 1010 — Cidade Universitária, São Paulo 05508-090, Brazil e-mail: shestak@ime.usp.br

(Received 22 January 2019; revised 09 April 2019; accepted 29 April 2019; first published online 14 June 2019)

Abstract. Let F be a field of characteristic different of 2 and let $M_{1|1}(F)^{(+)}$ denote the Jordan superalgebra of 2×2 matrices over the field F. The aim of this paper is to classify irreducible (unital and one-sided) Jordan bimodules over the Jordan superalgebra $M_{1|1}(F)^{(+)}$.

2010 Mathematics Subject Classification. 17C70, 17B60, 17C55

1. Introduction. We will assume in the paper that all algebras are over a field F, $charF \neq 2$.

The theory of bimodules over simple Jordan algebras, developed by N. Jacobson (see [3]), was extended to Jordan superalgebras in a series of papers (see [6, 8, 9, 10, 11, 12, 14, 15, 16]).

Let's remember that a *superalgebra* $J = J_{\bar{0}} + J_{\bar{1}}$ is a \mathbb{Z}_2 -graded algebra. So $J_{\bar{0}}$ is a subalgebra of J ($J_{\bar{0}}J_{\bar{0}} \subseteq J_{\bar{0}}$), $J_{\bar{1}}$ is a module over $J_{\bar{0}}$ ($J_{\bar{0}}J_{\bar{1}}$, $J_{\bar{1}}J_{\bar{0}} \subseteq J_{\bar{1}}$) and $J_{\bar{1}}J_{\bar{1}} \subseteq J_{\bar{0}}$. Elements lying in $J_{\bar{0}} \cup J_{\bar{1}}$ are called homogeneous elements; more exactly, they are called even if they lie in $J_{\bar{0}}$ and odd if they lie in $J_{\bar{1}}$. The parity of a homogeneous element a is zero if the element a is even and one if it is odd and is represented as |a|.

A *Jordan superalgebra* is a superalgebra $J = J_{\bar{0}} + J_{\bar{1}}$ satisfying the following two homogeneous identities:

(i)
$$xy = (-1)^{|x||y|}yx$$
,

(ii)
$$(xy)(zu) + (-1)^{|y||z|}(xz)(yu) + (-1)^{|y||u|+|z||u|}(xu)(yz)$$

$$= ((xy)z)u + (-1)^{|u||z| + |u||y| + |z||y|} ((xu)z)y + (-1)^{|x||y| + |x||z| + |x||u| + |z||u|} ((yu)z)x,$$

for arbitrary homogeneous elements x, y, z, u in J.

A Jordan superalgebra J is called *simple* if it has no nontrivial graded ideals and $J^2 \neq 0$. For more information about (simple) Jordan superalgebras we refer the reader to [4, 5, 7, 13].

If $A=A_{\bar 0}+A_{\bar 1}$ is an associative superalgebra, that is, an associative algebra that has a \mathbb{Z}_2 grading, then we can define a new operation \bullet given by: $a \bullet b = \frac{1}{2}(ab+(-1)^{|a||b|}ba)$ for arbitrary homogeneous elements $a,b\in A$. The superalgebra obtained in this way with the same underlying vector space and the same gradding of A and with the new product \bullet is a Jordan superalgebra that is denoted $A^{(+)}$

In particular, if we take $A = M_{1|1}(F)$, the superalgebra of 2×2 matrices over the field F, with even part the set of diagonal matrices and its even part equal to the set of off-diagonal matrices,

$$A_{\bar{0}} = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right\}, \quad A_{\bar{1}} = \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \right\}$$

the corresponding Jordan superalgebra $J=A^{(+)}=M_{1|1}(F)^{(+)}$ is a simple Jordan superalgebra.

If V is a \mathbb{Z}_2 -graded vector space and there exist bilinear maps $V \times J \to V, J \times V \to V$, we say that V is a *Jordan bimodule* over the Jordan superalgebra J if the *split null extension* V+J is a Jordan superalgebra, where the multiplication in the split null extension extends the one of J, $V \cdot V = (0)$ and the multiplication of elements of J and V is given by the bilinear maps (see [11]).

In the superalgebras setting, for each bimodule we can define the *opposite module*. Let $V=V_{\tilde{0}}+V_{\tilde{1}}$ be a Jordan bimodule over a Jordan superalgebra J. Take copies $V_{\tilde{1}}^{op}$ and $V_{\tilde{0}}^{op}$ of $v_{\tilde{1}}$ and $V_{\tilde{0}}$ with different parity. Then $V^{op}=V_{\tilde{1}}^{op}+V_{\tilde{0}}^{op}$ becomes a Jordan J-bimodule defining the action of J on V^{op} by

$$av^{op} = (-1)^{|a|}(av)^{op}, \quad v^{op}a = (va)^{op}.$$

If J is a unital Jordan superalgebra and V is a bimodule such that the identity of J, 1, acts as the identity on V, then we say that J is a unital Jordan bimodule over J.

A *one-sided Jordan bimodule* over J is a bimodule V such that $\{J, V, J\} = (0)$, where $\{x, v, y\} = (xv)y + x(vy) - (-1)^{|x||v|}v(xy)$ represents the triple Jordan product in J + V and $x, y \in J$, $v \in V$ are homogeneous elements. Let's denote U(x, y) the operator given by $vU(x, y) = \{x, v, y\}$ and $D(x, y) = R(x)R(y) - (-1)^{|x||y|}R(y)R(x)$.

It is well known that every Jordan bimodule decomposes as a direct sum of unital and one-sided Jordan bimodules.

The aim of this paper is to give the classification of unital Jordan bimodules (already announced by the authors some time ago) and one-sided modules over the simple Jordan superalgebra $J = M_{1|1}(F)^{(+)}$.

2. Unital bimodules. In this section, J will denote the Jordan superalgebra $J=M_{1|1}^{(+)}$. We will fix the canonical basis $\{e,f,x,y\}$, where $e=e_{11}$, $f=e_{22}$, $x=e_{12}$, $y=e_{21}$. Then $J_{\bar{0}}=Fe+Ff$, $J_{\bar{1}}=Fx+Fy$, ef=0, $e^2=e$, $f^2=f$, [x,y]=e-f.

For arbitrary elements α , β , $\gamma \in F$, let us call $V(\alpha, \beta, \gamma)$ the four-dimensional \mathbb{Z}_2 -graded vector space V = F(v, w, z, t) with $V_{\bar{0}} = F(v, w)$, $V_{\bar{1}} = F(z, t)$ and the action of J over V defined by

$$ve = v, \ vf = 0, \ vx = z, \ vy = t,$$

$$we = 0, \ wf = w, \ wx = (\gamma - 1)z - 2\alpha t, \ wy = 2\beta z - (\gamma + 1)t,$$

$$ze = \frac{1}{2}z, \ zf = \frac{1}{2}z, \ zx = \alpha v, \ zy = \frac{1}{2}(\gamma + 1)v + \frac{1}{2}w,$$

$$te = \frac{1}{2}t, \ tf = \frac{1}{2}t, \ tx = \frac{1}{2}(\gamma - 1)v - \frac{1}{2}w, \ ty = \beta v.$$
(2.1)

Let us note that $R(x)^2 = \alpha I_V$, $R(y)^2 = \beta I_V$ and $R(x)R(y) + R(y)R(x) = \gamma I_V$.

It can be also checked that vU(x, y) = w.

To start we will prove that $V(\alpha, \beta, 0)$ is a Jordan bimodule for arbitrary $\alpha, \beta \in F$.

LEMMA 2.1. $V(\alpha, \beta, 0)$ is a (unital) Jordan bimodule over J.

Proof. Let us define an embedding $i: M_{1|1}(F) \to M_{2|2}(F)$ via

$$e \to \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}, f \to \begin{pmatrix} 0 & 0 \\ 0 & I_2 \end{pmatrix}, x \to \begin{pmatrix} 0 & I_2 \\ A & 0 \end{pmatrix}, y \to \begin{pmatrix} 0 & B \\ I_2 & 0 \end{pmatrix},$$

where

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 2\alpha \end{pmatrix}, B = \begin{pmatrix} 2\beta & 0 \\ 0 & 0 \end{pmatrix}.$$

Let's denote **v** the element of $M_{2|2}(F)$ given by $\mathbf{v} = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$, where $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Consider the *J*-submodule of $M_{2|2}(F)$ with basis { \mathbf{v} , $\mathbf{w} = \mathbf{v}U(x, y)$, $\mathbf{z} = \mathbf{v}x$, $\mathbf{t} = \mathbf{v}y$ }. This bimodule is isomorphic to $V(\alpha, \beta, 0)$.

Now let us consider arbitrary elements α , β , $\gamma \in F$. We can take elements α' , $\beta' \in F$ such that $\gamma^2 - 4\alpha\beta - 1 = -4\alpha'\beta' - 1$, that is, $\gamma^2 = 4(\alpha\beta - \alpha'\beta')$.

LEMMA 2.2. There is an isomorphism $\varphi: M_{1|1}(F)^{(+)} \longrightarrow M_{1|1}(F)^{(+)}$ such that for every $v \in V(\alpha, \beta, \gamma)$ we have $vR(\varphi(x))^2 = \alpha' v$, $vR(\varphi(y))^2 = \beta' v$ and $v(R(\varphi(x))R(\varphi(y)) + R(\varphi(y))R(\varphi(x))) = 0$.

Proof. From $\gamma^2 - 4\alpha\beta = -4\alpha'\beta'$, it follows that the matrices

$$A' = \begin{pmatrix} 0 & 2\alpha' \\ -2\beta' & 0 \end{pmatrix}, A = \begin{pmatrix} \gamma & -2\alpha \\ 2\beta & -\gamma \end{pmatrix}$$

have the same determinant and both of them have zero trace.

Consequently, the two matrices are similar, that is, there exists an invertible matrix P (without loss of generality we can assume that |P| = 1) such that $A' = PAP^{-1}$.

If
$$P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 we only need to consider the automorphism φ of $M_{1|1}(F)^{(+)}$ given by $\varphi(e) = e, \varphi(f) = f, \varphi(x) = ax + by, \varphi(y) = cx + dy.$

Note that from the previous lemma it follows that $V(\alpha, \beta, \gamma)$ is a unital module over $M_{1|1}(F)^{(+)}$ and that there is a semi-isomorphism between $V(\alpha, \beta, \gamma)$ and $V(\alpha', \beta', 0)$. In fact, if $\gamma^2 - 4\alpha\beta = \gamma'^2 - 4\alpha'\beta'$, then the bimodules $V(\alpha, \beta, \gamma)$ and $V(\alpha', \beta', \gamma')$ are semi-isomorphic.

Hence, we have proved the following result.

THEOREM 2.3. (a) For arbitrary elements α , β , $\gamma \in F$, the action of $J = M_{1|1}(F)^{(+)}$ over the graded vector space V = F(v, w, z, t) given by (1.1) defines a structure of unital J-bimodule $V(\alpha, \beta, \gamma)$.

(b) Given α , β , γ , α' , β' , $\gamma' \in F$, the J bimodules $V(\alpha, \beta, \gamma)$ and $V(\alpha', \beta', \gamma')$ are isomorphic if and only if $\alpha = \alpha'$, $\beta = \beta'$ and $\gamma = \gamma'$

LEMMA 2.4. If $\gamma^2 - 4\alpha\beta - 1 \neq 0$ then the bimodule $V = V(\alpha, \beta, \gamma)$ is irreducible. If $\gamma = 1$ and $\alpha = 0$ then Fw + Fwy is the only proper submodule of $V = V(\alpha, \beta, \gamma)$. In all other cases, Fw + Fwx is the only proper submodule of $V = V(\alpha, \beta, \gamma)$.

Proof. Let $(0) \neq V'$ a nonzero submodule of $V = V(\alpha, \beta, \gamma)$. Then $V' \cap V_{\bar{0}} \neq (0)$, since otherwise V'x = V'y = (0).

Applying to an arbitrary element \tilde{v} in V' the following Jordan identity: R(x)R(e)R(y) - R(y)R(e)R(x) - R([x, y]e) - R(xe)R(y) + R(ye)R(x) - R([x, y])R(e) = 0, we get that $\tilde{v}(R(e) - R(e - f)R(e)) = 0$.

But the odd part of $V = V(\alpha, \beta, \gamma)$ lies in the $\frac{1}{2}$ -Peirce component of e and f, so $\tilde{v} = 0$. That is, if $V' \cap V_{\bar{0}} = (0)$, then V' = (0).

If $\{e, V', e\} \neq (0)$, then $v \in V'$ and so V' = V.

If $\{e, V', e\} = (0)$, then $V' \cap V_{\bar{0}} = Fw$. But $wU(x, y) = (\gamma^2 - 4\alpha\beta - 1)v \in V'$. So $v \in V'$, that is, V = V' if $\gamma^2 - 4\alpha\beta - 1 \neq 0$. This proves irreducibility of $V = V(\alpha, \beta, \gamma)$ when $\gamma^2 - 4\alpha\beta - 1 \neq 0$.

So from now on we assume that $\gamma^2 - 4\alpha\beta - 1 = 0$

Now let's consider the case $\gamma = 1$ and $\alpha = 0$. Then wU(x, y) = wx = 0 and $wy = 2\beta z - 2t$ and V' = F(w, wy).

Otherwise, $wx = (\gamma - 1)z - 2\alpha t \neq 0$ and $wy = 2\beta z - (\gamma + 1)t$ implies that $(\gamma + 1)wx - 2\alpha wy = (\gamma^2 - 4\alpha\beta - 1)z - 0t = 0$, that is, F(w, wx) = V'.

NOTATION. If $\gamma^2 - 4\alpha\beta - 1 = 0$, let's denote $V'(\alpha, \beta, \gamma)$ the only proper nonzero submodule of $V = V(\alpha, \beta, \gamma)$ (that can be expressed as F(w, wx) except when $\alpha = 0, \gamma = 1$ that can be expressed as F(w, wy)) and $\tilde{V}(\alpha, \beta, \gamma) = V(\alpha, \beta, \gamma)/V'(\alpha, \beta, \gamma)$.

Now we can prove the classification result.

THEOREM 2.5. Every irreducible finite dimensional unital Jordan bimodule over $J = M_{1|1}(F)^{(+)}$ is, up to opposite grading, isomorphic to one of the bimodules $V = V(\alpha, \beta, \gamma)$, if $\gamma^2 - 4\alpha\beta - 1 \neq 0$, or to $V'(\alpha, \beta, \gamma)$ or $\tilde{V}(\alpha, \beta, \gamma)$ if $\gamma^2 - 4\alpha\beta - 1 = 0$.

Proof. Let V be an irreducible unital finite dimensional J-bimodule. Up to opposite, we can assume that $V_{\bar{0}} = \{e, V_{\bar{0}}, e\} + \{f, V_{\bar{0}}, f\}$ and $V_{\bar{1}} = \{e, V_{\bar{1}}, f\}$.

The operators $R(x)^2$, $R(y)^2$, R(x)R(y) + R(y)R(x) commute with the action of J. By Schur's Lemma they act as scalars α , β , γ , respectively.

We claim that for every subspace W of $\{e, V_{\bar{0}}, e\}$ the vector space $U = W + WU(J_{\bar{1}}, J_{\bar{1}}) + WJ_{\bar{1}}$ is a J-bimodule. Indeed, since $W \subseteq \{e, V_{\bar{0}}, e\}$, we have that $WJ_{\bar{1}} \subseteq \{e, V_{\bar{1}}, f\}$ and $WU(J_{\bar{1}}, J_{\bar{1}}) \subseteq \{f, V_{\bar{0}}, f\}$. Hence each summand W, $WU(J_{\bar{1}}, J_{\bar{1}})$ and $WJ_{\bar{1}}$ is invariant under multiplication by e and f, so under multiplication by $J_{\bar{0}}$.

Now using that $R(J_{\bar{1}})R(J_{\bar{1}}) \subseteq U(J_{\bar{1}},J_{\bar{1}}) + D(J_{\bar{1}},J_{\bar{1}}) + R(J_{\bar{0}})$, we get that $WR(J_{\bar{1}})R(J_{\bar{1}}) \subseteq WU(J_{\bar{1}},J_{\bar{1}}) + WD(J_{\bar{1}},J_{\bar{1}}) + WR(J_{\bar{0}}) \subseteq U$. That implies that $WR(J)R(J) \subseteq U$.

So, we only need to prove that $WU(J_{\bar{1}},J_{\bar{1}})R(J_{\bar{1}})\subseteq WJ_{\bar{1}}$. But $U(J_{\bar{1}},J_{\bar{1}})\subseteq R(J_{\bar{1}})R(J_{\bar{1}})+R(J_{\bar{0}})$ and $R(J_{\bar{1}})R(J_{\bar{1}})\subseteq R(J)R(J)+D(J_{\bar{1}},J_{\bar{1}})R(J_{\bar{1}})$. Now using that $D(J_{\bar{1}},J_{\bar{1}})$ acts as an scalar multiplication we gets what we wanted.

In the same way, we can prove that for every $W \subseteq \{f, V_{\bar{0}}, f\}$, the subspace $W + WU(J_{\bar{1}}, J_{\bar{1}}) + WJ_{\bar{1}}$ is a J-bimodule.

Since we assume V to be irreducible, it follows that $\dim_F \{e, V_{\bar{0}}, e\} \le 1$ and $\dim_F \{f, V_{\bar{0}}, f\} \le 1$, $\dim V_{\bar{1}} \le 2$.

If $\gamma^2 - 4\alpha\beta - 1 \neq 0$, let us show that $V \simeq V(\alpha, \beta, \gamma)$, where $R(x)^2$ acts on V as αI_V , $R(y)^2$ acts as βI_V and R(x)R(y) + R(y)R(x) acts as γI_V . We have already seen that $V_{\bar{0}} \neq 0$. The operator $U(x, y)^2$ acts on $V_{\bar{0}}$ as the multiplication by $\gamma^2 - 2\alpha\beta - 1$. This implies that both $\{e, V_{\bar{0}}, e\}$ and $\{f, V_{\bar{0}}, f\}$ are different of zero (multiplication by U(x, y) exchange them both).

Choose $0 \neq v \in \{e, V_{\bar{0}}, e\}$. We know that $w = vU(x, y) \in \{f, V_{\bar{0}}, f\}$. Let us prove that $vx, vy \in V_{\bar{1}}$ are linearly independent. Suppose that $vy = \lambda vx$, $\lambda \in F$. Then $vR(y)R(x) = (vy)x = \lambda(vx)x = \lambda\alpha v$ and $vU(x, y) = vR(x)R(y) - vR(y)R(x) - vR([x, y]) = v(R(x)R(y) + R(y)R(x)) - 2vR(y)R(x) - vR(e - f) = (\gamma - 2\lambda\alpha - 1)v$, that is, $vU(x, y) \in Fv$, which is a contradiction.

Hence F(v, w = vU(x, y), vx, vy) is a *J*-bimodule and the multiplication table coincides with the one of $V(\alpha, \beta, \gamma)$.

Now let's consider the case $\gamma^2 - 4\alpha\beta - 1 = 0$. In this case, $V_{\bar{0}}U(x,y)^2 = (0)$. If $\{e, V_{\bar{0}}, e\} \neq (0)$ and $0 \neq v \in \{e, V_{\bar{0}}, e\}$, then w = vU(x, y) = 0. Indeed, if $w = vU(x, y) \neq 0$, then V is generated by w, wU(x, y), wx, wy. But $wU(x, y) = vU(x, y)^2 = 0$. So, $\dim_F V_{\bar{0}} \leq 1$, which contradicts $v, w \in V_{\bar{0}}$. Hence w = vU(x, y) = 0. This says that $V \simeq V'(\alpha, \beta, \gamma)$.

If
$$\{f, V_{\bar{0}}, f\} \neq (0)$$
, then $V \simeq \bar{V}(\alpha, \beta, \gamma)$, what proves the theorem.

3. One sided modules. Let S = S(J) be the unital universal associative enveloping algebra of the Jordan algebra $J = M_{1|1}^{(+)}$. Denote $x = e_{12}$, $y = e_{21}$, $e = e_{11}$, $f = e_{22}$, v = e - f, then $J = alg_{Jord}\langle x, y \rangle$ and $S = alg_{As}\langle x, y \rangle$. Let also $a \circ b$ denote ab + ba, then we have $x \circ e = x$, $y \circ e = y$, [x, y] = v. Observe that x^2 , y^2 lie in the center Z(S) of S. Moreover, we have

$$[x \circ y, x] = [y, x^2] = 0,$$

 $[x \circ y, y] = [x, y^2] = 0,$

hence $x \circ y \in Z(S)$.

LEMMA 3.1. Let $A = F[x^2, y^2], B = F[x^2, y^2, x \circ y].$

- (1) The algebra S is a free B-module with free generators 1, x, y, xy.
- (2) The center Z(S) = B.
- (3) $B = A[x \circ y]$, where $(x \circ y)^2 = 1 + 4x^2y^2$.

Proof. We have $yx = x \circ y - xy$, $xyx = (x \circ y)x - x^2y$, $yxy = (x \circ y)y - y^2x$, $(xy)^2 = (x \circ y)xy - x^2y^2$, which proves that S is spanned over B by elements 1, x, y, xy. Let $z = \alpha + \beta x + \gamma y + \delta xy \in Z(S)$ with $\alpha, \beta, \gamma, \delta \in B$, then $0 = [x, z] = \gamma [x, y] + \delta x [x, y] = \gamma v + \delta xv$. Multiplying by v, we get $\gamma + \delta x = 0$, which gives $\gamma = \delta = 0$. Similarly, we get $\beta = 0$, hence Z(S) = B. The similar argument shows that if $\alpha + \beta x + \gamma y + \delta xy = 0$ then $\alpha = \beta = \gamma = \delta = 0$, which proves (1). Finally,

$$(x \circ y)^2 = (xy)^2 + (yx)^2 + 2x^2y^2 = [x, y]xy + [y, x]yx + 4x^2y^2$$

= $v^2 + 4x^2y^2 = 1 + 4x^2y^2$,

proving (3). \Box

The algebra S has a natural \mathbb{Z}_2 -grading induced by the grading of J:

$$S_{\bar{0}} = B + Bxv$$
, $S_{\bar{1}} = Bx + Bv$.

The category of one-sided Jordan J-superbimodules is isomorphic to the category of right associative \mathbb{Z}_2 -graded S-modules. In particular, irreducible superbimodules over J correspond to irreducible \mathbb{Z}_2 -graded S-modules.

Let $M = M_{\bar{0}} + M_{\bar{1}}$ be an irreducible \mathbb{Z}_2 -graded S-module and $\varphi : S \to End_FM$ be the corresponding representation. Then $\varphi(B)$ lies in the even part of the centralizer D

of *S*-module *M*, which is a graded division algebra (see, for example, [2]). Denote $\alpha = \varphi(x^2)$, $\beta = \varphi(y^2)$, $\gamma = \varphi(x \circ y)$, $K = F(\alpha, \beta, \gamma)$, then *K* is a field, $K = F(\alpha, \beta) + F(\alpha, \beta)\gamma$ where $\gamma^2 = 4\alpha\beta + 1$. Moreover, the graded algebra $\bar{S} = \varphi(S)$ has dimension at most 4 over *K*.

The algebra \bar{S} and the module M may be considered over the field K, then M is a faithful irreducible graded module over the K-algebra \bar{S} . By [1, Lemma 4.2], M, up to opposing grading, is isomorphic to a minimal graded right ideal of \bar{S} . Since $\dim_K \bar{S} \leq 4$, we have $\dim_K M \leq 2$. Moreover, the case $\dim_K M = 1$ can appear only when $\bar{S} = K$ which is impossible since $[\varphi(x), \varphi(y)] \neq 0$. Therefore, $\dim_K \bar{S} = 4$ and $\dim_K M = 2$.

Observe also that by the density theorem for graded modules (see, for example, [2]), \bar{S} is a dense graded subalgebra of the algebra $End_DM \subseteq End_K^{gr}M = M_{1|1}(K)$. Clearly, this implies that $\bar{S} = M_{1|1}(K)$.

Consider the elements $a = \frac{\gamma+1}{2} - xy$, $b = xy - \frac{\gamma-1}{2} \in B$. We have $a^2 = a$, $b^2 = b$, a + b = 1, hence up to change of indices $\varphi(a) = e_{11}$, $\varphi(b) = e_{22}$.

We will separate the two cases:

1. Let first $\gamma \neq \pm 1$. Chose an element $m \in M_{\bar{0}} \cup M_{\bar{1}}$ such that ma = m, then we have $m = \frac{\gamma + 1}{2}m - mxy$, which gives

$$mxy = \frac{\gamma - 1}{2}m, \ \beta mx = \frac{\gamma - 1}{2}my. \tag{3.1}$$

In particular, $mxy \neq 0$, $m' = mx \neq 0$, and M = Km + Km'. We have by (3.1)

$$m'x = \alpha m;$$

$$my = \frac{2\beta}{\gamma - 1} mx = \frac{2\beta}{\gamma - 1} m';$$

$$m'y = mxy = \frac{\gamma - 1}{2} m.$$

2. Let now $\gamma = \pm 1$, then a = 1 - xy, b = xy or a = -xy, b = xy + 1. Choose for $\gamma = 1$ an element $m \in M_{\bar{0}} \cup M_{\bar{1}}$ such that $m = mb \neq 0$, then $m' = mx \neq 0$ and again M = Km + Km'. We have

$$m'x = \alpha m;$$

 $my = mby = mxyy = \beta mx = \beta m';$
 $m'y = mxy = m.$

Similarly, choosing for $\gamma = -1$ an element $m \in M_{\bar{0}} \cup M_{\bar{1}}$ such that ma = m, we get

$$m'x = \alpha m;$$

 $my = -\beta m';$
 $m'y = -m.$

The condition $\gamma^2 = 1$ is equivalent to $\alpha\beta = 0$, therefore we will distinguish seven different cases: $\gamma \neq \pm 1$; $\gamma = \pm 1$: $\alpha = 0$, $\beta \neq 0$; $\alpha \neq 0$, $\beta = 0$; $\alpha = \beta = 0$.

The corresponding graded homomorpnism $\varphi: S \to M_{1|1}(K)$ is defined for $\gamma \neq \pm 1$ by the conditions

$$\varphi(x) = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}, \quad \varphi(y) = \begin{pmatrix} 0 & \frac{\gamma - 1}{2} \\ \frac{2\beta}{\gamma - 1} & 0 \end{pmatrix},$$

and for $\gamma = \pm 1$ by

$$\varphi(x) = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}, \quad \varphi(y) = \begin{pmatrix} 0 & \pm \beta \\ \pm 1 & 0 \end{pmatrix} (\alpha \beta = 0).$$

Resuming, we have

THEOREM 3.2. Let M be an irreducible one-sided Jordan bimodule over $J = M_{1|1}(F)^{(+)}$. Then there exists an extension field $K = F(\alpha, \beta, \gamma)$ with $\gamma^2 = 4\alpha\beta + 1$ such that $\dim_K M = 2$, M = Km + Km', and, up to opposite grading, the action of J on M is given as follows:

1. $\gamma \neq \pm 1$ (or $\alpha\beta \neq 0$).

$$m \cdot x = \frac{1}{2}m';$$

$$m' \cdot x = \frac{1}{2}\alpha m;$$

$$m \cdot y = \frac{\beta}{\gamma - 1}m';$$

$$m' \cdot y = mxy = \frac{\gamma - 1}{A}m.$$

2. $\gamma = \pm 1$ (or $\alpha\beta = 0$).

$$m \cdot x = \frac{1}{2}m';$$

$$m' \cdot x = \frac{1}{2}\alpha m;$$

$$m \cdot y = \pm \frac{1}{2}\beta m';$$

$$m' \cdot y = \pm \frac{1}{2}m.$$

In the second case, we have six subclasses: both for $\gamma = 1$ and for $\gamma = -1$ the subcases $\alpha = 0$, $\beta \neq 0$; $\alpha \neq 0$, $\beta = 0$; $\alpha = \beta = 0$.

The module M is finite dimensional if and only if the elements α , β are algebraic over F. In particular, if the field F is algebraically closed and M is finite dimensional, then K = F.

ACKNOWLEDGEMENTS. Consuelo Martínez was partially supported by MTM 2017-83506-C2-2-P and FC-GRUPIN-ID/2018/000193. Ivan Shestakov was partially supported by FAPESP-2018/21017-2.

REFERENCES

- **1.** Y. Bahturin, M. Goze and E. Remm, Group gradings on lie algebras, with applications to geometry, I, in *Developments and Retrospectives in Lie Theory: Algebraic Methods* (G. Mason, I. Penkov and J. A. Wolf, Editors) (Springer, Switzerland, 2014), 1–51.
- **2.** A. Elduque and M. Kochetov, *Gradings on Simple Lie Algebras*, Mathematical surveys and Monographs, vol. 189 (American Mathematical Society, Providence, RI, 2013).
- **3.** N. Jacobson, *Structure and Representation of Jordan Algebras*, vol. XXXIX (American Mathematical Society Colloquium Publications, Providence, 1968).
- **4.** V. G. Kac, Classification of simple **Z**-graded Lie superalgebras and simple Jordan superalgebras, *Comm. Algebra* **5**(13) (1977), 1375–1400.

- 5. C. Martínez, I. Shestakov and E. Zelmanov, Jordan superalgebras defined by brackets, *J. London Math. Soc.* **64**(2) (2001), 357–368.
- **6.** C. Martínez, I. Shestakov and E. Zelmanov, Jordan bimodules over the superalgebras P(n) and Q(n), Trans. Am. Math. Soc. **362**(4) (2010), 2037–2051.
- 7. C. Martínez and E. Zelmanov, Simple finite-dimensional Jordan superalgebras of prime characteristic, *J. Algebra* **236**(2) (2001), 374–444
- **8.** C. Martínez and E. Zelmanov, Specializations of Jordan superalgebras, *Canad. Math. Bull.* **45**(4) (2002), 653–671.
- **9.** C. Martínez and E. Zelmanov, Unital Jordan bimodules over the simple Jordan superalgebra D(t), *Trans. Am. Math. Soc.* **358**(8) (2006), 3637–3649.
- **10.** C. Martínez and E. Zelmanov, Jordan superalgebras and their representations, *Contemp. Math.* **483** (2009), 179–194.
- 11. C. Martínez and E. Zelmanov, Representation theory of Jordan Superalgebras I, *Trans. Am. Math. Soc.* **362**(2) (2010), 815–846.
- 12. C. Martínez and E. Zelmanov, Irreducible representations of the exceptional Cheng-Kac superalgebra, *Trans. Am. Math. Soc.* 366(11) (2014), 5853–5876.
- 13. M. Racine and E. Zelmanov, Simple Jordan superalgebras with semisimple even part, *J. Algebra* 270(2) (2003), 374–444.
- **14.** A. S. Shtern, Representations of finite-dimensional Jordan superalgebras of Poisson brackets, *Comm. Algebra* **23**(5) (1995), 1815–1823.
- **15.** O. F. Solarte and I. Shestakov, Irreducible specializations of the simple Jordan superalgebra of Grassmann Poisson bracket, *J. Algebra* **455** (2016), 291–313.
- **16.** M. Trushina, Modular representations of the Jordan superalgebras D(t), J. Algebra **320**(4) (2008), 1327–1343.