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To study electrostatic actuation, researchers commonly use a setup proposed by G. I. Taylor

in [Proc. R. Soc. Lond. Ser. A, 306 (1968), pp. 423–434]. It consists of soap film held at a

distance h above a rigid plate so that when a voltage difference is applied between the two

components, the top film deflects towards the bottom plate. The most striking feature of

this system is when the voltage difference exceeds a critical value V ∗, the electrostatic forces

dominate the surface forces and the soap film gets ‘pulled-into’ or collapses onto the bottom

plate. This so-called ‘pull-in’ instability is a ubiquitous feature of electrostatic actuation and

as a result, has been the subject of many studies. Recently, Siddique et al. [J. Electrostatics,

69 (2011), pp. 1–6] measured the value of V ∗ as a function of the separation distance and

found that the standard prediction breaks down as h increases. Here, we continue the work

done in [N.D. Brubaker and J.A. Pelesko, European J. Appl. Math., 22 (2011), pp. 455–470]

by investigating the cause of this discrepancy. Specifically, we model the effect of gravity on

the generalized version of Taylor’s model and study whether it provides the proper correction

to the predicted value of V ∗. In doing so, we derive two nonlinear eigenvalue value problems

and investigate their solutions sets.

Key words: Electrostatic actuation; Pull-in voltage; Nonlinear elliptic PDE; Prescribed mean

curvature; Nonlinear eigenvalue

1 Introduction

The modern study of electrostatic deflections was started in the late 1960s when the famous

fluid mechanician G. I. Taylor analysed the coalescence of soap bubbles held at different

electric potentials [23]. To do so he placed soap films on the ends of two electrically isol-

ated, conducting tubes and then applied a voltage difference between them. This produced

an attractive force between the two films, causing them to deflect towards each other.

Taylor then studied the shape of these deflections as a function of the potential difference

and the gap between the tubes. The most impactful and surprising observation of this

work was that when the voltage difference is increased beyond some critical value V ∗, the

two films suddenly snap together or ‘pull-in’ – accordingly named the ‘pull-in’ instability.
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Figure 1. Canonical setup.

While Taylor’s research was motivated by the interaction of water droplets in an

electrified cloud, his work has found applications in the field of micro-electromechanical

systems (MEMS), where the soap films are replaced by thin silicon wafers. However, in

this context the pull-in instability severely limits the design space of MEMS devices and

therefore is one of the keys to fully understanding MEMS behaviour [18].

The well-known, general version of Taylor’s setup that we will concern ourselves with

is the one shown in Figure 1. In dimensionless form, this situation can be modelled by

the following boundary value problem [4]:

div
∇u√

1 + ε2|∇u|2
=

λ

(1 + u)2
in Ω; u = 0 in ∂Ω. (1.1 a, b)

Here the function u : Ω̄ → (−1, 0] describes the shape of the deflected membrane and Ω is

a open set in �2 with a piecewise smooth boundary ∂Ω. The non-negative dimensionless

parameters ε and λ are defined as

ε =
h

L
, λ =

ε0V
2L2

2γh3
, (1.2)

where ε0 is the permittivity of free space, V is the potential difference between the

membrane and the plate, L is the characteristic size of the membrane, h is the vertical

distance between the boundary of the plate and the boundary of the membrane and

γ is the surface tension of the membrane. To derive equation (1.1 a), we note that the

the aspect ratio ε must be small. When ε = 0, the model reduces the standard ‘MEMS

equation’ and has studied by numerous authors [1, 10,17,19,20,23]. The case where ε� 0

has recently been studied too [3–5]. The key feature of model (1.1) is that it captures

the pull-in instability via the following fact: for all ε � 0, there exists a λ∗ such that no

solutions of boundary value problem (1.1) exist for any λ > λ∗ (see [18, §7.5.1] and [4]).

Since λ ∝ V 2, this statement is equivalent to increasing the applied voltage beyond the

critical threshold V ∗. As a result the value of λ∗ provides a prediction for the pull-in

voltage

V ∗ =

√
2γλ∗

√
ε0L

h3/2, (1.3)
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Figure 2. Leading order approximation (line) and the two-term expansion (dashed line) of the

pull-in voltage V ∗ (from (1.5)) versus the plate separation h with the experimental data (asterisk)

from [22].

where λ∗ = λ∗(Ω, ε) and V ∗ = V ∗(Ω, ε). For Ω equal to the unit disk D1 the physical

accuracy of this prediction can be tested by using the two-term asymptotic expansion

λ∗ = λ∗
0 + ε2λs + O(ε2), ε � 1, (1.4)

from [4] in (1.3). Here λ∗
0 = λ∗(D1, 0) and λs is the correction due to inclusion of the full

surface effects. They are approximately 0.7892 and −0.1360, respectively. This yields

V ∗ ∼

√
2γλ∗

0

ε0L2
h3/2 +

λs
√
γ√

2ε0λ0L3
h7/2, (1.5)

on Ω = D1, for h � 1 [4]. In comparing this approximation (1.5) with data collected

in [22] it is found that (1.5) does indeed provide an accurate prediction of the pull-in

voltage [4] for very small plate separation h (see Figure 2); however, as h is increased the

accuracy of this prediction breaks down, suggesting that there are other important effects

in this regime. Two likely sources are the gravitational and fringing fields. In this paper, we

look at the former. Specifically, we investigate how gravity affects the generalized version

of Taylor’s experiment (Figure 1) and see if it causes the aforementioned discrepancy. To

do this, we first derive a general model that includes surface, electrostatic and gravitational

forces. From various assumptions, we then reduce this general model to two simplified

models and then investigate their effect the theoretical value of V ∗. Finally, we compare
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these predictions to experimental data. As a result, we find that the gravity plays a

negligible role, suggesting that a correction needs to be made in the electric field.

The remainder of the paper is organized as follows. We begin the next section by

deriving a general model of the system shown in Figure 1 that includes the effect of

gravity. We then use the following three approximations to reduce the general model to

model (1.1) with ε = 0: one, the fringing fields are negligible; two, the effect of gravity is

small; three, the membrane film undergoes small deflections so the norm of the gradient

is small. While the first assumption is used throughout, in the next two sections we

investigate the effects of removing assumptions two and three. Specifically, in Section 3

we investigate the effects of removing assumption two, and in Section 4 we investigate

the effects of removing both assumptions two and three. In each the existence of λ∗ is

shown, and the behaviour of λ∗ is studied using perturbation methods. Then in Section

5 we use the results of Sections 3 and 4 to formulate predicted pull-in voltages of the

models, which we compare to experimental data. Lastly, we conclude by commenting on

the effects of gravity.

2 Model

In this section, we present the governing equations for the dimensionless shape u of

an electrostatically actuated soap film. The system we study is the generalized version

of Taylor’s setup shown in Figure 1. Specifically, a soap film Σ̃ with fixed boundary

∂Ω̃ is suspended at distance h above a rigid plate. A voltage difference is then applied

between the components (we take the plate to have potential V and soap film to be

grounded), creating an electrostatic force that deflects the soap film. To the model shape

of the deflection we first assume that the soap film Σ̃ can be represented by the graph

z̃ = ũ(x̃, ỹ) over the domain Ω̃ (which, without loss of generality, contains the origin).

Then in denoting the electrostatic potential by ψ̃(x̃, ỹ, z̃), we find that the total energy Ẽ
of the system is given by

Ẽ = γ

∫∫
Σ̃

dσ̃ + ρg


∫∫
Σ̃

ũ dσ̃ +
ε0

2

∫∫
Ω̃

∫ ũ

−h
|∇̃ψ̃|2 dz̃ dx̃ dỹ, (2.1)

where the terms are due to the surface energy of the film [7], the gravitational potential

energy of the film and the potential energy of the electric field [11], respectively. The

constants γ, ρ and 
 are the surface tension, density and thickness of the film, respectively.

Also, g is the gravitational acceleration of Earth and ε0 is the permittivity of free space.

Note that g can be taken to be positive or negative, corresponding to gravity pointing

down or up in the vertical direction. We next introduce the dimensionless variables

x = x̃/L, y = ỹ/L, z = z̃/h, u = ũ/h, ψ = ψ̃/V , (2.2)

where L is the maximum radial distance of Ω̃, i.e. L = max{|x̃| : x̃ ∈ ∂Ω̃}. Substituting

these into energy (2.1) yields the dimensionless energy

E =
1

ε2

∫∫
Σ

dσ + β

∫∫
Σ

u dσ + λ

∫∫
Ω

∫ u

−1

(
ε2|∇2ψ|2 + ψz

2
)
dz dx dy, (2.3)
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where the notation ∇2ψ indicates differentiation is only with respect to x and y. The

non-negative dimensionless parameters λ and ε are the same as in problem (1.1). The

dimensionless parameter β is the Bond number ρg
L2/(γh) and measures the relative

importance of gravity versus surface tension.

Finally by minimizing (2.3) using the first variational derivative, we obtain the following

coupled system of partial differential equations for the shape of the deflected membrane

u and the electrostatic potential ψ:

ε2Δ2ψ +
∂2ψ

∂z2
= 0, (2.4a)

in the region between the soap film and the plate, and

(1 + ε2βu) div
∇u√

1 + ε2|∇u|2
= λ

(
ε2 |∇2ψ|2 + ψz

2
)

+
β√

1 + ε2|∇u|2
, (2.4b)

in Ω × {z = u(x, y)}. Here, Ω is a bounded domain in �2 with boundary ∂Ω whose

maximum radial distance is less than or equal to 1 (due to (2.2)). To complete the general

model, we require that the boundary of the soap film stay fixed

u = 0 on ∂Ω. (2.4c)

Also since the soap film is grounded and the plate is held at voltage V , we have

ψ = 0 on Ω × {z = u} , ψ = 1 on Ω × {z = −1} . (2.4d)

Remark 2.1 For system (2.4) – and all the resulting boundary value problems derived

from it – we look for solutions such that u > −1 in Ω so, in physical terms, the membrane

does not hit the bottom plate.

This general model of electrostatic actuation is a nonlinear system of partial differential

equations that is coupled in two ways: one, the first source term on the right-hand

side of (2.4b) captures the force on the film due to the electric field; two, since the top

membrane is grounded, the potential depends on the deflection of the elastic plate. Because

of the complexity of (2.4), researchers have used various assumptions to simplify the

model.

The first is that the fringing field present in the electric field has negligible effect on the

film. As a result the order O(ε2) terms due to the potential ψ are dropped and equation

(2.4) can be solved. This then reduces system (2.4) to

(1 + βε2u) div
∇u√

1 + ε2|∇u|2
=

λ

(1 + u)2
+

β√
1 + ε2|∇u|2

in Ω,

u = 0 on ∂Ω.

(2.5)

The second is that the gravitational effects on the film are minor. Namely β is taken to

be zero, and boundary value problem (2.5) becomes (1.1).
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The last, due to the small aspect ratio, is that the top plate undergoes only small

deflections so that the ε2|∇u|2 terms are very small. In omitting these derivatives, the

left-hand side of equation (1.1 a) becomes the Laplacian and boundary value problem

(1.1) reduces to the standard ‘MEMS model’.

In the next two sections, we investigate the effects of non-negligible gravity with and

without the small deflection approximation.

3 The effect of gravity on the canonical model

In this section, we study the effects of non-negligible gravity on the MEMS equation.

Specifically, we take ε to zero so that governing boundary value problem (2.5) becomes

a semi-linear elliptic partial differential equation with homogeneous Dirichlet boundary

conditions

Δu =
λ

(1 + u)2
+ β in Ω, u = 0 in ∂Ω, (3.1)

where physically β � 1. While for our defined β this system models the effects of gravity,

more generally (3.1) models the deflection of an MEMS capacitor due to the presence

of an external pressure (see, e.g. [1, 2, 23]). For these systems, Beckham [2] examined the

existence and non-existence of solutions depending on β and λ and specifically, showed

the existence of a λ∗.

Theorem 3.1 (Beckham [ [2], §3.3.1]) Let Ω be a bounded domain in �2 with boundary ∂Ω.

For every fixed value of β, there exists a λ∗ such that no solutions of boundary value problem

(3.1) exist for λ > λ∗.

In addition, we can prove a parallel result for β. That is, for all λ > 0 there exists a

β∗ such that no classical solutions of the boundary value problem (3.1) exist for β � β∗.

We should remark that this result has been observed for specific domains (cf. [1, 2, 23]);

however, no rigorous proof exists – specific domain or otherwise. To this end, we first

prove the following lemma.

Lemma 3.2 Let β � 0, Ω be a bounded domain with boundary ∂Ω and u in C2(Ω) ∩ C(Ω̄)

solve boundary value problem (3.1). Furthermore, assume that v in C2(Ω) ∩ C(Ω̄) is the

unique solution to

Δv = β in Ω, v = 0 in ∂Ω. (3.2)

Then, for all x in Ω̄, u(x) � v(x).

Proof Since λ and β are greater than or equal to zero, λ(1 + u)−2 + β � β, and, by

comparison theorem for sub-harmonic functions [21], u � v in Ω̄. �

From this, we prove the following.
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Theorem 3.3 Let Ω be a bounded domain with boundary ∂Ω. Define

β∗ := min

{
β � 0 : min

x∈Ω
v(x; β) � −1

}
, (3.3)

where v(·; β) in C2(Ω)∩C(Ω̄) is the unique solution of (3.2). If β � β∗, then boundary value

problem (3.1) has no solutions in C2(Ω) ∩ C(Ω̄).

Proof Assume to the contrary that there exists a solution u in C2(Ω) ∩C(Ω̄) to boundary

value problem (3.1). Then, by Lemma 3.2, the solution u � v for all x in Ω, which implies

minx∈Ω u(x) � minx∈Ω v(x; β) � minx∈Ω v(x; β
∗) � −1; however, this is a contradiction,

and we have our result. �

Corollary 3.4 For all λ > 0, there exists a β∗ such that no solutions in C2(Ω) ∩ C(Ω̄) of

boundary value problem (3.1) exist for β � β∗.

Remark 3.5 We also note from definition (3.3) that the value β∗ depends on the shape of

the domain Ω; in particular, we have β∗ = β∗(Ω).

Now that we have some general results for model (3.1), let us look at the case where

Ω is the unit disk D1. From Theorem 3.3 we have that v(r; β) = β(r2 − 1)/4. Hence,

β∗ = 4, meaning no solutions of (3.1) on D1 exist for β � 4. Also by Theorem 1 of [8], if

β � 0, then solutions must be radially symmetric. That is, u(x) = u(r), where r = |x|, and

boundary value problem (3.1) becomes

u′′ +
1

r
u′ =

λ

(1 + u)2
+ β, 0 < r < 1; u′(0) = u(1) = 0. (3.4)

If β < 0, this is not necessarily true. However, for simplicity we only look for radial

solutions of (3.1) in this situation as well. To compute the bifurcation diagram for fixed

β in (−∞, 4), we use a shooting method by imposing the initial conditions

u′(0) = 0, u(0) = α > −1, (3.5)

and finding λ such that u(1) = 0. In doing this, we obtain bifurcation diagrams for various

β, which are given in Figure 3. For a more rigorous analysis of the solution set, see [2].

3.1 Asymptotic analysis

Next, we construct two parts of the solution curve of (3.4) for β � 1 via perturbation

methods. The first is the infinite fold structure for u(0) near −1 and the second is the

location of the fold point corresponding to λ∗.

3.1.1 The infinite fold structure

To analyse the infinite fold structure of (3.4) we implement the method of Lindsay and

Ward [13] by setting u(0) = −1 + δ and looking at the regime where 0 < δ � 1 and
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Figure 3. (a) Solution curves for various β of boundary value problem (3.4). From left to right, the

curves correspond to β = 1, 0.1, 0,−0.1,−1. (b) A magnified portion of (a), for β = 1, which begins

to show the infinite fold structure (cf. [2]).

β � 1. Since δ and β are both small, their relationship will be resolved in the asymptotic

analysis. First, we expand u and the nonlinear eigenvalue parameter λ in the standard

way

u = u0 + βu1 + O(β2), λ = λ0 + βλ1 + O(β2). (3.6)

At leading order we take u0 and λ0 to be the well-known singular solution

u0(r) = −1 + r2/3, λ0 = 4/9, (3.7)

which implies that there exists a boundary layer at r = 0. Then substituting the expansions

from (3.6) into (3.4) and equating powers of ε, we find at order O(ε2) that u1 satisfies

u1
′′ +

1

r
u1

′ +
2λ0

r2
u1 =

λ1

r4/3
+ 1, 0 < r < 1; u1(1) = 0, (3.8)

whose solution is

u1(r) = A1 sin

[
2
√

2

3
log r + ϕ1

]
+

3λ1

4
r2/3 +

9

44
r2; λ1 := −4A1

3
sinϕ1 − 3

11
. (3.9)

Here, A1 and ϕ1 are coefficients due to integration and will be determined via matching.

Near the boundary layer at r = 0 we introduce the inner variables

u(r) = −1 + δw(ρ), ρ = r/γ, (3.10)

where γ � 1 is the scale of the boundary layer and is to be determined. Plugging these

new variables into boundary value problem (3.4), we obtain the new inner problem

w′′ +
1

ρ
w′ =

γ2

δ3

(λ0 + . . .)

w2
+
γ2

δ
β, 0 < ρ < ∞; w(0) = 1, w′(0) = 0, (3.11)

which via a dominant balance implies that γ = δ3/2. Then expanding w as w = w0
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+ δw1 + O(δ) and using it in inner problem (3.11), we find that w0 satisfies the initial value

problem

w′′
0 +

1

ρ
w′

0 =
λ0

w2
0

, 0 < ρ < ∞; w0(0) = 1, w′
0(0) = 0. (3.12)

To find the far-field behaviour of w0 as ρ → ∞, we assume that w0 ∼ a ρb as ρ → ∞.

Plugging this behaviour into (3.12) yields, after a dominant balance

a b2ρb−2 ∼ λ0 a
−1ρ−2b,

hence, a = 1 and b = 2/3. To find the next order in the far-field behaviour, we let

w0 ∼ ρ2/3 + σ, where σ � ρ2/3 as ρ → ∞, and find from initial value problem (3.12) that

σ(ρ) satisfies the asymptotic differential equation, σ′′ + ρ−1σ′ + 2λ0ρ
−2σ ∼ 0 as ρ → ∞,

whose solution is

σ(ρ) ∼ A sin

[
2
√

2

3
log ρ+ Φ

]
, as ρ → ∞.

This leads to the following far-field behaviour for the solution w0 of (3.12):

w0 ∼ ρ2/3 + A sin

[
2
√

2

3
log ρ+ Φ

]
as ρ → ∞. (3.13)

Note that here A and Φ must be computed numerically from the solution of initial

value problem (3.12) with the asymptotic behaviour given in (3.13). In particular these

constants have been computed in [13], and we obtain the same values here: A ≈ 0.4727

and Φ ≈ 3.2110.

To carry out our matching to O(δ), we introduce the intermediate variable rη = r/η(δ),

where η � 1 as δ → 0+, and the corresponding condition

lim
δ→0+

xη fixed

1

β
[u0(ηrη) + βu1(ηrη) + (1 − δw0(ηrη/δ

3/2))] = 0. (3.14)

Using (3.7), (3.9) and (3.13), we obtain

u0(ηrη) + βu1(ηrη) + (1 − δw0(ηrη/δ
3/2))

= βA1 sin

[
2
√

2

3
log ηrη + ϕ1

]
− δ A sin

[
2
√

2

3
log ηrη −

√
2 log δ + Φ

]
+ O(δ),

as δ → 0+, for δ3/2 � η � δ. Therefore, for this asymptotic behaviour to vanish as

δ → 0+, we need β = O(δ); namely, we let β/δ = β0, where β = O(1), and then choose

A1 =
A

β0
, ϕ1 = Φ−

√
2 log δ, (3.15)

so that condition (3.14) is satisfied. Accordingly, we determine from (3.9) that λ1 is

λ1 = − 4A

3β0
sin

[
Φ−

√
2 log δ

]
− 3

11
, (3.16)
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Figure 4. (a) For β = 0.01, a comparison of the solution curve of (3.1) computed numerically

(solid) versus its two-term asymptotic approximation (dashed) for the maximal branch given in

(3.18). (b) A magnified portion of sub-figure (a). (c) For β = −0.01, a comparison of the solution

curve of (3.1) computed numerically (solid) versus its two-term asymptotic approximation (dashed)

for the maximal branch given in (3.18). (d) A magnified portion of sub-figure (c).

and hence

λ =
4

9
− δ

(
4A

3
sin

[
Φ−

√
2 log δ

]
+

3

11
β0

)
+ O(δ). (3.17)

Next in fixing the value of β in (3.1), and requiring that β0 = β/δ = O(1), we have the

following result for the maximal branch of the solution curve.

Principle Result 3.1 For β � 1 fixed and δ � 1 such that β/δ = O(1), we have that the

two-term asymptotic expansion for the maximal branch of the solution curve for (3.1) is

given by

u(0) = −1 + δ, λ =

(
4

9
− 3

11
β

)
− δ

(
4A

3
sin

[
Φ−

√
2 log δ

])
+ O(δ2). (3.18)

Here, A and Φ are determined from the far-field behaviour

w0 ∼ ρ2/3 + A sin

[
2
√

2

3
log ρ+ Φ

]
as ρ → ∞,

of the initial value problem

w′′
0 +

1

ρ
w′

0 =
4

9
w−2

0 , 0 < ρ < ∞; w0(0) = 1, w′
0(0) = 0.

In Figure 4, plots of the bifurcation diagram computed numerically are compared to the

two-term asymptotic result for the maximal solution branch obtained in (3.18). Here, we

can see that the asymptotics closely approximate the numerical results.
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3.1.2 The fold point (λ∗, u(0))

In this section, we analyse how λ∗ of boundary value problem (3.4) changes with respect

to β, for β � 1, via the method outlined by Van De Velde and Ward in [24] (also

see [4, 12]). To this end, we assume that the solution curve of boundary value problem

(3.4), seen in Figure 3, is given by the graph (λ(α; β), α), where α := u(0). We denote the

fold corresponding to λ∗ as (λ∗(α∗, β), α∗(β)) and determine it by the following condition:

dλ

dα
(α∗) = 0, (3.19)

where λ(α∗) is a global maximum. Next, since β � 1 and λ and u change with respect to

β, we assume that

u(r; α, β) = u0(r; α) + βu1(r; α) + O(β2), (3.20a)

λ(α; β) = λ0(α) + βλ1(α) + O(β2). (3.20b)

Plugging these expansions into problem (3.4) and equating powers of β, we find that u0

and u1 satisfy

u′′
0 +

1

r
u′

0 =
λ0

(1 + u0)2
, 0 < r < 1; u0

′(0) = 0, u0(1) = 0, (3.21)

L u1 =
λ1

(1 + u0)2
+ 1, 0 < r < 1; u1

′(0) = 0, u1(1) = 0, (3.22)

where L is the linear differential operator defined by

Lψ := ψ′′ +
1

r
ψ′ +

2λ0

(1 + u0)3
ψ. (3.23)

We are now setup to determine the asymptotic behaviour of the fold point. First, we

expand α∗ as α∗(β) = α0 + βα1 + · · · . Then by expanding λ∗(β) = λ(α∗; β) for β � 1 and

using fold condition (3.19), we find that the two-term expansion for λ∗(β) is given by

λ∗(β) = λ0(α0) + βλ1(α0) + O(β2) (3.24)

for β � 1. Next in differentiating expansion (3.20b), evaluating it at α = α∗(β) and

expanding for small β, we deduce dλ0/dα(α0) = 0. This implies that (λ0(α0), α0) is exactly

the fold point corresponding to λ∗ of the unperturbed problem; hence, λ0(α0) ≈ 0.7892

and all we need to find is λ1(α0).

To do so, we notice that for our asymptotic expansion to be valid, we need a unique

solution at O(β); more precisely, we need a unique solution for α = α0. However, differen-

tiating the problem (3.22) with respect to α and then evaluating it at α = α0 gives

L

[
∂u0

∂α
( · ; α0)

]
= 0.

Thus, ∂αu0|α=α0
is a nontrivial solution to homogeneous version of boundary value problem

(3.22), and by the Fredholm solvability condition, we need ∂αu0|α=α0
to be orthogonal in
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the sense of L2 to the right-hand side of (3.22) at α = α0∫ 1

0

∂u0

∂α
(r; α0)

[
λ1(α0)

(1 + u0(r; α0))2
+ 1

]
r dr = 0.

Finally in using this solvability condition to find λ1(α0), we have the following asymptotic

result for λ∗ of problem (3.4).

Principle Result 3.2 Assume β � 1. If (λ0, α0) is the fold point corresponding to λ∗ of

unperturbed problem (3.21), then the two-term asymptotic expansion for λ∗ of (3.4) is given

by

λ∗(β) = λ0 + βλg + O(β2), λg := −
∫ 1

0
ϕ r dr∫ 1

0
ϕ(1 + u0)−2 r dr

, (3.25 a, b)

where u0 satisfies (3.21) with u0(0) = α0 and ϕ satisfies

ϕ′′ +
1

r
ϕ′ +

2λ0

(1 + u0)3
ϕ = 0, 0 < r < 1; ϕ′(0) = 0, ϕ(1) = 0,

such that ‖ϕ‖∞ = 1. Note that here the subscript g is used because the correction is due to

the effect of gravity.

Thus, using definition (3.25 b) to calculate that λg ≈ −0.4709, we have the following

explicit two-term expansion for λ∗ of (3.4), which is valid for β � 1:

λ∗(β) ∼ 0.7892 − 0.4709β. (3.26)

Figure 5 provides a comparison of the computed two-term asymptotic approximation,

(3.25 a), versus the full numerical approximation of λ∗. It is observed that even out to

|β| = 0.25 the agreement is very good.

4 The effects of gravity and curvature

In this section, we investigate the effects of gravity and curvature on the λ∗. First, since

physically 0 < ε2 � 1 and β � 1, we drop the order O(ε2β) terms in boundary value

problem (2.5) and study the resulting model for the shape u of the deflected elastic

membrane

div
∇u√

1 + ε2|∇u|2
=

λ

(1 + u)2
+ β in Ω, u = 0 in ∂Ω. (4.1)

(Note that this boundary value problem is very similar to the one studied by Mellet and

Vovelle in [14]; however, the nonlinear forcing term is slightly different.) To ensure that

this model captures the proper behaviour of the system, we first show that there exists a

λ∗ for boundary value problem (4.1). However, this takes some care and we consider two

separate cases: β � 0 and β < 0.

First for β � 0 we have the following proposition that follows easily from comparison

principles for nonlinear, elliptic operators (see, e.g. Theorem 31 of Ch. 2 in [21]).
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Figure 5. The two-term asymptotic approximation of λ∗ for boundary value problem (3.4) given

in (3.25) (dashed) versus the full numerical approximation (line).

Proposition 4.1 Assume that β � 0 and λ � 0. If u in C2(Ω) ∩ C(Ω̄) is a solution of (4.1),

then u(x) � 0 for x in Ω.

With this result, we may prove the following.

Lemma 4.2 Let ε > 0, β � 0 and λ � 0. Then there exist two values λ∗ and β∗ such that if

λ > λ∗ or β > β∗, no solutions of (4.1) exist; furthermore, we have the following estimates:

λ∗ � min

{
1

ε

|∂Ω|
|Ω| − β,

4κ1

27

}
and β∗ � min

{
1

ε

|∂Ω|
|Ω| , κ1

}
, (4.2)

where κ1 is the first eigenvalue of −Δ on Ω with homogeneous Dirichlet boundary conditions.

Proof Integrating the partial differential equation given in problem (4.1) over Ω and using

the divergence theorem, we obtain

∫
∂Ω

∇u · ν√
1 + ε2|∇u|2

ds = λ

∫
Ω

(1 + u)−2 dx+ β|Ω|, (4.3)

where ν is the exterior unit normal vector of Ω; hence

λ

∫
Ω

(1 + u)−2 dx+ β|Ω| �

∣∣∣∣∣
∫

∂Ω

∇u · ν√
1 + ε2|∇u|2

ds

∣∣∣∣∣ �

∫
∂Ω

|∇u · ν|√
1 + ε2|∇u|2

ds,
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which, by the Cauchy–Schwarz inequality and |ν| = 1, implies

λ

∫
Ω

(1 + u)−2 dx+ β|Ω| �

∫
∂Ω

|∇u|√
1 + ε2|∇u|2

ds. (4.4)

Next observe that

λ|Ω| � λ

∫
Ω

(1 + u)−2 dx;
|∇u|√

1 + ε2|∇u|2
� 1, (4.5 a, b)

where inequality (4.5 a) comes from Proposition 4.1. By using these inequalities in (4.4)

we obtain λ|Ω| + β|Ω| � |∂Ω|/ε, which implies that λ � |∂Ω|/ε|Ω| − β and β � |∂Ω|/ε|Ω|.
To get the other bounds we let u be a solution of (4.1) and consider the eigenvalue

problem

− div
∇ϕ√

1 + ε2|∇u|2
= μϕ in Ω; ϕ = 0 on Ω, (4.6)

for ϕ in H1
0 (Ω). First in multiplying the partial differential equations in problems (4.1)

and (4.6) by ϕ and u, respectively, and integrating over Ω, we obtain

−
∫
Ω

∇ϕ · ∇u√
1 + ε2|∇u|2

dx =

∫
Ω

[
λ

(1 + u)2
+ β

]
ϕ dx;

∫
Ω

∇ϕ · ∇u√
1 + ε2|∇u|2

dx =

∫
Ω

μϕ u dx.

Then adding these equations yields the following solvability condition for u:∫
Ω

(
μ u+

λ

(1 + u)2
+ β

)
ϕ dx = 0, (4.7)

for all eigenpairs (μ, ϕ) of problem (4.6). In particular, condition (4.7) holds for the

first eigenvalue μ1 of problem (4.6) (which is positive and simple) and its corresponding

eigenvector ϕ1, which can – and will – be chosen to be strictly positive in Ω (see, e.g.

Theorem 8.38 of [9]). Therefore, with φ1 > 0 in condition (4.7), the term μ1u+λ(1+u)−2+β

must be identically zero or change sign. It is clear that it is not zero, so there must be a

value of u in (−1, 0), say û, where λ(1 + û)−2 = −μ1û− β. Consequently

λ �
4

27

(μ1 − β)3

μ2
1

.

Then since λ � 0, we deduce that β � μ1 and λ � (4μ1)/27. However, by Rayleigh’s

formula, we also have

μ1 = inf

{∫
Ω

|∇ϕ|2√
1 + ε2|∇u|2

dx : ϕ ∈ H1
0 (Ω), ‖ϕ‖L2(Ω) = 1

}

� inf

{∫
Ω

|∇ϕ|2 dx : ϕ ∈ H1
0 (Ω), ‖ϕ‖L2(Ω) = 1

}
= κ1,

where κ1 is the first eigenvalue of −Δ on Ω with homogeneous Dirichlet boundary

conditions. Therefore, 0 � λ � (4/27)κ1 and β � κ1.
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In collecting our results we have that if u is a solution of (4.1)

λ � min

{
1

ε

|∂Ω|
|Ω| − β,

4κ1

27

}
and β � min

{
1

ε

|∂Ω|
|Ω| , κ1

}
.

In taking the contrapositive we obtain our result desired result. �

Second, for β < 0, we impose the constraint β � −2/ε. While this does not require that

β � 1 when ε � 1 (which is a physical requirement), it does capture that regime and

provides for more generality. From these assumptions we can also prove the existence of

a λ∗.

Proposition 4.3 Assume that ε > 0, β ∈ [−2/ε, 0) and λ � 0. If u in C2(Ω) ∩ C(Ω̄) is a

solution of boundary value problem (4.1), then u(x) � M :=
√

4 − ε2β2/(βε2), for x in Ω.

Proof Note that from the definition of the dimensionless parameters (2.2), Ω ⊆ D1, where

D1 is the unit disk in �2 whose centre is at the origin. Next observe that for β in [−2/ε, 0),

the function w defined by

w(x) :=

√
4 − ε2β2 −

√
4 − ε2β2|x|2

ε2β

is a solution of

div
∇w√

1 + ε2|∇w|2
= β in D1.

Furthermore, w � 0 in D1, which implies that w � 0 on ∂Ω; therefore, if u is a solution

of (4.1), then

div
∇u√

1 + ε2|∇u|2
� div

∇w√
1 + ε2|∇w|2

, in Ω; w � u on ∂Ω,

which implies by the comparison principle for nonlinear, elliptic operators (see, e.g. Ch. 2,

Thm. 31 of [21]) that u(x) � maxx∈Ω w(x) =
√

4 − ε2β2/(ε2β). �

Lemma 4.4 Assume ε > 0, β ∈ [−2/ε, 0) and λ � 0. Then there exists a value λ∗ such that

for all λ > λ∗, no solutions of boundary value problem (4.1) exist; furthermore

λ∗ �

[
1

ε

|∂Ω|
|Ω| − β

]
(1 +M)2, (4.8)

where M =
√

4 − ε2β2/(βε2).

Proof This proof follows essentially the same as the first part of Lemma 4.2, except from

Proposition 4.3 we have that inequality (4.5 a) must be replaced by

λ|Ω|
(1 +M)2

�

∫
Ω

λ

(1 + u)2
dx. �
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Thus, in combining Lemmas 4.2 and 4.4, we have the following theorem about the

existence of a λ∗.

Theorem 4.5 For all ε > 0 and β � −2/ε, there exists a value λ∗ such that for all λ > λ∗,

no solutions of problem (4.1) exist.

Now that we have established the existence of a λ∗, we explore how it varies with

respect to ε and β. With the opportunity for comparison to our previous analysis, we look

at the special case where Ω is the unit disk D1. Again by Theorem 1 of [8], if β � 0, then

solutions of (4.1) must have radial symmetry and boundary value problem (4.1) becomes

1

r

(
ru′√

1 + ε2(u′)2

)′

=
λ

(1 + u)2
+ β, 0 < r < 1; u′(0) = 0, u(1) = 0. (4.9)

Here r = |x| and u(x) = u(r). If β < 0, this is not necessarily true. However, for simplicity

we only look for radial solutions of (4.9) in this situation as well. Using the same shooting

method as before we can compute the bifurcation diagrams, shown in Figure 6, for various

ε and β. From these diagrams, we observe the following.

One, when ε� 0, the solution curves stop at some finite value before reaching u(0) = −1.

This ending point occurs when the derivative of solution becomes singular for some r in

(0, 1), which is similar to the case for β = 0 and ε� 0 and seemingly can be made rigorous

with the same approach (cf. [3]). Note that this disappearance of solutions is similar to

the behaviour of other mean curvature type equations (cf. [4], [15], [16]).

Two, for small ε � 1, a second solution branch appears for β ≈ −18 and λ � 1 (see

Figure 7). Initially this new branch is isolated from the main branch and has one saddle

node bifurcation. Then as β is increased this new branch’s saddle node coalesces with the

second fold of the main solution branch. In the next section, we analyse the appearance

of this new branch using formal asymptotics, before moving on to the dynamics of λ∗

with respect to small ε and β.

4.1 Appearance of a new solution branch

To find the new solution branch, we look at problem (4.9) in the limit δ = 1 + u(rc) → 0+.

Here rc is a critical point of u that corresponds to a local minimum and is to be

determined. With this restriction, we assume that u, λ and rc have the following näıve

regular expansions:

u = u0 + δu1 + · · · , λ = δλ0 + · · · , rc = r0 + · · · , (4.10 a, b, c)

as δ → 0+. From plugging these expansions into (4.9), we find that u0 and u1 satisfy

1

r

(
ru0

′√
1 + ε2(u0

′)2

)′

= β, 0 < r < 1; u0
′(0) = u0(1) = 0, (4.11a)

L u1 =
λ0

(1 + u0) 2
, 0 < r < 1; u1

′(0) = u1(1) = 0, (4.11b)
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Figure 6. Solution curves of (4.9). (a) Fixed β = 0.1 and ε = 0, 0.2, 0.4, 0.6, 0.8, 1. (b) Fixed β = −0.1

and ε = 0, 0.4, 0.8, 1.2, 1.6, 2. (c) Fixed β = 1 and ε = 0, 0.2, 0.4, 0.6, 0.8, 1. (d) Fixed β = −1 and

ε = 0, 0.2, 0.4, 0.6, 0.8, 1.

respectively. Here, the differential operator L is defined by

Lϕ :=
1

r

(
rϕ′(

1 + ε2(u0
′)2
)3/2

)′

. (4.12)

Upon solving the ordinary differential equation given in (4.11a), we find that its general

solutions are given by

f(r) = A−
0 +

√
4 − ε2β2r2 − 2

ε2β
, g(r) =

∫ r

1

βz2 + A+
0√

4z2 − ε2(βz2 + A+
0 )2

dz, (4.13 a, b)

where f and g correspond to applying the boundary conditions u′
0(0) = 0 and u0(1) = 0,

respectively. In particular, A−
0 := u0(0) and A+

0 := 2u0
′(1)/

√
1 + ε2u0

′(1)2 − β. By piecing
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Figure 7. Solution curves of (4.9) for ε = 0.1 and β = −16 (thick line), −17 (line), −18 (dashed),

−18.3 (dot-dashed) and −18.4 (dotted). Note that for β = −16, there is only on curve. Then for

β = −17, the second solution curve appears small λ and u(0) ≈ 2. Also as β increases from −18.3

to −18.4, the saddle node of the new branch and the second fold of the old branch approach, touch

and then move away with new bifurcation structure.

these solutions together and applying the point constraint u(r0) = −1, we find that the

leading order outer solution u0 is given by the piecewise function

u0(r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 +

√
4 − ε2β2r02 −

√
4 − ε2β2r2

ε2β
, 0 < r � r0,∫ r

1

βz2 + A+
0√

4z2 − ε2(βz2 + A+
0 )2

dz, r0 < r < 1,
(4.14)

where

∫ 1

r0

βz2 + A+
0√

4z2 − ε2(βz2 + A+
0 )2

dz = 1. (4.15)

From this we see that u0 is not differentiable at r0, indicating the presence of an interior

layer. Also since u0 ∼ −1 + u0
′(r±

0 )(r − r0) + (1/2)u0
′′(r±

0 )(r − r0)
2 as r → r±

0 , we have that

u1 satisfies the asymptotic differential equation

L u1 ∼ λ0r0

u0
′(r±

0 )2
(r − r0)

−2 +
λ0(u0

′(r±
0 ) − r0u0

′′(r±
0 ))

u0
′(r±

0 )3
(r − r0)

−1,
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as r → r±
0 . This gives the limiting behaviour

u1 = −
λ0

(
1 + ε2u0

′(r±
0 )2

)3/2

u0
′(r±

0 )2
log |r − r0| + A±

1

+
λ0

(
1 + ε2u0

′(r±
0 )2

)3/2 (
u0

′(r±
0 ) − r0u0

′′(r±
0 )
)

r0u0
′(r±

0 )3
(r − r0) log |r − r0| + O(r − r0),

as r → r±
0 . Here, u(n)

0 (r±
0 ) := limr→r±

0
u

(n)
0 (r) and A±

1 are constants associated with the

homogeneous solution of (4.11b) that will be determined from matching.

In the interior layer, we introduce the variables inner variables

ρ = (r − r0)/μ, u(r) = −1 + δv(ρ), (4.16 a, b)

where μ(δ) � 1 – the width of the layer – is to be determined. To do so, we begin by writing

the leading order outer solution in terms of the the inner variable: u ∼ −1 + μu0
′(r±

0 )ρ

as r → r±
0 ; hence, in comparing this asymptotic behaviour with the equation (4.16 b), we

find μ = δ. Then using (4.16) in (4.9) we find that the full inner differential equation for

v is given by

(
v′√

1 + ε2(v′)2

)′

+
δ

r0 + δρ

v′√
1 + ε2(v′)2

=
ν

δ

(λ0 + O(1))

v2
+ δβ. (4.17a)

A dominant balance reveals that ν scales like δ, i.e. ν = δ. Letting r = rc in (4.16), the

corresponding initial conditions become

v(ρc) = 1, v′(ρc) = 0, (4.17b)

where ρc = (rc − r0)/δ. Thus, in expanding v as v ∼ v0 the leading order inner problem

becomes(
v0

′√
1 + ε2(v0′)2

)′

=
λ0

v02
, −∞ < ρ < ∞; v0(0) = 1, v0

′(0) = 0, (4.18)

where we have also used (4.10 c). For the far-field behaviour of this differential equation,

we prove the following.

Proposition 4.6 For classical solutions of (4.18) to exist, it is necessary that λ0 > ε2. Also

for fixed λ0, the solution v0 of (4.18) (if it exists) is unique and goes to +∞ as ρ → +∞;

specifically

|ρ| =
ε3E√

1 − ε4E2
v0 +

ε3λ0 log v0

(1 − ε4E2)3/2
− ε3χ(

1 − ε4E2
)3/2

+ O(v0
−1), v0 → +∞, (4.19)

where χ is defined in (4.21) and E := ε−2 − λ0.
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Proof Note that uniqueness of v0 follows from standard methods (see, e.g. [6]). First by

carrying out the differentiation in (4.18), we find that

v0
′′(ρ) = λ0

(1 + ε2v0
′(ρ)2)3/2

v0(ρ)2
,

so that sgn(v0
′′) = sgn(λ0) for all ρ in (−∞,∞); however, sgn(λ0) cannot be negative

because the right-hand side of the differential equation will blow-up. Therefore, λ0 must

be positive, and consequently, v0
′′ > 0 for all ρ in (−∞,∞). This implies that v0 > 0 for all

ρ and cannot be bounded from above. It is also easy to see that (4.18) has the following

first integral:

1

ε2
√

1 + ε2(v0′)2
− λ0

v0
= E :=

1

ε2
− λ0, −∞ < ρ < ∞. (4.20)

Because the first term on the left-hand side is positive, λ0v
−1
0 +E > 0 for all ρ. Consequently

since v0 cannot be bounded from above, we must have E > 0, namely, λ0 > ε2. Solving

for v0
′ in (4.20) gives

v0
′(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
√
v02 − ε4(λ0 + Ev0)2

ε3(λ0 + Ev0)
, −∞ < ρ < 0,

√
v02 − ε4(λ0 + Ev0)2

ε3(λ0 + Ev0)
, 0 < ρ < ∞.

Finally in separating variables and integrating, we have

ρ = ε3
∫ 1

v0

(λ0 + Ez)√
z2 − ε4(λ0 + Ez)2

dz

= − ε3E√
1 − ε4E2

v0 − ε3λ0 log v0

(1 − ε4E2)3/2
+

ε3χ(
1 − ε4E2

)3/2
+ O(v0

−1),

as v0 → ∞, for ρ < 0, where

χ := E
√

1 − ε4E2
√

1 − ε4(λ0 + E)2 + λ0ε
4E2 − λ0 log [2(1 − ε4E2)]

+ λ0 log
[
1 − ε4E(λ0 + E) +

√
1 − ε4E2

√
1 − ε4(λ0 + E)2

]
.

(4.21)

Similarly, we have

ρ = ε3
∫ v0

1

(λ0 + Ez)√
z2 − ε4(λ0 + Ez)2

dz

=
ε3E√

1 − ε4E2
v0 +

ε3λ0 log v0

(1 − ε4E2)3/2
− ε3χ(

1 − ε4E2
)3/2

+ O(v0
−1),

as v0 → ∞, for ρ > 0. �
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Using series reversion on (4.19) and plugging the result into the inner dependent variable

(4.16 b) we have that

u = −1 + δ

[√
1 − ε4E2

ε3E
|ρ| − λ0

E
(
1 − ε4E2

) log |ρ|

+
1

E
(
1 − ε4E2

)
(
χ− λ0 log

√
1 − ε4E2

ε3E

)]
+ O(δ),

(4.22)

as |ρ| → ∞. For matching we next write the outer solution in terms of the inner variable:

u = −1 + (−δ log δ)
λ0

(
1 + ε2u0

′(r±
0 )2

)3/2

u0
′(r±

0 )2

+ δ

⎡
⎢⎣u0

′(r±
0 )ρ−

λ0

(
1 + ε2u0

′(r±
0 )2

)3/2

u0
′(r±

0 )2
log |ρ| + A±

1

⎤
⎥⎦+ O(δ),

(4.23)

as r → r±
0 ; however in comparing (4.22) and (4.23), we see that the order O(δ log δ) term

cannot be removed. Consequently, we must modify our expansion for u given in (4.10 a)

to include a switchback term:

u = u0 + (−δ log δ)u1/2 + δu1 + O(δ), (4.24)

as δ → 0+. Therefore using (4.24) in (4.9), we find that

L u1/2 = 0, 0 < r < r0, r0 < r < 1; u1/2
′(0) = u1/2(1) = 0, (4.25)

whose solution is given by

u1/2(r) =

⎧⎪⎨
⎪⎩
A−

1/2, 0 < r � r0,

A+
1/2

∫ 1

r

(1 + ε2u0
′(z)2)3/2

z
dz, r0 < r < 1.

Here, A−
1/2 and A+

1/2 will be chosen to get rid of the O(δ log δ) term in (4.23); namely

A−
1/2 = −

λ0

(
1 + ε2u0

′(r−
0 )2

)3/2

u0
′(r−

0 )2
,

A+
1/2 = −

λ0

(
1 + ε2u0

′(r+0 )2
)3/2

u0
′(r+0 )2

[∫ 1

r0

(1 + ε2u0
′(z)2)3/2

z
dz

]−1

.

(4.26)

Then in using these switchback terms we have that (4.23) becomes

u = −1 + δ

⎡
⎢⎣u0

′(r±
0 )ρ−

(
1 + ε2u0

′(r±
0 )2

)3/2

u0
′(r±

0 )2
log |ρ| + A±

1

⎤
⎥⎦+ O(δ), (4.27)
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as r → r±
0 . Finally by requiring that asymptotic equations (4.22) and (4.27) match, we

deduce

u0
′(r±

0 ) = ±
√

1 − ε4E2

ε3E
, A±

1 =
χ− λ0 log(

√
1 − ε4E2/ε3E)

E
(
1 − ε4E2

) . (4.28 a, b)

Note that (4.28a) gives two equations that yield

A+
0 = −2βr0

2, λ0 =
2 −

√
4 − ε2β2r02

2ε2
, (4.29 a, b)

and all that is left to determine is r0 from equation (4.15):

I(r0; β, ε) := β

∫ 1

r0

z2 − 2r0
2√

4z2 − ε2β2(z2 − 2r02)2
dz = 1. (4.30a)

As a result, we find that a new solution branch of (4.9) will appear if the function

I(r0; β, ε) − 1 has a zero in (0, 1). To find when first happens, we supplement (4.30a) with

∂I/∂R = 0. That is

βr0√
4 − ε2β2r02

+

∫ 1

r0

∂

∂r0

⎡
⎣ βz2 − 2βr0

2√
4z2 − ε2β2

(
z2 − 2r02

)2

⎤
⎦ dz = 0. (4.30b)

Finally to find the asymptotic approximation for the first solution (β, r0) of system (4.30)

for ε � 1, we expand β and r0 as β ∼ β0 + ε2β1 and r0 ∼ r00 + ε2r01. Solving out to O(ε2)

yields

β ∼ 4
√
e√

e− 2
− ε2

4
√
e
(
16 + 7

√
e− 12e+ e3/2

)
(√
e− 2

)4
, r0 ∼ e−1/4 + ε2

5
√
e+ 6e− 24

2
(√
e− 2

)2 4
√
e
.

Therefore, for small ε � 1 the second solution branch of problem (4.9) appears when

β ≈ −18.7739 + 258.413ε2. The appearance of this new branch is similar to what happens

when ε = 0 (cf. [ [2], §3.4.2.4]). Also we expect more solution branches to appear as β

becomes very large since this analysis can be repeated for more piecewise outer solutions

like (4.14). However, since β � 1 is not a physically valid regime, we do not proceed any

further.

4.2 Asymptotic analysis of λ∗

In this section, we use the same technique as in Section 3.1.2 to investigate the behaviour

of λ∗ of (4.9) for ε � 1 and β � 1 such that β = β0ε
2, where β0 = O(1). To do so

we assume that the bifurcation curve of (4.9) (seen in Figure 6) is given by the graph

(λ(α; ε), α), where α := u(0). We also denote the fold corresponding to λ∗ as (λ∗(ε), α∗(ε)),

where λ∗(ε) = λ(α∗(ε); ε), and determine it by the condition dλ/dα(α∗) = 0. With this setup,

we expand u and λ as

u(r; α, ε) = u0(r; α) + ε2u1(r; α) + O(ε4), λ(α; ε) = λ0(α) + ε2λ1(α) + O(ε4),
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which after inserting into problem (4.9) implies that u0 and u1 satisfy

u′′
0 +

1

r
u′

0 =
λ0

(1 + u0)2
, 0 < r < 1; u0

′(0) = 0, u0(1) = 0, (4.31)

L u1 =
3λ0(u0

′)2 + 2λ1

2(1 + u0)2
− (u0

′)3

r
+ β0, 0 < r < 1; u1

′(0) = 0, u1(1) = 0, (4.32)

where L is the operator defined in (3.23).

Then to determine the asymptotic behaviour of λ∗, we expand λ∗ and α∗ as

λ∗(ε) = λ(α∗; ε) = λ0(α
∗) + ε2λ1(α

∗) + O(ε4), α∗(ε) = α0 + ε2α1 + O
(
ε4
)
.

Following similar steps as in Section 3.1.2 except that β is replaced by ε2, we find that the

two-term expansion for λ∗ is given by

λ∗(ε) = λ0(α0) + ε2λ1(α0) + O
(
ε4
)
, (4.33)

where λ0(α0) is λ∗ for the unperturbed problem (4.31). To find λ1(α0), we use the Fredholm

solvability condition as in Section 3.1.2. That is, since ∂αu0|α=α0
satisfies the homogeneous

version of problem (4.32), we need it to be orthogonal with respect to the L2 inner product

to the right-hand side of (4.32):

∫ 1

0

(∂αu0)

[
3λ0(u0

′)2 + 2λ1

2(1 + u0)2
− (u0

′)3

r
+ β0

]∣∣∣∣
α=α0

r dr = 0.

In solving this equation for λ1(α0), we find that the order O(ε2) term of (4.33) is

ε2λ1(α0) = β
−
∫ 1

0 (∂αu0)|α=α0
r dr∫ 1

0
(∂αu0)(1 + u0)−2|α=α0

r dr

+ ε2

∫ 1

0
(∂αu0)(u0

′)2
[
(u0

′) − (3/2)λ0r(1 + u0)
−2
]∣∣
α=α0

dr∫ 1

0 (∂αu0)(1 + u0)−2|α=α0
r dr

,

yielding the following asymptotic result for λ∗ of problem (4.9).

Principle Result 4.1 Let (λ0, α0) be the fold point corresponding to λ∗ of problem (4.31).

Then in the regime ε � 1 and β � 1, such that β = O(ε2), the two-term expansion of λ∗ for

boundary value problem (4.9) is given by

λ∗(ε, β) = λ0 + βλg + ε2λs + O(ε4), (4.34)

where

λg =
−
∫ 1

0
ϕ r dr∫ 1

0 ϕ(1 + u0)−2 r dr
, λs :=

∫ 1

0
ϕ (u0

′)2
[
(u0

′) − 3
2
λ0(1 + u0)

−2 r
]
dr∫ 1

0 ϕ(1 + u0)−2 r dr
. (4.35 a, b)
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(d) β = 0.1

Figure 8. The two-term asymptotic approximation of λ∗ for boundary value problem (4.9) given

in (4.34) (dashed) versus the full numerical approximation (line) for various β.

Here, u0 satisfies (4.31) with u0(0) = α0 and ϕ satisfies

ϕ′′ +
1

r
ϕ′ +

2λ0

(1 + u0)3
ϕ = 0, 0 < r < 1; ϕ′(0) = 0, ϕ(1) = 0,

such that ‖ϕ‖∞ = 1. Note that λg and λs, respectively, are the same as those defined in

equations (3.25) and (1.4). Recall that the subscripts g and s are used to indicate which

correction is due to gravitational effects and which is due to surface effects, respectively.

Recall that in Section 3.1.2 we have already calculated λg . Therefore, we calculate λs
using (4.35 b) and find that the approximate expansion of λ∗ for boundary value problem

(4.9) is

λ∗(ε) ∼ 0.7892 − 0.4709β − 0.1360ε2. (4.36)

Figure 8 provides a comparison of the computed two-term asymptotic approximation,

equation (4.34), versus the full numerical approximation of λ∗. We can see that the

two-term asymptotic approximation provides a very good approximation to λ∗.

5 Experimental results and comparison

In this section, we experimentally compute V ∗ for gravity up and down and then compare

these results to the theory derived in Sections 3 and 4.
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Table 1. Experimental data for gravity down

V ∗ (V)

h (mm) Trial 1 Trial 2 Trial 3 Trial 4 Average (V ∗
d )

20.00 5.538e03 5.549e03 5.460e03 5.535e03 5.5205e03

23.95 7.076e03 7.162e03 7.115e03 7.169e03 7.1305e03

28.13 9.103e03 9.038e03 9.068e03 9.116e03 9.08125e03

30.83 10.183e03 10.223e03 10.227e03 10.253e03 10.2215e03

34.93 11.791e03 11.870e03 11.910e03 11.859e03 11.8575e03

38.51 13.141e03 13.153e03 13.137e03 13.171e03 13.1505e03

42.90 14.667e03 14.899e03 14.897e03 14.936e03 14.84975e03

45.83 16.228e03 16.227e03 16.264e03 16.208e03 16.23175e03

5.1 Experimental setup and results

Our experimental setup follows that of Section 3 in [22]. Specifically it consists of two

15.5×15.5×3 mm acrylic plates that are coated with conductive aluminium and separated

by a distance h. In the case where gravity is pointing down (up) in the z-direction, the

upper (lower) plate has a hole cut in its centre while the lower (upper) plate remains solid.

The two plates are connected in each corner by insulating nylon 6/6 threaded rods. To

change the separation, stacks of 0.7 mm thick nylon 6/6 flat washers are added. Then a

soap film – consisting of 800 mL of distilled water, 50 mL of glycerin and 135 mL of

original Dawn soap – is applied across the hole of the upper (lower) plate. The upper

plate is linked to a Glassman High Voltage power supply (model: PS/WR 100P2.5DM1)

and set to a voltage V , while the bottom plate is grounded. Thus, a potential difference

is created between the plates, creating an electric field that causes the soap film to deflect

towards the bottom (top) plate.

Starting with a small plate separation, we increase the voltage until the soap film

collapses or ‘pulls-into’ the solid plate. The voltage at which this occurs is the pull-in

voltage, V ∗, and is recorded along with the corresponding plate separation h. This is

done four times. Then, the separation is increased and the experiment is repeated. This

process continues until h becomes too large for accurate measurements. These recorded

measurements (h, V ∗) determine the data set for which we can compare our previous

theoretical work.

The surface tension, γ, is measured with a SITA Dyno Tester tensiometre to be 25.4

dyn/cm. Therefore, each parameter needed for experimental and theoretical comparison

is known. The experimental data are given in Tables 1 and 2 with a comparison shown in

Figure 9. From this, it is seen that experimentally the difference between gravity up and

down is small.

5.2 Comparison with theory

Recall that the two-term asymptotic approximation of λ∗ for models (3.4) and (4.9) are

given by

λ∗(β) = λ0 + βλg + O(β2) (3.25)
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Table 2. Experimental data for gravity up

V ∗ (V)

h (mm) Trial 1 Trial 2 Trial 3 Trial 4 Average (V ∗
d )

20.00 5.851e03 5.888e03 5.962e03 5.851e03 5.8880e03

23.95 7.277e03 7.526e03 7.537e03 7.300e03 7.4100e03

28.13 9.345e03 9.349e03 9.383e03 9.445e03 9.3805e03

30.83 10.483e03 10.530e03 10.509e03 10.543e03 10.5162e03

34.93 12.207e03 12.244e03 12.221e03 12.187e03 12.2147e03

38.51 13.393e03 13.437e03 13.403e03 13.447e03 13.4200e03

42.90 15.489e03 15.554e03 15.564e03 15.537e03 15.5360e03

45.83 16.596e03 16.699e03 16.741e03 16.730e03 16.6915e03

Figure 9. (Colour online) (a) Experimental data for the pull-in voltage V ∗ for gravity down

(asterisk) and gravity up (circle). (b) The plate separation h versus the measure of the difference

between the data for gravity down and up, |V ∗
u − V ∗

d |/max{V ∗
u , V

∗
d }, for each fixed h.

and

λ∗(ε, β) = λ0 + βλg + ε2λs + O(ε4), (4.34)

respectively. Therefore, using the definitions of β and ε, we deduce that

V ∗ =
ρg
Lλg√

2ε0γλ0

h1/2 +

√
2γλ0√
ε0L

h3/2 + O(h3/2) (5.1)

and

V ∗ =
ρg
Lλg√

2ε0γλ0

h1/2 +

√
2γλ0√
ε0L

h3/2

− ρg
λsλg

2
√

2ε0γλ0
3L
h5/2 +

λs
√
γ√

2ε0λ0L3
h7/2 + O(h7/2)

(5.2)

are the predicted pull-in voltages of (3.4) and (4.9), respectively. A comparison of predic-

tion (5.1) and (5.2) are shown in Figure 10 along with the experimental data. Comparing
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Figure 10. (Colour online) Predicted pull-in voltages, V ∗, of (5.1) (dashed line) and (5.2) (line)

versus the plate separation h with the experimental data (asterisk) from Section 5.1.

with Figure 2 we see that (5.1) and (5.2) provide little correction for larger h; in particular,

the terms in (5.2) arising effect of gravity are multiple orders of magnitude smaller than

the other terms.

6 Conclusion

In this paper, our goal was to investigate the effect of gravity on the generalized version

of G. I. Taylor’s experiment (Figure 1). From this we hoped to resolve the discrepancy,

seen in Figure 2, between the predicted and the experimental values of the pull-in voltage

V ∗ for electrostatically actuated soap films (cf. [4, 22]).

To achieve our goal we first formed a generalized model that included surface, elec-

trostatic and gravitational effects. From commonly used assumptions we then reduced

this general model into two nonlinear eigenvalue problems: (3.1) and (4.1). Using a mix

of rigor and formal asymptotics, we investigated the behaviour of their solutions sets.

Most importantly, we showed that no solutions of these models exist when the nonlinear

eigenvalue λ gets too large (Theorems 3.1 and 4.5). Since λ is proportional to the applied

voltage squared, this behaviour implies that a pull-in voltage V ∗ exists. Next for both

models we constructed a two-term asymptotic approximation that explicitly described the

behaviour of V ∗ and compared it to experimental data gathered in Section 5. From this

comparison, we showed (both experimentally and theoretically) that gravity has minimal

effect on the system in question and cannot be the cause of the discrepancy. Therefore,

from the modelling done in Section 2, it seems that the difference is most likely due the

approximation made in the electric field – specifically the dropping of the fringing fields.
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