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1. Introduction

Let D = {z ∈ C : |z| < 1} denote the unit disc and let φ : D �→ D be a non-constant ana-
lytic self-map of the unit disc. The composition operator with symbol φ is defined by
Cφ(f) := f ◦ φ, for every analytic function f on D. The properties of composition oper-
ators acting on several analytic function spaces on D have been studied extensively. The
main interest is the connection between the operator theoretic behaviour of Cφ and
the function theoretic behaviour of the symbol φ. We refer the interested reader in the
books [5, 18] and the references therein for more information on composition operators
and function theory. In the present paper, we will study the approximation numbers of
composition operators.

Let X and Y be two Banach spaces and let T : X �→ Y be a bounded linear operator.
The approximation numbers an(T ), n ∈ N, of T are defined by

an(T ) = inf
R

‖T −R‖,

where ‖ · ‖ denotes the operator norm and the infimum is taken over all linear operators
R : X �→ Y with rank(R) := dim(R(X)) < n. For the general theory of approximation
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numbers, see e.g. [23, Section III.G]. Here we will study composition operators acting on
weighted Besov spaces of analytic functions on D.

Let w : D �→ (0, +∞] be a lower semicontinuous function on L1(D). For p > 1, the
weighted Besov space Bp

w is the family of analytic functions f in D satisfying

‖f‖Bp
w

:= |f(0)| +
(∫

D

|f ′(z)|pw(z)dA(z)
)1/p

< +∞.

For w(z) = (1 − |z|2)p−2, we obtain the standard Besov space Bp = Bp
w, which is an

important Möbius invariant space of analytic functions whose properties have been inves-
tigated extensively; see e.g [24]. For p > 0, the Hardy space Hp consists of the family of
analytic functions f on D satisfying

(
sup

r∈(0,1)

1
2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

< +∞.

We will also use the norm
‖f‖∞ := sup

z∈D

|f(z)|,

for the space H∞ of bounded analytic functions on D.
Our study was initiated by the work of Li et al. [14], where a spectral radius type

formula was proved for the approximation numbers of composition operators on analytic
Hilbert spaces with radial weights and on Hp spaces, p ≥ 1, involving condenser capacity.
There are several (equivalent) ways to define condenser capacity; here we will use the
logarithmic energy integrals.

A condenser is a pair (E, F ) where E and F are non-empty disjoint compact subsets
of C. We will denote by S(E, F ) the family of signed measures σ = σE − σF , where σE

and σF are Borel probability measures supported on E and F , respectively. The energy
of a measure σ ∈ S(E, F ) is defined by

I(σ) :=
∫∫

log
1

|z − w|dσ(z)dσ(w).

Although both the measure and the integrand in the above energy integral are not posi-
tive, it is true that I(σ) > 0, for every σ ∈ S(E, F ); see e.g. [13, p. 80]. Following Bagby
[2], we define the equilibrium energy of (E, F ) by

I(E,F ) := inf
σ∈S(E,F )

I(σ)

and the capacity of (E, F ) is given by

Cap(E,F ) :=
2π

I(E,F )
.

We note that, in [14], the authors define condenser capacity to be the reciprocal of the
equilibrium energy. This will explain the slight deviation by a factor 2π in our statements
from the statements of the results in [14]. For other definitions, using Green energy
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integrals or Dirichlet integrals, and for more information about condenser capacity, we
refer to [2, 6, 13].

In [14], the authors considered the case p = 2 and studied the Hilbert spaces B2
w, for

weights w ∈ L1(D) that satisfy the following additional properties:

(P1) w is continuous on D,

(P2) w is radial; that is, w(z) = w(|z|), z ∈ D.

In particular, the well-known Dirichlet-type spaces corresponding to the weights w(z) =
(1 − |z|2)s, s ∈ (−1, +∞), and containing as special cases the standard Bergman space
(s = 2), Hardy space (s = 1) and Dirichlet space (s = 0), are covered in the family B2

w,
for weights w satisfying (P1) and (P2). They proved the following equalities for the
approximation numbers of composition operators.

Theorem A (Li et al. [14]). Let w ∈ L1(D) be a weight satisfying the properties
(P1) and (P2) and let φ : D �→ D be a non-constant analytic function in X, where X is
either B2

w or Hp, p ∈ [1, +∞). Then the following hold for the approximation numbers
of Cφ : X �→ X.

(1) If ‖φ‖∞ < 1,

lim
n→∞(an(Cφ))1/n = exp(−2π/Cap(∂D, φ(D))), (1.1)

(2) if ‖φ‖∞ = 1,

lim
n→∞(an(Cφ))1/n = 1. (1.2)

Our purpose in this paper is to show that Equations (1.1) and (1.2) hold for a wider
class of Banach spaces of analytic functions on D. We note that, for p 	= 2, the weighted
Besov spaces Bp

w and in particular the standard Besov spaces Bp are not covered in
Theorem A. Even in the case p = 2, there are important weighted Hilbert spaces of
analytic functions with weights that do not satisfy the properties (P1) or (P2) mentioned
above. For example, the harmonically weighted Dirichlet spaces are obtained by weights
of the form

w(z) =
∫

∂D

1 − |z|2
|ζ − z|2 dμ(ζ),

where μ is a finite positive Borel measure on ∂D, which in general does not satisfy (P2). In
particular, the weights obtained by unit Dirac measures μ = δζ , ζ ∈ ∂D, which generate
the well-known local Dirichlet spaces, are not radial; see e.g. [4, 15–17] and the book
[7, Chapter 7] for more information about harmonically weighted Dirichlet spaces. More
generally, for weights w that are positive superharmonic functions on D, neither (P1) nor
(P2) are satisfied in general; see e.g. [1, 3, 8, 19] for more information about Dirichlet
spaces with superharmonic weights. We note that, by definition, superharmonic functions
are lower semicontinuous but in general may not be continuous.

In [14], the authors are expressing the norm of the weighted analytic Hilbert spaces by
an infinite series, using the assumption that the weights considered are radial. Then, they
use results of Widom [22] on rational approximation of bounded analytic functions, to
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approximate the truncated power series expansions of the functions in the Hilbert space,
on the image of the symbol of the composition operator. Here we adopt the arguments in
the proof of Widom’s result to approximate functions in Bp

w, using the rational functions
corresponding to the Bagby points (see § 2) of the condenser (∂D, φ(D)). These ratio-
nal functions have simple poles {ai} and simple zeros {bi}, i = 1, ..., n, which are well
separated (see [10, 11]) in the sense that

min
i�=j

|ai − aj | ≥ C

n2
and min

i�=j
|bi − bj | ≥ C

n2
,

where C > 0 depends on the condenser (∂D, φ(D)). We obtain an explicit formula for a
finite rank operator to estimate the approximation numbers of Cφ.

In the following section, we state several known results from function theory and poten-
tial theory that will be used in the proofs of our main results. In particular, the approach
to condenser capacity via discrete energies will be described and the rational functions
corresponding to the extremal points for the discrete energies will be used in our proof to
approximate analytic functions on compact subsets of D. In § 3, we will state and prove
the result that the equality (1.1) holds for weighted Besov spaces Bp

w and the validity of
the equality (1.2) will be proved in § 4.

2. Background material

In this section, we collect some results from function theory and potential theory.

2.1. Equilibrium measure and potential

The logarithmic potential of a positive Borel measure μ with compact support in C is
the function

Uμ(z) :=
∫

log
1

|z − w|dμ(w), z ∈ C.

We note that the potential Uμ is a harmonic function outside the support of μ. The
logarithmic capacity of a compact set K ⊂ C is defined by

c(K) = exp
(
− inf

μ

∫∫
log

1
|z − w|dμ(z)dμ(w)

)
,

where the above infimum is taken over all Borel probability measures μ supported on K.
Let (E, F ) be a condenser and let σ = σE − σF ∈ S(E, F ). The potential of σ is defined

by

Uσ(z) :=
∫

log
1

|z − w|dσ(w) = UσE
(z) − UσF

(z), z ∈ C.

Since UσE
is harmonic on C \ E and UσF

is harmonic on C \ F , the potential Uσ is well
defined for every z ∈ C, although it may take the values ±∞.

Let (E, F ) be a condenser with finite equilibrium energy. Then, there exists a unique
measure τ ∈ S(E, F ) such that I(E, F ) = I(τ) and τ is called the equilibrium measure of
(E, F ). Also, according to the fundamental theorem of potential theory for condensers,
there exist real numbers VE ≥ 0, VF ≤ 0 and Borel sets ZE ⊂ ∂E, ZF ⊂ ∂F (possibly
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empty) having zero logarithmic capacity, such that the following equalities hold for the
equilibrium energy and the equilibrium potential Uτ :

VF ≤ Uτ (z) ≤ VE , for every z ∈ C, (2.1)

Uτ (z) = VE , for every z ∈ E \ ZE , (2.2)

Uτ (z) = VF , for every z ∈ F \ ZF , (2.3)

I(E,F ) = VE − VF . (2.4)

When the open set C \ (E ∪ F ) is regular for the Dirichlet problem, the equilibrium
potential is continuous on C and ZE = ZF = ∅. In particular, when the compact sets
E and F are connected, the equilibrium potential satisfies a Hölder continuity property
described in the following theorem proved by J. Siciak [20, pp. 205, 210].

Theorem B (Siciak [20]). Let (E, F ) be a condenser, where E and F are non-
degenerate continua. Let τ be the equilibrium measure of (E, F ). Then, there exist
constants C1 = C1(E, F ) > 0 and α = α(E, F ) ∈ (0, 1), such that

|Uτ (z) − VE | ≤ C1dist(z,E)α (2.5)

and

|Uτ (z) − VF | ≤ C1dist(z, F )α, (2.6)

for every z ∈ C.

2.2. Discrete energies

Let (E, F ) be a condenser and suppose that both sets E and F contain infinitely many
points. For any integer n ≥ 2, let

Ln(E,F ) := {(α1, . . . , αn, β1, . . . , βn) ∈ En × Fn : αi 	= αj and βi 	= βj , i 	= j}.
The n-th discrete energy of (E, F ) is defined by

Wn(E,F ) =
1

n(n− 1)
inf

⎧⎨
⎩

∑
1≤i<j≤n

log
( |αi − βj ||αj − βi|
|αi − αj ||βi − βj |

)⎫⎬
⎭ ,

where the infimum is taken over all point configurations (α1, . . . , αn, β1, . . . , βn) ∈
Ln(E, F ). Each configuration (a1, . . . , an, b1, . . . , bn) ∈ Ln(E, F ) for which the above
infimum is attained will be called an extremal configuration for (E, F ) and the points
a1, . . . , an, b1, . . . , bn are called n-th Bagby points. From the compactness of E and F it
follows that, for every integer n ≥ 2, there exists an extremal configuration in Ln(E, F ).

Although every discrete signed measure in S(E, F ) has infinite energy, the above sum
may be considered as a discrete version of the energy of a discrete measure having point
masses at the points ai and bi, i = 1, . . . , n. Bagby [2] proved the following theorem
relating the equilibrium energy with the discrete energies Wn(E, F ) of a condenser.
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Theorem C (Bagby [2]). Let (E, F ) be a condenser and suppose that both sets E
and F contain infinitely many points. Then the sequence (Wn(E, F )) is increasing and

I(E,F ) = lim
n→∞Wn(E,F ).

Moreover, assuming that (a1, . . . , an, b1, . . . , bn) ∈ Ln(E, F ) is an extremal configu-
ration and letting

σn =
1
n

( n∑
i=1

δai
−

n∑
i=1

δbi

)
∈ S(E,F ),

it is true (see [2]) that the sequence of the measures σn converges in the weak-star sense
to the equilibrium measure of (E, F ) and the potentials Uσn

converge locally uniformly
to the equilibrium potential of (E, F ) in C \ (E ∪ F ). We will need the following result
concerning the rate of convergence of the potentials Uσn

proved by Kloke [12, Theorem
2.7, p. 194] (see also [10] for condensers in higher-dimensional Euclidean spaces).

Theorem D (Kloke [12]). Let (E, F ) be a condenser such that both E and F are
unions of a finite number of mutually disjoint and non-degenerate continua. Let τ be the
equilibrium measure of (E, F ). Also, for every integer n ≥ 2, let

(a1, . . . , an, b1, . . . , bn) ∈ Ln(E,F )

be an extremal configuration for (E, F ) and let

σn =
1
n

( n∑
i=1

δai
−

n∑
i=1

δbi

)
∈ S(E,F ).

Then, there exists a constant C2 = C2(E, F ) > 1 such that

|Uτ (z) − Uσn
(z)| ≤ 32 log(C2n)

n
,

for every

z ∈
{
w ∈ C : dist(w, ∂E) ≥ 1

n2
and dist(w, ∂F ) ≥ 1

n2

}
.

2.3. Diameters in the space of continuous functions

Let K be a compact subset of D and let C(K) be the Banach space of continuous
functions on K, equipped with the norm

‖f‖K = sup
z∈K

|f(z)|, f ∈ C(K).

Let
B := {f ∈ H∞ : ‖f‖∞ ≤ 1}

be the unit ball in H∞. Taking restrictions on K, we may consider B as a subset of C(K).
For every n ∈ N, let Xn denote the family of n-dimensional linear subspaces of C(K).
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The n-dimensional diameter of B in C(K) is defined by

dn(B,C(K)) := inf
E∈Xn

[
sup
f∈B

(
inf
g∈E

‖f − g‖K

)]
.

We will need the following result about the n-dimensional diameter of B in C(K); see
[22, Theorem 7, p. 353] or [9, p. 249].

Theorem E (Widom [22]). Let K be a compact subset of D. There exists a constant
C3 := C3(K) > 0 such that

dn(B,C(K)) ≥ C3 exp (−2πn/Cap(∂D,K)) , n ∈ N.

3. Symbols with compact image in the unit disc

In this section, we will prove that the asymptotic formula (1.1) holds for composition
operators on weighted Besov spaces. Before stating and proving our first main result, we
will prove some helpful lemmas. The first one is standard, it concerns the norms of the
evaluation functionals and it follows from the subharmonicity property of the modulus
of an analytic function. We include its proof for the convenience of the reader. We will
denote by D(z, r) the open disc centred at z ∈ C with radius r > 0.

Lemma 3.1. Let w : D �→ (0, +∞] be a lower semicontinuous function on L1(D) and
let p > 1. For every a ∈ D, the linear functionals La(f) = f(a) and Ta(f) = f ′(a) are
bounded on Bp

w. Also, for every compact subset K of D,

sup
a∈K

‖La‖ < +∞ and sup
a∈K

‖Ta‖ < +∞.

Proof. Let K be a compact subset of D and let d = dist(K, ∂D)/2. Since w is lower
semicontinuous on D, it attains its lower bound on any compact subset of D. In particular,

M := min
{
w(z) : z ∈ D(0, 1 − d)

}
> 0.

Let f ∈ Bp
w and a ∈ K. From the subharmonicity of |f ′|p,

|Ta(f)|p = |f ′(a)|p ≤ 1
πd2

∫
D(a,d)

|f ′(z)|pdA(z)

≤ 1
πd2M

∫
D(a,d)

|f ′(z)|pw(z)dA(z)

≤ 1
πd2M

∫
D

|f ′(z)|pw(z)dA(z)

and

|Ta(f)| ≤
(

1
πd2M

)1/p(∫
D

|f ′(z)|pw(z)dA(z)
)1/p

≤
(

1
πd2M

)1/p

‖f‖Bp
w
.
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Since a ∈ K ⊂ D were arbitrary, we conclude that Ta is bounded on Bp
w for every a ∈ D

and

sup
a∈K

‖Ta‖ ≤
(

1
πd2M

)1/p

< +∞. (3.1)

The corresponding results for La follow from (3.1) and the inequality

|La(f)| = |f(a)| =
∣∣∣∣f(0) +

∫ a

0

f ′(z)dz
∣∣∣∣

≤ |f(0)| + |a|
(

sup
b∈[0,a]

‖Tb‖
)
‖f‖Bp

w

≤
(
1 + sup

b∈[0,a]

‖Tb‖
)
‖f‖Bp

w
.

�

In the following lemma, we will describe the symbols φ, with ‖φ‖∞ < 1, for which
Cφ : Bp

w �→ Bp
w is bounded.

Lemma 3.2. Let w : D �→ (0, +∞] be a lower semicontinuous function on L1(D), let
p > 1 and let φ ∈ H∞ satisfying ‖φ‖∞ < 1. Then Cφ : Bp

w �→ Bp
w is bounded if and only

if φ ∈ Bp
w.

Proof. Suppose that φ ∈ Bp
w. Then, since φ(D) is a compact subset of D, we have∫

D

|Cφ(f)′(z)|pw(z)dA(z) =
∫

D

|f ′(φ(z))|p|φ′(z)|pw(z)dA(z)

≤
(

sup
z∈φ(D)

|f ′(z)|p
)
‖φ‖p

Bp
w
< +∞,

and Cφ(f) ∈ Bp
w, for every f ∈ Bp

w. By Lemma 3.1, we get that convergence in Bp
w implies

uniform convergence on compact subsets of D. From the closed graph theorem, it follows
that Cφ : Bp

w �→ Bp
w is bounded.

Conversely, we have φ = Cφ(I) ∈ Bp
w, where I ∈ Bp

w is the identity function. �

The main step in the proof of the first main result will be the approximation of functions
in Bp

w by rational functions on the closure of the image of the symbol of the composition
operator. The success of this approach on getting a lower bound for the approximation
numbers is based on the following result.

Let X and Y be two Banach spaces and let T : X �→ Y be a bounded linear operator.
For every integer n ≥ 1, we define

ãn(T ) := inf {‖T −R‖ : R : X �→ Y is linear, rank(R) < n and R(X) ⊂ T (X)} .

Clearly, an(T ) ≤ ãn(T ). In the other direction, we have the following result.
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Proposition 3.3. LetX and Y be two Banach spaces and let T : X �→ Y be a bounded
linear operator. For every integer n ≥ 1, ãn(T ) ≤ nan(T ).

Proof. Let ε > 0. Let R : X �→ Y be a linear operator satisfying rank(R) < n and ‖T −
R‖ < an(T ) + ε. Set m := rank(R). Then X/ker(R) is an m-dimensional normed space.
By Auerbach’s lemma (see e.g. [23, II.E.11, p. 75]), there exist ξ1, . . . , ξm ∈ (X/ker(R))
and ψ1, . . . , ψm ∈ (X/ker(R))∗ such that, for all j, k = 1, . . . , m,

‖ξj‖ = 1, ‖ψk‖ = 1 and ψk(ξj) = δjk,

where

δjk =

{
0, if j 	= k,

1, if j = k.

Writing π : X �→ X/ker(R) for the quotient map, for each j, we may pick xj ∈ X such that
π(xj) = ξj and ‖xj‖ < 1 + ε. Also, for each k, define ϕk ∈ X∗ by ϕk := ψk ◦ π. Clearly
we have ‖ϕk‖ ≤ 1 for each k and ϕk(xj) = δjk, for all j, k. Thus

R =
m∑

k=1

Rxk ⊗ ϕk, (3.2)

because every vector in X can be written as a linear combination of x1, . . . , xm and a
vector in ker(R), and the two sides of (3.2) agree on all such vectors. Define

R̃ :=
m∑

k=1

Txk ⊗ ϕk.

Clearly R̃ : X �→ Y is linear with rank(R̃) ≤ m and R̃(X) ⊂ T (X). Hence

ãn(T ) ≤ ‖T − R̃‖
≤ ‖T −R‖ + ‖R− R̃‖

= ‖T −R‖ +

∥∥∥∥∥
m∑

k=1

(Rxk − Txk) ⊗ ϕk

∥∥∥∥∥
≤ ‖T −R‖ +

m∑
k=1

‖R− T‖‖xk‖‖ϕk‖

≤ ‖T −R‖(1 +m(1 + ε))

≤ (an(T ) + ε)n(1 + ε).

Letting ε→ 0 we obtain the result. �

We now proceed to state and prove our first main result.
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Theorem 3.4. Let w : D �→ (0, +∞] be a lower semicontinuous function on L1(D), let
p > 1 and let φ ∈ Bp

w satisfying ‖φ‖∞ < 1. Then the formula

lim
n→∞(an(Cφ))1/n = exp(−2π/Cap(∂D, φ(D))) (3.3)

holds, for the approximation numbers of Cφ : Bp
w �→ Bp

w.

Proof. Let ∂D := T, K := φ(D) and note that both T and K are non-degenerate
continua. Therefore, the condenser (T, K) has a positive capacity. Let τ be the equilibrium
measure of (T, K). For every integer n ≥ 2, let (a1, . . . , an, b1, . . . , bn) ∈ Ln(T, K) be
an extremal configuration and let

σn =
1
n

( n∑
i=1

δai
−

n∑
i=1

δbi

)
∈ S(T,K).

The potential of σn is

Uσn
(z) =

1
n

(
n∑

i=1

log
1

|z − ai| −
n∑

i=1

log
1

|z − bi| )

=
1
n

log
∣∣∣∣ (z − b1) · · · (z − bn)
(z − a1) · · · (z − an)

∣∣∣∣ .
Consider the rational function

Rn(z) =
(z − b1) · · · (z − bn)
(z − a1) · · · (z − an)

and note that Rn is analytic on D and Uσn
(z) = 1

n log |Rn(z)|. First, we will use the
rational functions Rn to obtain finite rank linear operators that will approximate Cφ in
order to prove that

lim sup
n→∞

(an(Cφ))1/n ≤ exp(−2π/Cap(T,K)). (3.4)

We start by establishing upper and lower bounds for |Rn|.
Fix ε ∈ (0, dist(T, K)/2) and n ∈ N satisfying 1/n2 < dist(T, K)/2. Let γε :=

∂D(0, 1 − ε) (positively oriented circle) and An := {z ∈ D : dist(z, K) = 1/n2}. From
Theorem B and Theorem D, it follows that

Uσn
(z) ≤ Uτ (z) +

32 log(C2n)
n

≤ VK +
C1

n2α
+

32 log(C2n)
n

, (3.5)

for every z ∈ An and

Uσn
(z) ≥ Uτ (z) − 32 log(C2n)

n
≥ VT − C1ε

α − 32 log(C2n)
n

, (3.6)

for every z ∈ γε, where the constants C1 > 0, C2 > 1 and α ∈ (0, 1) depend only on the
condenser (T, K). From (3.5) and (3.6), we obtain the inequalities

|Rn(z)| ≤ exp(nVK + C1n
1−2α + 32 log(C2n)), (3.7)
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for every z ∈ An and

|Rn(z)| ≥ exp(nVT − nC1ε
α − 32 log(C2n)), (3.8)

for every z ∈ γε. Also, from the maximum principle, it follows that the inequality (3.7)
holds for every z in the component of C \An containing K.

For f ∈ Bp
w, let

Fn(z, f) :=
Rn(z)
2πi

∫
γε

f ′(ζ)
Rn(ζ)(ζ − z)

dζ, z ∈ K.

From the residue theorem, we get that

Fn(z, f) = f ′(z) −Hn(z, f), (3.9)

where

Hn(z, f) := Rn(z)
n∑

i=1

f ′(bi)
R′

n(bi)(bi − z)
·

Let

In(z, f) := f(φ(0)) +
n∑

i=1

f ′(bi)
∫ z

0

Rn(ζ)
R′

n(bi)(bi − ζ)
dζ

be a primitive of Hn(·, f) on D. We note that∫
D

|(In(φ(z), f))′(z)|pw(z)dA(z) =
∫

D

|I ′n(φ(z), f)|p|φ′(z)|pw(z)dA(z)

≤
(

sup
z∈K

|I ′n(z, f)|p
)
‖φ‖p

Bp
w
< +∞

and In(·, f) ◦ φ ∈ Bp
w, for every f ∈ Bp

w. We consider the operator Jn : Bp
w �→ Bp

w, defined
by Jn(f) := In(·, f) ◦ φ. Then Jn is a bounded linear operator and Jn(Bp

w) is contained
in the linear span of the functions

z �→
∫ φ(z)

0

Rn(ζ)
R′

n(bi)(bi − ζ)
dζ ∈ Bp

w, i = 1, . . . , n.

We obtain that rank(Jn) ≤ n. Therefore, for every f ∈ Bp
w,

an+1(Cφ) ≤ ‖Cφ − Jn‖

= sup
‖f‖B

p
w

=1

(∫
D

|(Cφ(f) − Jn(f))′(z)|pw(z)dA(z)
)1/p

= sup
‖f‖B

p
w

=1

(∫
D

|f ′(φ(z)) −Hn(φ(z), f)|p|φ′(z)|pw(z)dA(z)
)1/p

= sup
‖f‖B

p
w

=1

(∫
D

|Fn(φ(z), f)|p|φ′(z)|pw(z)dA(z)
)1/p

, (3.10)
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where in (3.10) the equality (3.9) has been used. From the inequalities (3.7) and (3.8),
we get that, for every z ∈ K,

|Fn(z, f)| ≤ |Rn(z)|
2π

∫
γε

|f ′(ζ)|
|Rn(ζ)||ζ − z| |dζ|

≤ exp(n(VK − VT) + C1n
1−2α + nC1ε

α + 64 log(C2n))
(dist(T,K)/2)

· (3.11)

· (1 − ε) sup
ζ∈γε

|f ′(ζ)|.

We note that (3.11) holds for every analytic function f on D. From (2.4), (3.10) and
(3.11), it follows that

an+1(Cφ)

≤ exp(−nI(T,K) + C1n
1−2α + nC1ε

α + 64 log(C2n))
(dist(T,K)/2)

· (3.12)

·
(∫

D

|φ′(z)|pw(z)dA(z)
)1/p

(1 − ε) sup
ζ∈γε

|f ′(ζ)|.

Raising (3.12) to the power 1/(n+ 1) and letting n→ +∞ we get

lim sup
n→+∞

(an(Cφ))1/n ≤ exp (−I(T,K) + C1ε
α) .

Letting ε→ 0, we obtain (3.4).
Next, we will use Proposition 3.3 to get a lower bound for the approximation numbers

of Cφ. Let ε > 0, let n ∈ N and let Pm : Bp
w �→ Bp

w be a linear operator with rank(Pm) =
m < n, satisfying Pm(Bp

w) ⊂ Cφ(Bp
w). Let E := {h′ : D �→ C : h ◦ φ ∈ Pm(Bp

w)} and note
that, taking restriction on the set K, E is a linear subspace of C(K) with dim(E) = m.
Therefore,

dm(B,C(K)) ≤ sup
f∈B

( inf
g∈E

‖f − g‖K), (3.13)

where B is the unit ball in H∞. Let f0 ∈ B such that

sup
f∈B

( inf
g∈E

‖f − g‖K) ≤ (1 + ε) inf
g∈E

‖f0 − g‖K . (3.14)

From Theorem E, there exists C3 > 0 such that

C3 exp(−nI(T,K)) ≤ C3 exp(−mI(T,K)) ≤ dm(B,C(K)). (3.15)

From (3.13), (3.14) and (3.15), we obtain that

C3 exp(−nI(T,K)) ≤ (1 + ε) inf
g∈E

‖f0 − g‖K . (3.16)

We will now estimate ‖Cφ − Pm‖. Let I0 be a primitive of f0 on D, satisfying I0(φ(0)) =
0. We have

‖I0‖Bp
w

=
(∫

D

|f0(z)|pw(z)dA(z)
)1/p

≤
(∫

D

w(z
)
dA(z)

)1/p

:= Cw.
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Therefore, I0/Cw lies in the unit sphere of Bp
w. Let Pm(I0/Cw) = h0 ◦ φ and note that

Cwh
′
0 ∈ E. From (3.16) we obtain that

‖Cφ − Pm‖ ≥ ‖Cφ(I0/Cw) − Pm(I0/Cw)‖Bp
w

=
1
Cw

(∫
D

|f0(φ(z)) − Cwh
′
0(φ(z))|p|φ′(z)|pw(z)dA(z)

)1/p

≥ 1
Cw

inf
g∈E

‖f0 − g‖K‖φ‖Bp
w

≥ C3‖φ‖Bp
w

Cw(1 + ε)
exp(−nI(T,K)). (3.17)

Taking infimum over all linear operators Pm : Bp
w �→ Bp

w with rank(Pm) = m < n and
Pm(Bp

w) ⊂ Cφ(Bp
w), we obtain that

ãn(Cφ) ≥ C3‖φ‖Bp
w

Cw(1 + ε)
exp(−nI(T,K)). (3.18)

From Proposition 3.3 and (3.18), it follows that

an(Cφ) ≥ C3‖φ‖Bp
w

Cw(1 + ε)n
exp(−nI(T,K)). (3.19)

Raising (3.19) to the power 1/n and letting n→ +∞, we get

lim inf
n→+∞(an(Cφ))1/n ≥ exp(−I(T,K)). (3.20)

Finally, the equality (3.3) follows from (3.4) and (3.20). The proof is complete. �

4. Symbols with non-compact image in the unit disc

In this section, we will prove that the asymptotic formula (1.2) holds for composition
operators on weighted Besov spaces. We will see that formula (1.2) follows from Theorem
3.4 and the following well-known properties.

The first is a property of approximation numbers (see e.g. [23, III.G.2, p. 237]).

Theorem F (Wojtaszczyk [23]). Let X be a Banach space and let T, S : X �→ X
be two bounded linear operators. For all integers n, m ≥ 1,

an+m−1(T ◦ S) ≤ an(T )am(S).

The second property is a lower bound for the capacity of a condenser involving the
diameters of its plates and the distance between them; see e.g. [21, Lemma 7.38, p. 95].

Theorem G (Vuorinen [21]). There exists a constant C4 > 0 such that, for every
condenser (E, F ), where both E and F are non-degenerate continua, we have

Cap(E,F ) ≥ C4 log
(

1 +
min{diam(E),diam(F )}

dist(E,F )

)
.
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We will now state and prove our second main result.

Theorem 4.1. Let w : D �→ (0, +∞] be a lower semicontinuous function on L1(D), let
p > 1 and let φ ∈ Bp

w satisfying ‖φ‖∞ = 1. Then the formula

lim
n→∞(an(Cφ))1/n = 1 (4.1)

holds, for the approximation numbers of Cφ : Bp
w �→ Bp

w.

Proof. Let r ∈ (0, 1) and consider the bounded linear operator Lr : Bp
w �→ Bp

w, defined
by Lrf(z) = f(rz), f ∈ Bp

w. Also, note that Cφ ◦ Lr = Crφ, ‖rφ‖∞ = r and rφ(D) =
{rz : z ∈ φ(D)} is a compact subset of D. From Theorem F, it follows that

an(Crφ) = an(Cφ ◦ Lr) = an+1−1(Cφ ◦ Lr) ≤ an(Cφ)a1(Lr) = an(Cφ)‖Lr‖,

for every n ∈ N. Therefore,

an(Crφ)1/n

‖Lr‖1/n
≤ an(Cφ)1/n, n ∈ N.

Letting n→ +∞, from Theorem 3.4, we obtain that

exp(−2π/Cap(∂D, rφ(D))) ≤ lim inf
n→+∞(an(Cφ))1/n. (4.2)

From Theorem G, it follows that

Cap(∂D, rφ(D)) ≥ C4 log(1 +
min{diam(∂D),diam(rφ(D))}

dist(∂D, rφ(D))
)

= C4 log(1 +
diam(rφ(D))

1 − r
). (4.3)

Letting r → 1, from (4.2) and (4.3), we get

1 ≤ lim inf
n→+∞(an(Cφ))1/n. (4.4)

On the other hand,

lim sup
n→+∞

(an(Cφ))1/n ≤ lim sup
n→+∞

(a1(Cφ))1/n = 1. (4.5)

The conclusion follows from (4.4) and (4.5). �
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10. M. Götz, Approximating the condenser equilibrium distribution, Math. Z. 236(4) (2001),
699–715.

11. H. Kloke, Punktsysteme mit extremalen Eigenschaften für ebene Kondensatoren, Disser-
tation Universität Dortmund, 1984.

12. H. Kloke, On the capacity of a plane condenser and conformal mapping, J. Reine Angew.
Math. 358 (1985), 179–201.

13. N. S. Landkof, Foundations of Modern Potential Theory (Springer-Verlag, 1972).
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