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Abstract

Product design and diagnosis are, today, worlds apart. Despite strong areas of overlap at the ontological level, tradi-
tional design process theory and practice does not recognize diagnosis as a part of the modeling process chain; neither
do diagnosis knowledge engineering processes reference design modeling tasks as a source of knowledge acquisition.
This paper presents theDAEDALUSknowledge engineering framework as a methodology for integrating design and
diagnosis tasks, models, and modeling environments around a common Domain Ontology and Product Models Library.
The approach organizes domain knowledge around the execution of a set of tasks in an enterprise product engineering
task workflow. Each task employs a Task Application which uses a customized subset of the Domain Ontology—the
Task Ontology—to construct a graphical Product Model. The Ontology is used to populate the models with relevant
concepts~variables! and relations~relationships!, thus serving as a concept dictionary-style mechanism for knowledge
sharing and reuse across the different Task Applications. For inferencing, each task employs a local Problem-solving
Method ~PSM!, and a Model-PSM Mapping, which operate on the local Product Model to produce reasoning out-
comes. The use of a common Domain Ontology across tasks and models facilitates semantic consistency of variables
and relations in constructing Bayesian networks for design and diagnosis.

The approach is motivated by inefficiencies encountered in cleanly exchanging and integrating design FMEA and
diagnosis models. Demonstration software under development is intended to illustrate how theDAEDALUSframework
can be applied to knowledge sharing and exchange between Bayesian network-based design FMEA and diagnosis
modeling tasks. Anticipated limitations of theDAEDALUSmethodology are discussed, as is its relationship to Tomiya-
ma’s Knowledge Intensive Engineering Framework~KIEF!. DAEDALUSis grounded in formal knowledge engineer-
ing principles and methodologies established during the past decade. Finally, the framework is presented as one
possible approach for improved integration of generalized design and diagnostic modeling and knowledge exchange.

Keywords: Bayesian Belief Networks; Design-Diagnosis Integration; Design FMEA; Diagnostic Modeling;
Knowledge Engineering Framework; Ontologies

1. INTRODUCTION

1.1. Product design and diagnosis

Product design is a complex human problem-solving activ-
ity which has as its goal the synthesis and analysis of
concepts in an effort to produce a physical or software
artifact that satisfies a stated need and set of performance
requirements. Product diagnosis, in contrast, seeks to de-
velop methods and mechanisms for analyzing artifact fail-

ures, with the goal of understanding the root cause~s! of
such failure, and then restoring the artifact to full function-
ality. Both activities employ symbolic representations—
concepts and concept relations, often aggregated into
ontologies—in the course of reaching their goals, and both
aggregate such representations into higher level groupings—
models. Both endeavors are also empirically witnessed to
group and subdivide conceptual manipulation efforts into
problem-solving processes—“tasks”— each with its own
set of problem-solving methods~PSMs!.

Product design and diagnosis, however, are, today, worlds
apart. Despite strong areas of overlap at the ontological
level, traditional design process theory and practice does
not recognize diagnosis as a part of the modeling process

Reprint requests to: Burton H. Lee, Department of Mechanical Engi-
neering, Stanford University, PO Box 19249, Stanford, CA 94309, USA.
E-mail: blee@cdr.stanford.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2001!, 15, 281–293. Printed in the USA.
Copyright © 2001 Cambridge University Press 0890-0604001 $12.50

281

https://doi.org/10.1017/S089006040115403X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040115403X


chain ~Pahl & Beitz, 1995!; neither do diagnosis knowl-
edge engineering processes reference design modeling tasks
as a source of knowledge acquisition. This paper presents
the DAEDALUSknowledge engineering framework as a
methodology for 1! integrating design and diagnosis tasks,
models, and modeling environments around a common Do-
main Ontology and Product Models Library, and 2! improv-
ing the semantic consistency within and between models.
Building upon the commonalities shared by design and di-
agnosis activities, even as we recognize their differences,
we describe here our preliminary investigations of a product-
knowledge engineering framework intended to serve as a
knowledge-level integration backbone for general design
and diagnosis tasks.

1.2. Design processes and computer-based support

Product design theory and practice literature often seg-
ments the design process into three primary stages~Bless-
ing, 1994!:

• Problem definition stage. Theproblem definition stage
consists of all activities that occur prior to the explicit
generation of alternative design solutions. It deals with
the analysis of the needs, and the formulation of prob-
lems, goals, and requirements. This stage results in a
problem statement, and a list of requirements, also
termed a design specification.

• Conceptual design stage. In the conceptual design
stage, physical principle solutions for the product and
its main elements are generated based on the functions
which the product must fulfill. The results of the prior
problem definition stage form the starting point of the
conceptual design stage.

• Detailed design stage. The third,detailed design stage
starts with one or more concepts generated in the sec-
ond stage, and proceeds to develop the product through
a series of concept alternative synthesis and analysis
activities. The result of this stage is a full use-case and
technical description of the product that contains all
information needed for the subsequent life-cycle phases
from manufacturing to disposal.

The process of moving the product from concept to arti-
fact proceeds on the basis of a set of design engineering
tasks. Design tasks in the conceptual and detailed design
stage are often characterized by the construction of sym-
bolic models for the purposes of computer simulation of
product behavior and features. These models typically em-
ploy an implicit and well-defined group of concepts and
concept relations—a product domain ontology—that can
be represented either as directed or undirected graph struc-
tures, depending on the type of relationships considered, or
as mathematical constructs. Such design models are gener-
ally quite detailed and highly granular in their use and ma-
nipulation of concepts, inasmuch as they seek to predict
with great accuracy future performance parameters of the

artifact under varying usage conditions. Examples of vari-
ous design tasks where such graphical models are em-
ployed include functional flow, reliability, CAD and Bayesian
network-based FMEA~Lee, 2001!, and other failure mod-
eling tasks, among others.

Even as such conceptual models and modeling environ-
ments assume increasing importance in industrial design
engineering practice, however, it is a fact that design mod-
eling environments, particularly CAD systems, possess ef-
fectively no computer-based support at the ontological level.
Concepts and relations employed are often implicitly de-
fined within the local context, and are stored local to each
software application. As a result, it is in general extremely
difficult to share and reuse concepts~design variables! and
relations~relationships! across design tasks and tools at the
fine granularity level, which is often required in design
modeling. The absence of any formal local or global ontol-
ogies also leads to inconsistency in semantics across tasks
and task variables, and hinders updates or extensions to the
design project vocabulary or taxonomy in a consistent, scal-
able manner across the enterprise.

In examining corporate design practice and literature, it
is also apparent that design processes generally do not rec-
ognize diagnosis-related modeling tasks with two major ex-
ceptions. First, control systems design often involves notions
of system diagnosability and state observability. Second,
embedded systems frequently consider system and soft-
ware diagnosis in the allocation and assignment of error
codes during coding tasks. In the general case, however,
system diagnosis is considered outside the standard product
design engineering process and is undertaken after the de-
sign is completed. This leads to several consequences. Di-
agnosis teams—generally belonging to the Customer Support
Organization—are usually separate from the design team;
design models and other data are, as a result, frequently not
available to the diagnosis team for use in constructing di-
agnosis models. As a result of excluding diagnosis from the
formal design process chain, the generation and exchange
of knowledge between design and diagnosis tasks remains
ineffective and inefficient.

1.3. Diagnosis tasks and modeling

If traditional design process theory and practice does not
recognize diagnosis as a part of the product modeling pro-
cess chain, then neither do diagnosis processes include de-
sign modeling tasks in their respective view. Traditional
diagnosis process stages and tasks are drawn from expert
system theory and practice, and include the following:

• Knowledge elicitation and acquisition: working with
the expert to encode his0her knowledge in a knowl-
edge base, using a chosen knowledge formalism;

• Knowledge base test and verification: verification
that the encoded knowledge base does, in fact, com-
bine evidences and generally provide inferencing re-
sults that are consistent with the expert’s knowledge.
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This historical focus on the expert as the primary source of
relevant knowledge is one reason why the diagnosis com-
munity has neglected the use of product design models as a
key knowledge input to diagnostic model-building activi-
ties. A second reason has been the absence of adequate
formal design models that could serve as a basis for the
construction of diagnostic models.

Even as design and diagnosis at the modeling level re-
main far apart, at the ontological level they share many
ontologies within the product life-cycle domain. Concepts
and relations describing product function, structure~com-
ponent hierarchy!, states, events, reliability, and failures,
for example, are common to vocabularies and taxonomies
required for building models in both disciplines. The for-
mal development and utilization of ontologies for diagnosis
modeling is significantly advanced over that for design mod-
eling, however, due to the relatively strong knowledge en-
gineering focus of the diagnostic research community. Like
design modeling environments, diagnostic modeling envi-
ronments today suffer a comparable absence of practical
computer-based support.

For these reasons, design and diagnosis tasks are gener-
ally seen by both communities as unrelated tasks belonging
to two disparate process chains with little in common at the
ontological or modeling levels. The alternative view given
in this paper presents design and diagnosis as two sets of
related tasks, sharing a common domain ontology and a set
of models, within a larger continuum of product engineer-
ing knowledge acquisition, generation, and life-cycle man-
agement processes.

1.4. Related research

Contemporary process-based computer-supported engineer-
ing design research is largely focused on the development
of approaches and architectures aimed at solving the prob-
lem of proper organization of information systems to sup-
port designers in the execution of design tasks, and in the
capture and reuse of design data. The Process-based Sup-
port System~PROSUS! developed by Blessing~1994! is a
leading example of this approach. PROSUS, like many sys-
tems proposed by the design research community, is a very
high-level system, adopts a traditional view of the design
process, and focuses most heavily on the conceptual design
stage. Of interest here is that it does not deal explicitly with
the problem of design and diagnosis model exchange and
sharing, and makes no effort to develop or work with a
formal design or design process domain ontology. In this
sense, such systems do not address some very fundamental
knowledge acquisition, generation, and maintenance is-
sues, preferring to instead take a data-centric viewpoint.

The knowledge-based engineering design research com-
munity has taken a recent interest in the development of
knowledge-intensive CAD~KIC ! and knowledge-intensive
design~KID ! systems. The goal of such systems is to aug-
ment and extend current industrial design tools with a wide
range of knowledge, ranging from commonsense knowl-

edge to knowledge of physical processes, artifacts, and be-
haviors. Tomiyama’s Knowledge Intensive Engineering
Framework~KIEF! is the best known of these efforts, and
relies heavily on an ontological approach to unify and bridge
design modeling activities across the full product-knowledge
life cycle, from design through manufacturing, operations
and maintenance, and disposal~see Section 6; Tomiyama &
Hew, 1999!. Presumably, this also includes the use of on-
tologies to bridge design and diagnosis models, although
this specific aspect of his method is not explicitly addressed
or demonstrated.

Finally, the knowledge engineering community has, since
the mid-1980s, been engrossed in the development of com-
prehensive methodologies, frameworks, and tools for build-
ing and organizing knowledge-based and expert systems,
and more generally for organizing problem-solving pro-
cesses and tasks. These initiatives have, from the begin-
ning, paid strong attention to the engineering of diagnostic
expert systems, often with a strong reliance on ontologies
as a foundational underpinning of the architecture and con-
ceptual framework. The most relevant investigations here
are those of the CommonKADS and Protégé projects, which
both employ a mix of ontology- and task-based approaches
to organizing domain knowledge and problem-solving pro-
cesses and methods~Studer et al., 1999!.

Notwithstanding these various research efforts focused
on design process and expert system architectures and
computer-based support, the design and knowledge engi-
neering communities have yet to bring design and other
knowledge-intensive activities under a common knowledge
framework. The emphasis onpassive knowledge elicitation
and acquisitionby experts contrasts sharply with the
designer-focusedactive knowledge generation paradigmem-
ployed in design theory and practice circles, and continues
to hinder collaboration between these two communities.

1.5. Ontology-based computer support for design
and diagnosis modeling tasks

The DAEDALUS framework aims to provide a basis for
bridging of design and diagnosis knowledge and tasks
through 1! utilizing a common central ontology base~the
“Domain Ontology”! as a concept dictionary, and 2! cap-
turing newly generated task-level knowledge in the Do-
main Ontology for sharing across the Product Models Library
~see Fig. 1!. The investigations presented are motivated by,
and build upon, earlier design research results derived from
thePHOENIXproject~Lee, 2001!.

The following section thus presents a brief review of the
PHOENIX project, its goals, and results. In Section 3 we
present details of theDAEDALUS framework. Section 4
outlines our proposed application ofDAEDALUSto inte-
grating Bayesian network-based FMEA and diagnostic mod-
els around a common Domain Ontology. In Section 5, we
discuss limitations of theDAEDALUSframework and com-
ment on the applicability of the approach to generalized
knowledge sharing and exchange between design and diag-
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nostic systems. Section 6 reviews some of the related re-
search literature in this area.

2. THE PHOENIX SYSTEM: BUILDING AND
EXCHANGING BN-FMEA MODELS

The original motivation for creating theDAEDALUSframe-
work comes from our experience in developing a new Bayes-
ian network-based Failure Modes and Effects Analysis~BN-
FMEA! system calledPHOENIX. The PHOENIX system
was developed and prototyped at Stanford University in an

effort to bridge the design–diagnosis modeling gap by mov-
ing the construction of belief network-based failure models
upstream, that is, forward into design, in the design process
chain~Lee, 2001!. The industry-standard spreadsheet FMEA
modeling task~Bowles, 1998! was selected as the starting
point for this exercise, and it was successfully demon-
strated that a spreadsheet failure causal model could be
expressed in a Bayes net format without loss of information
~see Fig. 2!.

Failure scenarios~“chains”! are constructed out of a set
of basic variable types comprising functions, components,

Fig. 1. TheDAEDALUSframework.

  
       

Fig. 2. Modeling a single-failure scenario in a BN-FMEA model.
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system states and events, and physical variables, among
others. A new class of severity variable is attached to a
variable representing a scenario’s failure end-event~FEE!;
severity variables can have other parents representing
system-internal and -external influences on the failure se-
verity in question~see Fig. 3!. FMEA models are then
assembled from these chains. The BN-FMEA models so
produced can be loaded into a standard Bayes network
editing environment, where they may be edited by hand
from FMEA models into diagnostic~BN-DIAG! models
~see Fig. 4!. Difficulties in representing and reasoning with
function models for mechatronic systems precludes the
automated generation of BN-FMEA models from func-
tional schematics. For this reason, it is assumed that the
original BN-FMEA model is generated by hand.

Although the work achieved the stated goals of introduc-
ing Bayesian network models and inferencing to design-
phase engineering analysis tasks, the process of manually
exchanging and editing BN-FMEA models into Bayesian
network diagnostic~BN-DIAG! models proved cumber-
some and haphazard. For large models, the removal by hand
of large numbers of severity variables, for example, along
with their attendant failure end-events and other parents
was unwieldy and subject to error. The problems encoun-
tered with this phase of thePHOENIX project motivated
consideration of a more principled approach—based on
ontologies—to the construction and exchange of Bayesian

network FMEA and diagnostic models across the design–
diagnosis interface.

3. THE DAEDALUS FRAMEWORK

The experience with thePHOENIXBN-FMEA tool moti-
vated the design and implementation of a second genera-
tion environment to explore and illustrate an ontological-
level approach to design–diagnosis modeling and knowledge
exchange. TheDAEDALUS framework supports knowl-
edge acquisition, generation, and sharing of BN-FMEA and
BN-DIAG models based upon a common Domain Ontol-
ogy ~see Fig. 1!. Knowledge acquisition and generation are
performed at the task level in a task-specific Task Applica-
tion through the construction of graphical product models
and associated updating of the common ontology; with each
Task Application is associated a problem-solving method
and a model-to-PSM Mapping~MPM! which is used to
perform inferencing with said models.

The software environment is comprised of the following
principal elements: The Domain-Task Ontology and the
Product Models Library, on the one hand, represent the
system domain knowledge. Secondly, a set of software ap-
plications manages and facilitates the ontology- and model-
building activities; these comprise the Ontology Manager,
the Task Applications, the Task Manager, and the Browser
Suite~see Fig. 5!. After discussing the general requirements

Fig. 3. Relative conditional severity.
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Fig. 4. PHOENIXBN-FMEA modeling environment.

  

Fig. 5. TheDAEDALUSframework and architecture.
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of DAEDALUS, the framework elements are examined in
turn.

3.1. System requirements

The goal of theDAEDALUSsystem is to provide ontology-
based computer support for artifact design and diagnosis
modeling tasks on a task-by-task basis. The system should
support generalized knowledge acquisition and generation
within and across individual product design and diagnosis
tasks, as well as knowledge sharing and reuse at the ontol-
ogy and model levels. Knowledge generated during a given
model construction process should, if possible, be captured
by the system for sharing across other tasks and their asso-
ciated models. The system should be flexible enough to
scale to future design and diagnosis tasks that are not now
part of industrial practice at most firms, such as function–
structure modeling and BN-FMEA modeling.

3.2. The framework elements

TheDAEDALUSframework is comprised of two main ele-
ments: the Domain Knowledge and the Domain Knowl-
edge Managers. We proceed to describe each of these
elements.

3.2.1. Domain knowledge

Domain knowledge includes the Domain Ontology and
the Product Models Library, comprised of the Application
Models and the Task Model. The Ontology and the Models
partition domain knowledge between generalized “tem-
plate” knowledge and specific “case” or “instance” knowl-
edge. The Domain Ontology is the locus for knowledge
about domain concepts and relations stored in template form;
the Application Models represent knowledge as instances
of ontology templates. For any given task, the locus of do-
main knowledge starts primarily within the Ontology and
then shifts to the Model as the task is executed and com-
pleted, feeding back into the Ontology as new concepts are
created during modeling tasks. This circular flow of knowl-
edge from Ontology to Model to Ontology contrasts with
the traditional unidirectional Ontology-to-Model flow in
most knowledge-based systems.

Domain and task ontologies.The Domain Ontology is
an enterprise-level knowledge base comprising the collec-
tion of concepts and relationships employed in the course
of the product design project, across all tasks and models.
Major subontologies used would include the functional, com-
ponent, and physical principle and variable ontologies, for
example. The Ontology is a hierarchical and dynamic entity
that changes and grows through the execution of each Task
Application. As a concept dictionary, the Ontology relies
on the use of the ontology object name, relative location in
the hierarchy, and relationships to other objects to define
the semantics of any given object class in the Ontology. In

its fully deployed form, we envision that an Ontology Bro-
ker entity would manage access to the different subontolo-
gies, which together comprise the full Domain Ontology;
management of the different subontologies is performed on
a local basis by one or responsible organizations~see Fig. 6!.

Each Task Application utilizes a relevant subset of the
Domain Ontology called the Task Ontology. The Task On-
tology is generated from the principal Domain Ontology
using a set of Ontology Operators. The operators provide
several ontology-level operations using an ontology alge-
bra ~Wiederhold, 1994! which can be performed on the
Domain Ontology, such as “Allow All,” “Add,” and “Pro-
hibit.” “Allow All” permits access to the full Domain On-
tology, while “Add” adds a single subontology or ontology
class to the list of currently accessible subontologies; “Pro-
hibit” denies access to a particular subontology or ontology
class by a given Task Application. Use of these aggregation
and filtering operators permits customization of the Task
Ontology for each particular Task Application.

The Ontology Browser takes the Task Ontology as its
input ~see Section 3.2.2! and aids in navigation and manip-
ulation of the Ontology.

The product models library.The library is comprised of
the following model groups and other elements:

• Product Models. Each Task Application generates a
Product Model. Models are constructed and viewed by
the designer in the Task Application’s Graphical Ob-
ject Editor~GOE! using the Task Ontology as the source
of its variables and relations~connections between vari-
ables!. Using the Model-to-PSM-Mapper, the task PSM
operates on the Application Model to produce task-
specific inferencing results. By working off a common
Domain Ontology, Product Models of different tasks
can employ a consistent set of variable and variable
relation semantics.

The process of constructing a Product Model can be
seen as 1! shifting—or specializing—the locus of
knowledge from the Task Ontology to the model, and
2! generating new concepts and relations for inclusion
in the Task Ontology. In the course of building a par-
ticular model, ontology classes and slots may be added
to or deleted from the Task Ontology, or otherwise
edited, as variables and variable relationships are added
to the model. Variables and relations local to the task
which are not initially resident in the Task Ontology
must be entered in the Ontology before they can be
entered into the model.

• Task Model. The Task Model comprises the set of
tasks which are required to achieve the design meta-
goal; more than one task ordering may satisfy the meta-
goal requirements. To each task is assigned one or more
Task Applications responsible for 1! building a rele-
vant Product Model, and 2! operating on that model
with at least one PSM. The Task Model is constructed
by the designer in the Task Manager; alternatively, one
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Fig. 6. Enterprise ontology-based architecture ofDAEDALUS.
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or more Task Models may be generated by a Task Plan-
ner module. The Browser Suite’s Task Browser takes
the Task Model as its input, and aids in navigation
between tasks~see Section 3.2.2!.

3.2.2. Domain knowledge managers

The Knowledge Managers are responsible for capturing,
generating, and maintaining the Domain Knowledge at the
ontology and task levels, and across the task workflow. The
Managers include the Task Applications, the Ontology Man-
ager, the Task Manager and the Browser Suite~“the Suite”!.

• Task Applications. The Task Applications comprise
the set of tools used to accomplish the various product
modeling tasks in the design project. Each Application
includes the following elements: the Graphical Object
Editor~GOE!, an inferencing Problem-solving Method,
a Model-PSM Mapper, and the Product Model~see
Fig. 7!. Using a set of Application-specific Ontology
Operators, it has access to that Task Ontology which is
relevant for constructing a given Product Model. For
purposes of this investigation, we limit ourselves to
considering only Applications which can construct
graphical models.

• Ontology Manager. The Ontology Manager is respon-
sible for navigating and manipulating the complete Do-
mainOntology for thedesignproject.Using theManager,
the designer adds, edits, and deletes ontology objects or
classes— concepts and relations—from the Domain On-
tology, and also edits their attributes~slots! in a similar
manner.TheBrowserSuite’sOntologyBrowser isacom-
pact subset of the Ontology Manager and may be used
for limited editing of the Domain Ontology as well. The
Manager has a similar look and feel to the Protégé-2000
software interface.

• Task Manager. The Task Manager is a specialized,
meta-level Application responsible for generating the
Task Model for the design project. The Manager may
include a Task Planner that suggests task orderings
based on assigned task goals and task constraints such
as available resources. Task orderings and changes can
be effected only directly in the Task Manager, how-
ever, and not in the Task Browser which can only view
the Task Model.

• Browser Suite. The Browser Suite is responsible for
collecting in a single simple interface the management
and selection of the Task Model, Product Model, and
the Task Ontology. The Task Browser takes the Task
Model as its input and is used to navigate between
different tasks and their associated applications. Task-
level changes, however, can be effected only directly
in the Task Manager, and not in the Task Browser. The
Model Browser shows a given Task Application’s Prod-
uct Model, and facilitates modifications to and naviga-
tion around such model. The Ontology Browser displays
the Task Ontology and aids in navigation and manip-
ulation of the Ontology. The Suite is designed to en-
able rapid and easy navigation between the different
Browsers and their respective models.

The Task Application and the Ontology Browser are used
together. Variables and relations to be used in the graphical
editor are obtained from the Task Ontology through drag-
and-drop actions on individual ontology objects in the
Browser~see Fig. 7!. Model variables which are not present
in the Task Ontology must first be added to the Ontology
via the Browser before they can be dropped into the editor
and used in a given model. Variable attributes, such as name
and states, are initially assigned default values which can
be edited by the designer.

Fig. 7. Task Application architecture, with Browser Suite.
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4. PROPOSED APPLICATION OF THE
DAEDALUS FRAMEWORK

We propose to initially apply theDAEDALUSframework
to two design and diagnosis tasks, namely the BN-FMEA
design FMEA modeling task and the BN-DIAG diagnostic
modeling task. These tasks are selected from the perspec-
tive of 1! demonstrating a clean ontology-level integration
across the design–diagnosis modeling interface, and 2!
working within a single knowledge representation and rea-
soning schema for simplicity’ sake, namely Bayesian be-
lief networks.

Once it is demonstrated that theDAEDALUSarchitec-
ture can support knowledge exchange across two tasks
which share a common Bayesian inference PSM, it is an-
ticipated that the method can be extended to more com-
plex knowledge sharing between tasks with different PSMs
and knowledge representation formalisms. Application of
theDAEDALUSarchitecture to the design–diagnosis prob-
lem creates a common underlying knowledge and model-
ing framework which facilitates semantic consistency, model
exchange, and common ontology management.

4.1. The BN-FMEA modeling task

The BN-FMEA design FMEA task is configured as an in-
stance of a Task Application with a Bayesian reasoner for
its PSM inferencing module. The graphical editor is spe-

cialized for the construction of belief network graphs; using
it, the designer generates a BN-FMEA Application Model
in which the Model slots are BN-variables~i.e., variables
with Bayesian states and a conditional probability table!
and BN-relations~i.e., Bayesian parent–child causal rela-
tions!. As previously discussed in Section 2, the BN-FMEA
model is constructed by the designer with a set of func-
tional, component, and physical quantity variables at its
core; its leaves contain failure end-event and severity vari-
ables and their parents~see Fig. 8!. The Model is mapped to
the inferencing PSM via a Model-Bayes Reasoner mapping
module that generates an input-directed acyclic graph to the
PSM. The FMEA Criticality Matrix are treated as views on
the outputs of the inferencing PSM. The initial version of
DAEDALUSseeks to reuse as much code fromPHOENIX
as possible, such that the PSM is essentially the same Bayes-
ian inference engine used inPHOENIX.

The BN-FMEA Task Application employs a Task Ontol-
ogy that results from applying the operation “Allow All” on
the product Domain Ontology, followed by the ontology
operation “Prohibit” on theError_Codesubontology. This
produces a Task Ontology that contains the following sub-
ontologies of direct relevance to this task, among others:
Functions, Components, Failure_States, Failure_Events, and
Severities. The BN-FMEA task is restricted from accessing
system error codes because they are not typically required
in FMEA modeling and analysis. TheError_Codessubon-
tology is subsequently made available to the BN-DIAG Task

Fig. 8. Portion of a BN-FMEA Model for an inkjet printer.
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Ontology and models~see Section 4.2!. It is assumed that
this task is executed and completed before the BN-DIAG
task, such that the full BN-FMEA Application Model is
available to the BN-DIAG task.

4.2. The BN-DIAG modeling task

The BN-DIAG diagnostic modeling task is configured in a
similar manner to the BN-FMEA task, except that 1! a dif-
ferent Task Ontology is employed, and 2! the Criticality Ma-
trix is eliminated. Here, the inferencing PSM is the same
Bayesian reasoner used in the BN-FMEAtask, and the graph-
ical editor is also used to build belief network graphs. The
Application Model employs the same knowledge represen-
tation, and the same Model-Bayes Reasoner mapping mod-
ule; the previously generated BN-FMEAmodel is employed
as the initial input to the editor.

In contrast to the BN-FMEA task, the BN-DIAG Task
Application employs a Task Ontology that results from
applying the ontology rules “Allow All” on the Domain
Ontology, followed by the “Prohibit” operation on theFail-
ure_SeveritiesandFailure_End_Eventsubontologies; other
subontologies may also be prohibited. This produces a Task
Ontology that contains the following subontologies of di-
rect relevance to this task, among others:Functions, Com-
ponents, States, Events, andError_Codes. The BN-DIAG
task is restricted from working with severity and failure
end-event variables because they are typically not required
in diagnostic modeling and analysis. The BN-DIAG Task
Application is not restricted from working with system
Error_Codesbecause they are typically of paramount in-
terest for diagnostic modeling and analysis.

In our use-case scenario, construction of the product BN-
DIAG model proceeds after the BN-FMEA model is com-
pleted in the BN-FMEA Task Application~see Fig. 9!. First,
the BN-DIAG Task Application is opened, along with its
associated Task Ontology. The BN-FMEA model is im-
ported into the BN-DIAG application, first passing through
the application’s Task Ontology filter. This strips the incom-
ing model of all severity variables, along with their associ-
ated relationships~arcs!, as well as the failure end-event
variables and their arcs. In addition, any “hanging vari-
ables” which have been left standing without any associ-
ated relationships are pruned; these include any non-FEE
parent variables of severity variables.

Filtering out the BN-FMEA leaf variables preserves the
core model variables and relationships intact, for example,
the component–function combinations and the various sys-
tem state–event variable combinations, among others. The
BN-DIAG model is now ready for construction by the di-
agnostic modeling engineer, who adds relevant observa-
tional variables such as Error Codes and other system state
indicators from the Task Ontology. Notions of system and
component function, states, and events are preserved across
both models and constitute the underlying consistent knowl-
edge representation bridge between the two tasks and models.

5. DISCUSSION

TheDAEDALUSapproach is, in principle, generalizable to
other product design and diagnostic tasks and knowledge
representation and reasoning formalisms. The use of ontol-
ogies for generating and selecting variables in the construc-

Fig. 9. Portion of a BN-Diagnostic Model for an inkjet printer.
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tion and editing of models is a general enough method that
it can be used in working with other classes of design and
diagnosis models. Secondly, using domain ontologies to
filter “in” and “out” selected variables and relationships
from models also appears useful in contexts outside the
immediate BN-FMEA schema. Third, the inferencing PSM’s
and their associated domain model mappings can be ex-
tended beyond Bayesian networks to other reasoning meth-
ods such as bond graphs and constraint-based problem-
solving methods.

The DAEDALUS framework in its current form ad-
dresses model-to-model consistency only at the “shallow”
semantic level, variable-by-variable and relation-by-relation.
Domain Ontology semantics are informally specified only
by variable0relation names and their relative location in the
ontology context, and not through the use of any formal
Knowledge Interchange Format~KIF !-like first order logic
language. This notion and use of ontology can be termed a
“sparse” ontological approach, in contrast to the “rich” on-
tological methodology which employs a formal semantics
encoded in logic. By utilizing the Domain and Task Ontol-
ogies principally as a KIEF-style concept dictionary, seman-
tic consistency of variables and relationships can only be
maintained informally with those in other models. Exact
reasoning consistency, however, is not necessarily main-
tained with this approach, since the inference PSMs and
their mappings are not maintained as a part of the Domain
Ontology at this stage. The absence of a formal semantics
precludes the detection of ontological conflicts in the mod-
els or Domain Ontology.

6. RELATED WORK

Using design-phase descriptions or models of physical sys-
tems to construct diagnostic procedures or models has been
a subject of research for several years. Genesereth~1984!,
for example, demonstrated in his DART program the use of
digital circuit design models containing information about
intended structure~parts and their interconnections! and
expected behavior~equations or rules relating inputs to out-
puts! to generate sets of failure candidates from observed
symptoms. The domain of model-based diagnosis~Ham-
scher et al., 1992! uses design-based knowledge of device
function, structure, and behavior to do diagnostic reasoning
about device malfunction, although this is also typically
limited to examples of digital and analog circuitry. More
recently, Srinivas~1994! has employed functional design
schematics to directly generate Bayesian network diagnos-
tic models of circuits. These approaches have proven diffi-
cult to apply to mechatronic artifacts due to the complexity
associated with describing and modeling their function, struc-
ture, and behavior.

Other work relating product design and diagnosis is the
design-for-diagnosability metrics research undertaken by
Paasch~Murphy & Paasch, 1997!. Here the goal is to iden-
tify optimal design alternatives during design or redesign,
based on a score ranking the relative ease of isolating the

cause of a loss of functionality for each design option. A
traditional, spreadsheet-based FMEA model is used to gen-
erate a fault tree, from which diagnosability metrics for
individual line replaceable units are calculated. This ap-
proach is intended for cases where “deep” design models
are generally not available, such that a “shallow” metrics-
based approach can be applied.

The Knowledge Intensive Engineering Framework pro-
posed by Tomiyama is similar to theDAEDALUSframe-
work in several respects. Both propose to integrate disparate
design tools by using a central knowledge base and a set
of differentiated design modeling environments. Both
knowledge bases comprise a master ontology defining con-
cepts used throughout the system~KIEF calls this the “Con-
cept Dictionary”!, as well as a library of product models
~the “Models Library”! that are used by the different mod-
eling environments. KIEF differs fromDAEDALUS, how-
ever, in two key respects. First, its knowledge base also
contains a Physical Feature Library which represents and
describes physical phenomena and related mechanisms. Sec-
ondly, KIEF utilizes a model management mechanism~the
“Metamodel”! to manage the interactions and data sharing
between the different models and modeling systems, par-
ticularly where models are interdependent and require con-
sistency~Sekiya & Tomiyama, 1999; Yoshioka et al., 1999!.

DAEDALUScan thus be viewed as a specialized subset
of the KIEF, in which 1! only the Concept Dictionary and
the Model Library are employed~corresponding to the Do-
main Ontology and the Product Model Library, respective-
ly!, 2! the design modeling environments are specialized to
models which can be described and constructed as graphs,
and 3! model-to-model consistency is implicitly assumed
and therefore not handled. The proposed application of
DAEDALUSto integrating design and diagnosis modeling
knowledge via Bayesian networks takes the architecture
proof-of-concept in a direction unexplored by the KIEF.

CommonKADS and Protégé are two knowledge engineer-
ing research initiatives that have emerged recently with a
wide user base of their respective methodologies. The Com-
monKADS framework distinguishes three different types
of knowledge needed to solve a given task: domain-specific
knowledge ~including a domain ontology!, inference-
process knowledge~problem-solving methods—PSMs!, and
task knowledge~a decomposition of tasks into subtasks and
inference actions!. The domain-specific knowledge is clearly
separated from the inference and task knowledge in order
to facilitate reuse of domain knowledge and PSMs. Com-
monKADS is intended as a knowledge acquisition and man-
agement framework for the development of traditional
knowledge-based systems and does not deal with knowl-
edge generation issues associated with artifact design
~Schreiber et al., 2000!. Protégé focuses on the use of on-
tologies for the acquisition of knowledge. A domain ontol-
ogy defines the concepts and relationships that are used
within the domain knowledge base; the method ontology
associated with a given PSM defines concepts and relation-
ships used by the PSM for reasoning. Both PSMs and do-
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main knowledge bases are intended as reusable components.
The notion of mediators or mappings between PSMs and
knowledge bases is proposed. Protégé also limits itself to
the development of traditional knowledge-based systems
with the attendant restrictions on handling of newly gener-
ated knowledge during model construction operations~Stud-
er et al., 1999!.

7. CONCLUSIONS

This paper describes theDAEDALUSframework and the
motivation behind its development.DAEDALUSis a knowl-
edge engineering system which employs a central Domain
Ontology as a concept dictionary in support of multiple
product-modeling environments~Task Applications!; these
tools are organized around graph-based modeling tasks in
an enterprise task workflow. Domain knowledge is parti-
tioned between the Domain Ontology and a Product Mod-
els Library. Problem-solving methods and Model-to-PSM
Mappers are attached to each Task Application for inferenc-
ing support.

An initial verification of the methodology is proposed
using thePHOENIX project’s Bayesian belief network-
based FMEA modeling approach and a standard Bayes net-
work diagnostic modeling environment. The goal of the
proof-of-concept is to demonstrate knowledge sharing and
reuse between a design-phase task~BN-FMEA! and a knowl-
edge engineering-phase task~BN-DIAG diagnosis model-
ing!. Limiting the PSM’s to Bayesian inference engines and
their associated mappings reduces the degrees of freedom
of the experiment without impairing its ability to demon-
strate the use of ontologies for model aggregation, filtering,
and customization. The approach bears certain similarities
to Tomiyama’s~1999! KIEF framework, but extends the
methodology with Bayesian networks, a specialization of
modeling tasks to design FMEA and diagnosis, and the adop-
tion of a formal knowledge engineering architecture drawn
from recent work in the CommonKADS and Protégé knowl-
edge engineering communities.
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