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Abstract

Product design and diagnosis are, today, worlds apart. Despite strong areas of overlap at the ontological level, tradi-
tional design process theory and practice does not recognize diagnosis as a part of the modeling process chain; neither
do diagnosis knowledge engineering processes reference design modeling tasks as a source of knowledge acquisition.
This paper presents tHeAEDALUSknowledge engineering framework as a methodology for integrating design and
diagnosis tasks, models, and modeling environments around a common Domain Ontology and Product Models Library.
The approach organizes domain knowledge around the execution of a set of tasks in an enterprise product engineering
task workflow. Each task employs a Task Application which uses a customized subset of the Domain Ontology—the
Task Ontology—to construct a graphical Product Model. The Ontology is used to populate the models with relevant
conceptgvariables and relationgrelationshipg, thus serving as a concept dictionary-style mechanism for knowledge
sharing and reuse across the different Task Applications. For inferencing, each task employs a local Problem-solving
Method (PSM), and a Model-PSM Mapping, which operate on the local Product Model to produce reasoning out-
comes. The use of a common Domain Ontology across tasks and models facilitates semantic consistency of variables
and relations in constructing Bayesian networks for design and diagnosis.

The approach is motivated by inefficiencies encountered in cleanly exchanging and integrating design FMEA and
diagnosis models. Demonstration software under development is intended to illustrate AEDALUSframework
can be applied to knowledge sharing and exchange between Bayesian network-based design FMEA and diagnosis
modeling tasks. Anticipated limitations of tBBAEDALUSmethodology are discussed, as is its relationship to Tomiya-
ma’s Knowledge Intensive Engineering FramewOfkEF). DAEDALUSIs grounded in formal knowledge engineer-
ing principles and methodologies established during the past decade. Finally, the framework is presented as one
possible approach for improved integration of generalized design and diagnostic modeling and knowledge exchange.

Keywords: Bayesian Belief Networks; Design-Diagnosis Integration; Design FMEA; Diagnostic Modeling;
Knowledge Engineering Framework; Ontologies

1. INTRODUCTION ures, with the goal of understanding the root cdgsef
such failure, and then restoring the artifact to full function-
1.1. Product design and diagnosis ality. Both activities employ symbolic representations—

concepts and concept relations, often aggregated into

Product design is a complex human problem-solving activontologies—in the course of reaching their goals, and both

ity which has as its goal the synthesis and analysis ohggregate such representations into higher level groupings—
concepts in an effort to produce a physical or softwaremodels. Both endeavors are also empirically witnessed to
artifact that satisfies a stated need and set of performanagoup and subdivide conceptual manipulation efforts into
requirements. Product diagnosis, in contrast, seeks to d@groblem-solving processes—“tasks’—each with its own

velop methods and mechanisms for analyzing artifact fail-set of problem-solving method®SMs.
Product design and diagnosis, however, are, today, worlds
. . _apart. Despite strong areas of overlap at the ontological
Reprint requests to: Burton H. Lee, Department of Mechanical Engi-
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chain (Pahl & Beitz, 199%; neither do diagnosis knowl- artifact under varying usage conditions. Examples of vari-
edge engineering processes reference design modeling taskss design tasks where such graphical models are em-
as a source of knowledge acquisition. This paper presentdoyed include functional flow, reliability, CAD and Bayesian
the DAEDALUSknowledge engineering framework as a network-based FMEALee, 200}, and other failure mod-
methodology for lintegrating design and diagnosis tasks, eling tasks, among others.
models, and modeling environments around a common Do- Even as such conceptual models and modeling environ-
main Ontology and Product Models Library, and@prov-  ments assume increasing importance in industrial design
ing the semantic consistency within and between modelsngineering practice, however, it is a fact that design mod-
Building upon the commonalities shared by design and di€ling environments, particularly CAD systems, possess ef-
agnosis activities, even as we recognize their differencedgctively no computer-based support at the ontological level.
we describe here our preliminary investigations of a productConcepts and relations employed are often implicitly de-
knowledge engineering framework intended to serve as &ned within the local context, and are stored local to each
knowledge-level integration backbone for general desigrsoftware application. As a result, it is in general extremely
and diagnosis tasks. difficult to share and reuse concejtiesign variablesand
relations(relationshipgacross design tasks and tools at the
fine granularity level, which is often required in design
1.2. Design processes and computer-based support modeling. The absence of any formal local or global ontol-
) o ogies also leads to inconsistency in semantics across tasks
Product design theory and practice literature often segang task variables, and hinders updates or extensions to the
ments the design process into three primary staB&sss-  gesign project vocabulary or taxonomy in a consistent, scal-
ing, 1994: able manner across the enterprise.

« Problem definition stage Theproblem definition stage N €xamining corporate design practice and literature, it
consists of all activities that occur prior to the explicit IS /S0 apparent that design processes generally do not rec-
generation of alternative design solutions. It deals with®9nize diagnosis-related modeling tasks with two major ex-
the analysis of the needs, and the formulation of prob_ceptlons. Flr_st, controlls.ystems design often myqlves notions
lems, goals, and requirements. This stage results in gf system diagnosability and state qbservablllty. Second,
problem statement, and a list of requirements, als¢MPedded systems frequently consider system and soft-
termed a design specification. ware dlagp03|s in the allocation and assignment of error

« Conceptual design stageln the conceptual design codes dqung C(_)d_lng tas_ks. In the general case, however,
stage physical principle solutions for the product and system d|agn05|_s is considered ogtS|de the standard product
its main elements are generated based on the functiorfieSIgn engineering process and is undertaken after the de-
which the product must fulfill. The results of the prior sign 1S completed. This leads to §everal consequences. Di-
problem definition stage form the starting point of the 9N0SiS teams—generally belonging to the Customer Support
conceptual design stage. Organization—are usually separate from the design team;

« Detailed design stageThe third detailed design stage design models and other data are, as a result, frequently not

starts with one or more concepts generated in the se@vailable to the diagnosis team for use in constructing di-

ond stage, and proceeds to develop the product throug?rg”OSiS models. As a result of excluding diagnosis from the

a series of concept alternative synthesis and analysi@ma! design process chain, the generation and exchange
activities. The result of this stage is a full use-case and’ Knowledge between design and diagnosis tasks remains
technical description of the product that contains allinéffective and inefficient.

information needed for the subsequent life-cycle phases
from manufacturing to disposal. 1.3. Diagnosis tasks and modeling

The process of moving Fhe product from goncept _to art,"lf traditional design process theory and practice does not
fact procegds on the_ basis of a set of design e_ng'nee”,nﬁecognize diagnosis as a part of the product modeling pro-
tasks. Design tasks in thg conceptual and detglled des'g&ess chain, then neither do diagnosis processes include de-
sta_ge are often characterized by the Construgtlon O_f Syms'ign modeling tasks in their respective view. Traditional
bolic models for the purposes of computer simulation Ofdiagnosis process stages and tasks are drawn from expert

product Peh?"?‘“ and feature_s. These models typically ems'ystem theory and practice, and include the following:
ploy an implicit and well-defined group of concepts and

concept relations—a product domain ontology—that can e Knowledge elicitation and acquisition working with

be represented either as directed or undirected graph struc- the expert to encode hiker knowledge in a knowl-
tures, depending on the type of relationships considered, or  edge base, using a chosen knowledge formalism;

as mathematical constructs. Such design models are gener-e Knowledge base test and verification verification

ally quite detailed and highly granular in their use and ma- that the encoded knowledge base does, in fact, com-
nipulation of concepts, inasmuch as they seek to predict bine evidences and generally provide inferencing re-
with great accuracy future performance parameters of the  sults that are consistent with the expert's knowledge.
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This historical focus on the expert as the primary source oédge to knowledge of physical processes, artifacts, and be-
relevant knowledge is one reason why the diagnosis comhaviors. Tomiyama’s Knowledge Intensive Engineering
munity has neglected the use of product design models askramework(KIEF) is the best known of these efforts, and
key knowledge input to diagnostic model-building activi- relies heavily on an ontological approach to unify and bridge
ties. A second reason has been the absence of adequakesign modeling activities across the full product-knowledge
formal design models that could serve as a basis for théfe cycle, from design through manufacturing, operations
construction of diagnostic models. and maintenance, and dispo&sde Section 6; Tomiyama &
Even as design and diagnosis at the modeling level reHew, 1999. Presumably, this also includes the use of on-
main far apart, at the ontological level they share manyologies to bridge design and diagnosis models, although
ontologies within the product life-cycle domain. Conceptsthis specific aspect of his method is not explicitly addressed
and relations describing product function, struct(@em-  or demonstrated.
ponent hierarchy states, events, reliability, and failures, Finally, the knowledge engineering community has, since
for example, are common to vocabularies and taxonomiethe mid-1980s, been engrossed in the development of com-
required for building models in both disciplines. The for- prehensive methodologies, frameworks, and tools for build-
mal development and utilization of ontologies for diagnosising and organizing knowledge-based and expert systems,
modeling is significantly advanced over that for design mod-and more generally for organizing problem-solving pro-
eling, however, due to the relatively strong knowledge encesses and tasks. These initiatives have, from the begin-
gineering focus of the diagnostic research community. Likening, paid strong attention to the engineering of diagnostic
design modeling environments, diagnostic modeling enviexpert systems, often with a strong reliance on ontologies
ronments today suffer a comparable absence of practicas a foundational underpinning of the architecture and con-
computer-based support. ceptual framework. The most relevant investigations here
For these reasons, design and diagnosis tasks are genare those of the CommonKADS and Protégé projects, which
ally seen by both communities as unrelated tasks belongingoth employ a mix of ontology- and task-based approaches
to two disparate process chains with little in common at theio organizing domain knowledge and problem-solving pro-
ontological or modeling levels. The alternative view givencesses and methodStuder et al., 1999
in this paper presents design and diagnosis as two sets of Notwithstanding these various research efforts focused
related tasks, sharing a common domain ontology and a sein design process and expert system architectures and
of models, within a larger continuum of product engineer-computer-based support, the design and knowledge engi-
ing knowledge acquisition, generation, and life-cycle man-neering communities have yet to bring design and other
agement processes. knowledge-intensive activities under a common knowledge
framework. The emphasis grassive knowledge elicitation
and acquisitionby experts contrasts sharply with the
designer-focusedctive knowledge generation paradigm-
Contemporary process-based computer-supported engine@toyed in design theory and practice circles, and continues
ing design research is largely focused on the developmerb hinder collaboration between these two communities.
of approaches and architectures aimed at solving the prob-
lem of proper o.rgamzanon O.f |nformat|'on systems to SUP 5. Ontology-based computer support for design
port designers in the execution of design tasks, and in the and diagnosis modeling tasks
capture and reuse of design data. The Process-based Sup-
port System(PROSUS developed by Blessingl994 isa  The DAEDALUSframework aims to provide a basis for
leading example of this approach. PROSUS, like many sysbridging of design and diagnosis knowledge and tasks
tems proposed by the design research community, is a vepirough 1 utilizing a common central ontology basthe
high-level system, adopts a traditional view of the design‘Domain Ontology’) as a concept dictionary, and 2ap-
process, and focuses most heavily on the conceptual desiguring newly generated task-level knowledge in the Do-
stage. Of interest here is that it does not deal explicitly withmain Ontology for sharing across the Product Models Library
the problem of design and diagnosis model exchange an@ee Fig. 1. The investigations presented are motivated by,
sharing, and makes no effort to develop or work with aand build upon, earlier design research results derived from
formal design or design process domain ontology. In thisthe PHOENIXproject(Lee, 200).
sense, such systems do not address some very fundamentall he following section thus presents a brief review of the
knowledge acquisition, generation, and maintenance isSPHOENIX project, its goals, and results. In Section 3 we
sues, preferring to instead take a data-centric viewpoint. present details of th® AEDALUSframework. Section 4
The knowledge-based engineering design research coneutlines our proposed application BFAEDALUSto inte-
munity has taken a recent interest in the development ofrating Bayesian network-based FMEA and diagnostic mod-
knowledge-intensive CADKIC) and knowledge-intensive els around a common Domain Ontology. In Section 5, we
design(KID) systems. The goal of such systems is to aug-discuss limitations of thBAEDALUSframework and com-
ment and extend current industrial design tools with a widement on the applicability of the approach to generalized
range of knowledge, ranging from commonsense knowlknowledge sharing and exchange between design and diag-

1.4. Related research
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Fig. 1. The DAEDALUSframework.

nostic systems. Section 6 reviews some of the related reeffort to bridge the design—diagnosis modeling gap by mov-

search literature in this area.

2. THE PHOENIX SYSTEM: BUILDING AND
EXCHANGING BN-FMEA MODELS

The original motivation for creating tiRAEDALUSframe-

ing the construction of belief network-based failure models
upstream, that is, forward into design, in the design process
chain(Lee, 200]}. The industry-standard spreadsheet FMEA
modeling task Bowles, 1998 was selected as the starting
point for this exercise, and it was successfully demon-
strated that a spreadsheet failure causal model could be

work comes from our experience in developing a new Bayesexpressed in a Bayes net format without loss of information

ian network-based Failure Modes and Effects Anal{Bis-
FMEA) system calledPHOENIX The PHOENIX system

(see Fig. 2.
Failure scenario§‘chains” are constructed out of a set

was developed and prototyped at Stanford University in arof basic variable types comprising functions, components,
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Fig. 2. Modeling a single-failure scenario in a BN-FMEA model.
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Fig. 3. Relative conditional severity.

system states and events, and physical variables, amomgtwork FMEA and diagnostic models across the design—
others. A new class of severity variable is attached to aliagnosis interface.
variable representing a scenario’s failure end-eVERE);
seventy_ variables can have .other parents reprgsentmg THE DAEDALUS FRAMEWORK
system-internal and -external influences on the failure se-
verity in question(see Fig. 3. FMEA models are then The experience with thEHOENIXBN-FMEA tool moti-
assembled from these chains. The BN-FMEA models swated the design and implementation of a second genera-
produced can be loaded into a standard Bayes networtion environment to explore and illustrate an ontological-
editing environment, where they may be edited by handevel approach to design—diagnosis modeling and knowledge
from FMEA models into diagnosti€BN-DIAG) models  exchange. TheDAEDALUS framework supports knowl-
(see Fig. 4. Difficulties in representing and reasoning with edge acquisition, generation, and sharing of BN-FMEA and
function models for mechatronic systems precludes th&N-DIAG models based upon a common Domain Ontol-
automated generation of BN-FMEA models from func- ogy (see Fig. 1. Knowledge acquisition and generation are
tional schematics. For this reason, it is assumed that thperformed at the task level in a task-specific Task Applica-
original BN-FMEA model is generated by hand. tion through the construction of graphical product models
Although the work achieved the stated goals of introduc-and associated updating of the common ontology; with each
ing Bayesian network models and inferencing to design-Task Application is associated a problem-solving method
phase engineering analysis tasks, the process of manualynd a model-to-PSM MappingVMIPM) which is used to
exchanging and editing BN-FMEA models into Bayesianperform inferencing with said models.
network diagnostid BN-DIAG) models proved cumber- The software environment is comprised of the following
some and haphazard. For large models, the removal by hamdincipal elements: The Domain-Task Ontology and the
of large numbers of severity variables, for example, alongProduct Models Library, on the one hand, represent the
with their attendant failure end-events and other parentsystem domain knowledge. Secondly, a set of software ap-
was unwieldy and subject to error. The problems encounplications manages and facilitates the ontology- and model-
tered with this phase of thEHOENIX project motivated building activities; these comprise the Ontology Manager,
consideration of a more principled approach—based oithe Task Applications, the Task Manager, and the Browser
ontologies—to the construction and exchange of BayesiaSuite(see Fig. 5. After discussing the general requirements
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of DAEDALUS the framework elements are examined inits fully deployed form, we envision that an Ontology Bro-

turn.

3.1. System requirements

ker entity would manage access to the different subontolo-
gies, which together comprise the full Domain Ontology;
management of the different subontologies is performed on
alocal basis by one or responsible organizatises Fig. 8.

The goal of thdDAEDALUSsystem is to provide ontology-

Each Task Application utilizes a relevant subset of the

based computer support for artifact design and diagnosi®omain Ontology called the Task Ontology. The Task On-
modeling tasks on a task-by-task basis. The system shoul@/0gy is generated from the principal Domain Ontology
support generalized knowledge acquisition and generatioHsing a set of Ontology Operators. The operators provide
within and across individual product design and diagnosi$€everal ontology-level operations using an ontology alge-
tasks, as well as knowledge sharing and reuse at the ontdtra (Wiederhold, 1994 which can be performed on the
ogy and model levels. Knowledge generated during a givet?omain Ontology, such as “Allow All,” “Add,” and “Pro-
model construction process should, if possible, be capturefibit.” “Allow All” permits access to the full Domain On-

by the system for sharing across other tasks and their ass&0gy, while “Add” adds a single subontology or ontology
ciated models. The system should be flexible enough tglass to the list of currently accessible subontologies; “Pro-
scale to future design and diagnosis tasks that are not nofiibit” denies access to a particular subontology or ontology
part of industrial practice at most firms, such as function-class by a given Task Application. Use of these aggregation

structure modeling and BN-FMEA modeling.

and filtering operators permits customization of the Task

Ontology for each particular Task Application.

3.2. The framework elements

The DAEDALUSframework is comprised of two main ele-
ments: the Domain Knowledge and the Domain Knowl-

The Ontology Browser takes the Task Ontology as its
input (see Section 3.2)2nd aids in navigation and manip-
ulation of the Ontology.

The product models libraryThe library is comprised of

edge Managers. We proceed to describe each of thesRe following model groups and other elements:

elements.

3.2.1. Domain knowledge

Domain knowledge includes the Domain Ontology and
the Product Models Library, comprised of the Application
Models and the Task Model. The Ontology and the Models
partition domain knowledge between generalized “tem-
plate” knowledge and specific “case” or “instance” knowl-
edge. The Domain Ontology is the locus for knowledge
about domain concepts and relations stored in template form;
the Application Models represent knowledge as instances
of ontology templates. For any given task, the locus of do-
main knowledge starts primarily within the Ontology and
then shifts to the Model as the task is executed and com-
pleted, feeding back into the Ontology as new concepts are
created during modeling tasks. This circular flow of knowl-
edge from Ontology to Model to Ontology contrasts with
the traditional unidirectional Ontology-to-Model flow in
most knowledge-based systems.

Domain and task ontologiesThe Domain Ontology is

an enterprise-level knowledge base comprising the collec-
tion of concepts and relationships employed in the course
of the product design project, across all tasks and models.
Major subontologies used would include the functional, com-
ponent, and physical principle and variable ontologies, for
example. The Ontology is a hierarchical and dynamic entity
that changes and grows through the execution of each Task
Application. As a concept dictionary, the Ontology relies
on the use of the ontology object name, relative location in
the hierarchy, and relationships to other objects to define
the semantics of any given object class in the Ontology. In
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e Product Models. Each Task Application generates a
Product Model. Models are constructed and viewed by
the designer in the Task Application’s Graphical Ob-
ject Editor(GOE) using the Task Ontology as the source
of its variables and relatiorfsonnections between vari-
ables. Using the Model-to-PSM-Mapper, the task PSM
operates on the Application Model to produce task-
specific inferencing results. By working off a common
Domain Ontology, Product Models of different tasks
can employ a consistent set of variable and variable
relation semantics.

The process of constructing a Product Model can be
seen as | shifting—or specializing—the locus of
knowledge from the Task Ontology to the model, and
2) generating new concepts and relations for inclusion
in the Task Ontology. In the course of building a par-
ticular model, ontology classes and slots may be added
to or deleted from the Task Ontology, or otherwise
edited, as variables and variable relationships are added
to the model. Variables and relations local to the task
which are not initially resident in the Task Ontology
must be entered in the Ontology before they can be
entered into the model.

e Task Model. The Task Model comprises the set of
tasks which are required to achieve the design meta-
goal; more than one task ordering may satisfy the meta-
goal requirements. To each task is assigned one or more
Task Applications responsible fon building a rele-
vant Product Model, and)2perating on that model
with at least one PSM. The Task Model is constructed
by the designer in the Task Manager; alternatively, one
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3.2.2. Domain knowledge managers

The Knowledge Managers are responsible for capturing,
generating, and maintaining the Domain Knowledge at the
ontology and task levels, and across the task workflow. The
Managers include the Task Applications, the Ontology Man-
ager, the Task Manager and the Browser S{iittee Suite”).

289

or more Task Models may be generated by a Task Plan- ¢ Task Manager. The Task Manager is a specialized,
ner module. The Browser Suite’s Task Browser takes meta-level Application responsible for generating the
the Task Model as its input, and aids in navigation Task Model for the design project. The Manager may
between taskésee Section 3.2)2 include a Task Planner that suggests task orderings
based on assigned task goals and task constraints such
as available resources. Task orderings and changes can
be effected only directly in the Task Manager, how-
ever, and not in the Task Browser which can only view
the Task Model.

Browser Suite. The Browser Suite is responsible for
collecting in a single simple interface the management
and selection of the Task Model, Product Model, and
the Task Ontology. The Task Browser takes the Task
Model as its input and is used to navigate between
different tasks and their associated applications. Task-
level changes, however, can be effected only directly
in the Task Manager, and not in the Task Browser. The
Model Browser shows a given Task Application’s Prod-
uct Model, and facilitates modifications to and naviga-
tion around such model. The Ontology Browser displays
the Task Ontology and aids in navigation and manip-
ulation of the Ontology. The Suite is designed to en-
able rapid and easy navigation between the different
Browsers and their respective models.

Task Applications. The Task Applications comprise
the set of tools used to accomplish the various product
modeling tasks in the design project. Each Application
includes the following elements: the Graphical Object
Editor (GOE), an inferencing Problem-solving Method,

a Model-PSM Mapper, and the Product Modske
Fig. 7). Using a set of Application-specific Ontology
Operators, it has access to that Task Ontology which is
relevant for constructing a given Product Model. For
purposes of this investigation, we limit ourselves to
considering only Applications which can construct
graphical models.

Ontology Manager. The Ontology Manager is respon-
sible for navigating and manipulating the complete Do-The Task Application and the Ontology Browser are used
main Ontology for the design project. Using the Managertogether. Variables and relations to be used in the graphical
the designer adds, edits, and deletes ontology objects @ditor are obtained from the Task Ontology through drag-
classes— concepts and relations—from the Domain Onand-drop actions on individual ontology objects in the
tology, and also edits their attributegots in a similar ~ Browser(see Fig. 7. Model variables which are not present
manner. The Browser Suite’s Ontology Browser isacom-in the Task Ontology must first be added to the Ontology
pact subset of the Ontology Manager and may be usedia the Browser before they can be dropped into the editor
for limited editing of the Domain Ontology as well. The and used in a given model. Variable attributes, such as name
Manager has a similarlook and feel to the Protégé-200@nd states, are initially assigned default values which can
software interface. be edited by the designer.

Task
Model Ontology i-""""--“"""""""""-"“"""""-""-“"-""“""""""""--““"""“““""““.:
Browser Browser ! E
) ) — i
.. .. - Select & Placd ;
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&) @ : Model PSM i
@) @ ! :
(@) @ * Update ! :
@ @ Ontology | :
- 1 Model-PSM 1
Floating i Mapping :
Browser Suite ! Graphical Object Editor :
Ontology -
Filter ' Inferencing | :
Results ;

Task Application E

— @ O
Domain
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Fig. 7. Task Application architecture, with Browser Suite.
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4. PROPOSED APPLICATION OF THE
DAEDALUS FRAMEWORK

We propose to initially apply th® AEDALUSframework
to two design and diagnosis tasks, namely the BN-FME
design FMEA modeling task and the BN-DIAG diagnostic
modeling task. These tasks are selected from the persp
tive of 1) demonstrating a clean ontology-level integration
across the design—diagnosis modeling interface, and
working within a single knowledge representation and rea
soning schema for simplicity’ sake, namely Bayesian be
lief networks.
Once it is demonstrated that tiPAEDALUSarchitec-

ture can support knowledge exchange across two taslﬁ

which share a common Bayesian inference PSM, it is an

ticipated that the method can be extended to more com-
plex knowledge sharing between tasks with different PSMs
and knowledge representation formalisms. Application of

the DAEDALUSarchitecture to the design—diagnosis prob-
lem creates a common underlying knowledge and model
ing framework which facilitates semantic consistency, mode
exchange, and common ontology management.

4.1. The BN-FMEA modeling task
The BN-FMEA design FMEA task is configured as an in-

A

B.H. Lee

cialized for the construction of belief network graphs; using
it, the designer generates a BN-FMEA Application Model
in which the Model slots are BN-variablése., variables

with Bayesian states and a conditional probability table
and BN-relationdi.e., Bayesian parent—child causal rela-
tions). As previously discussed in Section 2, the BN-FMEA

ec-

model is constructed by the designer with a set of func-

ional, component, and physical quantity variables at its
core; its leaves contain failure end-event and severity vari-

ables and their parentsee Fig. 8 The Model is mapped to

the inferencing PSM via a Model-Bayes Reasoner mapping
module that generates an input-directed acyclic graph to the
PSM. The FMEA Criticality Matrix are treated as views on
que outputs of the inferencing PSM. The initial version of
DAEDALUSseeks to reuse as much code fretOENIX
s possible, such that the PSM is essentially the same Bayes-
an inference engine used FHOENIX

The BN-FMEA Task Application employs a Task Ontol-
ogy that results from applying the operation “Allow All” on
f'he product Domain Ontology, followed by the ontology
operation “Prohibit” on thé=rror_Codesubontology. This
produces a Task Ontology that contains the following sub-
ontologies of direct relevance to this task, among others:
Functions Componentd-ailure_StatesFailure_Eventsand
SeveritiesThe BN-FMEA task is restricted from accessing

system error codes because they are not typically required

a

stance of a Task Application with a Bayesian reasoner foin FMEA modeling and analysis. THerror_Codessubon-

its PSM inferencing module. The graphical editor is spe-tology is subsequently made available to the BN-DIAG Task

umbler
Asse mbl

arriage
Electronics
Board

Encoder
Strip

Encoder
Reading

Fig. 8. Portion of a BN-FMEA
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Ontology and modelgsee Section 4)21t is assumed that In our use-case scenario, construction of the product BN-
this task is executed and completed before the BN-DIAGDIAG model proceeds after the BN-FMEA model is com-
task, such that the full BN-FMEA Application Model is pleted in the BN-FMEA Task Applicatiotsee Fig. 9. First,

available to the BN-DIAG task. the BN-DIAG Task Application is opened, along with its
associated Task Ontology. The BN-FMEA model is im-
4.2. The BN-DIAG modeling task ported into the BN-DIAG application, first passing through

the application’s Task Ontology filter. This strips the incom-

The BN-DIAG diagnostic modeling task is configured in a ing model of all severity variables, along with their associ-
similar manner to the BN-FMEA task, except thataldif-  ated relationshipsarcy, as well as the failure end-event
ferent Task Ontology is employed, andRe Criticality Ma-  variables and their arcs. In addition, any “hanging vari-
trix is eliminated. Here, the inferencing PSM is the sameables” which have been left standing without any associ-
Bayesian reasoner used inthe BN-FMEAtask, and the graplated relationships are pruned; these include any FBE-
ical editor is also used to build belief network graphs. Theparent variables of severity variables.
Application Model employs the same knowledge represen- Filtering out the BN-FMEA leaf variables preserves the
tation, and the same Model-Bayes Reasoner mapping modore model variables and relationships intact, for example,
ule; the previously generated BN-FMEA modelis employedthe component—function combinations and the various sys-
as the initial input to the editor. tem state—event variable combinations, among others. The

In contrast to the BN-FMEA task, the BN-DIAG Task BN-DIAG model is now ready for construction by the di-
Application employs a Task Ontology that results from agnostic modeling engineer, who adds relevant observa-
applying the ontology rules “Allow All” on the Domain tional variables such as Error Codes and other system state
Ontology, followed by the “Prohibit” operation on tfi&@il-  indicators from the Task Ontology. Notions of system and
ure_SeveritieandFailure_End_Evensubontologies; other component function, states, and events are preserved across
subontologies may also be prohibited. This produces a Taskoth models and constitute the underlying consistent knowl-
Ontology that contains the following subontologies of di- edge representation bridge between the two tasks and models.
rect relevance to this task, among othdtanctions Com-
ponents States Events andError_Codes The BN-DIAG
task is restricted from working with severity and failure 5, DISCUSSION
end-event variables because they are typically not required
in diagnostic modeling and analysis. The BN-DIAG Task The DAEDALUSapproach is, in principle, generalizable to
Application is not restricted from working with system other product design and diagnostic tasks and knowledge
Error_Codesbecause they are typically of paramount in- representation and reasoning formalisms. The use of ontol-
terest for diagnostic modeling and analysis. ogies for generating and selecting variables in the construc-
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Fig. 9. Portion of a BN-Diagnostic Model for an inkjet printer.
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tion and editing of models is a general enough method thatause of a loss of functionality for each design option. A
it can be used in working with other classes of design andraditional, spreadsheet-based FMEA model is used to gen-
diagnosis models. Secondly, using domain ontologies terate a fault tree, from which diagnosability metrics for
filter “in” and “out” selected variables and relationships individual line replaceable units are calculated. This ap-
from models also appears useful in contexts outside theroach is intended for cases where “deep” design models
immediate BN-FMEA schema. Third, the inferencing PSM’sare generally not available, such that a “shallow” metrics-
and their associated domain model mappings can be eXased approach can be applied.
tended beyond Bayesian networks to other reasoning meth- The Knowledge Intensive Engineering Framework pro-
ods such as bond graphs and constraint-based problemesed by Tomiyama is similar to tHeAEDALUSframe-
solving methods. work in several respects. Both propose to integrate disparate
The DAEDALUS framework in its current form ad- design tools by using a central knowledge base and a set
dresses model-to-model consistency only at the “shallow’df differentiated design modeling environments. Both
semantic level, variable-by-variable and relation-by-relationknowledge bases comprise a master ontology defining con-
Domain Ontology semantics are informally specified only cepts used throughout the syst&iiEF calls this the “Con-
by variableg’relation names and their relative location in the cept Dictionary’), as well as a library of product models
ontology context, and not through the use of any formal(the “Models Library’) that are used by the different mod-
Knowledge Interchange ForméIF)-like first order logic  eling environments. KIEF differs frorPAEDALUS how-
language. This notion and use of ontology can be termed aver, in two key respects. First, its knowledge base also
“sparse” ontological approach, in contrast to the “rich” on-contains a Physical Feature Library which represents and
tological methodology which employs a formal semanticsdescribes physical phenomena and related mechanisms. Sec-
encoded in logic. By utilizing the Domain and Task Ontol- ondly, KIEF utilizes a model management mechanitme
ogies principally as a KIEF-style concept dictionary, seman+Metamodel’) to manage the interactions and data sharing
tic consistency of variables and relationships can only béetween the different models and modeling systems, par-
maintained informally with those in other models. Exactticularly where models are interdependent and require con-
reasoning consistency, however, is not necessarily mairsistency(Sekiya & Tomiyama, 1999; Yoshioka et al., 1999
tained with this approach, since the inference PSMs and DAEDALUScan thus be viewed as a specialized subset
their mappings are not maintained as a part of the Domainf the KIEF, in which 2 only the Concept Dictionary and
Ontology at this stage. The absence of a formal semantiche Model Library are employe@orresponding to the Do-
precludes the detection of ontological conflicts in the mod-main Ontology and the Product Model Library, respective-
els or Domain Ontology. ly), 2) the design modeling environments are specialized to
models which can be described and constructed as graphs,
and 3 model-to-model consistency is implicitly assumed
and therefore not handled. The proposed application of
Using design-phase descriptions or models of physical sysDAEDALUSto integrating design and diagnosis modeling
tems to construct diagnostic procedures or models has beémowledge via Bayesian networks takes the architecture
a subject of research for several years. Genesét®84), proof-of-concept in a direction unexplored by the KIEF.
for example, demonstrated in his DART program the use of CommonKADS and Protégé are two knowledge engineer-
digital circuit design models containing information abouting research initiatives that have emerged recently with a
intended structuréparts and their interconnectionand  wide user base of their respective methodologies. The Com-
expected behavidgequations or rules relating inputs to out- monKADS framework distinguishes three different types
puts to generate sets of failure candidates from observedf knowledge needed to solve a given task: domain-specific
symptoms. The domain of model-based diagngdsilam-  knowledge (including a domain ontology inference-
scher et al., 1992uses design-based knowledge of deviceprocess knowledggroblem-solving methods—PSMsnd
function, structure, and behavior to do diagnostic reasoningask knowledgéa decomposition of tasks into subtasks and
about device malfunction, although this is also typically inference actions The domain-specific knowledge is clearly
limited to examples of digital and analog circuitry. More separated from the inference and task knowledge in order
recently, Srinivag1994 has employed functional design to facilitate reuse of domain knowledge and PSMs. Com-
schematics to directly generate Bayesian network diagnosnonkKADS is intended as a knowledge acquisition and man-
tic models of circuits. These approaches have proven diffiagement framework for the development of traditional
cult to apply to mechatronic artifacts due to the complexityknowledge-based systems and does not deal with knowl-
associated with describing and modeling their function, strucedge generation issues associated with artifact design
ture, and behavior. (Schreiber et al., 20Q00Protégé focuses on the use of on-
Other work relating product design and diagnosis is theologies for the acquisition of knowledge. A domain ontol-
design-for-diagnosability metrics research undertaken bygy defines the concepts and relationships that are used
PaaschMurphy & Paasch, 1997 Here the goal is to iden- within the domain knowledge base; the method ontology
tify optimal design alternatives during design or redesignassociated with a given PSM defines concepts and relation-
based on a score ranking the relative ease of isolating thehips used by the PSM for reasoning. Both PSMs and do-
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