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Abstract

This paper outlines a procedure for assessing the quality of failure explanations in engineering
failure analysis. The procedure structures the information contained in explanations such that
it enables to find weak points, to compare competing explanations, and to provide redesign
recommendations. These features make the procedure a good asset for critical reflection on
some areas of the engineering practice of failure analysis and redesign. The procedure
structures relevant information contained in an explanation by means of structural equations
so as to make the relations between key elements more salient. Once structured, the informa-
tion is examined on its potential to track counterfactual dependencies by offering answers to
relevant what-if-things-had-been-different questions. This criterion for explanatory goodness
derives from the philosophy of science literature on scientific explanation. The procedure is
illustrated by applying it to two case studies, one on Failure Analysis in Mechanical
Engineering (a broken vehicle shaft) and one on Failure Analysis in Civil Engineering (a collapse
in a convention center). The procedure offers failure analysts a practical tool for critical reflec-
tion on some areas of their practice while offering a deeper understanding of the workings of
failure analysis (framing it as an explanatory practice). It, therefore, allows to improve certain
aspects of the explanatory practices of failure analysis and redesign, but it also offers a theo-
retical perspective that can clarify important features of these practices. Given the program-
matic nature of the procedure and its object (assessing and refining explanations), it
extends work on the domain of computational argumentation.

Introduction

Failure analysis is one of the main pillars of redesign. It allows to learn from mistakes and to
improve current designs. One of the foundations of many failure analyses consists in their
underlying accident causation models (ACMs). ACMs are structures that encode assumptions
on the causality of accidents.1 These assumptions lead to different accident investigation
methods2 (where each ACM can have different investigation methods), although not every
investigation method has an associated ACM (Katsakiori et al., 2009). There are also different
systems and tools to represent (and sometimes to validate) the data gathered by these accident
investigation methods.

The first ACMs were rather simple (a single causal chain leading from a single cause to a
failure in a domino-like fashion) but have become increasingly more sophisticated, integrating
multiple causes, and representing complex situations. Some authors consider, given the level of
complexity of current technologies (and in some instances, socio-technological aspects), that
event-based models should be substituted for models that consider engineering systems. A
prime example is Nancy Leveson, for whom “[t]he cause of an accident, instead of being
understood in terms of a series of events, is viewed as the result of a lack of constraints
imposed on the system design and on operations, that is, by inadequate enforcement of
constraints on behavior at each level of a socio-technical system” (2004, p. 251).

ACMs influence how engineers gather data and constrain the space of possible explanations
given to a failure. Most methods deliver a set of causal factors (sometimes weighed and/or con-
nected by a causal tree-like structure) that can make sense of a failure. Using these factors, it
becomes possible to create an explanation of the failure, that is, to select relevant factors and
connect them appropriately in order to answer an explanatory question. This means that there

1Several classifications have been suggested. Laflamme (1990) divided accident causation models into decisional, sequential,
energetic and sequential, and organizational models; Lehto and Salvendy (1991) into general models of the accident process,
models of human error and unsafe behavior, and models of human injury mechanics; Hollnagel (2002) into sequential accident
models, epidemiological accident models, and systemic accident models.

2Some examples of investigation methods include: Hendrick and Benner (1987), Kleer and Williams (1987), Goel and
Chandrasekaran (1989), Josephson and Josephson (1994), Chantler et al. (1995), Reiter (1998), Abdelhamid and Everett
(2000), Dennies (2002), Affonso (2006), Andersen and Fagerhaug (2006), Bell et al. (2007), Xing and Amari (2008),
Bhaumik (2009), Li et al. (2009), and Jensen et al. (2014).
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can be different explanations for the same failure that utilize the
same causal model. Similarly, given a certain research question,
some explanations will be better than others, even if all
candidate-explanations are validated by evidence. An explanation
may be valid, in the sense of being correct (i.e., being supported
by evidence), but nonetheless it may not offer the right kind of
information to answer questions that might be deemed important.
For example, an explanation aiming at the adjudication of legal
responsibility will focus on different causal factors than an expla-
nation attempting to replace a failed component, hence it will be
likely that the former explanation will not provide adequate
information for the aim of the latter and vice versa.

The variety of ACMs and methodologies has naturally led to
discussions on the appropriateness of each method and has deliv-
ered different evaluation metrics to approach the issue (cf.
Wagenaar and van der Schrier, 1997; Sklet, 2004; Katsakiori
et al., 2009; Saleh et al., 2010). Most of these evaluations tackle
the issue of appropriate methodologies and the validation thereof,
but little has been said of the explanatory component.3 For
instance, Stern and Luger (1997) talk about (abductively) creating
explanations using schemas, but they do not then consider the
adequacy of the resulting explanations in terms of how well
they satisfy their aims (or whether they could satisfy different
aims). While it is important to have valid models and techniques,
it is also important to consider the adequacy of the explanations
that stem from said models. This point is sometimes trivial, since
the validation of a model is normally motivated by a certain
research question and is therefore built in such a way that validat-
ing it guarantees an adequate answer to said question; but this
need not always be the case. In many instances, the explanation
given for a specific failure might be imported into a different con-
text (whence it originated); it could also be extended beyond its
initial intended scope; or it might be used within a different dis-
cipline. Furthermore, answering an explanatory question is
usually not a binary issue, but rather a matter of degree, where
it is often possible to improve an already acceptable explanation.

The primary aim of this paper is to provide a procedure by
which to evaluate the adequacy of failure explanations by measur-
ing how well these explanations achieve their goal (i.e., answer
certain explanatory questions). In this sense, the objective of the
procedure is not to validate a certain model or explanation, but
to assess its adequacy with regards to a specific problem (where
“adequacy” refers to how the explanations fit what the target audi-
ence expects and needs). This aim is addressed through a five-step
procedure. Reaching this chief aim directly leads to a secondary
aim: showing how thinking of failure analysis as an explanatory
practice offers a richer understanding of the field. Failure analysis
is often said to be concerned with finding the causes of failure
(see quotes in the section “Failure analysis as an explanatory
practice”), and while this is partly true, a richer perspective that
considers failure analysis as building explanations of failure
might be more useful. The expectation motivating this paper is
that, aside from improving understanding of the workings of fail-
ure analysis, the development of an evaluation tool will be an asset
in comparing and refining the adequacy of certain types of failure

explanations. This means that the paper has both a theoretical and
a practical scope of application.

The first two steps of the procedure are instrumental for the
rest, where the first step emphasizes the content of the explanation
and the second emphasizes the ideal result we would expect from
an optimal explanation. The third and fourth steps confront the
ideal (optimal) results (i.e., ones with the ability to provide
answers to the set of relevant w-questions) with the actual ones;
more specifically, step 3 weighs the actual result against the
ideal one in order to assess the performance of the actual expla-
nation, and step 4 compares the results of the actual explanation
against other possible explanations. Finally, the fifth step allows to
validate (or not) the current explanation in light of the previous
steps and gives redesign recommendations if pertinent.

The instruments used to develop this procedure are concepts
and ideas from the literature on structural equation modeling
(SEM) and from the literature on scientific explanation within
the philosophy of science. In order to study and compare expla-
nations, step 1 (transcription) structures the information they
contain using SEM. SEM can be profitably used to abstract
from details and capture fundamental features of explanations.
In the case of the proposed procedure, it can be used to convert
large portions of descriptive text into a few equations representing
how variables (representing features of engineered mechanisms
systems and their environment) relate to one another.

In step 2 (identification), the aim of the explanation is iden-
tified. We can then proceed to examine how well the structural
equations produced in step 1 fulfill this aim. Such an examination
is carried out in step 3 (exploration and corroboration) using a
principle derived from the philosophical literature on scientific
explanation (Woodward, 2003; Ylikoski and Kuorikoski, 2010):
an adequate explanation should enable the tracking of systematic
patterns of counterfactual dependence by answering what-if-
things-had-been different questions (w-questions). The quality
of an (adequate) explanation improves with its ability to answer
more relevant w-questions. w-questions ask how a situation
would had been different had there been different initial condi-
tions. The “relevancy” of a w-question refers to whether its answer
helps achieving the aim of the explanation or not. For instance,
when a plane crashes during very bad weather conditions and
an explanation aims at providing safety recommendations for
future flights, it seems relevant to assess whether the plane
would have also crashed in the absence of bad weather conditions
(or to what degree the weather played a role), while it is irrelevant
to assess whether the plane would also have crashed had it had a
different color.

Step 4 (comparison) uses the same tools as step 3 to compare
different explanations (i.e., contrasting sets of answerable relevant
w-questions). Moreover, it allows to compare a single explanation
with modified versions of itself, thereby promoting optimization.
Step 5 (validation and recommendation) uses the results from
steps 3 and 4 in order to validate an explanation: an explanation
is validated if it is of a good quality (it answers the set of w-ques-
tions relevant to the aim) and it is optimized. If the aim of the
explanation is redesign, it is possible to use the structural equa-
tions to provide useful redesign information (in terms of answers
to interesting w-questions that consider the outcome of changes
in design parameters).

The paper focuses on simple cases of explanations that are
mostly event-based and do not involve layers of human interac-
tion in order to properly illustrate the workings of the procedure
in two separate instances. This does not mean that SEM cannot

3Also, in the philosophy literature, where the last few decades have revealed an increas-
ing interest in the explanation practices of engineering sciences (Gabbay et al., 2009;
Barman and van Eck, 2021), most analyses focus on the structure of explanations (e.g.,
de Ridder, 2006; Boon, 2008) rather than on providing an account of, or criteria for,
the quality or adequacy (or lack thereof) of such explanations.
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handle more complex systems (it is quite the contrary, given the
ability of structural equations to deal with complex relations
between variables and latent variables). SEM allows to extract
counterfactuals while remaining neutral with respect to which
accident causation model underlies the explanation. SEM is,
therefore, a useful tool to capture complex situations in a rigorous
manner, especially when certain details are not fleshed out (since
it can incorporate latent variables). This does not mean however
that SEM is the only possible tool to represent explanations.
Simulations have been greatly advanced, as have other representa-
tional devices such as FAD (function analysis diagram). The
advantage (for the purpose of this paper) of SEM is the ease
with which it can extract counterfactuals (by simply assigning a
value to a variable and solving the equation). In this way, SEM
presents a compact, rigorous, and computationally efficient way
to relate to the information of explanations and a direct way to
test the set of w-questions answerable by said information.
However, as with any modeling practice, it is important to note
that there is a certain degree of subjectivity involved when making
decisions regarding the abstraction, inclusion (or exclusion), and
interpretation of variables.

The value of the proposed procedure is threefold: (i) it gives
failure analysts a tool or “procedural check” to critically reflect
on some of their own explanatory practices, and (ii) it improves
understanding of failure analysis by framing it as an explanatory
practice. (iii) It also extends work on the domain of computa-
tional argumentation.

The paper is structured as follows. Section “Tools for the pro-
cedure outlines the conceptual tools needed for the development
and usage of the procedure. Section “The procedure” describes the
procedure in detail, and sections “Mechanical Engineering and
the virtue of robustness and Civil Engineering and accuracy” pro-
vide applications of the procedure in the problem domains of fail-
ure analysis in mechanical and civil engineering, respectively.
Section “Failure analysis as an explanatory practice” focuses on
the value of viewing failure analysis as an explanatory practice
and considers its relevance to computational argumentation.

Tools for the procedure

Woodward’s counterfactual theory of explanatory power

This paper subscribes to James Woodward’s account of explana-
tion where:

explanation is a matter of exhibiting systematic patterns of counterfactual
dependence (… ) They do this by enabling us to see how, if these initial
conditions had been different or had changed in various ways, various of
these alternative possibilities would have been realized instead. Put slightly
differently, [generalizations] are such that they can be used to answer a
range of counterfactual questions about the conditions under which
their explananda would have been different (what-if-things-had-been-dif-
ferent or w-questions, for short). (2003, p. 191)

The structure of an explanation is an argument that employs a
generalization in order to track physical dependencies. The qual-
ity of an explanation has to do with whether or not it can exhibit
counterfactual dependency relations. Adequate explanations
(according to Woodward) enable this by providing information
that can be exploited to answer what-if-things-had-been-different
questions (w-questions). Answers to w-questions enable us to see
what the outcome would have been if initial conditions had been
different. These counterfactual initial conditions oftentimes

describe hypothetical situations that would result from changing
(intervening on) the values of variables of the explanans. For
Woodward, this ability to exhibit systematic patterns of counter-
factual dependence is the criterion to establish whether or not an
explanation is adequate. Woodward furthermore suggests that the
more what-if questions an (adequate) explanation answers, the
better it is (Woodward and Hitchcock, 2003).

This paper endorses Woodward’s counterfactual theory of
explanatory power, but with the following qualification: better
explanations are not simply ones that answer more what-if ques-
tions, but rather, following Ylikoski and Kuorikoski (2010), better
explanations answer more relevant4 what-if questions than alter-
native explanations.

This criterion for explanatory relevance can be expressed in
the following principle: The quality of an explanation is deter-
mined by how many relevant w-questions it can answer.

Structural equation modeling

SEM was developed in the beginning of the last century by geneti-
cists and economists to combine qualitative cause-effect informa-
tion with statistical data between variables of interest. It is heavily
used in many social sciences because it can model latent variables
and errors, while handling many types of relations between vari-
ables. A good introduction5 on how to use and build these equa-
tions can be found in Pearl (2009).

Typically, within the SEM literature, a functional causal model
(representing an effect as a function of causes and noise) is a set of
equations,6 where some independent variables determine the
value of a dependent variable, considering possible errors and/
or non-represented factors. It is convention to use the “=” symbol,
even though it is an asymmetrical relation that resembles the
assignment function “:=”. Preferably, each equation in the system
should represent what Woodward (2003, p. 328) and Pearl (2009,
p. 27) call a (independent) mechanism.

The equations are to be understood as encoding information
about how a variable changes if others were to change. By assign-
ing values to the variables, we can understand how a system
would (have) behave(d). In the simplest cases, variables are set
to 1 if present and 0 if not, and through logical operators they
lead to a certain value for the state of the phenomenon under con-
sideration. Additionally, certain quantities (given by the solution
of algebraic equations) can activate (or not) some qualitative vari-
ables (e.g., turn them into a 1 or a 0).

For instance, consider a toy example of a simple square table
with separate legs. The table needs at least three legs to stand,
and if it has a weight on it, it can stand as long as the weight is
less than a certain amount. Let us idealize and suppose that the
weight is always centered, and each leg can hold 5 kg before it
breaks. We can model the possible states of the table as follows

4Relevancy is the consideration of how important or pertinent the counterfactual is for
the aim of the explanation, and while in this account it is considered as a binary, it could
be possible to formulate an account where the relevancy of counterfactuals has different
degrees.

5See also: Hershberger (2003), Hall (2007), Halpern (2008), Halpern and Hitchcock
(2011), and Bollen and Pearl (2013).

6These can be represented in different ways, for example: [xi = fi( pai, ui), i = 1, …n]
(Pearl, 2009, p. 27), where pa are the set of parent variables, and u is the error or distur-
bance due to omitted factors; [(Y1← y1, …., Yk← yk)w] (Halpern and Hitchcock, 2011,
p. 1113), where Yi are variables, yi is the relation with possible variables, and w is a com-
bination of primitive events; [Y = aX +U] Woodward (2003, p. 327), where X is a direct
cause of Y and U is an error term.
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(where W is the weight (kg) placed on top):

Legi = {0, 1} [for i = 1, 2, 3, 4] (if leg present, 1, if not 0).

if
W

leg1 + leg2 + leg3 + leg4
. 5

( )
then Legi = 0 [for i

= 1, 2, 3, 4].

Table Stands = (leg1 _ leg2) ^ (leg3 _ leg4) ^ (leg1 _ leg3)

^ (leg2 _ leg4) ^ (leg1 _ leg4) ^ (leg2 _ leg3)

(if 1, table stands)

Using this scheme, we can explain the current state of the table
(e.g., why it is standing or why it collapsed). This is because these
equations represent physical dependencies; they represent causal
interactions between weights and the breaking of legs. As a con-
sequence, we can answer w-questions by filling-in the variables.
For example, if there is no weight and there are three legs (say,
the first, the second, and the fourth), then [Table_Stands = 1]. If
there is a weight of 6 kg, and 3 legs, then [(6/3 = 2)<5], so
[Table_Stands = 1], the table stands. Note that if the weight had
been greater than 15, it would not stand (and yet it would, had
it had 4 legs with a weight lesser than 20).

The procedure

Building upon the previous ideas, this section offers a 5-step pro-
cedure for assessing the adequacy of a failure explanation, for
comparing such explanations, and for suggesting possible rede-
sign recommendations. Steps 1 and 2 are instrumental for steps
3, 4, and 5. Sections “Mechanical Engineering and the virtue of
robustness and Civil Engineering and accuracy” cover two appli-
cations of the procedure. This section focusses on the procedure
itself.

1. Transcription of the explanation into structural equations
(both descriptive text and mathematical equations can be
incorporated). This transcription provides a concise summary
of the key ingredients of the explanation.

2. Identification of the set of desirable w-questions based on the
aim of the explanation.7 For an aim to be fulfilled optimally,
the explanation should be able to answer this set of
w-questions.

3. Exploration and corroboration of which w-questions can actu-
ally be formulated and answered in terms of the information
offered by the explanation. SEM facilitates this exploration of
answerable w-questions by enabling the identification of key
epistemic characteristics of the explanation. I call these episte-
mic characteristics virtues since their presence enables giving
answers to sets of w-questions. By identifying these virtues,
we can figure out how well an explanation can be exploited
to answer the set of w-questions identified in (2), which can

be used to assess the performance (and hence quality) of the
explanation.

4. Comparison between the explanation and a hypothetical coun-
terpart in which a factor or multiple factors of the original
explanans are modified. By figuring out whether it is possible
to maximize virtues further by tweaking the current structural
model, we can either improve the current explanation or show
that it is optimized relative to a specific virtue. Given that it is
possible to (among other things) add more variables, increase
their range, or simplify equations; how do such changes affect
the quality of the explanation? This fourth step provides a feed-
back loop whereby one can improve explanations if they do not
provide (all the) relevant answers. Thereby, it allows engineers
to engage critically with their own (and others’) work. It can
also be used to compare competing explanations by contrast-
ing the set of relevant w-questions each can answer.

5. Validation and recommendations: Based on previous steps, it is
possible to validate an explanation and, in some instances, to
provide redesign recommendations.

Glossary
• Accuracy: The degree to which relevant (difference-making)
factors are captured in a model.

• Adequacy: The degree to which an explanation contains the
information that can answer the explanatory requirements
and aims of a particular audience.

• Counterfactual: Hypothetical situation that would obtain if
certain conditions were met.

• Counterfactual dependence: An event E counterfactually
depends on event C if and only if (i) if C had occurred, E
would have occurred; (ii) if C had not occurred, E would not
have occurred.

• Explanandum: What is being explained within an explanation.
• Explanans: The model or propositions from which one can
derive the explanandum.

• Robustness: The range of values that can be given to the vari-
ables of a model (while remaining valid).

• w-questions: Questions that ask how something would have
been different had a different set of conditions been the case.

In the following two sections, this procedure is applied to two case
studies on failure analysis, one from Mechanical Engineering and
one from Civil Engineering.

Mechanical engineering and the virtue of robustness

Explanation of the failure of a steering shaft and its
transcription into structural equations

This section details the case study8 of a heavy road vehicle’s
steering shaft rupture, which looks at the investigation aimed at
determining whether a fractured steering shaft was the cause or
the consequence of an accident (Cleland and Jones, 1996). We
can reconstruct the investigation in two steps: first, figuring out
(through metallography analysis) whether the shaft had malfunc-
tioned or, alternatively, that the rupture was a consequence of the
accident. It turned out that the rupture was an effect of the acci-
dent. Given this result, the second step entailed explaining how
the accident would transfer an amount of force large enough to

7This aim will generally be the aim for which the explanation was created, but it could
also be the case that one needs to extrapolate the information from a different explanation
to fit the aim of a new explanatory request. In such cases, the procedure operates in the
same fashion, but it will likely be the case that optimizing (in step 4) will not be possible
without acquiring additional information.

8For useful images that illustrate the shaft and the extended explanation, see Cleland
and Jones (1996).
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break an otherwise “healthy” shaft. Their explanation is therefore
not concerned with redesigning the shaft, but rather, with show-
ing that the accident caused it to break. This means they take the
characteristics of the shaft as fixed, that is, not in need of redesign,
which would not happen in a redesign explanation (cf. the expla-
nation of the section “Civil Engineering and accuracy”).

The shaft displayed unmistakable signs of shear failure (not
only a visual inspection but a scanning electron microscope also
confirmed shear failure and fibrous tensile failure at a micro
level). Given that the metallography indicated that material prop-
erties did not contribute to the failure, they then pursued the sec-
ond option: the accident had broken the shaft.

Since the question is how the shaft broke, given that the vehicle
underwent an accident, and there were unmistakable signs of
shear failure, the shaft’s failure torque becomes the key variable.
They considered the relations between several variables9 and fail-
ure torque. This allows to calculate the maximal force above
which a rupture would happen: “the present analysis provides
an upper-bound estimate for the failure” (1996, p. 17). Their cal-
culations go as follows:

The equation for the torque required to cause shear fracture of
a narrow concentric band is:

dG = 2pkur
2dr,

where Γ is the torsional moment, ku is the ultimate shear stress,
and r is the radius.

Ultimate shear stress can be calculated from the empirical
expression

ku = sTS/1.6,

where σTS is the tensile strength, which can be estimated from
hardness data through

sTS(MPa) = 3.2HV.

And ultimate shear stress can be formulated as a function of
distance to the center,10 by an empirical equation of the form:

ku(MPa) = 700+ 0.00878(r/mm)3.

Ultimate shear stress is integrated along the radius (from 0 to
23.5 mm) to get the maximal torque of the core:

G = 2p
∫23.5
0

(700+ 0.00878 · r3) · r2 · dr = 20.6MNmm.

The shaft’s case can be calculated by the formula of a
cross-section:

G = 2 · p · ku · (r31 − r32)
3

.

Which gives a torque of 9.8 MN mm for the case. The total
maximal torque is then 30.4 MN mm (9.8 + 20.6).

From here, it follows that

Fmax∗length of steering arm (250mm)

= total torque(30.4MNmm).

Giving a maximum force of approximately 0.1216 MN, which
is equivalent to 12.4 tf. This means that a force greater than 12.4 tf
would likely break the shaft. The paper follows with the observa-
tion that a vehicle of 20 t with a (conservative) deceleration of 5 g
has a collision force 100 tf (8 times more than is needed to break
the shaft). In other words, the shaft broke as a result of the
collision.

The authors conclude “The steering shaft had been subjected
to a large axial torque, sufficient to cause gross yielding of the
cross-section and fracture by a ductile mechanism. There were
no indications that failure was promoted by prior defects or
inadequate mechanical properties. If a small fraction of the likely
collision force had been applied to the end of the steering arm,
this would have been sufficient to cause failure. We therefore con-
clude that the failure was a consequence of the accident, and not
its cause” (p. 18).

The explanation given by the authors can be regimented
further by executing the first step in the procedure, namely the
transcription of the variables and their relations into structural
equations (which the engineers themselves did not provide)
which can be used to set counterfactual scenarios by filing in
the variables:

Total torque = core torque
∫r2
0
(2p · ku · r2 · dr)

[ ]

+ case torque [2p · ku(r31 − r32)/3]

If (Force .
Total torque
arm length

+ U) then Shaft Break = 1; else = 0

where U is error and omitted factors.
These structural equations provide a concise representation of

the key ingredients of the explanation, highlighting what is epis-
temically relevant. It starts from the explanation (i.e., it assumes
the validity of the explanation) in order to condense the relations
that are of interest.

Identification of relevant w-questions

Moving to the second step of the procedure, we now need to iden-
tify the set of w-questions that (when answered) would satisfy the
aim of the explanation. The original aim was to figure out whether
the broken shaft caused or was a caused by the accident. An expla-
nation at the very least should clarify this; however, once this
minimum requirement is met, we can inquire whether it fulfills
its aim optimally. To do so, it would need to satisfy as many

9For the shaft’s core: yield stress (736 MPa minimum), which is the limit of elastic
behavior. Tensile strength (1079–1324 MPa), which is the capacity of a material to resist
elongation. Elongation (8% minimum), impact energy (59 Jcm-2 minimum). The shaft’s
case had a required Vickers hardness of 600–780 HV (but was measured to be 880),
which is a materials’ ability to resist plastic deformation determined by the load over
the surface area of an indentation. Predicted hardness of the core was 340 HV and was
measured to be 350 HV at the center, growing up to 400 (at a radius 22.5 mm). The
radius of the shaft was 23.5 mm core and 1.5 mm of (concentric band) casing. The length
of steering arm was 250 mm. No details are given about other possible variables that
could relate (such as contracted distance of the vehicle).

10This results from having calculated HV at different concentric points.
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relevant w-questions as possible. This means it should give us as
much information as possible about when the collision would have
caused the shaft to break and when a broken shaft would have
caused an accident. The more scenarios (answers to w-questions)
in which we know whether the shaft breaks or not, the better our
explanation becomes. An example of such a relevant w-question
would be “what-would-have-happened at half the collision force?”.
More concretely, only the counterfactuals that consider changes in
force are relevant.

If the aim had been to redesign the shaft, other counterfactuals
would become relevant, such as ones considering how changes in
the shaft’s characteristics would affect the outcome, for example
“what-would-have-happened if the total radius were increased
by 2 mm”. Even though these questions provide redesign infor-
mation, they are not relevant for the explanatory aim in the
case at hand, which was to figure out whether the collision
broke the actual shaft.

Exploration and corroboration of which w-questions can be
answered

We need an explanation that can answer the set of w-questions
related to different force values (“what-would-have-happened-if
force was n”). The third step in the procedure is to figure out
whether our explanation can indeed provide answers to this
set of w-questions. The structural equations presented in the sec-
tion “Explanation of the failure of a steering shaft and its tran-
scription into structural equations” can help us answer many of
the w-questions that can be formulated. By plugging values into
the structural equations, we can obtain answers. For example,
“what-would-have-happened-if the impact force = 2 tf”, where
the answer would be 2 tf <12 tf, so Shaft_break = 0. We could
also answer several irrelevant w-questions, that could nonetheless
be interesting for other purposes (such as redesign). For instance,
“what-would-have-happened if the arm length was 260 mm?”. If
the arm length was 260 mm, then 100 tf > (30.4 MN/0.26 m), so
Shaft_break = 1. This tells us that modifying the shaft length to
260 mm would not have prevented it from breaking. However,
given the aim, we are only interested in w-questions about differ-
ent force values.11

If the variable of force in our structural equations can capture a
greater range of values, we will have more information about the
conditions in which the shaft breaks or not (we will be able to
specify a greater number of instances). Looking at the range of
values force can take (while the model still outputs valid results),
we can assess the number of scenarios that can be captured and
hence how many w-questions can be answered. If a variable can
take a set of integers ranging from 1 to 20, it will enable capturing
more scenarios than a variable that can only be satisfied with a set
of integers ranging from 2 to 5. This amount of range will be
called robustness,12 which refers to how much change we can
introduce in the variables of the equations of a model (or its
assumptions) while keeping its results valid. This means that
the greater the range the variables have, the more robust our
model is; and by extension, the more robust the model, the greater
the range of values its variables can capture (in this particular
case, force).

By looking at the robustness of the model, we can learn about
the size of the set of answerable w-questions, because the greater
the range of force, the more w-questions (relevant to the aim) are
answerable. Looking at the structural equations, we can see that
the model is not well defined when Force≈ (Total torque/arm
length). When these two values are close, the result is uncertain
( just how much will depend on U – the error). The model is
valid in ranges where Force≠ (Total torque/arm length), so it is
rather robust.13 The model can tell us what happens to the expla-
nandum when the variables take values in the ranges of [0,
12.3 tf) and (12.5 tf, ∞). If this range were shrunken, we would
be able to capture fewer scenarios (see section “Validation and
recommendations”, Figure 1 for a visual representation of the
ranges), in the sense that the subset of scenarios would decrease
(if U1 >U2, then the set of captured scenarios by the equations
with error-term U1 is a proper subset of the captured scenarios
with error-term U2. In other words, the set of scenarios captured
– in this case – is inversely proportional to the error). By exten-
sion, if we could establish with precision what happens near the
12.4 range, we would increase the number of scenarios. In other
words, an increase of robustness would increase the number of
answerable (and relevant) w-questions. In explanations where
the aim is similar to the current example, robustness is a good
indicator of how good the explanation is. From this, we can assert
that the explanation given by the engineers was good, since it does
indeed answer a big array of relevant w-questions, which derives
from the fact that their model is robust (it is possible to draw con-
clusions from substituting F with many values).

Counterfactual comparison

The third step shows that our explanation is good (it satisfies its
aim). The question now becomes whether it can be improved
and how well it compares with others, which leads us to the

11By focussing on the set of relevant w-questions, we dramatically narrow down the
space of w-questions, but one might wonder whether there could still be a combinatorial
explosion of relevant w-questions in complex cases (e.g., considering parameters that
might have to account for unforeseen situations).

It is important to note that checking whether a model can answer a set of w-questions
and answering said w-questions are different operations. While it is true that exhaustively
checking the latter might lead to a combinatorial explosion, the former is normally con-
tained. The main reason is that usually each structural equation represents a generaliza-
tion, and each equation can be linked to a set of answerable w-questions in a linear
manner. Put differently, sets of answerable w-questions are normally limited by the num-
ber of structural equations. Therefore, the validation and optimization of the model will
typically not lead to a combinatorial explosion.

There are however cases where it might be necessary to consider several solutions of
w-questions in combination, such as when using a model to give precise redesign recom-
mendations. One example could be trying to improve a design by simultaneously consid-
ering several modifications to different parameters in order to figure out their optimal
values. In such instances, the complexity might grow exponentially. For such cases, it
is possible to apply meta-heuristic optimization strategies, such as the use of genetic algo-
rithms, where the fitness function would consist of a selection of the model’s structural
equations. In the example of the shaft, we could consider the first equation, where we
would like to maximize maximum sheer stress (total torque) before rupture. We could
then specify certain constraints (upper-lower values and the size of step increments) of
possible radii, tensile strengths of known materials, etc., and try to find optimized values
for these parameters.

The advantage of the procedure in such applications is that the fitness function will
be easy to specify given the translation into structural equations. However, its usefulness
will depend on the ability to constraint the search space to reflect external considerations
(e.g., in our shaft example, there are limitations on the length of the shaft based on the
overall vehicle design which are not captured by the model).

12Typically, robustness refers to insensitivity to variation. To capture this idea, the
notion of range is used (the more range variables can take, the less sensitive the model
is to variations).

13Negative values of F would have no meaningful interpretation as in this particular
case we are only interested in the modulus of the force and whether it exceeds a threshold
value (the direction of rotation of the shaft does not make a difference).
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fourth step: comparing our current explanation with possible
hypothetical counterparts (where some factors are modified) to
figure out whether the explanation can be optimized.

A model that maximizes the value range of force (enabling
answering more relevant w-questions) is better; therefore, it is

an advantage to have a maximally robust model. The question
arises whether we can tweak the model to improve robustness
further. There are several ways to do this. Theoretically, we
could increase robustness by specifying more carefully the behav-
ior of the system when the force approaches the breaking point

Fig. 1. Summary of the procedure applied to the case of a broken shaft.
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(12.4 tf). But it is likely that improvements along those lines will
come from improving external factors to the model, such as mea-
suring capabilities. Another option is to try to increase the infor-
mation relative to F. If each value of F captures a tuple of other
values, its range (arguably) increases. Put differently, we can
also increase robustness by enhancing the granularity of F,
which can be done by expressing F in terms of new variables. If
we expand F into the expression Kinetic energy (K)/distance
(d), we cover more scenarios,14 as each value of F can be obtained
by a set of [K/d] pairs. By specifying F = (K/d) = ((m ⋅ v2)/(2 ⋅ d))
we can gain information about how the speed might affect the
shaft failure (given the mass “m” of the vehicle and a deformation
distance “d”). The distance will depend on the rigidity of the vehi-
cle, and the velocity will depend on how fast it was going before
impact. The reason expanding F provides more information is
that we would know more about how different speeds might affect
the breaking of the shaft. However, this is only useful if we can
actually come to know the values of “d” and “m”. Including
unknowable variables cannot improve the quality of the explana-
tion, since one cannot set counterfactuals without knowing the
value of said variables. Knowing which variables can be deter-
mined informs step 4 by telling us what modifications are sensible
and which are not.

Increasing the granularity of F will improve the explanation,
but only if this increase can be actualized (if we can determine
and measure the variables that account for F). Such a decision
needs to be considered by the engineering team working on the
specific case. Ultimately the team must decide whether there are
other (measurable) variables that can enhance granularity.
However, should there be such a possibility, it is wise to imple-
ment it since it would improve the explanation.

Furthermore, we can illustrate how modifications that dimin-
ish robustness are detrimental to the quality of the explanation:

Suppose a hypothetical explanation of the same failure as follows. We
know that the case’s tensile strength is much higher than the interior,
so we can set an unreasonably conservative upper bound limit by just tak-
ing ku = 1760 MPa for all the shaft (instead of only the case), and calculate
a torque that would certainly break the shaft by the following equation:

G ≈ 2 · p · ku · r3
3

≈ 16.3MNmm.

This means that given an arm length of 250 mm, a force greater than 60 tf
would surely break the shaft. Using the same back of an envelope calcula-
tion, the engineers used (20 t * 5 g of deceleration = 100 tf of impact
force), we can explain how the shaft broke: 100 is much greater than 60
(which is already greater than the real limit). This represented by the fol-
lowing structural equation:

If Force .
2p · ku (r3)/3
arm length

( )
, then Shaft Break = 1.

While this also explains the failure, it seems of an inferior quality.15 The
first thing to notice is that robustness is reduced when using only the
equation of the case instead of a more precise model that uses the equation
of the case and the equation of the core (see Fig. 1 for a visual represen-
tation). All the scenarios that our hypothetical explanation captures can

also be captured by the engineer’s explanation, but their explanation
also captures ones where the collision force is smaller. Put differently,
our hypothetical explanation tells us that the shaft breaks if force is greater
than 60 tf but cannot tell us much about numbers below 60. The
engineer’s explanation tells us what happens if the force is greater than
12.4 tf. This means that it captures a greater range (all the values between
12.4 and 60). Additionally, the engineer’s explanation can also account for
what happens below 12.4.

Validation and recommendations

Based on the results of steps 3 and 4, we can validate the explana-
tion (robustness is maximized). If we applied the procedure to the
hypothetical explanation from the previous section, it would not
be validated, since its robustness could be improved. The illustra-
tion below summarizes the process (Fig. 1). The present analysis
provides a means to engage with the explanatory content by con-
sidering how well suited it is to answer relevant w-questions and
whether it can be improved. It, therefore, provides tools to gain
understanding as to why the available explanation is adequate
or not.

Consider, by mode of contrast, that the aim of the explanation
had been to adjudicate responsibility for the accident. In such a
case, the relevant w-questions would not be answered by the cur-
rent explanation (and robustness would not be the virtue needing
optimization). In such a scenario, an adequate explanation should
have included other factors (e.g., the model would include vari-
ables of actors which could be set to 0 or 1 to check whether
their involvement was conducive to the accident or not). This
information is not present in the explanation (a fact that is easily
observable by looking at the structural equations) and hence it is
not adequate for the aim of adjudicating responsibility.

Given that the main aim was not redesign, the procedure need
not be used to give any recommendations. Nevertheless, it would
be possible to use the structural equations to question what the
result would had been with a modified design. For example, we
could change the values of length of the shaft and check if it
would have broken under 12.4 tf. Other relations between vari-
ables can also be established by using the equations (i.e., by input-
ting certain values into variables of interest one can obtain the
value of other variables). We now turn to a case in which redesign
was the main aim of the explanation.

Civil engineering and accuracy

Collapse in a convention center and its transcription into
structural equations

This section details an explanation given by the independent firm
Wiss, Janney, Elstner Associates (WJE), hired by the owners of the
David L. Lawrence Convention Centre to explain the collapse of
an expansion joint in their convention center. The final aim of
WJE’s explanation was to redesign (and fix) the failed expansion,
which was implemented by Thornton Tomasetti (a hire of the ori-
ginal architect) under their supervision.16

14Note that there are other ways to calculate F. For example, F = v*m/t, where v is
initial velocity and t is time the collision lasts.

15We could also provide an extremely lower bound limit (by considering the whole
shaft as having the average tensile strength of the core), but the resulting explanation
would still be of an inferior quality.

16The brochure of the services they provided reads: “After determining the cause of the
loading dock failure, WJE assessed the conditions of structural systems throughout the
rest of the building and recommended retrofitting all beam end connections like the
one that failed in order to prevent future collapses. To further assist the SEA, WJE
reviewed the engineer of record’s designs for reconstruction of the collapsed area and pro-
vided quality assurance services during the reconstruction and the installation of the ret-
rofit. Finally, WJE provided litigation consulting to SEA” (https://www.wje.com/projects/
detail/david-l-lawrence-convention-center).

8 Kristian González Barman

https://doi.org/10.1017/S0890060422000099 Published online by Cambridge University Press

https://www.wje.com/projects/detail/david-l-lawrence-convention-center
https://www.wje.com/projects/detail/david-l-lawrence-convention-center
https://www.wje.com/projects/detail/david-l-lawrence-convention-center
https://doi.org/10.1017/S0890060422000099


The 4-story convention center was rebuilt in 2003. An expan-
sion joint (with 25 slots) split the center in two. Joints are often
one of the weakest points in structures. Their function is to con-
nect while absorbing tension, temperature-induced size changes
of the connected parts, vibration, etc. (Delatte, 2009). In 2007, a
tractor-trailer parked on the second floor collapsed a concrete
slab. The failure had occurred at an expansion joint exposed to
an ambient temperature of −19°C. The colder a joint is, the
more open it is, making it more likely to collapse under weight.
Upon investigating the incident, it came to light that in 2005 a
similar failure had occurred, resulting in a beam dropping onto
a column. At the time, this incident had not been disclosed to
the relevant authorities and was not considered relevant.

The reconstruction by WJE of the details goes as follows:

Temperature-induced displacement can be calculated by17: δT = α
(ΔT )L.

Additionally, the displacement caused by load can be calculated
by18: d = PL/AE.

And if thermal deformation is restrained, the force build up is:
P = a(DT)AE.

They estimated the amount of free movement required to be
41 mm, assuming a temperature change of 28°C. This is because
the α of steel is 10−5 mm/mm/°C and the (half) length of the
building was 133 m. A finite element analysis showed that the dis-
tortion (of the high-strength steel angles) generated 630 kN of
tension at the connection welds, with 8 mm of displacement. It
was also noted that “[w]ith lower strength A36 steel, the force
on the welds would have been reduced by 40%” (Delatte, 2009,
p. 210).

Slots should be long and loose enough, and the bolts centered,
allowing free movement that would not lock the joint or bear
against the edge. Other possible factors for locking the joint
might be corrosion, paint, and debris.19 These, among other prob-
lems, are why the Manual of Steel Construction of the American
Institution for Steel Construction suggests either double line of
structural columns or low friction sliding connections for this
type of joint (1998, part 8).

To make matters worse, the slots were welded only in the outer
edges, making them weaker. When the tension grew too strong,
they simply pulled free. The main investigation (WJE, 2008)
concluded:

“The main design issue was that the slotted hole expansion joint was
almost guaranteed to fail because of significant friction and insufficient
room for thermal contraction [… ] Other design errors did not contribute
significantly to the collapse; these errors included inadequate length of the
slot and no limitation on bolt torque. Materials and fabrication issues
included steel with too high a strength-ASTM 92, not 36. This high
strength kept the angles from bending and caused them instead to tear
away at the weld [… ] there was little evidence of the bolts actually sliding
within the slot; instead, the threads seem to have worn away at the same
spot.” (2009:209)

The fix consisted in welding 1-foot-square steel seats with Teflon
pads underneath the joints of the replacement beam (and 25
others). This structural design element was indicated in early
drawings but never executed (Rosenblum, 2007).

The explanation can be further regimented by executing the
procedure’s first step:

If (Displacement > Room_Available), then Not_Enough_Room =
1.

If (Total_Tension >Welding_Resistance−U), then Too_Much_
Tension = 1.

Pulls_Apart = Not_Enough_Room ^ Too_Much_Tension.

*Where Displacement is calculated by: δT = α (ΔT ) L.
*Room_Available is a fixed design feature.
*Total_Tension is calculated by the tension generated from

thermal change: P = α (ΔT ) A E plus any weight there might be
on top (such as a tractor trailer): P =m ⋅ g cosθ.

*And Resistance is a feature of the material where U accounts
for imprecise factors such as corrosion, paint, debris, and
maintenance.

Note that for Pulls_Apart to be 1 you need both conditions (if
there is enough room, there will not be too much tension, if there
is no room but not enough tension, it will not pull apart). These
structural equations provide a concise representation of the key
components (ingredients) of the explanation, highlighting what
is epistemically relevant: the relation between variables (such as
displacement and room available) and their connection to
whether the joint fails or not.

Identification of relevant w-questions

In the second step of the procedure, we need to identify the set of
w-questions that (when answered) would satisfy the aim. The aim
of the explanation was to offer information that could be profit-
ably used to redesign the malfunctioning element(s). This
means that we need to answer the set of questions that tell us
whether certain modifications of the current design would pre-
vent future failure. We need information about the conditions
in which the inclusion, exclusion, or modification of certain fac-
tors of the joint prevents failure. The aim of redesign is maximally
fulfilled when the explanation can answer numerous w-questions
that relate to how changes might prevent the future failure of the
joint. An example of such a question would be “what-would-have-
happened if instead of only steel ASTM A92 slots the joint would
have used steel ASTM A36 and a Teflon supporting bracket
underneath?” Note however, as with the previous case, that not
all w-question are relevant. For example, “what-would-have-hap-
pened if the temperature the night of the accident was 0°C?” is not
a relevant w-question. While it might tell us why it collapsed the
day it did and not earlier, it does not give us any information
about how certain modifications of the joint would prevent it
from failing. This contrasts with the previous case study, where
we kept the shaft structure fixed and considered how changes in
force would or would not break it. Here, we consider the tempera-
ture drop fixed (to a certain extent) and consider how changes in
the design would have averted the collapse. This is not to say that
relevant questions should not consider worst-case scenarios in the
background (such as even more dramatic temperature drops), but
the focus should not be on tracking the dependencies between
factors external to the design (like temperature) and joint failure.
The focus should be on modifications of the design and how they

17Where δT is the amount of displacement, α is the thermal expansion coefficient, ΔT
is the change in temperature, and L is the length.

18Where P = force, A = cross-sectional area, and E = the modulus of elasticity.
19This means that in practice this type of system is not a good idea. In fact, an

acclaimed engineer criticized this way of doing joints in the first place: “I’ve only seen
the slotted hole connection used one other place in an expansion joint in 30 years of
doing engineering. And it fell in that place, as well” (Houser and Ritchie, 2007).
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affect the outcome (while keeping in mind possible roles played
by external factors).

If the aim were (e.g.) to figure out why it collapsed when it did
and not a day before, other counterfactuals would be relevant, such
as ones considering variations in temperature and how they affect
the success or failure of the joint (captured by 0,1 values of
“Pulls_Apart”). But the aim is to redesign. In terms of our struc-
tural equations, the modifications that are informative are ones
that modify the value of the variables “Welding_Resistance” and
“Room_Available” (which could be further cashed out in terms
of materials and dimensions if need be).

Exploration and corroboration of which w-questions can be
answered

We need an explanation that can answer the set of w-questions
related to modifying the current design. The third step in the pro-
cedure is to determine whether the explanation can indeed pro-
vide answers to this set of w-questions. The structural equations
presented in the section “Collapse in a convention center and
its transcription into structural equations” can help us answer
many of the w-questions that can be formulated. By plugging
values into the structural equations, we can obtain answers. For
example, “what would have happened if instead of ASTM 92
steel the brackets would have used steel ASTM A36 and
incorporated a Teflon coating low friction bracket?” The tension
would be reduced dramatically, meaning Total_Tension <
Welding_Resistance, So Pulls_Apart = 0. (It would also be possi-
ble to give these details in a fine-grained manner calculating rel-
ative values of tension and so on, but we choose latent variables to
make the argument easier to read).

We could also answer several irrelevant w-questions. For
instance, “what-would-have-happened if the maximum tempera-
ture was 28°C and the minimum 25°C?” Then Displacement
would be: α (ΔT ) L≈ 4 mm, so Displacement < Room_Available,
which means Pulls_Apart = 0. This would explain why it did not
collapse on a given day (with those temperatures). However, even
though the result is favorable (the joint does not collapse), this is
not an interesting question (for our aim): we cannot intervene in
order to modify temperature so as to avoid future collapses.

The quality of the explanation hinges on how well it answers
relevant w-questions. In order to provide adequate information
for answering such questions, the explanation must contain a
detailed representation of factors that make (or could make) a dif-
ference to the outcome (failure or success of the joint). To see
why, consider how if one ignores an operative factor, it might
end up causing a failure in the future. In fact, this is what hap-
pened in 2005, when an incorrect evaluation of the difference
making factors resulted in inaccurate engineering: not adding a
low-friction support bracket ultimately led to the failure in 2007.

The importance of capturing elements that make a difference
can be seen by how the engineers consider different factors as
being causally relevant or not. For example, they consider insuffi-
cient room for thermal contraction as a difference maker, but they
also consider other factors which were not difference makers, such
as the length of the slot, limitation on bolt torque, whether the
bolt was centered, paint, corrosion, and debris.

The greater the number of (causal) factors (i.e., factors that
make a difference) that are identified, the better our explanation
becomes, since it leaves fewer important things out. This virtue
is called accuracy. By looking at the accuracy of the model, we
can learn about the size of the set of answerable w-questions,

because the greater the number of operative factors present in
the explanation, the more w-questions (relevant to the aim) are
answerable.

The number of relevant factors can be accounted for by look-
ing at the structural equations, since they capture the factors that
are deployed in the explanation. If we have a greater number of
variables in our structural equations, we can capture more scenar-
ios, hence we will have more information about the conditions in
which modifying the joint in different ways leads to a collapse or
not (we will be able to specify a greater number of relevant
instances).

An increase in accuracy would increase the number of answer-
able (relevant) w-questions (having more factors enables formu-
lating a greater number of counterfactuals). Furthermore, it is
because the explanation is accurate that a considerable number
of w-questions can be answered. This means that in explanations
where the aim is similar to this one (redesign), accuracy is a good
indicator of the quality of the explanation.

WJS’s explanation does indeed answer a big array of relevant
w-questions, because their model is accurate (it contains several
variables that make a difference and considers many possible can-
didates that upon further evaluation are not considered to make a
difference).

The accuracy of their explanation results in the possibility of
repairing the failure (redesigning), which was the main aim of
the explanation: “A more reliable detail for this type of connection
is a low-friction supporting bracket (… ) the bolts were removed
and Teflon-coated supporting seats were added” (Delatte, 2009,
p. 210). The recommendations (and actions) to improve the prob-
lem were based on the accuracy of the explanation, namely the
need to lower friction and augment room for displacement.
Furthermore, the accuracy of the explanation allows to know
how the fixes should be implemented (e.g., the dimensions of
the supporting seats will depend, among other things, on the
expected thermal expansion).

Counterfactual comparison

The third step shows that the explanation is good. The question
now becomes whether it can be improved and how it might com-
pare to other alternatives, which leads us to the fourth step: com-
paring the current explanation with possible hypothetical
counterparts (where some factors are modified).

The failure analysts aimed for accuracy in their investigations
as can be seen in their quite thorough consideration of what fac-
tors played a role and which ones did not contribute. What needs
to be analyzed is whether accuracy can be further improved.

The decision as to whether all relevant bases were covered (i.e.,
accuracy was optimized) relies on the team of engineers with
access to the whole information about the case. However, what
can be said is the following: if the aim of the explanation is rede-
sign, should there be a factor that affects the displacement, it
needs to be included in the explanation in order to make the
explanation more accurate (and the redesign more effective).
What the procedure can establish is how many factors are indeed
included in the model and compare competing explanations to
show that the one that is more accurate will perform better. To
see why, we can use a hypothetical explanation that is less
accurate.

Contrast the engineers’ explanation with an (worse for this
aim) explanation that would pursue simplicity. To do so, one
could for instance remove parts of the structural equations or
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leave certain details of the explanation out. Consider ignoring the
first equation, that refers to having enough room. In theory, the
failure could just be accounted for by simply referring to the ten-
sion overload. It would be possible to build an explanation that
only focussed on the tension generated in the slots, without pay-
ing attention to the available room. For example:

If (Total_Tension >Welding_Resistance−U), then Pulls_Apart
= 1; else = 0.

This would in theory explain the failure: if the tension is
greater than it can hold, it will break. It does tell us to some extent
that if the tension had been smaller or the welding resistance
larger it would not have broken. However, this is very limited.
The simplicity of the explanation could in some cases benefit
the explanatory aims of certain audiences (e.g., in a court room
or a classroom), but it certainly would not aid the implementation
of sound changes to the construction.

Our hypothetical explanation misses the point, since it would
only recommend changing the material of the bolts, which would
not address the underlying issue of thermal expansion (leading to
possible complications down the line). This thought experiment
highlights that in order to have an explanation that provides the
right sort of information toward redesign, one needs accuracy.

We could also compare it to the explanation of 2005 that did
not address the problem in the first place:

Another beam in the convention center had caused a problem in 2005.
The beam dropped 2.5 inches, said Mary Conturo, executive director of
the Allegheny County Sports & Exhibition Authority. “At that time we
called in anyone that was responsible for that—the architect, the structural
engineer, the steel fabricator and the steel erector,” Conturo said. “They all
came and reviewed the situation and their response was that there was a
bolt that was too tight, and that other bolts were checked, and that was
the extent of what was done at that time.” (Engineering News-Record,
February 22, 2006)

Had their explanation been more accurate (i.e., identified the fac-
tors that would cause a problem later on) and had they acted upon
the knowledge it would have provided, it would be fair to say that
there would not have been a collapse in 2007. If they had not only
considered the tension but also the room required for thermal
expansion, they would likely have re-evaluated the design as need-
ing a support bracket (as was done after the collapse in 2007).

Validation and redesign recommendations

The results of step 3 show that the explanation is adequate (it is a
good explanation). The results of step 4 show that it is optimal for
the aim and is better than the alternatives considered. Given that
accuracy is maximized in the engineer’s explanation, it can be
validated. We can easily see that both our hypothetical explana-
tion and the explanation given in 2005 are not validated (a visual
summary can be found in Fig. 2). The procedure, therefore, deli-
vers insight as to why certain explanations are adequate and
others are not, while allowing to improve those which are not.
Similarly, it provides resources to justify the preference of certain
explanations over others, while encouraging critical reflection on
the results of failure analysis.

Furthermore, the procedure can be used to provide informa-
tion useful toward redesign. Accuracy is key to give the right
recommendations (in this case, the addition of a low friction sup-
porting seat); but it is also important for the correct

implementation of the recommendations. Once the solution of
a low friction supporting seat is proposed, there are other things
to consider such as what materials to use (e.g., Teflon bearing vs.
other elastomeric pads), the dimensions of the support bracket,
etc. All these details need to be adapted to the case at hand, mean-
ing that the implementation of the solution will benefit from an
improved accuracy that takes into account the specific details
and factors of the explanation. The information encoded through
the procedure allows to make inferences about what type of rede-
sign implementations are reasonable. For example, to know the
dimensions of the supporting brackets, one must know not only
the dimensions of the joint, but also how much it is expected
to expand in unfavorable weather conditions. Using the structural
equations, we can plug in such unfavorable conditions (e.g., a 40°
drop in temperature) to see what the expansion would be, and by
extension how large the support should be. A similar argument
can be made for the resistance of the material needed for the sup-
porting seat.

Failure analysis as an explanatory practice

This section addresses the aim of improving understanding of
failure analysis in light of the procedure. Given the fundamental
qualities of the outcome of failure analysis (e.g., they can be com-
pared), I argue that failure analysis is best understood as an expla-
natory practice (a practice that produces explanations) rather than
a cause-finding practice.

Failure analysis is often labeled as a practice of cause finding.
Several authoritative definitions of failure analysis share this
view, for example, take the definitions provided by the ASM inter-
national handbook, the McGraw-Hill Electronic Failure Analysis
Handbook, or by the fourth edition of Elsevier’s Machinery
Failure Analysis and Troubleshooting:

[F]ailure analysis is a process performed in order to determine the causes
or factors that have led to an undesired loss of functionality. (Becker and
Shipley, 2002, p. 315, emphasis added)

Failure analysis is the process of determining the cause of failure, collect-
ing and analyzing data, and developing conclusions to eliminate the fail-
ure mechanism causing specific device or system failures. (Martin, 1999,
p. 1, emphasis added)

[The job of the failure analysist] is to define the root cause of the failure
incident and to come up with a corrective or preventive action. (Bloch and
Geitner, 2012, p. 15, emphasis added)

Many similar definitions are found throughout the literature,
sometimes preferring the term “factor” or using qualifying adjec-
tives (e.g., primary, immediate, direct, underlying, probable,
latent, secondary, or root cause). These adjectives are sometimes
trying to capture the multifaceted nature of failure analysis.
After all, failure analysis is a rubric used to designate a variety
of different practices and methods (FMEAs, Fault Tree Analysis,
Root-cause Analysis, What-if Analysis… )

I contend that framing failure analysis as “cause finding” does
not do justice to what the practice is really doing. It neglects to
acknowledge that failure analysis is concerned with explaining.

This is especially relevant for redesign. Finding a cause does not
give the necessary information for redesign; one needs to know how
this cause connects to everything else to understand (to explain) the
reasons for the failure in order to avoid it or to learn from it. Failure
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analysts indeed provide such explanations, hence they are not sim-
ply doing “cause finding”. Finding causes is only part of an expla-
nation, but of similar importance is deciding which causes should
be included or excluded, building a coherent story about how
these causes interact, separating them into causal factors and back-
ground conditions (and understanding how these background con-
ditions might be affected in abnormal circumstances). After all, one
can trace back the “causes” of an event pretty far and wide, which is
why explanations conceal such a causal history by highlighting the

relevant factors and making salient that which is pertinent to the
goals of the explainer (e.g., redesigning a failed component).

Furthermore, explanations can be compared to each other, and
can be improved, which is not always true for causes. The term
“cause” often can also be problematic. For example, many analy-
ses try to establish the root cause. What exactly the root cause is
will be highly context-dependent, which might lead to confusing
results (e.g., exactly when should one conclude the “root” has
been reached?). Bhaumik (2009) shows how the proper root

Fig. 2. Summary of the procedure applied to the case of the convention center.
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cause is hardly ever found, and that what is often called “root
cause” is merely the primary cause of failure or a simple physical
cause. Similarly, causes can be a variety of things: events, objects,
processes, and even absences (such as when we say that the cause
of an accident was the omission of safety procedures, or that the
failure to step on the brakes on time caused a crash). How all this
variety of types of causes related to each other needs to be articu-
lated within an explanation.

In any case, even though cause finding is an important part of
the process, the real objective and execution of failure analysis is
to provide explanations, which becomes apparent when looking at
how the practice is conducted, something which the procedure of
this paper highlights. It is quite surprising then that the term
“explanation” is seldom found in definitions of failure analysis.
Some authors do get close by considering failure analysis as:
“the science and technique of understanding how materials and
products fail” (Farshad, 2011, p. 32). The hope of this paper is
that definitions such as these become more standard, perhaps
going a bit further and saying that the objective of failure analysis
is to explain why failure occurred. Taking this into consideration,
a possible definition could be: Failure analysis is the collection of
techniques, investigative practices, and methodologies aimed
toward explaining failures with the goal of achieving certain
results such as corrective actions, redesign, or a better understand-
ing of the failed system.

On a related note, the last few years have witnessed an increas-
ing interest in computational argumentation, partly due to its
similarities with intuitive human reasoning and to its relationship
with explainable AI (Sklar and Azhar, 2018). As Fan and Toni
(2015) show, argumentation can be considered as a process of
generating explanations. The procedure presented in this paper
can aid the justification of chosen explanations in terms of their
underlying explanatory virtue: by linking explanatory aims to
w-questions and virtues, it becomes possible to provide justifica-
tion as to why such an explanation is adequate. The possibility of
assigning each aim to a virtue allows to find an explanation that
fits such an aim (with the possibility of querying a pre-existent
database, should it be previously structured) as well as optimizing
current explanations for said virtue, but it also allows to provide a
justification for the adequacy of a given explanation in terms of
counterfactual reasoning.20 For instance, given an explanation
with an aim to redesign (hence requiring “accuracy” as its expla-
natory virtue), it becomes possible to show why an accurate expla-
nation is better (and therefore why it was chosen): it affords
tracking a greater number of counterfactual dependencies, as
registered by the ability to use the information presented in the
explanation to productively intervene on previous designs. This
can be articulated in terms of showing how the inclusion of a fac-
tor allows to answer an important w-question that the exclusion
of the same factor does not afford answering (see the comparison
of the hypothetical vs. the engineers’ explanation in the section
“Counterfactual comparison” for a practical example).

The notion of adequacy brings in the possibility of using expla-
nations in contexts different from the ones they originated from,
and it facilitates understanding into how explanations can be best
suited to certain audiences and explanatory needs based on the
information present within each explanation. Research on the
quality of argumentations and explanations is still in its early
stages, despite some interesting advancements. Wachsmuth

et al. (2017) laid the groundwork for natural language argumen-
tation quality; the current work expands these ideas for technical
explanations (specifically engineering explanations), by adding a
layer on top of quality (namely, adequacy). Moreover, conceptua-
lizing explanations in a Woodwardian sense (i.e., as arguments
that exhibit systematic patterns of counterfactual dependence,
thereby affording answers to w-questions) presents an orthogonal
approach that can aid the evaluation or justification of explana-
tions that have been generated by a variety of methods.

Conclusion

This paper outlined a procedure for assessing the adequacy of fail-
ure explanations in failure analysis and applied it to the evaluation
of two case studies, one from Mechanical Engineering (a broken
vehicle shaft) and one from Civil Engineering (a collapse in a con-
vention center). The procedure comprises five steps. The first two
are instrumental for the rest and consist in structuring informa-
tion into structural equations and identifying the set of w-ques-
tions that are relevant to the aim. The third step focuses on
evaluating the quality of the explanation by exploring how well
it can answer a set of relevant w-questions. The fourth step com-
pares the explanation against competing ones or against a modi-
fied version of itself (whereby checking for improvements). The
fifth concludes and gives redesign recommendations if pertinent.

The procedure offers failure analysts a tool to critically reflect
on parts of their practice while providing a way to look at failure
analysis as an explanatory practice. Put differently, it serves as a
practical tool for evaluation and improvement of explanations,
but it also helps clarify an important aspect of failure analysis.

Given the flexibility of SEM and how it has traditionally been
used in areas such as psychology or sociology, a natural extension
of this work is to consider socio-technical systems, which falls in
line with the recent shift in perspective toward considering failure
in a broader context. It would be good to see validation of the
approach in these more complex cases.

Similarly, one of SEM’s virtues is how it deals with error and
uncertainty; this feature is not fully fleshed out in this paper
(mainly because the models have already been validated), but it
remains a possible avenue of application at the ground level
(when building initial models), especially considering how SEM
encourages the questioning and improvement of hypotheses to
fit available data, compelling researchers to consider their theore-
tical approach as they develop their models (Rubio and Gillespie,
1995). This idea together with other considerations presents sev-
eral follow-up research questions: is the procedure applicable to
explanations stemming from domains other than failure analysis?
Would a relative notion of relevance (where w-questions are not
simply relevant or not, but relevant to different degrees) improve
the usefulness of the procedure? Could this procedure be auto-
mated and integrated with other optimization strategies?
Hopefully, the research presented in this paper offers a direction
for thinking about these and related issues.
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