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The advent of multiple Global Navigation Satellite System (GNSS) constellations will result
in a considerable increase in the number of satellites for positioning worldwide. This
substantial improvement in measurement redundancy has the potential to radically advance
receiver autonomous integrity monitoring (RAIM) performance. However, regardless of the
number of satellites, the performance of existing RAIM methods is sensitive to the assumed
prior probabilities of individual fault hypotheses. In this paper, a new method is developed
using Bayes’ theorem to generate upper bounds on posterior probabilities of individual fault
hypotheses given current user measurements. These bounds are used in a Bayesian fault-
tolerant position estimator (FTE) that minimizes integrity risk. The detection test statistic is
a measurement-based integrity risk bound, which is directly compared with a pre-specified
risk requirement. The associated challenge of quantifying continuity risk is resolved using a
bounding approach, which is also detailed in this work. The new Bayesian FTE method is
shown to be more robust to uncertainty in prior probability of fault occurrence than existing
RAIM methods.
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1. INTRODUCTION. Multiple Global Navigation Satellite System (GNSS)
constellations, including the Global Positioning System (GPS), GLONASS, Galileo
and BeiDou are currently being deployed or modernised, and are foreseen to be
fully operational in the 2020–2030 time frame. The completed, combined multi-
constellation GNSS will broadcast new signals from a large number of additional
ranging sources, and is therefore expected to provide improved positioning
performance. In particular, the abundantly redundant range measurements available
using multi-constellation GNSS can significantly increase the performance of receiver
autonomous integrity monitoring (RAIM) (Parkinson and Axelrad, 1988; Brown,
1996). This potential performance improvement has raised a renewed interest in using
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RAIM as the main method for aircraft integrity monitoring. Recent research on
RAIM performance for aviation applications, for example in the framework of the
Advanced RAIM (ARAIM) research effort described in Walter et al. (2008) and
Blanch et al. (2013) has shown the potential for very good global system availability
for specific aviation applications using multi-constellation GNSS (Blanch et al., 2007;
Lee and McLauglin, 2007; FAA, 2011).
However, most RAIM algorithms require knowledge of the prior probability of

fault occurrence. Further, RAIM performance is often sensitive to variations in the
assumed values of this prior probability. Due to the scarcity of observed faults over
the relatively short operational history of GNSS and the difficulty in developing
analytical failure models for such sophisticated systems, it is not clear how to
rigorously establish the probability of fault occurrence for use in RAIM algorithms.
Moreover, the probability of satellite failure might evolve with satellite age. In the
end it will be extremely difficult, if not impossible, to confidently specify a precise
prior probability of fault occurrence. Overly optimistic values will result in misleading
integrity performance predictions, and could even endanger aircraft safety when
implemented for real-time detection. On the other hand, using overly conservative
values will ensure conservative integrity performance predictions, but at the expense of
decreased navigation availability.
Bayesian analysis is well known for its robustness to uncertainty in prior

probabilities (Berger, 1985). In Bayesian analysis, the posterior probability of fault
occurrence can be evaluated based on current measurements, an approximated prior
probability of fault occurrence (Ober, 2003), and the probability density function of
the fault magnitude. However, information on fault magnitude distributions is usually
not available, and in this work, upper bounds on the posterior fault probabilities are
instead sought by considering the worst-case fault magnitude. In Section 2 of this
paper, a new method is developed to compute an upper bound on the posterior
probability of a given fault hypothesis using Bayes’ theorem. The penalty for the lack
of information on the fault magnitude distribution will affect the tightness of the
posterior probability bound.
In Section 3, an upper bound on integrity risk is analytically derived using

the measurement-updated posterior probability bounds developed in Section 2. The
method is illustrated using a quantitative example, which is used to demonstrate
that the resulting risk assessment is robust to uncertainty in the assumed prior
probabilities.
In addition, it is noted that currently most GNSS position estimators optimise

accuracy (e.g., using weighted least squares estimators or Kalman filters) rather than
integrity. This is true even for aviation applications that must comply with extremely
stringent requirements on system integrity in order to address safety-of-life concerns.
In Section 4, we introduce a Bayesian fault-tolerant position estimation (FTE)
technique to optimise integrity risk instead of accuracy. The concept of using FTEs
together with RAIM is not new (Pervan et al., 1998; Hwang and Brown, 2006; Lee,
2006; Blanch et al., 2012; Joerger et al., 2012). However, non-Bayesian RAIM
methods for this purpose often result in complicated derivations and solutions that
are difficult to obtain (ibid). Furthermore, they are subject to the same sensitivity
to uncertainty prior fault probability noted earlier. The Bayesian FTE method, in
contrast, can be derived analytically in a straightforward manner and is much less
sensitive to prior fault probabilities. In the remainder of Section 4 the Bayesian FTE is
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then seamlessly incorporated with a fault detection algorithm developed in Pervan
et al. (1998), which serves as the RAIM detection method. The test statistic adopted
for fault detection is the computed system integrity risk bound, which is directly
compared with the integrity risk requirement.
Continuity risk is a competing requirement (to integrity) in practical applications,

including aviation applications. It is conventionally represented as a frequentist
probability of monitor alarm under fault-free conditions. In order to demonstrate
compliance with such a requirement, the fault-free performance of the Bayesian
algorithm developed in Section 4 must be evaluated relative to the frequentist
continuity risk requirement. While this is straightforward to do in principle, in practice
it is extremely time consuming to precisely compute the false alarm probability. This
issue is addressed in Section 5, where an efficient method suitable for real-time
implementation is developed to establish an upper bound on continuity risk.
Finally, the performance of the Bayesian FTE algorithm is analysed for an

example GNSS navigation system. A benchmark application, the LPV 200 aircraft
precision approach (FAA, 2007), is selected for this purpose. The performance of a
conventional ARAIM method is also evaluated for comparison. The simulation
results demonstrate that the Bayesian FTE algorithm is robust to uncertainty in fault
prior probability, while the conventional ARAIM results in much larger unaccounted
for variations in integrity risk.

2. POSTERIOR PROBABILITY OF FAULT OCCURRENCE
USING MEASUREMENTS AND BAYESIAN PROBABILITY. In
Bayesian statistics a posterior probability is determined based on a given prior
probability and on available measurements. This posterior probability is conditioned
upon actual measurements. The algorithm derived in Pervan et al. (1998) to compute
the integrity of a position estimate using a multiple hypothesis approach for
differential GPS positioning systems is extended in this work to stand-alone
positioning using a Bayesian approach. The concept of using mutually exclusive
multiple hypotheses has been widely adopted in recent GNSS navigation integrity
research (Walter et al., 2008; Blanch et al., 2007; Lee and McLauglin, 2007).
A set of mutually exclusive and exhaustive hypotheses (Hi, i=1 . . . nf) is considered,

where each hypothesis is associated with a specific failure mode (a particular set of
faulted measurements) except the hypothesis H0, which represents the fault-free
hypothesis.

1 =
Xnf
i=0

P(Hi) (1)

where P(H0) is the prior probability for fault-free hypothesis H0, P(Hi) is the prior
probability for the hypothesis Hi of the i

th failure mode, and nf is the total number of
hypotheses under consideration.
The measurement vector z, made of n stacked GNSS ranging signals, is expressed

using the n bym (n>m) observation matrixG, them by one state vector x, and the n by
one nominal measurement error vector v (assumed normally distributed with zero
mean) as:

z = Gx+ v, v � N(0, σ2) (2)
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The least squares position estimate is:

x̂0 = (GT
0 R

−1
0 G0)−1GT

0 R
−1
0 z0, R0 = [E(v0vT0 )] (3)

where the subscript 0 indicates the full-set solution (i.e., using measurements from all
visible satellites), R0 is the measurement error covariance matrix, and the m estimated
states x̂0 are three position components and one receiver clock bias (or multiple
receiver clock biases for multiple constellations).
Given the fault-free hypothesis H0 and the full-set measurement vector z0,

the conditional probability density function (PDF) of the true position can be
expressed as:

f (x|H0, z0) = N(x̂0,P0), P0 = (GT
0 R

−1
0 G0)−1 (4)

where P0 is the covariance matrix of position estimate error.
For the hypothesis Hi corresponding to the ith failure mode with a prior probability

P(Hi), a fault-free sub-set solution is obtained using the least squares estimate which
excludes the ith set of assumed faulty measurements:

x̂i = (GT
i R

−1
i Gi)−1GT

i R
−1
i zi, Ri = [E(vivTi )] (5)

The conditional PDF of true position under the hypothesis Hi given the sub-set
measurement vector zi can be written as:

f (x|Hi, z0) = N(x̂i,Pi), Pi = (GT
i R

−1
i Gi)−1 (6)

Because the hypotheses are mutually exclusive and exhaustive, a composite PDF for
true position given all available measurements z0 can be derived as the weighted sum
of the PDFs associated with each hypothesis:

f (x|z0) =
Xnf
i=0

f (x|Hi, z0)P(Hi|z0) =
Xnf
i=0

f (x|Hi, zi)P(Hi|z0) (7)

where f (x|Hi, z0)= f (x|Hi, zi) because the ith set of assumed faulty measurements are
not informative under Hi.
A simplified graph showing a composite PDF from the PDFs of three sub-set

solutions x̂i (i=1 to 3) and the full solution x̂0 is shown in Figure 1.
The x̂ represents a single component of the estimated position vector in the figure.

In the illustrative examples in this work, which are aviation examples, we will mainly
focus on the vertical position coordinate, because vertical requirements are typically

Figure 1. Illustration of the composite PDF of the true position using the multiple-hypothesis
approach.
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more stringent in aviation applications. However, the same methodology applies to
the horizontal components of the position estimate as well.
In Equation (7), the composite PDF can be defined only if the posterior probability

P(Hi|z0) for each hypothesis can be obtained precisely. However, for GNSS this is not
possible because distributions of failure magnitudes are generally not available. An
alternative approach, which we pursue in this work, is to derive an upper bound on the
posterior probability, which will then be used to form an upper bound on integrity
risk.
Using Bayes’ theorem, the posterior probability given all available measurements z0

can be expressed as:

P(Hi|z0) = f (z0|Hi)P(Hi)Pnf
j=0

f (z0|Hj)P(Hj)
(8)

Given the full-set of n measurements z0, the information about the faults is carried
only by the associated n-m by 1 parity vector p, which is defined using Equation (8.1)
(Pervan et al., 1996; Sturza, 1989):

p = Lz0 (8.1)
where L is an n-m by n projection matrix. The details of how to compute matrix L and
parity vector p will be discussed later.
For the moment, it is only relevant that the only part of measurement vector z0 that

is informative about the faults is more compactly expressed by the parity vector p.
Therefore, this vector will be used to in place of z0 to derive the posterior probability of
fault occurrence:

P(Hi|z0) = P(Hi|p) ⇒ P(Hi|p) = f ( p|Hi)P(Hi)Pnf
j=0

f ( p|Hj)P(Hj)
(8.2)

The conditional PDF f (p|Hj) can be further expanded as:

f ( p|Hj) =
ð1
−1

f ( p|bj,Hj)fb(bj|Hj)dbj (9)

where fb(bj|Hj) is the unknown conditional failure-magnitude distribution function for
the jth failure mode.
After substituting Equation (9) into Equation (8.2), the Bayesian posterior

probability of hypothesis i is:

P(Hi|p) =
Ð1
−1 f ( p|bi,Hi)fb(bi|Hi)dbiP(Hi)Pnf

j=0

Ð1
−1 f ( p|bj,Hj)fb(bj|Hj)dbjP(Hj)

(10)

Since every term in Equation (10) has a positive value, an upper bound of the
Bayesian posterior probability can be obtained by lower bounding all denominator
terms by zero, except for terms corresponding to j=0 and j= i. The upper bound on
the posterior probability for fault-free hypothesis, i=0, is simply one since in this
special case all terms other than j=0 in the denominator are lower bounded by zeros.
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For values i>1, Equation (10) can be upper bounded more tightly as:Ð1
−1 f ( p|bi,Hi)fb(bi|Hi)dbiP(Hi)Ð1

−1 f ( p|b0,H0)fb(b0|H0)db0P(H0) +
Ð1
−1 f ( p|bi,Hi)fb(bi|Hi)dbiP(Hi)

5 P(Hi|p)

For the fault-free hypothesis (H0), the failure magnitude b0 is known to be zero.
Therefore, the first integral in the denominator of the inequality above can be
evaluated directly. The left-hand side of the inequality then takes the form of w/(c+w),
where c is a constant and w is an integral that depends on the failure magnitude
distribution. This form is a monotonically ascending function in the variable w.
Therefore, maximizing w will also maximize the function w/(c+w). As a result,
a bounding value on the posterior probability P(Hi|p) is obtained by finding the
maximum value of the integral term w:

P̂ (Hi|p) =
max
fb,bi

Ð1
−1 f ( p|bi,Hi)fb(bi|Hi)dbiP(Hi)

f ( p|b0 = 0,H0)P(H0) +max
fb,bi

Ð1
−1 f ( p|bi,Hi)fb(bi|Hi)dbiP(Hi)

5 P(Hi|p) (11)

Finding the maximum value of the integral term in Equation (11) involves dealing
with the unknown failure magnitude distribution. Considering only single measure-
ment faults, the parameter bi in Equation (11) is a scalar, and the failure magnitude bi*
which corresponds to the maximum value of the conditional PDF of the parity vector
p is defined as:

b∗i = argmax
bi

f ( p|bi,Hi) (12)

The worst-case scenario for the unknown failure magnitude PDF is therefore a
Dirac delta function centred at bi*. The resulting maximum value of the integral
becomes:

max
fb,bi

ð1
−1

f ( p|bi,Hi)fb(bi|Hi)dbi =
ð1
−1

f ( p|bi,Hi)δb(bi − b∗i |Hi)dbi
= f ( p|b∗i ,Hi) (13)

Substituting the above result into Equation (11), the bounding posterior probability
can be expressed as:

P̂ (Hi|p) = f ( p|b∗i ,Hi)P(Hi)
f ( p|b0 = 0,H0)P(H0) + f ( p|b∗i ,Hi)P(Hi) (14)

Equation (14) assumes the worst-case failure magnitude bi* defined in Equation (12)
is known.

2.1. Derivation of the worst case failure magnitude bi*. Consider the general linear
measurement Equation (2) under a fault condition. A failure vector b is added to
Equation (2), and the equation is then normalised by pre-multiplying with the inverse
square root of the measurement noise covariance matrix R. The subscript 0 in this
derivation is omitted since all equations use the full set of measurements:

R−1/2z = R−1/2Gx+ R−1/2b+ R−1/2v ⇒ z∗ = G∗x+ R−1/2b+ v∗ (15)
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The n by m (n>m) observation matrix G* can be decomposed by singular value
decomposition (SVD):

G∗
n×m = Un×n

Sm×m

0(n−m)×m

� �
VT

m×m (16)

where the n by nmatrixU can be partitioned into an n bymmatrixU1 and an n by n-m
matrix U2. U2 maps the measurements into the parity space (Pervan et al., 1996):

Un×n = U1,n×m U2,n×(n−m)
� � (17)

The parity vector p is the projection of the normalized measurements in parity
space. Under fault-free conditions, the elements of p are independent and identically
distributed (i.i.d.) Gaussian random variables with zero mean and unit variance.
Under faulty conditions, the fault vector b causes the parity vector to have a non-zero
mean, which can be expressed as:

p = UT
2 z

∗ = UT
2 R

−1/2b+UT
2 v

∗, ⇒ p = Lb+UT
2 v

∗ (18)
where L=U2

TR−1/2, f (p|b, Hi)=N(Lb, In-m), and In-m is the identity matrix of size
n-m by n-m.
For hypothesis Hi of a fault on measurement i, we define the failure magnitude bi

of the fault vector b. The product of the matrix L and the fault vector b becomes:
Lb=Li bi, where Li is the i

th column of L. Using Equation (18), the PDF of the parity
vector given hypothesis Hi can then be written as:

f ( p|b,Hi) = f ( p|bi,Hi) = N(Libi, In−m)

= 1

(2π)(n−m)/2 exp −( p− Libi)T ( p− Libi)
2

� �
(19)

For fault-free hypothesis H0, Equation (19) becomes:

f ( p|b0 = 0,H0) = 1

(2π)(n−m)/2 exp − pTp
2

� �
(20)

To maximize the conditional PDF shown in Equation (19), the exponent
(p − Libi)

T(p − Libi) must be minimised. To do this we take the partial derivative
with respect to bi and equate it to zero:

∂

∂bi
[( p− Libi)T ( p− Libi)] = 0 ⇒ LT

i ( p− Libi) = 0 (21)

It can be shown that the second partial derivative is always negative. Therefore, the
failure magnitude bi satisfying Equation (21) minimises the inner product and is the
worst-case fault magnitude defined in Equation (12):

b∗i = argmax
bi

f ( p|bi,Hi) = (LT
i Li)−1LT

i p (22)

Substituting Equation (22) into Equation (19) and rearranging terms, the maximum
value of the conditional PDF of the parity vector is:

f ( p|b∗i ,Hi) = 1

(2π)(n−m)/2 exp − pT (In−m − Li(LT
i Li)−1LT

i )p
2

� �
(23)
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Using the results from Equations (20) and (23), the bound on the posterior probability
shown in Equation (14) is:

P̂ (Hi|p) =
exp − pT (In−m − Li(LT

i Li)−1LT
i )p

2

� �
P(Hi)

exp − pTp
2

� �
P(H0) + exp − pT (In−m − Li(LT

i Li)−1LT
i )p

2

� �
P(Hi)

(24)

3. ROBUSTNESS OF INTEGRITY EVALUATION USING
BAYESIAN APPROACH. From the Bayesian point-of-view, integrity risk is
defined as the conditional probability, given the measurements, that the state
estimation error, δx, exceeds a prescribed limit ± l (often called an alert limit):

Irisk|z ; P(|δx| . l|z) (25)
The Bayesian integrity risk is a function of the composite PDF of the true

position x in Equation (7), the alert limit, and the choice of position estimate x̂ used
for navigation. We start by using the full-set solution x̂0 as the navigation estimate. As
illustrated in Figure 2, the integrity risk is the cumulative probability of the true
position being outside the interval of length 2l centred at the navigation solution x̂0. It
can be expressed as the sum of the tail-probability of each hypothesis weighted by the
posterior probability of occurrence of each hypothesis given the measurements:

Irisk(x̂0, l)|z0 = P(|x− x̂0| . l|z0) =
Xnf
i=0

P(|x− x̂0| . l|Hi, z0)P(Hi|z0) (26)

The difference between the ith sub-set solution and the full-set solution is defined as
the ith solution separation value Δi: Δi; x̂i − x̂0. Assuming zero-mean, normally
distributed measurement noise, the tail-probability of each hypothesis can be
evaluated as a sum of complementary error functions:

P(|x− x̂0| . l|Hi, z0) =
ðx̂0−l

−1
f (x|Hi, z0)dx+

ð1
x̂0+l

f (x|Hi, z0)dx

= 1
2

erfc
l − Δiffiffiffi
2

√
σi

� �
+ erfc

l + Δiffiffiffi
2

√
σi

� �� � (27)

Figure 2. Illustration of the integrity risk using Bayesian approach.
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The Bayesian integrity risk using the full-solution can then be written as:

Irisk(x̂0, l)|z0 =
1
2

Xnf
i=0

erfc
l − Δiffiffiffi
2

√
σi

� �
+ erfc

l + Δiffiffiffi
2

√
σi

� �� 	
P(Hi|z0)

= 1
2

Xnf
i=0

erfc
l − Δiffiffiffi
2

√
σi

� �
+ erfc

l + Δiffiffiffi
2

√
σi

� �� 	
P(Hi|p)

(28)

It is important to note that, as shown in Chan and Pervan (2010), the
solution separation values Δi can be directly obtained from the parity vector p as a
scaled vector projection of p on the ith row of U2, which is the same direction as the
fault mode Li:

[Δi,x Δi,y Δi,z Δi,clk ]T = −(I − P0gigTi )−1P0giri, ri = U2(i, :)p (28.a)
where Δi,x, Δi,y, Δi,z, Δi,clk are the x, y, z and receiver clock bias components in the ith

solution separation vector, gi is the i
th column in the observation matrix G, ri is the i

th

residual element obtained by projecting the parity vector onto the ith fault mode which
is represented by the ith row of U2 matrix (U2 (i,:)).
Equation (28) is the Bayesian system integrity risk. As noted earlier, the posterior

probability of each hypothesis’ given measurements cannot be precisely evaluated
when the failure-magnitude distribution function is unknown. Instead, the posterior
bounds in Equations (8) to (24) are used to obtain an upper bound on the Bayesian
integrity risk:

Î risk(x̂0, l)|z0 =
1
2

Xnf
i=0

erfc
l − Δiffiffiffi
2

√
σi

� �
+ erfc

l + Δiffiffiffi
2

√
σi

� �� 	
P̂ (Hi|p) 5 Irisk(x̂0, l)|z0 (29)

One particularly interesting property of the integrity risk bound Equation (29),
which is inherited from Bayesian approach, is its relative insensitivity to prior
probabilities (also known as posterior robustness (Berger, 1985)). A frequentist
approach for system integrity evaluation uses a fixed prior probability for each
assumed hypothesis. Proving that these fixed values upper bound the actual prior
probabilities is typically not possible. The Bayesian approach mitigates the issue by
generating a posterior probability update based on current time measurements.
We illustrate the Bayesian approach through an example of positioning using

a nominal GPS constellation. The constellation used is adopted from earlier
ARAIM research described by the GNSS Evolutionary Architecture Study (GEAS)
in FAA (2011). We consider a single satellite geometry epoch at one location,
in which six satellites (SVs) are in view. In this case, the parity space is two-
dimensional and is easy to represent graphically. Measurement error was modelled
as a function of elevation based on the GEAS/ARAIM error models in Lee and
McLaughlin (2007).
Figure 3 shows the parity space for this example and the failure mode lines for each

fault mode hypothesis (only single satellite failures are considered). The failure mode
direction for satellite i can be obtained by replacing the fault vector b in Equation (18)
with Li bi. The direction of the blue dashed arrow is arbitrarily picked as an example
(actual) parity vector direction; the parity vector magnitude is made to vary linearly to
illustrate the variation of the posterior probability bound. The resulting posterior
probability bounds for each hypothesis are shown in Figure 4 as functions of the parity
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vector magnitude. A prior probability P(Hi)=1×10−5, for all i, was used to generate
the results. The figure shows that the larger the magnitude of a parity vector, the more
likely it is to be the result of a fault. Figure 5 illustrates one specific parity vector p and
two associated worst-case fault magnitudes for single SV 5 and 6 fault modes derived
using Equation (22).
Figure 6 shows the Bayesian integrity risk bounds from Equation (29) (the z axis

is logarithmic in scale) corresponding to all parity vectors (the p1 and p2 axes) for
the example geometry using a 35 metre vertical alert limit (l=±35m). The figure
illustrates that the integrity risk bound is convex in a valley shape. The horizontal blue
curve in the middle of the valley represents an example constant integrity risk contour,
which is also shown in Figure 7. The integrity risk value is 8·7×10−8 in this example.
(The reason for the choice of this particular value will become evident later in
Section 5.) In addition, Figure 7 shows two other constant integrity risk contours
(red and magenta) associated with the same integrity risk (8·7×10−8), but respectively
evaluated with ten and 100 times larger prior probabilities (1×10−4 and 1×10−3). In
the figure, the Bayesian integrity risk bound contours change only slightly with large
variations in prior probability. This visually illustrates that the Bayesian integrity risk

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

p
1

p
2 SV

1
 fault

SV
2
 fault

SV
3
 fault

SV
4
 fault

SV
5
 fault

SV
6
 fault

parity vector trace

Figure 3. Parity space and fault modes.

1 2 3 4 5 6 7 8 9 10

10
-4

10
-2

10
0

parity vector magnitude

p
ro

b
ab

ili
ty

SV
1
 fault

SV2 fault

SV
3
 fault

SV
4
 fault

SV5 fault

SV
6
 fault

Figure 4. Bayesian posterior probability bounds.

762 FANG-CHENG CHAN AND OTHERS VOL. 67

https://doi.org/10.1017/S0373463314000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000241


bound is not sensitive to prior probability variation. The significance of the robustness
of the Bayesian integrity risk to prior probability will become compelling in Section 5
when system performance using traditional RAIM will be compared to the Bayesian
approach.

4. FAULT-TOLERANT POSITION ESTIMATION AND
BAYESIAN RAIM DETECTION. The Bayesian integrity risk bound
derived in the previous section uses a least-squares solution x̂0 as navigation solution,
but this is not necessarily the only choice. In fact, Equation (26) defines the Bayesian
integrity risk for any arbitrary position estimate x̂:

Irisk(x̂, l)|z0 = P(|x− x̂| . l|z0) =
Xnf
i=0

P(|x− x̂| . l|Hi, z0)P(Hi|z0) (30)

Following the derivation in Pervan et al. (1998), an arbitrary position estimate can
be expressed as an offset from the full-set least-squares solution: Δ ; x̂−x̂0 . The
Bayesian integrity risk bound for an arbitrary position estimate can be derived
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similarly to Equations (27)–(29) to be:

Î risk(x̂, l)|z0 =
1
2

Xnf
i=0

erfc
l − (Δi − Δ)ffiffiffi

2
√

σi

� �
+ erfc

l + (Δi − Δ)ffiffiffi
2

√
σi

� �� 	
P̂(Hi|p)

5 Irisk(x̂, l)|z0 (31)

Given the alert limit l and current measurements, the Bayesian integrity risk bound
in Equation (31) is only a function of the offset Δ. Therefore, we may choose Δ to
minimize the Bayesian integrity risk bound. This results in a ‘fault-tolerant’ position
estimate (FTE): x̂FTE = Δ+ x̂0.

Î risk(x̂FTE, l)|z0 ;min
x̂

Î risk(x̂, l)|z0

=min
Δ

1
2

Xnf
i=0

erfc
l − (Δi − Δ)ffiffiffi

2
√

σi

� �
+ erfc

l + (Δi − Δ)ffiffiffi
2

√
σi

� �� 	
P̂(Hi|p)

(32)

The derivation of the FTE has been shown in Pervan et al. (1998), and the result is
expressed below:

d
dΔ

1
2

Xnf
i=0

erfc
l − (Δi − Δ)ffiffiffi

2
√

σi

� �
+ erfc

l + (Δi − Δ)ffiffiffi
2

√
σi

� �� 	
P̂(Hi|p)

( )
= 0

⇒
Xnf
i=0

P̂(Hi|p)
σi

exp − l − (Δi − Δ)ffiffiffi
2

√
σi

� �2
" #

+ exp − l + (Δi − Δ)ffiffiffi
2

√
σi

� �2
" #( )

= 0

(33)

The FTE solution Δ cannot be expressed in closed form, but it can be
obtained numerically with great efficiency. Therefore, a real-time implementation
is feasible. Figure 8 shows numerical results of the Bayesian integrity risk bound
for the vertical positioning component using the example from the previous section.
In this figure, the Bayesian integrity risk bound resulting from the FTE is
about +3·2 m off the least squares estimate, but its integrity risk is two orders of
magnitude lower.
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The fault detection algorithm for this Bayesian approach is a direct comparison
between two values: the computed Bayesian integrity risk bounds, noted as Icomp, and
a detection threshold using the allocated integrity risk requirement, noted as Ireq.

Icomp ; Î risk(x̂, l)|z0 , detection : Icomp 5 Ireq, no-detection : Icomp , Ireq (34)
This detection mechanism is different from conventional RAIM methods, which

normally set detection thresholds based on a continuity requirement. Using this
Bayesian detection algorithm, system continuity is yet to be evaluated. This will be
addressed in Section 5.

5. CONTINUITY AND EXAMPLE SYSTEM PERFORMANCE
EVALUATION. For civil aviation applications, continuity risk is defined as the
probability of interrupting an aircraft operation that has already been initiated. It is
directly related to the false alarm rate of the fault detection algorithm. To illustrate
the connection between fault detection performance and continuity requirement using
the Bayesian approach, an example application, LPV-200 precision approach (FAA,
2007), is considered.
LPV-200 precision approach has been wildly studied for the next generation GNSS.

As in the example in Section 3, measurement error models are adopted from GEAS/
ARAIM (FAA, 2011), with exception of the bias errors treated in that prior work,
which are excluded here for simplicity. Further, only the vertical position error, which
has the most stringent requirements in LPV-200 performance, is considered.
The simulation parameters used in Section 3 are implemented again for one

example geometry with six satellites in view at the same example location. For the
purpose of the example, a continuity risk requirement of 4×10−6 and an integrity
risk requirement of 8·7×10−8, with an associated 35 m alert limit, are allocated to
the vertical positioning component from the total LPV-200 requirements. To better
understand the methods for continuity risk evaluation, the least-squares position
estimate is first used and only single-satellite-failure modes are considered. Then, the
same methods are extended to the Bayesian FTE solution for system performance
evaluation.
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Figure 9 shows the a priori joint PDF of the parity vector under fault-free
conditions. The integrity risk contour (red line contour) corresponding to
posterior Bayesian integrity risk bound of 8·7×10−8 is also shown. The contour was
evaluated using the above-mentioned example with 1×10−5 prior probabilities
for all fault hypotheses. It represents the detection boundary in parity space (a parity
plane in this example) for the Bayesian detection algorithm. If a parity vector falls
outside the contour (Icomp5 Ireq), detection is declared and the aircraft approach
is interrupted. Therefore, the false alarm contribution to continuity risk is the
cumulative probability that the parity vector, under fault-free conditions, falls outside
the detection contour. Precisely computing this accumulated probability is challeng-
ing, because the contour of constant integrity risk is a smooth and continuous
enclosed curve (as seen in Figure 9), which cannot be represented analytically in closed
form. This becomes even more challenging when the dimension of the parity space
becomes higher (i.e. when more visible satellites are available). A potential method to
solve the issue was presented in Pervan et al. (1998) and Chan and Pervan (2010), and
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one of them is briefly reviewed below. Then, a new more effective method is
developed.
The cumulative probability outside a circular contour in parity space can be easily

computed using the chi-squared cumulative density function (CDF). Continuity
requirements are guaranteed to be met if the largest circular contour that can be
inscribed within the actual detection contour has a computed continuity risk equal
to or smaller than the required continuity risk (Chan and Pervan, 2010). However,
as Figure 10 illustrates, this method of evaluating continuity risk can be very
conservative (because the black-dashed areas in Figure 10 are not accounted for using
this method). Another less conservative approach for evaluating the continuity
contour uses a convex polytope contour instead of a circle. Figure 11 shows a circular
contour and a convex polytope contour side by side. The radius r of the circular
contour can be computed using the chi-squared CDF to meet the continuity
requirement. Also shown in the figure are f1, f2 and f3, which represent the unit
vectors of each fault mode. (For clarity, only three fault hypotheses are assumed in
this illustration.) The convex polytope is defined by a set of straight-line segments
perpendicular to the fault mode lines. The specific line segments are chosen to intersect
with the fault mode lines at distances ±k1, ±k2 and ±k3 from the origin. The
intersection points on the polytope boundary contour, ±k1 f1, ±k2 f2 and ±k3 f3, are
called boundary points, and they will be used to bound continuity risk. Although the
continuity risk of a convex polytope contour is not trivial to compute either, a bound
can easily be found. If C is defined as an event where the parity vector lies inside a
convex polytope contour, it is shown in the Appendix that the continuity risk is
bounded by:

P̂( p [ C̄|H0) =
Xnf
i=1

P(|ai| . ki|H0) 5 P( p [ C̄|H0) (35)

where ai is the magnitude of the projection on the fault mode direction from a parity
vector. Therefore it is a normally distributed random variable with a unity standard
deviation and zero mean under H0.
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Figure 11. Different continuity contours in parity space.
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For our current purpose, the boundary points are specifically selected to have equal
distances to the origin (k1=k2= . . .=ki) by allocating the required continuity risk
evenly on each fault mode.
Computing continuity risk using the convex polytope contour is less conservative

than using a circular continuity contour. The reason is that the corners of a convex
polytope extend the circumscribed area beyond that of a circular contour, which
ultimately provides a tighter bound on the continuity risk. This reduction in the
continuity risk bound improves significantly when the dimension of the parity space
increases, i.e., with a larger number of redundant satellites. Figure 12 shows the
numerical results in this respect using evenly-allocated continuity for a total 4×10−6

continuity risk. The y-axis in the figure is the minimum magnitude of the parity vector
along each fault mode that meets the continuity risk requirement using each of the two
methods. The x-axis is the number of redundant satellites. To meet the continuity
requirement, the posterior Bayesian integrity risks associated with all parity vectors
with these lengths must not exceed the integrity risk requirement; otherwise the
likelihood of fault-free detection will be too high. However, the bigger the magnitudes
of these parity vectors become, the higher the resulting posterior integrity risk they
have. Therefore, to achieve the same integrity risk using either method (i.e. both
continuity contours inscribed within the detection contour), the computed fault free
alarm probability using the convex polytope will be relatively much lower as the
number of redundant satellites increases.
In addition, the convex polytope contour also offers flexibility in varying boundary

points along each fault mode to more closely resemble the actual detection surface
contour. In other words, the continuity risk can be allocated by individually selecting
ki for each fault mode in Equation (35). However, it should be noted that in most
example ARAIM cases that we evaluated, the resulting continuity improvement is
typically small.
In practice, the convex polytope contour is first defined to achieve the required

continuity risk. Then, it must be determined whether the Bayesian integrity risk bound
meets the given integrity risk requirement at all points within the contour. This
can be efficiently done by evaluating the risk bound on the polytope contour itself.
Because the Bayesian integrity risk bound is a convex function (as shown in Figure 6),
the maximum value of Bayesian integrity risk bound must fall on the contour.
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Moreover, again because of the convexity of the function, one of the two end points of
each segment of the contour (i.e., the vertices of the polytope) will have risk bound
larger than or equal to the risk bounds at points within the segment (Luenberger,
2003). Therefore, only the vertices of the given convex polytope are needed to evaluate
the Bayesian integrity risk bounds for the whole continuity counter. The total number
of risk bound evaluation points can be further reduced to half because the integrity
contour is symmetric with respect to the origin of parity space. A numerical
demonstration of evaluating integrity risk bounds along the continuity contour is
illustrated in the Appendix.
A Protection Level (PL) is the minimum interval l (see Figure 2) which meets the

required integrity and continuity risks. The smaller the Vertical Protection Level
(VPL), the better the system performance is. In Figure 13, the VPL differences are
generated over 24 hours at the previous example location by subtracting the VPLs of
the convex polytope method from the VPLs of the circular contour method. It is clear
in the figure that the convex polytope method performs better (smaller VPLs resulting
in positive VPL difference).
The ARAIM algorithm uses a fixed set of prior probabilities for each hypothesis,

but the validity of any chosen value for prior probability is often debatable. In the
following example four possible values are considered: 1×10−2, 1×10−3, 1×10−4

and 1×10−5. VPLs for the Bayesian FTE method are compared to those obtained
using the baseline ARAIM algorithm described in FAA (2011). Simulations are
performance at one location for 24 hours using a 24-minus-1 SV GPS constellation
(the GPS Standard Positioning Service Performance Standard (US DOD, 2001)
depleted by one satellite). Figure 14 illustrates the VPL variations for both methods
using the actual prior probabilities of 1×10−2, 1×10−3, 1×10−4 relative to an
assumed value of 1×10−5. The deviations are shown in terms of the ratio of VPLs
relative to the 1×10−5 case. Because the Bayesian FTE algorithm is less sensitive to
prior probability variations, for clarity only relative VPLs corresponding to the
1×10−2 prior probability case are shown (this is the largest deviation from the
assumed value, 1×10−5).
Figure 15 shows the same simulation using two constellations: a 24-minus-1 SV

GPS constellation and a 27-minus-1 SV Galileo constellation (Zandbergen et al.,
2004). It is evident from both figures that the actual VPL values using the Bayesian
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Figure 13. VPL system performance difference for two different continuity evaluation methods.
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FTE method are higher than the presumed values by only 10% or less most of the
time, even if the actual prior probability value is 1000 times larger than what was
assumed (1×10−5). In contrast, the ARAIM VPLs increase approximately in
proportion to the order of prior probability. This example illustrates that the
Bayesian FTE is more robust to lack of knowledge of prior probability.
Robustness of the Bayesian method to the prior probability uncertainty has two

meanings in terms of the system performance. Firstly, protection level robustness can
further help ensure the validity of system availability evaluations (from a performance
prediction point of view). To illustrate this, one example geometry is selected from the
dual constellation case above for a user location near Chicago’s O’Hare airport. For
an LPV-200 aircraft approach, the vertical alert limit (VAL) is 35 m. Figure 16 shows
variations in VPL compared to VAL for different prior probabilities. Both Bayesian
approaches (one using the all-in-view position estimate as the navigation solution and
the other using FTE) show that VPL variations are much less pronounced than the
ARAIM case. Further, the Bayesian FTE algorithm provides extra performance
improvement (smaller VPLs). The general inference is that the relative insensitivity of
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Figure 14. VPL variations with different prior probabilities for single constellation.
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VPL variation will therefore lead to lower system availability degradation if prior
probabilities are increased.
Secondly, satellite fault probabilities may vary over time, due to aging or other

reasons, so the underlying probability of satellite fault may eventually become larger
than the assumed value in the ARAIM algorithm. In this scenario the aircraft-
computed VPLs will be smaller than the actual VPLs, which is a potential integrity
hazard.

6. CONCLUSION. RAIM-type detection methods will be an important
contributor to navigation system integrity in the near future with the advent of
modernized and multi-constellation GNSS. However, most current RAIM methods
rely on a fixed set of assumed prior fault probabilities. These prior probabilities
are difficult to determine (and even more difficult to certify for aviation
applications). They may even change over time for individual satellites, depending
on satellite age and health history. In this work, Bayesian analysis was used to
generate posterior fault probability bounds by updating the prior probabilities using
current measurements. It was shown how this leads to an integrity monitoring method
that is more robust to lack of knowledge in prior probabilities relative to existing,
state-of-the-art Advanced RAIM (ARAIM) algorithms. The specific contributions of
the paper are briefly outlined below.
A bound on the posterior probability was derived and used to define a bound on

Bayesian system integrity risk. Using these results, a Bayesian detection algorithm was
developed and a fault-tolerant position estimator (FTE) was derived.
It was noted that the main challenge in using a Bayesian approach for integrity

monitoring is that the fault-free alarm probability (continuity risk) is difficult to
precisely compute. In response a new, computationally efficient method was
developed to obtain a tight upper bound on continuity risk.
System performance using the new Bayesian FTE algorithm was analysed by

evaluating protection level variations for an example aircraft approach application. It
was shown that the performance of the Bayesian FTE algorithm is more robust to the
prior probability variations than state-of-the-art Advanced RAIM algorithms.
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APPENDIX

PROOF OF CONVEX POLYTOPE BOUND FOR CONTINUITY
RISK EVALUATION. For clarity of explanation, the same convex polytope
with three fault modes in Figure 11 is used and displayed in Figure A-1. Three unit
direction vectors associated with three fault modes are defined as f1, f2 and f3. Three
random variables can be defined as the magnitudes of the projection on three fault-
mode directions from a parity vector:

a1 ; f T1 p, a2 ; f T2 p, a3 ; f T3 p (A.1)
Under fault-free conditions, the probability that a parity vector falls inside the

convex polytope contour (we call this ‘event C’) can be expressed as:

P( p [ C|H0) = 1− P( p [ C̄|H0) (A.2)
where

P( p [ C̄|H0) = P(|a1| 5 k1 or |a2| 5 k2 or |a3| 5 k3|H0) (A.3)
which is the continuity risk. Using the Venn diagram (Frank and Weston, 1997), it is
easily observed that the continuity risk can be bounded as follows:

P( p [ C̄|H0) 4 P(|a1| 5 k1|H0) + P(|a2| 5 k2|H0) + P(|a3| 5 k3|H0)
; P̂( p [ C̄|H0) (A.4)

Using the same example as in Section 3, it is easy to numerically demonstrate
that the vertices of the polytope will correspond to the maximum Bayesian
integrity risk bound along the polytope contour. A convex ploytope contour is first
generated using evenly allocated continuity risks; it is shown in Figure A-2.
Sample points are taken on the six contour line segments densely with small
incremental steps, which include all the vertices and the boundary points, starting
at ps and progressing in a counter-clockwise direction until pe. Due to the
symmetry of the polytope and the system integrity risk bound, only half of the
continuity contour needs to be considered. The corresponding solution separations
for each sampled parity vector can be generated using the mapping function in
Equation (28.a), and the results substituted into Equation (28) to obtain the
Bayesian integrity risk bounds. Figure A-3 shows these integrity risk bounds for
the sampled parity vectors along the contour. In the figure, the x axis shows the
distance travelled along the contour from the starting vector ps and the y axis
shows the associated probabilities (Bayesian integrity risk bounds). The marked
points represent the vertices and boundary points on the contour. It can be easily
seen that the maximum Bayesian system integrity risk bound is on segment three
(red line segment). It is also evident that all points on segment three have
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Figure A-2. Numerical simulation of a convex polytope contour.
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Figure A-1. Convex polytope continuity contour in parity space.
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Figure A-3. Bayesian integrity risk bounds on the convex polytope contour.
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essentially the same probability values because the third fault mode is the
dominant fault; in particular, this example demonstrates that the vertices of
the segment three have risk bounds equal to the risk bounds at points within the
segment. This numerical example demonstrates the method of evaluating
the Bayesian integrity risk bound for the given continuity contour described
in Section 5.
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