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396 T. Gee and J. Newton

1. Introduction

In this paper, we give a common generalisation of two recent extensions of the

Taylor–Wiles patching method, namely the extension in [20] to cases where it is necessary

to patch chain complexes rather than homology groups, and the idea of patching

completed homology explained in [18]. We begin by explaining why this is a useful

thing to do. Our main motivations come from the p-adic Langlands program, which

is well understood for GL2 /Q but is very mysterious beyond this case; and from the

problem of proving automorphy lifting theorems for p-adic automorphic forms (‘big

R = T theorems’) in situations where classical automorphic forms are no longer dense

(for example, GLn /Q for any n > 2).

The local p-adic Langlands correspondence for GL2(Qp) has been established by

completely local methods (see in particular [27, 49]), and local–global compatibility

for GL2 /Q was established in [33] (which goes on to deduce many cases of the
Fontaine–Mazur conjecture). It has proved difficult to generalise the local constructions

for GL2 /Q, and paper [18] proposed instead (by analogy with the original global proof

of local class field theory) the construction of a candidate correspondence globally, by

patching the completed homology of unitary groups over CM fields.

This construction has the disadvantage that it seems to be very difficult to prove that

it is independent of the global situation and of the choices involved in Taylor–Wiles

patching. However, in the case of GL2(Qp), the sequel [19] showed (without using the

results of [27, 49]) that the patching construction is independent of global choices, and

therefore uniquely determines a local correspondence.

It is natural to ask whether similar constructions can be carried out for GLn over a

number field F . Until recently, it was believed that Taylor–Wiles patching only applied to

groups admitting discrete series (which would limit such a construction to the case n = 2
and F totally real), but Calegari and Geraghty showed in [20] that by patching chain

complexes rather than homology groups, one can overcome this obstruction, provided that

one admits natural conjectures on the existence and properties of Galois representations

attached to torsion classes in (uncompleted) homology. For a general F , these conjectures

are open, but for F totally real or CM, the existence of the Galois representations is known

by [54], and most of the necessary properties are expected to be established in the near

future (with the possible exception of local–global compatibility at places dividing p,

which we discuss further below).

The patching construction in [20] is sometimes a little ad hoc, and it was refined

in [41], where the patching is carried out in the derived category. The construction

of [18] was improved upon in [55], which uses ultrafilters to significantly reduce the

amount of bookkeeping needed in the patching argument. We combine these two

approaches, and use ultrafilters to patch complexes in the derived category. In fact, we

take a different approach to [41], by directly patching complexes computing homology,

rather than minimal resolutions of such complexes; this has the advantage that our

patched complex naturally has actions of the Hecke algebras and p-adic analytic groups.

The use of ultrafilters streamlines this construction, and most of our constructions

are natural, resulting in cleaner statements and proofs. (We still make use of the
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Patching and the completed homology of locally symmetric spaces 397

existence of minimal resolutions to show that our ultraproduct constructions are well

behaved.)

To explain our results, we introduce some notation. Write K0 =
∏
v|p PGLn(OFv ) and

let K1 denote a pro-p Sylow subgroup of K0. We consider locally symmetric spaces XU
for PGLn /F , with level U = UpU p

⊂ PGLn(A∞F ), where U p is some fixed tame level and

Up is a compact open subgroup of K0. Let O be the ring of integers in some finite

extension E/Qp, and write k for the residue field of O. We write O∞ for a power series

ring over O and R∞ for a power series ring over the (completed) tensor product of the

local Galois deformation rings at the places v|p of F . These power series rings are in

some numbers of variables, which depend on the choice of Taylor–Wiles primes; these
power series variables are unimportant for the present discussion. For the purpose of this

introduction, we will also ignore the role of the local Galois deformation rings at places

v - p where our residual Galois representation is ramified.

The output of our patching construction is a perfect chain complex C̃(∞) of

O∞[[K0]]-modules, equipped with an O∞-linear action of
∏
v|p PGLn(Fv) and an

O∞-algebra homomorphism

R∞→ EndD(O∞)(C̃(∞)),

where D(O∞) is the unbounded derived category of O∞-modules. The action of R∞ on

C̃(∞) commutes with the action of
∏
v|p PGLn(Fv) (and with that of O∞[[K0]]). Reducing

the complex C̃(∞) modulo the ideal a of O∞ generated by the power series variables, we

obtain a complex, which computes the completed homology groups

H̃∗(XU p ,O)m := lim
←−
Up

H∗(XUpU p ,O)m

localised at a non-Eisenstein maximal ideal m of a ‘big’ Hecke algebra TS(U p), which

acts on completed homology.

Our first main result is to show that, assuming a vanishing conjecture of [20] (which says

that homology groups vanish outside of the expected range of degrees [q0, q0+ l0] after

localising at m), and a conjecture of [17] on the codimension of completed homology,

then the homology of C̃(∞) vanishes outside of a single degree q0, and Hq0(C̃(∞))
is Cohen–Macaulay over both O∞[[K0]] and R∞[[K0]] of the expected projective

dimensions.
One novel feature of our work appears here: since we are working with finitely generated

modules over the non-commutative algebras O∞[[K0]] and R∞[[K0]], we are forced

to establish non-commutative analogues of the commutative algebra techniques that

are applied in [20]. The first crucial result is Lemma A.10 (a generalisation of [20,
Lemma 6.2]), which, as in op. cit, is used to establish vanishing of the homology of

the patched complex outside degree q0. The second is Corollary A.29, which is used to

deduce the Cohen–Macaulay property for the patched module over R∞[[K0]] from the

Cohen–Macaulay property over O∞[[K0]].

If A is a ring and M is an A-module, then we write pdA(M) for the projective dimension

of M over A, and jA(M) for its grade (also known as its codimension; see Definition A.2

and Remark A.3).
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398 T. Gee and J. Newton

Theorem A (Theorem 4.2.1). Suppose that

(a) Hi (XU p K1 , k)m = 0 for i outside the range [q0, q0+ l0],

(b) jO[[K0]]

(⊕
i>0 H̃i (XU p ,O)m

)
> l0.

Then, we have the following:

(1) H̃i (XU p ,O)m = 0 for i 6= q0 and H̃q0(XU p ,O)m is a Cohen–Macaulay O[[K0]]-

module with

pdO[[K0]]
(H̃q0(XU p ,O)m) = jO[[K0]](H̃q0(XU p ,O)m) = l0.

(2) Hi (C̃(∞)) = 0 for i 6= q0 and Hq0(C̃(∞)) is a Cohen–Macaulay O∞[[K0]]-module

with

pdO∞[[K0]]

(
Hq0(C̃(∞))

)
= jO∞[[K0]]

(
Hq0(C̃(∞))

)
= l0.

(3) Hq0(C̃(∞)) is a Cohen–Macaulay R∞[[K0]]-module with

pdR∞[[K0]]

(
Hq0(C̃(∞))

)
= jR∞[[K0]]

(
Hq0(C̃(∞))

)
= dim(B),

where dim(B) = ( n(n+1)
2 − 1)[F : Q].

The conjectures of [17, 20] are open in general, but they are known if n = 2 and F is

imaginary quadratic.

In § 4.3, we take this analysis further. Here it is essential for us to assume that R∞
is regular. Under a natural condition on the codimension (over k[[K0]]) of the fibre
of completed homology at m, we prove the following result, which shows that the

Hecke algebra TS(U p)m is isomorphic to a Galois deformation ring R (a ‘big R = T’

theorem), making precise the heuristics discussed in [32, § 3.1.1], which compare the

Krull dimensions of Hecke algebras and the Iwasawa theoretic dimensions of completed

homology modules and their fibres.

Theorem B (Proposition 4.3.1). Suppose that the assumptions of Theorem A hold, that

R∞ is a power series ring over O, and that we moreover have

jk[[K0]](H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m) > dim(B).

Then, we have the following:

(1) Hq0(C̃(∞)) is a flat R∞-module.

(2) The ideal R∞a is generated by a regular sequence in R∞.

(3) The surjective maps

R∞/a→ R→ TS(U p)m

are all isomorphisms and H̃q0(XU p ,O)m is a faithfully flat TS(U p)m-module.

(4) The rings R ∼= TS(U p)m are local complete intersections with Krull dimension equal

to 1+ dim(B)− l0.

We note here a crucial difference between our set-up and the situation in which Taylor–

Wiles patching (and its variants) is usually applied – the patched module Hq0(C̃(∞)) is

not finitely generated over R∞. The patched module is finitely generated over R∞[[K0]]
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but is not free over this Iwasawa algebra (it has codimension dim(B)). So the usual

techniques to establish ‘R = T’ do not apply.

Moreover, even if we could establish that Hq0(C̃(∞)) is a faithful R∞-module, this

would not be enough to conclude that the map R→ TS(U p)m has a nilpotent kernel.

Instead we need to establish the stronger result that Hq0(C̃(∞)) is a flat R∞-module.

The main novelty of Theorem B is that the simple codimension inequality appearing in

the statement is enough to guarantee this flatness. This follows from a version of the

miracle flatness criterion in commutative algebra (Proposition A.30 – again we must

modify things to handle the fact that our modules are only finitely generated over a

non-commutative algebra).
Establishing the codimension inequality seems to require substantial information

about the mod p representations of
∏
v|p PGLn(Fv) appearing in completed cohomology.

Even in l0 = 0 situations, we do not know how to establish this codimension inequality

(in contrast to the assumptions made in Theorem A, which become trivial when working

in an appropriate l0 = 0 set-up) – if we did, our methods would give a new approach to

proving big R = T theorems in these situations. In the case n = 2, F = Q, the codimension
inequality follows from Emerton’s p-adic local–global compatibility theorem, together

with known properties of the p-adic local Langlands correspondence. In § 5, we show

that some conjectural local–global compatibility statements when n = 2 and p splits

completely in F also imply that this codimension inequality holds.

This strategy for establishing big R = T theorems seems to be the only way known at

present to handle the l0 > 0 situation (Emerton, in a personal communication, tells us

that this was the initial motivation for him and Calegari to consider the codimension of

completed homology and compare it with dimensions of Galois deformation rings and

Hecke algebras). Existing results in the l0 = 0 case [1, 9, 25, 37] rely on establishing

Zariski density of (characteristic 0) automorphic points in the unrestricted Galois

deformation ring R, using generalisations of the Gouvêa–Mazur infinite fern. When l0 > 0,

characteristic 0 automorphic points are not expected to be Zariski dense in R and they are
not Zariski dense in the relevant eigenvarieties (see [21] and the work of Serban described

in [51]), so this approach breaks down.

In § 5, we specialise to the case where n = 2 and p splits completely in F ,

where we can relate our constructions to the p-adic local Langlands correspondence

for GL2(Qp). We formulate a natural conjecture (Conjecture 5.1.2) saying that

the patched module Hq0(C̃(∞)) is determined by (and in fact, determines) this

correspondence; in the case F = Q, this conjecture is proved in [19], and is essentially

equivalent to the local–global compatibility result of [33]. We show that this conjecture

implies a local–global compatibility result (in the derived category) for the complexes

computing finite level homology modules with coefficients in an algebraic representation;

this compatibility is perhaps somewhat surprising, as it is phrased in terms of crystalline

deformation rings, which are not obviously well behaved integrally.

Conversely, we show that if we assume (in addition to the assumptions made in § 4)

that this local–global compatibility holds at finite level, then Conjecture 5.1.2 holds. Our

proof is an adaptation of the methods of [19] although some additional arguments are

needed in our more general setting.
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We moreover show that Conjecture 5.1.2 has as consequences an automorphy

lifting theorem and a ‘small R[1/p] = T[1/p]’ result (Corollary 5.1.8). Therefore, our

local–global compatibility conjecture entails many new cases of the Fontaine–Mazur

conjecture. The application to Fontaine–Mazur was established by [33] in the case F = Q,

and although our argument looks rather different, it is closely related to that of loc. cit.

(but see also Remark 5.1.10).

While our main results are all conditional on various natural conjectures about

(completed) homology groups, in the case where n = 2 and F is an imaginary quadratic

field in which p splits, it seems that the only serious obstruction is our finite level

local–global compatibility conjecture (Conjecture 5.1.12), as we explain in § 5.4.
We end this introduction by briefly explaining the contents of the sections that we have

not already described. In § 2, we introduce the complexes that we will patch and the Hecke

algebras that act on them, and prove some standard results about minimal resolutions

of complexes. We also prove some basic results about ultraproducts of complexes. In

§ 3, we introduce the Galois deformation rings, carry out our patching construction, and

prove its basic properties (for example, we establish its compatibility with completed
homology).

In Appendix A, we establish analogues for Iwasawa algebras of various classical results

in commutative algebra, which we apply to our patched complexes in § 4. Finally, in

Appendix B, we prove some basic results about tensor products and projective envelopes

of pseudocompact modules that we use in § 5.

1.1. Notation

Let F be a number field, and fix an algebraic closure F of F , as well as algebraic closures

Fv of the completion Fv of F at v for each place v of F , and embeddings F ↪→ Fv
extending the natural embeddings F ↪→ Fv. These choices determine embeddings of
absolute Galois groups G Fv ↪→ G F . If v is a finite place of F , then we write IFv ⊂ G Fv for

the inertia group, and Frobv ∈ G Fv/IFv for a geometric Frobenius element; we normalise

the local Artin maps ArtFv to send uniformisers to geometric Frobenius elements. We

write AF for the adele ring of F , and A∞F for the finite adeles.

We fix a prime p throughout, and write ε : G F → Z×p for the p-adic cyclotomic

character. Let O be the ring of integers in a finite extension E/Qp with residue field k;

our Galois representations will be valued in O-algebras (but we will feel free to enlarge E
where necessary). If R is a complete Noetherian local O-algebra with residue field k, then
we write CNLR for the category of complete Noetherian local R-algebras with residue

field k.

If R is a ring, we write Ch(R) for the abelian category of chain complexes of

R-modules. If C• ∈ Ch(R), then we write H∗(C•) :=
⊕

n∈Z Hn(C•). We write D(R) for

the (unbounded) derived category of R-modules – for us, the objects of D(R) are

cochain complexes of R-modules, but we regard a chain complex C• ∈ Ch(R) as a

cochain complex C• by setting C i
= C−i . We write D−(R) for the bounded-above derived

category of R-modules. The objects of D−(R) are cochain complexes of R-modules
with bounded-above cohomology, or (equivalently) chain complexes of R-modules with
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bounded-below homology. Similarly, we write D+(R) for the bounded-below derived

category.

An object C• of D(R) is called a perfect complex if there is a quasi-isomorphism P•→
C•, where P• is a bounded complex of finite projective R-modules. In fact, C• is perfect

if and only if it is isomorphic in D(R) to a bounded complex P• of finite projectives: if

we have another complex D• and quasi-isomorphisms P•→ D•, C•→ D•, then there is

a quasi-isomorphism P•→ C• [59, Tag 064E].

If K is a compact p-adic analytic group, we have the Iwasawa algebra O[[K ]] :=
lim
←−U

O[K/U ], where U runs over the open normal subgroups of K . This is a

(non-commutative) Noetherian ring, some of whose properties we recall in Appendix A.

If R is a formally smooth (commutative) O-algebra, then we write R[[K ]] :=
R ⊗̂O O[[K ]]; note that if R has relative dimension d over O, then R[[K ]] ∼= O[[K ×Zd

p]],
so general properties of O[[K ]] are inherited by R[[K ]].

For technical reasons, we will sometimes assume that K is a uniform pro-p group in

the sense explained in [63, § 1.2]; as explained there, this can always be achieved by

replacing K with a normal open subgroup. The group Zd
p is uniform pro-p, so properties

of O[[K ]] for K a uniform pro-p group are again inherited by R[[K ]].
If M is a pseudocompact (i.e., profinite) O-module, we write M∨ := Homcts

O (M, E/O)
for the Pontryagin dual of M .

2. Patching I: Completed homology complexes and ultrafilters

In this and the following section, we explain our patching construction. For the

convenience of the reader, we will generally follow the notation of [41].

2.1. Arithmetic quotients

We begin by introducing the manifolds whose homology we will patch. We follow [20]

in patching arithmetic quotients for PGLn , rather than GLn ; this is a minor issue in

practice, as the connected components of the arithmetic quotients are the same for either

choice, and we are for the most part able to continue to follow [41] although we caution

the reader that because of this change, it is sometimes the case that we use the same

notation to mean something slightly different from the corresponding definition in [41].

Let G = PGLn,F , let G∞ = G(F ⊗Q R), and let K∞ ⊂ G∞ be a maximal compact

subgroup. Write XG := G∞/K∞. If U ⊂ G(A∞F ) is an open compact subgroup, then we

define

XU = G(F)\(G(A∞F )/U × XG).

If U ⊂ G(A∞F ) is an open compact subgroup of the form U =
∏
v Uv, we say that U is

good if it satisfies the following conditions:

• For each g ∈ G(A∞F ), the group 0U,g := gUg−1
∩G(F) is neat and, in particular,

torsion-free. (By definition, 0U,g is neat if for each h ∈ 0U,g, the eigenvalues of h
generate a torsion-free group.)

• For each finite place v of F , Uv ⊂ PGLn(OFv ).
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402 T. Gee and J. Newton

We write U = UpU p, where Up =
∏
v|p Uv, U p

=
∏
v-p Uv. If S is a finite set of finite

places of F , then we say that U is S-good if Uv = PGLn(OFv ) for all v /∈ S.

By the proof of [41, Lemma 6.1], if U is good, then XU is a smooth manifold, and

if V ⊂ U is a normal compact open subgroup, then V is also good, and XV → XU is a

Galois cover of smooth manifolds.

Let r1, r2 denote the number of real and complex places of F , respectively. Then

dim XU =
r1

2
(n− 1)(n+ 2)+ r2(n2

− 1). (2.1.1)

The defect is

l0 = rank G∞− rank K∞ =


r1

(
n− 2

2

)
+ r2(n− 1) n even;

r1

(
n− 1

2

)
+ r2(n− 1) n odd,

(2.1.2)

and we also set

q0 =
d − l0

2
=


r1

(
n2

4

)
+ r2

n(n− 1)
2

n even;

r1

(
n2
− 1
4

)
+ r2

n(n− 1)
2

n odd.

(2.1.3)

In particular, if F is an imaginary quadratic field and n = 2, then dim XU = 3, l0 = 1,

and q0 = 1. The notation l0, q0 comes from [12], and [q0, q0+ l0] is the range of degrees in

which tempered cuspidal automorphic representations of G contribute to the cohomology

of the XU .

Let CA,• denote the complex of singular chains with Z-coefficients, which are valued in

G(A∞F )× XG , where G(A∞F ) is given the discrete topology. We equip G(A∞F )× XG with

the right G(F)×G(A∞F ) action

(h∞, x) · (γ, g∞) = (γ−1h∞g∞, γ−1x),

which makes CA,• a complex of right Z[G(F)×G(A∞F )]-modules. If U is good and M is

a left Z[U ]-module, then we set

C(U,M) := CA,•⊗Z[G(F)×U ] M.

As in [41, Proposition 6.2], there is a natural isomorphism

H∗(XU ,M) ∼= H∗(C(U,M)).

If U = UpU p is good, then we have the completed homology groups in the sense of [17],

which by definition are given by

H̃∗(XU p ,O) := lim
←−
U ′p

H∗(XU ′pU p ,O),

the limit being taken over open subgroups U ′p of Up.
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We note here that the homology groups H∗(XU ,O) are all finitely generated O-modules.

This follows from the existence of the Borel–Serre compactification [11] or the earlier work

of Raghunathan [52].

2.1.4. Hecke operators. Our complexes have a natural Hecke action in the usual

way, as described in [41, § 6.2]. We recall some of the details. Suppose that U, V are good

subgroups, that S is a finite set of places of F with Uv = Vv if v ∈ S, and that M is a

Z[G(A∞,SF )×US]-module. Then for each g ∈ G(A∞,SF ), there is a Hecke operator

[UgV ]∗ : C(V,M)→ C(U,M)

given by the formula

[UgV ]∗((h× σ)⊗m) =
∑

i

(hgi × σ)⊗ g−1
i m,

where h ∈ G(A∞F ), σ : 1
j
→ XG is a singular simplex, m ∈ M , and UgV =

∐
i gi V .

In practice, we will take S = Sp to be the set of places of F lying over p, and we

take M to be a finite Zp-module with a continuous action of
∏
v|p PGLn(OFv ), with the

action of G(A∞,SF )×US on M being via projection to US ⊂
∏
v|p PGLn(OFv ). (In fact,

we will usually take the action on M to be the trivial action.) If v /∈ Sp is a finite place

of F , then we choose a uniformiser $v of OFv , and for each 1 6 i 6 n, we set αv,i =

diag($v, . . . ,$v, 1, . . . , 1) (with i occurrences of $v).

If v /∈ S is a place for which Uv = PGLn(OFv ), we set T i
v := [Uαv,iU ]∗, where by an

abuse of notation we denote by αv,i the element of G(A∞,SF ), which is equal to αv,i in

the v component and the identity elsewhere; these operators are independent of the
choice of $v, and pairwise commute. We also consider places at which Uv is a normal

subgroup of the standard Iwahori subgroup, which contains the standard pro-$v-Iwahori

subgroup. At these places, we will set Ui
v = [Uαv,iU ]∗; these operators now depend on

the choice of $v, but (for the particular Uv that we use) they still pairwise commute.

They also commute with the diamond operators 〈α〉 = [UαU ]∗, where α is an element of
the standard Iwahori subgroup whose diagonal entries are all equal modulo $v.

Note that it is immediate from the definitions that the actions of the operators T i
v and

Ui
v are equivariant for the natural morphisms of complexes arising from shrinking the

level U away from v.

2.1.5. Minimal resolutions. We recall some standard material on minimal
resolutions of complexes. Since we work over non-commutative rings, there do not seem

to be any standard references.

Let R be a Noetherian local ring (possibly non-commutative). We denote the maximal

ideal by m and assume that R/m = k is a field.

Definition 2.1.6. Let F• be a chain complex of finite free R-modules. The complex F• is

minimal if for all i , the boundary map di : Fi+1 → Fi satisfies

di (Fi+1) ⊂ mFi .

Note that if F• is minimal, the complex k⊗R F• has boundary maps equal to zero.
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Lemma 2.1.7. Let F• be a minimal complex of finite free R-modules with bounded-below

homology so that thinking of F• as an object of the derived category D−(R), we have a

well-defined object k⊗L
R F• ∈ D−(k). Then for each n, we have

rankR(Fi ) = dimk(Hi (k⊗R F•)) = dimk(Hi (k⊗L
R F•)).

In particular, the ranks of the modules Fi depend only on the isomorphism class of F•
in D−(R).

Proof. We have rankR(Fi ) = dimk(k⊗R Fi ), and since F is minimal, we have

k⊗R Fi = Hi (k⊗R F•).

Definition 2.1.8. Let C• ∈ Ch(R) with bounded-below homology. If F• is a minimal

complex (necessarily bounded below) with a quasi-isomorphism F•→ C•, we say that

F• is a minimal resolution of C•.

If F• is a minimal resolution of C•, then by Lemma 2.1.7, we have

rankR(Fi ) = dimk(Hi (k⊗L
R C•)).

Proposition 2.1.9. Let C• ∈ Ch(R) be a chain complex with bounded-below homology, and

assume further that Hi (C•) is a finitely generated R-module for all i . Then there exists

a minimal resolution F• of C•, and any two minimal resolutions of C• are isomorphic

(although the isomorphism is not necessarily unique).

Proof. By considering the canonical truncation τ>NC•→ C• (which is an isomorphism for

sufficiently negative N), we may assume that the complex C• is bounded below. The proof

in the commutative case from [53, § 2, Theorem 2.4] applies without change (the proof

in loc. cit. assumes that the complex has bounded homology, but this is not necessary).

For the reader’s convenience, we sketch the proof.

First we check the uniqueness of the minimal resolution: suppose we have two minimal

resolutions F1,•,F2,• of C•. Then F1,•,F2,• are isomorphic in D(R). Since F1,• is

a bounded-below chain complex of projective modules, there is a quasi-isomorphism

F1,•→ F2,• (by [59, Tag 0649]). This map induces a quasi-isomorphism k⊗R F1,•→

k⊗R F2,•, and minimality implies that this quasi-isomorphism is actually an isomorphism

of complexes. Nakayama’s lemma now implies that F1,•→ F2,• is an isomorphism of

complexes.

Now we show existence of the minimal resolution. First, by a standard argument (see for
example [47, Lemma 1, pp. 47–49]), there is a (not necessarily minimal) bounded-below

complex of finite free modules G• with a quasi-isomorphism G•→ C•.
We now inductively suppose that the complex G• satisfies dm(Gm+1) ⊂ mGm for

m < i . (Note that this is certainly true for i � 0.) We will construct a new

bounded-below complex G′• of finite free modules with G′m = Gm for m < i , together

with a quasi-isomorphism G′•→ G• such that dm(G′m+1) ⊂ mG′m for m 6 i . Iterating this

procedure constructs the minimal resolution F•.
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So, we suppose that di (Gi+1) 6⊂ mGi . We let Y be a subset of Gi+1, which lifts a linearly

independent subset of k⊗R Gi+1 mapping (injectively) to a basis for di (k⊗R Gi+1) ⊂

k⊗R Gi . Then the acyclic complex (with non-zero terms in degrees i + 1 and i)

C(Y ) =
⊕
y∈Y

(
0→ Ry

di
→ Rdi (y)→ 0

)
is a direct summand of G• (a splitting of

⊕
y∈Y Rdi (y) ⊂ Gi induces a compatible

splitting of
⊕

y∈Y Ry ⊂ Gi+1 and such a splitting exists since di (Y ) extends to a basis

of Gi by Nakayama’s lemma), and we set G′• = G•/C(Y ). Since G′• is a direct summand

of G•, we may choose a splitting G′•→ G• of the projection map. This splitting is a

quasi-isomorphism since C(Y ) is acyclic. It is easy to check that G′• has the other desired

properties, so we are done.

2.1.10. Big Hecke algebras. Write C(U, s) := C(U,O/$ s).

Definition 2.1.11. Let S be a finite set of finite places of F , which contains Sp. Let

U = UpU p be an S-good subgroup, with Up a compact open normal subgroup of K0. We

define TS(U, s) to be the image of the abstract Hecke algebra TS (generated over O by

T i
v for v /∈ S) in EndD(O/$ s [K0/Up])(C(U, s)).
We let

TS(U p) = lim
←−
Up,s

TS(UpU p, s),

where the limit is over compact open normal subgroups Up of K0 and s ∈ Z>1, and the

(surjective) transition maps come from the functorial maps

EndD(O/$ s′ [K0/U ′p])
(C(U ′pU p, s′))

→ EndD(O/$ s [K0/Up])(O/$
s
[K0/Up]⊗O/$ s′ [K0/U ′p]

C(U ′pU p, s′))

for s′ > s and U ′p ⊂ Up and the natural identification

O/$ s
[K0/Up]⊗O/$ s′ [K0/U ′p]

C(U ′pU p, s′) ∼= C(UpU p, s).

We equip TS(U p) with the inverse limit topology.

Remark 2.1.12. Now suppose that Up is any compact open subgroup of K0 (not

necessarily normal) and s > 1. Let Vp be a compact open normal subgroup of Up, which

is also normal in K0. Then the natural map TS(U p)→ EndD(O/$ s [K0/Vp])(C(VpU p, s))
induces a map TS(U p)→ EndD(O/$ s [Up/Vp])(C(VpU p, s)) and therefore induces a natural

map TS(U p)→ EndD(O/$ s )(C(UpU p, s)), using the identification

O/$ s
⊗O/$ s [Up/Vp] C(VpU p, s) ∼= C(UpU p, s).

For each U and s, TS(U, s) is a finite O-algebra since C(U, s) is perfect as a complex of

O/$ s
[K0/Up]-modules. Moreover, the natural map TS(U, s)→ EndO(H∗(C(U, s))) has

a nilpotent kernel by [41, Lemma 2.5], and therefore TS(U, s) is a finite ring.
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Remark 2.1.13. Similarly, for each compact open normal subgroup Up of K0, we can

define

TS(UpU p) = lim
←−

s
TS(UpU p, s).

Then TS(UpU p) is a finite O-algebra, and we have TS(U p) = lim
←−Up

TS(UpU p), equipped

with the inverse limit topology (where each TS(UpU p) has its natural p-adic topology).

The big Hecke algebra TS(U p) is naturally equipped with a map

TS(U p)→ EndO[[K0]](H̃i (XU p ,O)),

which commutes with the action of
∏
v|p G(Fv).

Lemma 2.1.14. The profinite O-algebra TS(U p) is semi-local. Denote its finitely many

maximal ideals by m1, . . . ,mr and let J = J (TS(U p)) =
⋂r

j=1 m j denote the Jacobson

radical. Then TS(U p) is J -adically complete and separated, and we have

TS(U p) = TS(U p)m1 × · · ·×TS(U p)mr .

For each maximal ideal m of TS(U p), the localisation TS(U p)m is an m-adically complete

and separated local ring with residue field a finite extension of k.

Proof. First we note that if Up is a pro-p group and Vp is a normal open subgroup of

Up, then for each s > 1, the surjective map

TS(VpU p, s)→ TS(UpU p, 1)

induces a bijection of maximal ideals. Indeed, we have (by [65, Theorem 5.6.4]) a spectral

sequence of TS(VpU p, s)-modules

E2
i, j : Tor

O/$ s
[Up/Vp]

i (k, H j (C(U pVp, s)))⇒ Hi+ j (C(U pUp, 1)).

Localising at a maximal ideal m of TS(VpU p, s) and considering the largest q such that

Hq(C(U pVp, s))m is non-zero shows that m is in the support of Hq(C(U pUp, 1)), and

therefore m is the inverse image of a maximal ideal in TS(UpU p, 1). (Here we have used

that TS(U, s)→ EndO(H∗(C(U, s))) has a nilpotent kernel.)

Now it is not hard to show that the maximal ideals of TS(U p) are in bijection with the

maximal ideals of TS(UpU p, 1). Indeed, we have shown that for every open Vp GUp and

s > 1, the kernel of

TS(VpU p, s)→ TS(UpU p, 1)

is contained in the Jacobson radical of TS(VpU p, s). If x ∈ TS(U p) maps to a unit in
TS(VpU p, s) for every open Vp GUp and s > 1, then x is a unit. We deduce that the

kernel of

TS(U p)→ TS(UpU p, 1)

is contained in the Jacobson radical J of TS(U p), and it follows that TS(U p) is semi-local.

For every open Vp GUp and s > 1, the image of J in TS(VpU p, s) is nilpotent. It follows

that TS(U p) is J -adically complete and separated. The remainder of the lemma follows

from [46, Theorem 8.15].
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2.2. Ultrafilters

In this section, we let A be a commutative finite (cardinality) local ring of characteristic p,

denote the maximal ideal of A by mA, and let k = A/mA. We let B be a finite (but possibly

non-commutative) augmented A-algebra. Denote the augmentation ideal ker(B → A)
by a. The example we have in mind is B = A[0], where 0 is a finite group.

Given an index set I , we define AI =
∏

i∈I A, and similarly BI =
∏

i∈I B. BI is an

augmented AI -algebra, with augmentation ideal aI =
∏

i∈I a = ker(BI → AI ). Note that

aI is a finitely generated ideal of BI , so AI is finitely presented as a BI -module. More
generally, if b ⊂ B is a two-sided ideal that contains a, and bI =

∏
i∈I b, then BI /bI =

(B/b)I is finitely presented as a BI -module.

Remark 2.2.1. If B = A[0], then we have BI = AI [0].

Lemma 2.2.2. Spec(AI ) can be naturally identified with the set of ultrafilters on I . We

have AI,x = A for each x ∈ Spec(AI ). We also have AI,x ⊗AI BI = B.

Proof. The bijection between ultrafilters and prime ideals is given by taking an ultrafilter

F to the ideal whose elements (ai ) satisfy {i : ai ∈ mA} ∈ F. Since the map AI → kI has

a nilpotent kernel, the fact that this gives a bijection follows from the case where A is a

field [55, Lemma 8.1].

For x ∈ Spec(AI ) the associated ultrafilter Fx induces a map BI → B by sending

(bi )i∈I 7→ b, where b ∈ B is the unique element with the property that {i : bi = b} ∈ Fx .

Since BI = AI ⊗A B (because B is finitely presented as an A-module), this map induces

an isomorphism AI,x ⊗AI BI ∼= B.

We have a natural inclusion I ⊂ Spec(AI ) given by taking the principal ultrafilter

associated with an element of I . Given a point x ∈ Spec(AI )\I and a set of chain

complexes of B-modules {C(i)}i∈I , we define a chain complex of B-modules

C(∞) := AI,x ⊗AI

(∏
i∈I

C(i)
)
.

Lemma 2.2.3. Let {C(i)}i∈I be a set of chain complexes of flat B-modules. Then
∏

i∈I C(i)
is a chain complex of flat BI -modules and C(∞) is a chain complex of flat B-modules.

Proof. The fact that
∏

i∈I C(i) is a chain complex of flat BI -modules follows from [60,

Theorem 1.13] (condition (d) in Sweedler’s theorem is automatically satisfied because

B is a finite ring). We deduce immediately that the localisation C(∞) is also a chain

complex of flat B-modules.

Lemma 2.2.4. Let {C(i)}i∈I be a set of chain complexes of B-modules. Let b ⊂ B be a

two-sided ideal that contains a, and let {C(i)}i∈I = {(B/b)⊗B C(i)}i∈I . Then we have a

natural isomorphism

(B/b)⊗B C(∞) = C(∞).
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Proof. We have

(B/b)⊗B C(∞) = (B/b)I,x ⊗(B/b)I (B/b)I ⊗BI

∏
i∈I

C(i).

Since (B/b)I is finitely presented as a (right) BI -module, we have (by [13, Example

I.§ 2.9])

(B/b)I ⊗BI

∏
i∈I

C(i) =
∏
i∈I

C(i)

and we obtain the desired equality.

In the rest of this subsection, we are going to assume that B is a local A-algebra. The

example we have in mind is B = A[0], where 0 is a finite p-group.

Definition 2.2.5. Suppose B is a local A-algebra and fix a set {C(i)}i∈I of perfect chain

complexes of B-modules. For each i , fix a minimal resolution F(i) of C(i). Suppose we

have integers a 6 b and D > 0. We say that the set {C(i)}i∈I has complexity bounded by

(a, b, D) if the minimal complexes F(i) are all concentrated in degrees between a and b
and every term in these complexes has rank 6 D.

If there exists some a, b, D such that {C(i)}i∈I has complexity bounded by (a, b, D),
we say that {C(i)}i∈I has bounded complexity.

Lemma 2.2.6. Suppose B is a local A-algebra, and let {C(i)}i∈I be a set of perfect chain

complexes of B-modules with bounded complexity. Then the complex
∏

i∈I C(i) is a perfect

complex of BI -modules.

Proof. Fix a minimal resolution F(i) of each perfect complex C(i). Since products are

exact in the category of Abelian groups, it suffices to check that the complex
∏

i∈I F(i)
is a bounded complex of finite projective BI -modules. Boundedness follows immediately
from the bounded complexity assumption. It remains to show that if we have a set {Fi }i∈I
of finite free B-modules with ranks all 6 D, then the product

∏
i∈I Fi is a finite projective

BI -module.

We have a decomposition I =
∐D

d=0 Id such that Fi ∼= Bd for i ∈ Id . Then Md ∼=∏
i∈Id

Bd ∼= Bd
Id

is a finite free BId -module. Each Md is a finite projective BI -module

(they are direct summands of finite free modules), and we have

∏
i∈I

Fi =

D⊕
d=0

Md ,

so
∏

i∈I Fi is a finite projective BI -module, as required.

Corollary 2.2.7. Let x ∈ Spec(AI )\I and suppose that {C(i)}i∈I is a set of perfect chain

complexes of B-modules with bounded complexity. Then C(∞) is a perfect complex of

B-modules.

Proof. This follows from Lemmas 2.2.2 and 2.2.6.
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Remark 2.2.8. In fact, there is another way of phrasing the proof that this complex

is perfect. If we fix a, b and D, then there are finitely many isomorphism classes of

minimal complex with complexity bounded by (a, b, D) (since B is a finite ring). Let

x ∈ Spec(AI )\I , corresponding to the non-principal ultrafilter F on I . Then there is an

I ′ ∈ F such that the minimal resolutions of C(i) are isomorphic for all i ∈ I ′. We can

therefore take a single minimal complex F(∞), which is a minimal resolution of C(i) for

all i ∈ I ′. We then have a quasi-isomorphism of complexes of BI ′-modules:

AI ′ ⊗A F(∞)→ AI ′ ⊗AI

(∏
i∈I

C(i)
)
=

∏
i∈I ′

C(i),

which induces a quasi-isomorphism

F(∞)→ C(∞),

so that F(∞) is a minimal resolution of C(∞).

3. Patching II: Galois representations and Taylor–Wiles primes

3.1. Deformation theory

We fix a continuous absolutely irreducible representation ρ : G F → GLn(k). We assume

from now on that p > n > 2. Fix also a continuous character µ : G F → O× lifting det ρ,

and a finite set of finite places S of F , which contains the set Sp of places of F lying
over p, as well as the places at which ρ or µ is ramified.

For each v ∈ S, we fix a ring 3v ∈ CNLO. Let D�v : CNL3v → Sets be the functor

associating with R ∈ CNL3v the set of all continuous liftings of ρ|G Fv
to GLn(R), which

have determinant µ|G Fv
. This is represented by the universal lifting ring Rv ∈ CNL3v .

We let 3 =
⊗̂

v∈S,O3v ∈ CNLO.

Then as in [41, § 4], we have the following notions.

• For v ∈ S, a local deformation problem for ρ|G Fv
is a subfunctor Dv ⊂ D�v , which is

stable under conjugation by elements of ker(GLn(R)→ GLn(k)) and is represented by

a quotient Rv of R�v .

• A global deformation problem is a tuple

S = (ρ, µ, S, {3v}v∈S, {Dv}v∈S)

consisting of the objects defined above.

• If R ∈ CNL3, then a lifting of ρ to a continuous homomorphism ρ : G F → GLn(R) is

of type S if it is unramified outside S, has determinant µ, and for each v ∈ S, ρ|G Fv
is

in Dv(R).
•We say that two liftings are strictly equivalent if they are conjugate by an element of

ker(GLn(R)→ GLn(k)).

• If T ⊂ S and R ∈ CNL3, then a T -framed lifting of ρ to R is a tuple (ρ, {αv}v∈T ), where

ρ is a lifting of ρ to a continuous homomorphism ρ : G F → GLn(R), and each αv is

an element of ker(GLn(R)→ GLn(k)). Two T -framed liftings (ρ, {αv}v∈T ), (ρ
′, {α′v}v∈T )

https://doi.org/10.1017/S1474748020000158 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000158


410 T. Gee and J. Newton

are strictly equivalent if there is an element a ∈ ker(GLn(R)→ GLn(k)) such that ρ′ =

aρa−1 and each α′v = aαv.

• The functors of liftings of type S, strict equivalences of liftings of type S, and strict

equivalence classes of T -framed liftings of type S are representable by objects R�S , RS ,

and RT
S , respectively, of CNL3. (See [41, Theorem 4.5].)

Write 3T :=
⊗̂

v∈T,O3v. For each v ∈ S, let Rv ∈ CNL3v denote the representing

object of Dv, and write RT,loc
S :=

⊗̂
v∈T,ORv. The natural transformation (ρ, {αv}v∈T ) 7→

(α−1
v ρ|G Fv

αv)v∈T induces a canonical homomorphism of 3T -algebras RT,loc
S → RT

S .

3.2. Enormous image

Let H ⊂ GLn(k) be a subgroup that acts irreducibly on the natural representation.

We assume that k is chosen large enough to contain all eigenvalues of all elements

of H .

Definition 3.2.1. We say that H is enormous if it satisfies the following conditions:

(1) H has no non-trivial p-power order quotient.

(2) H0(H, ad0) = H1(H, ad0) = 0 (for the adjoint action of H).

(3) For all simple k[H ]-submodules W ⊂ ad0, there is an element h ∈ H with n
distinct eigenvalues and α ∈ k such that α is an eigenvalue of h and tr eh,αW 6= 0,

where eh,α ∈ Mn(k) = ad denotes the unique h-equivariant projection onto the

α-eigenspace of h.

Remark 3.2.2. By definition, an enormous subgroup is big in the sense of [26,

Definition 2.5.1], and thus adequate in the sense of [62, Definition 2.3]. Indeed, the only

differences between these notions is that in the definition of big (the condition that h
has n distinct eigenvalues is relaxed to demanding that the generalised eigenspace of α

is one-dimensional) and in the definition of adequate (it is further relaxed to ask only

that α is an eigenvalue of h) (but the definition of eh,α is now the projection onto the

generalised eigenspace for α).

Lemma 3.2.3. If n = 2, the notions of enormous, big, and adequate are all equivalent. In

particular, if H acts irreducibly on k2, then H is enormous unless p = 3 or p = 5, and

the image of H in PGL2(k) is conjugate to PSL2(Fp).

Proof. The second statement follows from the first statement and [5, Proposition A.2.1].
By Remark 3.2.2, it is therefore enough to show that if we have a simple k[H ]-submodule

W ⊂ ad0 and an element h ∈ H with an eigenvalue α such that tr eh,αW 6= 0, then

h necessarily has distinct eigenvalues. If not, then eh,α = 1 by definition (as eh,α
is a projection onto the generalised eigenspace for α), which is a contradiction as

W ⊂ ad0.

We now give two examples of classes of enormous subgroups of GLn(k) when n > 2,

following [26, § 2.5] (which shows that the same groups are big).
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Lemma 3.2.4. If n > 2 and there is a subfield k′ ⊂ k such that k×GLn(k′) ⊃ H ⊃ SLn(k′),
then H is enormous.

Proof. Examining the proof of [26, Lemma 2.5.6] (which shows that H is big), we see that

it is enough to check that SLn(k′) contains an element with n distinct eigenvalues. Since

we are assuming that p > n, we can use an element with characteristic polynomial Xn
+

(−1)n (for example, the matrix (ai j ) with ai+1,i = 1, a1,n = (−1)n−1, and all other

ai j = 0).

Lemma 3.2.5. If p > 2n+ 1 and there is a subfield k′ ⊂ k such that k× Symn−1 GL2(k′) ⊃
H ⊃ Symn−1 SL2(k′), then H is enormous.

Proof. The proof of [26, Corollary 2.5.4] (which shows that H is big) in fact shows

that H is enormous (note that in the proof of [26, Lemma 2.5.2], it is shown that the

eigenspaces of the element denoted by t are one-dimensional). (Note also that as explained

after [6, Proposition 2.1.2], the hypothesis that p > 2n− 1 in [26, Corollary 2.5.4] should

be p > 2n+ 1.)

3.3. Taylor–Wiles primes

Suppose that v is a finite place of F such that #k(v) ≡ 1 (mod p), that ρ|G Fv
is unramified,

and that ρ(Frobv) has n distinct eigenvalues γv,1, . . . , γv,n ∈ k. Let 1v = (k(v)×(p))n−1

(where k(v)×(p) is the Sylow p-subgroup of k(v)×), and let 3v = O[1v].
We define DTW

v to be the functor of liftings over R ∈ CNL3v of the form

r ∼ χ1⊕ · · ·⊕χn,

where χ1, . . . , χn : G Fv → R× are continuous characters such that for each i = 1, . . . ,
n− 1, we have

• (χi (mod mR))(Frobv) = γv,i , and

• χi |IFv
agrees, on composition with the Artin map, with the ith canonical character

k(v)×(p)→ R×.

(This definition depends on the ordering of the γv,i , but this does not affect any of our

arguments.) The functor DTW
v is represented by a formally smooth 3v-algebra.

Suppose that S = (ρ, µ, S, {3v}v∈S, {Dv}v∈S) is a deformation problem. Let Q be a set
of places disjoint from S of the form considered above (that is, #k(v) ≡ 1 (mod p) and

ρ(Frobv) has n distinct eigenvalues). We refer to the tuple

(Q, (γv,1, . . . , γv,n)v∈Q)

as a Taylor–Wiles datum, and define the augmented deformation problem

SQ = (ρ, µ, S ∪ Q, {3v}v∈S ∪ {O[1v]}v∈Q, {Dv}v∈S ∪ {DTW
v }v∈Q).

Let 1Q =
∏
v∈Q 1v =

∏
v∈Q k(v)×(p)n−1. Then RSQ is naturally an O[1Q]-algebra.

If aQ ⊂ O[1Q] is the augmentation ideal, then there is a canonical isomorphism

RSQ/aQ ∼= RS .
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Recall that ρ is totally odd if for each complex conjugation c ∈ G F , we have

ρ(c) ∼ diag(1, . . . , 1︸ ︷︷ ︸
a

,−1, . . . ,−1︸ ︷︷ ︸
b

),

with |a− b| 6 1. (Of course, if F is totally complex, this is a vacuous condition.) Let l0
be the integer defined in (2.1.2) (which only depends on F and n).

Lemma 3.3.1. Let (ρ, µ, S, {3v}v∈S, {Dv}v∈S) be a global deformation problem. Suppose
the following:

• ρ is totally odd.

• ρ 6∼= ρ⊗ ε.

• ρ(G F(ζp)) is enormous.

Then for every q � 0 and every N > 1, there exists a Taylor–Wiles datum
(QN , (γv,1, . . . , γv,n)v∈QN ) satisfying the following conditions:

(1) #QN = q.

(2) For each v ∈ QN , qv ≡ 1 (mod pN ).

(3) The ring RS
SQN

is a quotient RS,loc
S -algebra of R∞ := RS,loc

S JX1, . . . , XgK, where

g = (n− 1)q − n(n− 1)[F : Q]/2− l0− 1+ #S.

Proof. This follows from [41, Lemma 4.12] and a standard argument using Poitou–Tate

duality; compare the proof of [41, Theorem 6.29].

Fix a choice of place v0 ∈ T and an integer q � 0 as in Lemma 3.3.1, and set

T = O[[X i, j
v ]]v∈S,16i, j6n/(X1,1

v0
). Set 1QN :=

∏
v∈QN

1v, ON := T [1QN ], and O∞ :=
T [[1∞]], where 1∞ = Z(n−1)q

p . For each N , we fix a surjection 1∞ � 1N , and thus

a surjection of T -algebras O∞ � ON .

We now examine the behaviour of the Hecke operators at Taylor–Wiles primes.

Fix U p such that U p K0 is S-good. We begin by setting up some notation. Let

(Q, (γv,1, . . . , γv,n)v∈Q) be a Taylor–Wiles datum. We define compact open subgroups

U p
0 (Q) =

∏
v-p U0(Q)v and U p

1 (Q) =
∏
v-p U1(Q)v of U p

=
∏
v-p Uv by the following:

• If v /∈ Q, then U0(Q)v = U1(Q)v = Uv.

• If v ∈ Q, then U0(Q)v is the standard Iwahori subgroup of PGLn(OF,v), and U1(Q)v is

the minimal subgroup of U0(Q)v for which U0(Q)v/U1(Q)v is a p-group.

In particular, U1(Q)v contains the pro-v Iwahori subgroup of U0(Q)v, so we can and do

identify
∏
v∈Q U0(Q)v/U1(Q)v with 1Q . We now introduce some natural variants of the

Hecke algebras that we introduced in § 2.1.10.

For each compact open normal subgroup Up of K0, we define TS∪Q,Q(UpU p
0 (Q), s) to

be the image in EndD(O/$ s [K0/Up])(C(UpU p
0 (Q), s)) of the abstract Hecke algebra TS∪Q,Q

generated by the operators T i
v for v /∈ S ∪ Q and Ui

v for v ∈ Q, where the operators Ui
v act

as explained in § 2.1.4. Similarly, we let TS∪Q,Q(UpU p
1 (Q), s) be the image of TS∪Q,Q in

EndD(O/$ s [1Q×K0/Up])(C(UpU p
1 (Q), s)) (as explained in § 2.1.4, the operators Ui

v commute

with the action of 1Q).
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Note that we have a natural isomorphism of complexes

C(UpU p
1 (Q), s)⊗O[1Q ]O ∼= C(UpU p

0 (Q), s). (3.3.2)

We then set (for each compact open normal subgroup Up of K0)

TS∪Q,Q(UpU p
i (Q)) = lim

←−
s

TS∪Q,Q(UpU p
i (Q), s),

TS∪Q,Q(U p
i (Q)) = lim

←−
Up,s

TS∪Q,Q(UpU p
i (Q), s),

for i = 0, 1, equipped with their inverse limit topologies. We now need to assume

the existence of Galois representations associated with completed homology, as in the

following conjecture.

Conjecture 3.3.3. Let m ⊂ TS(U p) be a maximal ideal with residue field k.

(1) There exists a continuous semi-simple representation

ρm : G F,S → GLn(TS(U p)/m)

satisfying the following conditions: ρm is totally odd, and for any finite place v /∈ S
of F, ρm(Frobv) has characteristic polynomial

Xn
− T 1

v Xn−1
+ · · ·+ (−1)i q i(i−1)/2

v T i
v Xn−i

+ · · ·+ (−1)nqn(n−1)/2
v T n

v

∈ (TS(U p)/m)[X ].

(2) Suppose that ρm is absolutely irreducible. Then there exists a lifting of ρm to a

continuous homomorphism

ρm : G F,S → GLn(TS(U p)m)

satisfying the following condition: for any finite place v /∈ S of F, ρm(Frobv) has

characteristic polynomial

Xn
− T 1

v Xn−1
+ · · ·+ (−1)i q i(i−1)/2

v T i
v Xn−i

+ · · ·+ (−1)nqn(n−1)/2
v T n

v ∈ TS(U p)m[X ].

(In particular, since for each v /∈ S we have T n
v = 1, we have det ρm = εn(1−n)/2.)

Remark 3.3.4. If F is a CM or totally real field, the first part of the conjecture holds by

the main results of [23, 54]. It also follows from Scholze’s work (again with the assumption

that F is CM or totally real) that there is a lifting of ρm valued in TS(U p)m/I for some

nilpotent ideal I ⊂ TS(U p)m, and in fact we may assume that I 4
= 0 by [48, Theorem 1.3].

Moreover, the nilpotent ideal has been eliminated entirely when F is CM and p splits

completely in F [22].

Definition 3.3.5. Let m be a maximal ideal of TS(U p). For sufficiently small Up (for

example, if Up is pro-p), m is the inverse image of a maximal ideal of TS(UpU p, 1), which

we also denote by m. The abstract Hecke algebra TS surjects onto TS(UpU p, 1),
and we again denote by m the inverse image of m in TS .
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Finally, for any module M for TS (or complex of such modules), we denote by Mm the

localisation TS
m⊗TS M . Note that the idea of patching singular chain complexes localised

with respect to the action of the abstract Hecke algebra appears in [39].

We make an analogous definition for maximal ideals of the Hecke algebras TS∪Q(U p
i (Q))

and TS∪Q,Q(U p
i (Q)).

We assume Conjecture 3.3.3 from now on, and recall that we have fixed U p such that

U p K0 is S-good. We now fix a maximal ideal m of TS(U p), and assume that

• ρm is absolutely irreducible

• ρm(G F(ζp)) is enormous, and

• ρm 6
∼= ρm⊗ ε.

Enlarging our coefficient field E if necessary, we assume further that m has residue
field k, and that k contains the eigenvalues of all elements of the image of ρm. We fix

S = (ρm, εn(1−n)/2, S, {O}v∈S, {D�v }v∈S).

The following is the analogue of [41, Proposition 6.26] in our context, and the proof is

essentially identical.

Proposition 3.3.6. Let (Q, (γv,1, . . . , γv,n)v∈Q) be a Taylor–Wiles datum.

(1) There are natural inclusions TS∪Q(U p) ⊂ TS(U p) and TS∪Q(U p
0 (Q)) ⊂ TS

(U p
0 (Q)), and natural surjections TS∪Q(U p

0 (Q))� TS∪Q(U p), TS∪Q(U p
1 (Q))�

TS∪Q(U p
0 (Q)) and TS∪Q,Q(U p

1 (Q))� TS∪Q,Q(U p
0 (Q)).

(2) Let mQ,0 ⊂ TS∪Q,Q(U p
0 (Q)) denote the ideal generated by the pullback of m to

TS∪Q(U p
0 (Q)) and the elements Ui

v −
∏i

j=1 γv,i . Then mQ,0 is a maximal ideal.

(3) Write mQ,1 for the pullback of mQ,0 to TS∪Q,Q(U p
1 (Q)), and m′ for the pullback

of m to TS∪Q(U p). Then there are a quasi-isomorphism

C(UpU p
0 (Q), s)mQ,0 → C(UpU p, s)m

and an isomorphism

C(UpU p
1 (Q), s)mQ,1 ⊗O[1Q ]O ∼= C(UpU p

0 (Q), s)mQ,0 ,

which are both equivariant for the actions of the operators T i
v , v /∈ S ∪ Q.

Consequently, if we write TS∪Q(UpU p
1 (Q), s)mQ,1 for the O[1Q]-subalgebra

of EndD(O/$ s [1Q×K0/Up])(C(UpU p
1 (Q), s)mQ,1) generated by the operators T i

v , v /∈

S ∪ Q, then there are natural maps

TS∪Q(UpU p
1 (Q), s)mQ,1 � TS∪Q(UpU p, s)m′ ∼= TS(UpU p, s)m.

Proof. The inclusions TS∪Q(U p) ⊂ TS(U p) and TS∪Q(U p
0 (Q)) ⊂ TS(U p

0 (Q)) exist by

definition. The surjections TS∪Q(U p
1 (Q))� TS∪Q(U p

0 (Q)) and TS∪Q,Q(U p
1 (Q))�

TS∪Q,Q(U p
0 (Q)) are induced by (3.3.2), while the surjection TS∪Q(U p

0 (Q))� TS∪Q(U p)

comes from the splitting by the trace map of the natural map

C(UpU p
0 (Q), s)→ C(UpU p, s)
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(note that for v ∈ Q, since p > n and #k(v) ≡ 1 (mod p), the index of U0(Q)v in

PGLn(OF,v) is congruent to n! mod p, by the Bruhat decomposition, and hence this

index is prime to p).

For the second part, we need to show that mQ,0 is in the support of C(UpU p
0 (Q), 1).

As in the proof of [41, Lemma 6.25], it is enough to prove the corresponding statement

for cohomology groups, which follows from [41, Lemma 5.3].

The isomorphism C(UpU p
1 (Q), s)mQ,1 ⊗O[1Q ]O ∼= C(UpU p

0 (Q), s)mQ,0 is induced

by (3.3.2). The quasi-isomorphism is the composite of quasi-isomorphisms

C(UpU p
0 (Q), s)mQ,0 → C(UpU p, s)m′ → C(UpU p, s)m,

which are induced by the obvious natural maps of complexes (and the morphisms of

Hecke algebras from part (1)); to see that they are indeed quasi-isomorphisms, one

uses, respectively, [41, Lemma 5.4] and the argument of [41, Lemma 6.20]. Finally the

isomorphism TS∪Q(UpU p, s)m ∼= TS(UpU p, s)m again follows from the argument of [41,

Lemma 6.20] and [26, Corollary 3.4.5].

As usual, we set

TS∪Q(U p
1 (Q))mQ,1 := lim

←−
Up,s

TS∪Q(UpU p
1 (Q), s)mQ,1 ,

TS∪Q(UpU p
1 (Q))mQ,1 := lim

←−
s

TS∪Q(UpU p
1 (Q), s)mQ,1 ,

equipped with their inverse limit topologies. (These are local rings, as can easily be
checked as in the proof of Lemma 2.1.14.) We will need to assume the following refinement

of Conjecture 3.3.3.

Conjecture 3.3.7. Suppose that ρm is absolutely irreducible, and let (Q, (γv,1, . . . ,
γv,n)v∈Q) be a Taylor–Wiles datum. Then there exists a lifting of ρm to a continuous

homomorphism

ρm,Q : G F,S∪Q → GLn(TS∪Q(U p
1 (Q))mQ,1)

satisfying the following conditions: for any finite place v /∈ S ∪ Q of F, ρm,Q(Frobv) has
characteristic polynomial

Xn
− T 1

v Xn−1
+ · · ·+ (−1)i q i(i−1)/2

v T i
v Xn−i

+ · · ·+ (−1)nqn(n−1)/2
v T n

v

∈ TS∪Q(U p
1 (Q))mQ,1 [X ]

and ρm,Q is of type SQ.

Remark 3.3.8. The requirement that ρm,Q be of type SQ is a form of local–global

compatibility at the places in Q. If F is CM, this property is verified in [2] (under a

technical assumption, which permits the use of Shin’s unconditional base change and up

to a nilpotent ideal; see Remark 3.3.4).

We assume Conjecture 3.3.7 from now on, so that in particular ρm,Q determines

an O[1Q]-algebra homomorphism

RSQ → TS∪Q(U p
1 (Q))mQ,1 , (3.3.9)
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and the choice of ρm,Q in its strict equivalent class determines an isomorphism

RS
SQ

∼
−→ T ⊗̂O RSQ . (3.3.10)

3.4. Patching

For each N > 1, we let (QN , (γv,1, . . . , γv,n)v∈QN ) be a choice of Taylor–Wiles datum as

in Lemma 3.3.1 (for some fixed choice of q � 0). We fix a surjective RS,loc
S -algebra map

R∞→ RS
SQN

for each N . We also fix a non-principal ultrafilter F on the set N = {N > 1}.

Remark 3.4.1. With the exception of Remark 3.4.17, the choice of F is the only choice

we make in our patching argument. This has the pleasant effect of making many of the

constructions below natural, although the reader should bear in mind that they are only
natural relative to our fixed choice of F.

Definition 3.4.2. Let Up be a compact open subgroup of K0, and let J be an open

ideal in O∞. Let IJ be the (cofinite) subset of N ∈ N such that J contains the kernel

of O∞→ ON . For N ∈ IJ , we define

C(Up, J, N ) = O∞/J ⊗O[1QN ]
C(U p

1 (QN )Up,O)mQN ,1
.

Remark 3.4.3. (1) We have a map R
Sp
SQN
→ T ⊗̂O TS∪QN (U p

1 (QN ))mQN ,1
by (3.3.9)

and (3.3.10), and a map

T ⊗̂O TS∪QN (U p
1 (QN ))mQN ,1

→ EndD(O∞/J )(C(Up, J, N ))

by the definition of TS∪QN (U p
1 (QN ))mQN ,1

together with Remark 2.1.12. In
particular, for all J and N ∈ IJ , we have a ring homomorphism

R∞→ EndD(O∞/J )(C(Up, J, N )),

which factors through our chosen quotient map R∞→ RS
SQN

and the ON -algebra

map

RS
SQN
→ T ⊗̂O TS∪QN (U p

1 (QN ))mQN ,1
.

(2) If U ′p is an open normal subgroup of Up, C(U ′p, J, N ) is a complex of flat

O∞/J [Up/U ′p]-modules.

(3) Let a = ker(O∞→ O). Suppose that a ⊂ J . Then C(Up, J, N ) = C(U p
0 (QN )Up,

s(J ))mQN ,0
where O∞/J ∼= O/$ s(J ) and the natural map C(U p

0 (QN )Up, s(J ))mQN ,0

→ C(U pUp, s(J ))m is a quasi-isomorphism.

Definition 3.4.4. For d > 1, J an open ideal in O∞, and N ∈ IJ , we define

R(d, J, N ) =

(
RS
SQN

/md
RS
SQN

)
⊗ON O∞/J.
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Remark 3.4.5. Each ring R(d, J, N ) is a finite commutative local O∞/J -algebra,

equipped with a surjective O-algebra map R∞→ R(d, J, N ). As in the beginning of

the proof of [41, Proposition 3.1], for d sufficiently large (depending on J and Up), the

map

R∞→ EndD(O∞/J )(C(Up, J, N ))

factors through the quotient R(d, J, N ) and the map

R(d, J, N )→ EndD(O∞/J )(C(Up, J, N ))

is an O∞-algebra homomorphism. We have an isomorphism

R(d, J, N )/a ∼= RS/(m
d
RS
,$ s(a+J ))

induced by the canonical isomorphism RSQN
/aQN

∼= RS .

Lemma 3.4.6. (1) For all open ideals J ′ ⊂ J and open normal subgroups U ′p ⊂ Up, we

have surjective maps of complexes

C(U ′p, J ′, N )→ C(Up, J, N )

inducing isomorphisms (of complexes)

O∞/J ⊗O∞/J ′[Up/U ′p] C(U
′
p, J ′, N )→ C(Up, J, N ).

(2) Let K1 be a pro-p Sylow subgroup of K0 and let Up be an open normal

subgroup of K1. Then {C(Up, J, N )}N∈IJ is a set of perfect chain complexes of

O∞/J [K1/Up]-modules with bounded complexity.

Proof. The maps of complexes C(U ′p, J ′, N )→ C(Up, J, N ) are those induced by the

natural maps O∞/J ′→ O∞/J and C(U p
1 (QN )U ′p,O)→ C(U p

1 (QN )Up,O).
To see that C(Up, J, N ) is perfect, we first observe that by part (1), we have

an isomorphism k⊗O∞/J [K1/Up] C(Up, J, N ) ∼= C(K1,mO∞ , N ) – note that k is the

residue field of the local ring O∞/J [K1/Up] and C(Up, J, N ) is a bounded-below

complex of flat O∞/J [K1/Up]-modules with finitely generated homology. It follows from

Proposition 2.1.9 that C(Up, J, N ) has a minimal resolution, and since C(K1,mO∞ , N )
has bounded homology, we deduce that C(Up, J, N ) is perfect.

It follows immediately from the quasi-isomorphism

C(UpU p
1 (Q), s)mQ,1 ⊗O[1Q ]O→ C(UpU p, s)m

(which comes from Proposition 3.3.6(3)) that the set of complexes has bounded

complexity, as required.

Definition 3.4.7. Applying the construction of § 2.2, we let x ∈ Spec((O∞/J )IJ )

correspond to F (here we use that F is non-principal, and therefore defines an ultrafilter

on IJ ), and define

C(Up, J,∞) = (O∞/J )IJ ,x ⊗(O∞/J )IJ

∏
N∈IJ

C(Up, J, N )

 .
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Remark 3.4.8. (1) It follows from Lemma 2.2.3 that if U ′p is an open normal subgroup

of Up, C(U ′p, J,∞) is a complex of flat O∞/J [Up/U ′p]-modules.

(2) It follows from Remark 3.4.3(3) that if a ⊂ J , there is a natural quasi-isomorphism

C(Up, J,∞)→ C(U pUp, s(J ))m.

Definition 3.4.9. Similarly, we define

R(d, J,∞) = (O∞/J )IJ ,x ⊗(O∞/J )IJ

∏
N∈IJ

R(d, J, N )

 .
Remark 3.4.10. For d sufficiently large (depending on J and Up), the map

R∞→ EndD(O∞/J )(C(Up, J,∞))

factors through R(d, J,∞) and the map

R(d, J,∞)→ EndD(O∞/J )(C(Up, J,∞))

is an O∞-algebra homomorphism. By Lemma 2.2.4, we have an isomorphism

R(d, J,∞)/a ∼= RS/(m
d
RS
,$ s(a+J ))

induced by the isomorphisms R(d, J, N )/a ∼= RS/(m
d
RS
,$ s(a+J )).

Lemma 3.4.11. (1) For all open ideals J ′ ⊂ J and open normal subgroups U ′p ⊂ Up, the

natural maps of complexes

C(U ′p, J ′,∞)→ C(Up, J,∞)

are surjective, and induce isomorphisms of complexes

O∞/J ⊗O∞/J ′[Up/U ′p] C(U
′
p, J ′,∞)→ C(Up, J,∞).

(2) Let Up be an open normal subgroup of K1, and let J be an open ideal in O∞.

Then C(Up, J,∞) is a perfect complex of O∞/J [K1/Up]-modules. If Up is moreover

normal in K0, then C(Up, J,∞) is a perfect complex of O∞/J [K0/Up]-modules.

Proof. The surjectivity claim of the first part follows immediately from Lemma 3.4.6(1)

since taking the direct product over N ∈ IJ and localising at x preserves surjectivity. It

follows from Lemmas 2.2.4 and 3.4.6(1) that we obtain an isomorphism of complexes

O∞/J ⊗O∞/J ′[Up/U ′p] C(U
′
p, J ′,∞)→ C(Up, J,∞).

For the second part, the fact that C(Up, J,∞) is a perfect complex of

O∞/J [K1/Up]-modules follows from Lemmas 2.2.6 and 3.4.6(2). To get perfectness over

O∞/J [K0/Up], we apply (an obvious variant of) Lemma 3.4.15.

Definition 3.4.12. We define a complex of O∞[[K0]]-modules

C̃(∞) := lim
←−
J,Up

C(Up, J,∞).
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Remark 3.4.13. The complex C̃(∞) is naturally equipped with an O∞-linear action of∏
v|p G(Fv) (on each term of the complex), which extends the K0-action coming from

the O∞[[K0]]-module structure. Explicitly, for g ∈
∏
v|p G(Fv), right multiplication by g

gives a map of complexes

·g : C(Up, J, N )→ C(g−1Upg, J, N )

for each Up, J and N . Suppose that g−1Upg ⊂ K0; applying our (functorial) patching

construction gives a map

·g : C(Up, J,∞)→ C(g−1Upg, J,∞).

As Up runs over the cofinal subset of open subgroups of K0 with g−1Upg ⊂ K0, the

subgroups g−1Upg also run over a cofinal subset of open subgroups of K0, so we can

identify lim
←−J,Up

C(g−1Upg, J,∞) with C̃(∞). Therefore, taking the inverse limit over J

and Up gives the action of g on C̃(∞).

To verify that C̃(∞) has good properties, we will need several technical lemmas.

Lemma 3.4.14. Let I be a countable directed poset. Let C = (C(i))i∈I be an inverse system

with C(i) ∈ Ch(O). Suppose that the following two conditions hold:

(1) For every i ∈ I and m ∈ Z, the homology group Hm(C(i)) is an Artinian O-module.

(2) Either the entries of C(i) are Artinian O-modules for every i ∈ I , or for every pair

i 6 j in I the transition map C( j)→ C(i) is surjective.

Then for every m ∈ Z, there are natural isomorphisms

Hm(lim
←−

I

C) = lim
←−

I

Hm(C(i)).

Proof. Since I is direct and countable, it has a cofinal subset that is isomorphic (as a

poset) to N with its usual ordering. So we can assume I = N. The proposition is then

a consequence of [65, Theorem 3.5.8] (as assumption (1) guarantees the Mittag-Leffler

property for the Hm(C(i)), and assumption (2) guarantees it for the C(i)).

Lemma 3.4.15. Let K be a compact p-adic analytic group, and let K1 be a pro-p Sylow

subgroup of K . Let C be a bounded-below chain complex of O[[K ]]-modules. Suppose

that C|K1 is perfect when regarded as a complex of O[[K1]]-modules. Then C is a perfect

complex of O[[K ]]-modules.

Proof. We can assume that C is a bounded-below complex of projective O[[K ]]-modules.

Let F be a bounded complex of finite free O[[K1]]-modules with a quasi-isomorphism α :

F → C|K1 . We have a homotopy inverse β : C|K1 → F to α. We obtain maps of complexes

of O[[K ]]-modules

α̃ : O[[K ]]⊗O[[K1]] F → C
β̃ : C → O[[K ]]⊗O[[K1]] F ,
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where α̃ is given by the usual adjunction and β̃ is given by

β̃(x) =
∑

gK1∈K0/K1

[g]⊗β(g−1x).

The composite α̃ ◦ β̃ is homotopic to [K0 : K1] idC , and [K0 : K1] is invertible in Zp, so C
is a retract (in the homotopy category) of O[[K ]]⊗O[[K1]] F . Since O[[K ]]⊗O[[K1]] F
is perfect, it follows that C is also perfect since perfect complexes form a thick (or

épaisse) subcategory of D(O[[K ]]) (this follows from [10, Proposition 6.4], which identifies

perfect complexes with compact objects in D(R)), and therefore the retraction of a
perfect complex is perfect (thick subcategories of triangulated categories are closed under

retraction, by definition).

As promised, we can now show that C̃(∞) has various desirable properties.

Proposition 3.4.16. (1) For all open ideals J ⊂ O∞ and compact open subgroups

Up of K0, we have surjective maps of complexes (induced by the maps in

Lemma 3.4.11(1))

C̃(∞)→ C(Up, J,∞)

inducing isomorphisms of complexes

O∞/J ⊗O∞[[Up]] C̃(∞)→ C(Up, J,∞),

and C̃(∞) is a complex of flat O∞[[Up]]-modules.

(2) C̃(∞) is a perfect complex of O∞[[K0]]-modules.

(3) There is a ring homomorphism R∞→ EndD(O∞)(C̃(∞)), which factors as the

composite of maps R∞→ lim
←−J,d

R(d, J,∞) and lim
←−J,d

R(d, J,∞)→ EndD(O∞)

(C̃(∞)) (the latter map is an O∞-algebra map) given by the limit of the maps

discussed in Remark 3.4.10.

Proof. The first part follows from Lemmas 3.4.11(1) and A.33. To see this, fix an open

uniform pro-p subgroup U ′p of Up, and note that J is the two-sided ideal in O∞[[Up]]

generated by the maximal ideal of O∞[[U ′p]], where the J -adic topology on O∞[[Up]]

is equivalent to the canonical profinite topology. We set K = Zg
p ×Up in Lemma A.33,

where g is chosen so that O[[K ]] = O∞[[Up]].

For m > 1, we can define a complex of flat O∞[[Up]]/J m-modules by choosing J and

Vp ⊂ Up sufficiently small so that J m contains the kernel of the map

O∞[[Up]] → O∞/J [Up/Vp]

and considering the complex C(Vp, J,∞)⊗O∞/J [Up/Vp]O∞[[Up]]/J m . This complex is

independent of the choice of J and Vp, by Lemma 3.4.11(1). In particular, by choosing

J and Vp sufficiently small, we get a natural surjective map

C(Vp, J,∞)⊗O∞/J [Up/Vp]O∞[[Up]]/J m+1
→ C(Vp, J,∞)⊗O∞/J [Up/Vp]O∞[[Up]]/J m .

Taking the terms of these complexes in fixed degree as m varies gives a system of modules

to which Lemma A.33 applies, and taking the inverse limit over m gives the complex C̃(∞).
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For the second part, we first note that by Lemma 3.4.15, it suffices to show that C̃(∞)
is perfect over O∞[[K1]], where K1 is a pro-p Sylow subgroup of K0. For each J and each

Up open normal in K1, there is by Remark 2.2.8 a minimal resolution F(Up, J,∞) of

C(Up, J,∞), which is isomorphic to the minimal resolutions of C(Up, J, N ) for all N ∈ I ′,
where I ′ ∈ F. For each J ′ ⊂ J and U ′p open normal in Up, we choose compatible maps

F(U ′p, J ′,∞)→ F(Up, J,∞), which are also compatible with the map

C(U ′p, J ′,∞)→ C(Up, J,∞)

and induce isomorphisms

O∞/J ⊗O∞/J ′[Up/U ′p] F(U
′
p, J ′,∞) ∼= F(Up, J,∞).

In fact, rather than choosing maps for all J and Up, it suffices to choose maps between

minimal resolutions Fm of the complexes C(Up, J,∞)⊗O∞/J [K1/Up]O∞[[K1]]/J m

discussed in the proof of the first part. It follows from Lemma 3.4.14 that there is a
quasi-isomorphism

lim
←−
m

Fm → C̃(∞)

and lim
←−m

Fm is a bounded complex of finite free O∞[[K1]]-modules by construction, as

required.

The third part follows from (the proof of) [41, Lemma 2.13(3)].

Remark 3.4.17. Since the image of the map α : R∞→ lim
←−J,d

R(d, J,∞) contains (the

image of) O∞, α(R∞) is naturally an O∞-algebra. Since O∞ is formally smooth, we can

choose a lift of the map O∞→ α(R∞) to a map O∞→ R∞. We make such a choice, and

regard R∞ as an O∞-algebra and α as an O∞-algebra map.

Remark 3.4.18. With some more careful bookkeeping, it should be possible to show

that there is a natural map R∞→ EndD(O∞[[K0]])(C̃(∞)) lifting the map R∞→
EndD(O∞)(C̃(∞)), which we have described above. However, in our applications below,

the complex C̃(∞) will have homology concentrated in a single degree, so this does not

give any additional information.

The following proposition shows that we can think of C̃(∞) as ‘patched completed

homology’.

Proposition 3.4.19. If we let a = ker(O∞→ O), we have natural (in particular,∏
v|p G(Fv)-equivariant) isomorphisms

Hi (O∞/a⊗O∞ C̃(∞)) ∼= H̃i (XU p ,O)m.

There are surjective maps R∞/a→ RS → TS(U p)m and the above isomorphism

intertwines the action of R∞ on the left-hand side with the action of TS(U p)m on the

right.
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Proof. We have natural maps

C̃(∞) = lim
←−
J,Up

C(Up, J,∞)→ lim
←−

a⊂J,Up

C(Up, J,∞)→ lim
←−
s,Up

C(U pUp, s)m.

It follows from Lemma 3.4.14 and Remark 3.4.8(2) that the natural map

lim
←−

a⊂J,Up

C(Up, J,∞)→ lim
←−
s,Up

C(U pUp, s)m

is a quasi-isomorphism and by Lemma 3.4.14, we have natural isomorphisms

Hn( lim
←−
s,Up

C(U pUp, s)m) ∼= lim
←−
s,Up

Hn(XU pUp ,O/$ s)m.

The natural map

α : H̃n(XU p ,O)m→ lim
←−
s,Up

Hn(XU pUp ,O/$ s)m

is also an isomorphism: indeed, we have short exact sequences

0→ Hn(XU pUp ,O)m/$ s
→ Hn(XU pUp ,O/$ s)m→ Hn−1(XU pUp ,O)m[$ s

] → 0,

so taking the limit over (Up, s) shows that the map α is an injection with a $ -divisible

cokernel. On the other hand, this cokernel is a finitely generated O[[K0]]-module, so if it

is $ -divisible, it must be zero.

To finish the proof, by Proposition 3.4.16(1), it suffices to show that the map

O∞/a⊗O∞ C̃(∞)→ lim
←−

a⊂J,Up

C(Up, J,∞) = lim
←−
J,Up

O∞/(a+ J )⊗O∞[[Up]] C̃(∞)

is an isomorphism of complexes. As in the proof of Proposition 3.4.16(1), we easily reduce

to the following claim, where J = mO∞[[Up]]O∞[[K0]] for Up ⊂ K0 an open uniform pro-p
subgroup: suppose we have flat O∞[[K0]]/J m-modules Mm for each m > 1, with Mm =

Mm+1/J m . Let M = lim
←−m

Mm . Then M/aM = lim
←−m

Mm/aMm .

This claim follows from Lemma A.33, taking K = Zg
p × K0 (where g is chosen so that

O[[K ]] = O∞[[K0]]), and Q = O∞[[K0]]/a.

The final claim of the proposition follows from the fact that the isomorphisms
R(d, J,∞)/a ∼= RS/(m

d
RS
,$ s(a+J )) of Remark 3.4.10 induce an isomorphism(

lim
←−
d,J

R(d, J,∞)

)
/a ∼= RS .

Lemma 3.4.20. Let m ⊂ TS(U p) be a maximal ideal and suppose that H̃i (XU p ,O)m is

non-zero for a single i , which we denote by q. Then the map

α : TS(U p)m→ EndO(H̃q(XU p ,O)m)

is an injection.
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Proof. The map α factors through the inclusion

EndO[[K0]](H̃q(XU p ,O)m) ⊂ EndO(H̃q(XU p ,O)m).

Suppose T is in the kernel of α. Then, as an endomorphism in D(O[[K0]]), T acts on

O∞/a⊗O∞ C̃(∞) as 0 (by Proposition 3.4.19), and so for any s > 1 and Up compact open

normal in K0 it acts, as an endomorphism in D(O/$ s
[K0/Up]), as 0 on

O/$ s
[K0/Up]⊗O[[K0]]O∞/a⊗O∞ C̃(∞).

By Proposition 3.4.16 and Remark 3.4.8, we deduce that T maps to 0 in TS(UpU p, s)m.

Since Up and s were arbitrary, we deduce that T is equal to 0. Of course, we do not require

the patched complex C̃(∞) to prove this Lemma – we can replace O∞/a⊗O∞ C̃(∞) by

any suitable complex computing completed homology.

4. Applications of non-commutative algebra to patched completed homology

In this section, we apply the non-commutative algebra developed in Appendix A to the

output of the patching construction in § 3.

4.1. Formally smooth local deformation rings

We begin by recalling some of the notation, assumptions, and results of § 3, and we then

make an additional assumption.

We assume Conjectures 3.3.3 and 3.3.7. We work with a fixed U p such that U p K0 is

good, and we further assume that

• p > n > 2,

• ρm(G F(ζp)) is enormous, and

• ρm 6
∼= ρm⊗ ε.

We have two rings O∞ and R∞. The former is a power series ring over O, and the

latter is a power series ring over RS,loc
S . More precisely, we have fixed an integer q � 0,

and O∞ is a power series ring in

n2#S− 1+ (n− 1)q

variables over O, while R∞ is a power series ring in

(n− 1)q − n(n− 1)[F : Q]/2− l0− 1+ #S

variables over RS,loc
S .

Lemma 4.1.1. Suppose that for each place v|p of F, there is no non-zero

k[G Fv ]-equivariant map ρ|G Fv
→ ρ|G Fv

(1). Then R∞ is equidimensional of dimension

dimO∞+ (n(n+ 1)/2− 1)[F : Q] − l0.

Proof. For places v|p, we have H2(G Fv , ad0 ρ) = 0 by Tate local duality, and a standard

calculation shows that Rv is formally smooth of dimension 1+ (n2
− 1)[Fv : Qp] + (n2

− 1)
(see e.g., [1, Lemma 3.3.1]). If v - p, then Rv is equidimensional of dimension n2 by [58,

Theorem 2.5]. The claim then follows immediately (using [7, Lemma 3.3] to compute the

dimension of RS,loc
S ).
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Remark 4.1.2. Note that (n(n+ 1)/2− 1)[F : Q] is equal to the dimension of the Borel

subgroup B in G. It follows from Lemma 4.1.1 that we have

dim R∞+ dim(G/B) = dimO∞[[K0]] − l0.

See [17, Equation (1.6)] and the surrounding discussion for the same numerology.

Under the assumptions of Lemma 4.1.1, the local deformation ring Rv is formally

smooth over O for v|p. We could make a similar assumption at places v - p, but it seems

more reasonable to instead make the following more general assumption.

Hypothesis 4.1.3. • For each place v|p of F , there is no non-zero k[G Fv ]-equivariant

map ρ|G Fv
→ ρ|G Fv

(1).

• For each place v ∈ S with v - p, we let Rv be an irreducible component of Rv, which

is formally smooth. Let Dv be the local deformation problem corresponding to Rv.
Let

S = (ρm, εn(1−n)/2, S, {O}v∈S, {D�v }v|p ∪ {Dv}v∈S,v-p).

Then we further assume that for any set of Taylor–Wiles primes Q, the representation

ρm,Q of Conjecture 3.3.7 is of type SQ .

Remark 4.1.4. If v - p is such that there is no non-zero k[G Fv ]-equivariant map ρ|G Fv
→

ρ|G Fv
(1), then Rv is formally smooth and we can take Rv = Rv. Under the expected

local–global compatibility, the question of whether ρm,Q is of type SQ for a given choice

of components Rv is governed by the local Langlands correspondence, and therefore

depends on the choices of compact open subgroups Uv.
Since our primary interest is in the behaviour at the places v|p, we content ourselves

with mentioning one important example. For any v - p, there is always at least one

choice of irreducible component Rv, which is formally smooth, namely the component

corresponding to minimally ramified lifts; see [26, Lemma 2.4.19]. In general, we do not

expect to be able to make a choice of Uv compatible with the minimally ramified lifts;

this is not a problem, as instead one should be able to consider a type (in the sense of

Henniart’s appendix to [15]) at each place v - p. Doing so would take us too far afield, so

we content ourselves with noting that if n = 2, and v is not a vexing prime in the sense

of [29] (so in particular, if #k(v) 6≡ −1 mod p), then we expect to be able to take Uv
to be given by the image in PGL2(OFv ) of the subgroup of matrices in GL2(OFv ) whose

last row is congruent to (0, 1) modulo vnv , where nv is the conductor of ρm|G Fv
. As in

Remark 3.3.8, in the case where F is totally real or CM, this compatibility should follow

from forthcoming work of Varma.

We assume Hypothesis 4.1.3 from now on. If v|p, then we set Rv = Rv; we then write

R
S,loc
S :=

⊗̂
v∈S Rv, and set R∞ := R∞⊗RS,loc

S
R

S,loc
S . Under our assumptions, R∞ is a

power series ring over O, and has the same dimension as R∞ (indeed, it is an irreducible

component of R∞).
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Remark 4.1.5. If v - p, then Rv is in fact a reduced complete intersection, and is flat

over O [58, Theorem 2.5]. In particular, Rv is Gorenstein. It seems reasonable to imagine

that these properties should be sufficient to carry out our analysis below without making

any assumption at the places v - p, but this would require a substantial generalisation

of the material in Appendix A (to Iwasawa algebras over more general rings than O),

so we have not pursued this. Note however that the ‘miracle flatness’ result used in the

proof of Proposition 4.3.1 requires R∞ to be regular – moreover, in the GL2 /Q case, the

conclusion of part (1) of this proposition does not hold when Rp is not regular (see [19,

Remark 7.7]).

4.2. Patched completed homology is Cohen–Macaulay

We return to the notation and set-up of § 3, and recall that we have a perfect chain

complex C̃(∞) of O∞[[K0]]-modules (see Definition 3.4.12 and Proposition 3.4.16),
equipped with an O∞-linear action of

∏
v|p G(Fv) and an O∞-algebra homomorphism

R∞→ EndD(O∞)(C̃(∞)).
The action of R∞ on C̃(∞) commutes with the action of

∏
v|p G(Fv) (and with that of

O∞[[K0]]). By Hypothesis 4.1.3 together with Remark 3.4.3 and Proposition 3.4.16 (3),

this map factors through the quotient R∞ of R∞. Recall that R∞ is a formal power series

ring over O. The action of R∞ induces an O∞[[K0]]-algebra homomorphism R∞[[K0]] →

EndD(O∞)(C̃(∞)), and in particular, each homology group Hi (C̃(∞)) is a finitely generated

R∞[[K0]]-module. We refer to Definition A.2 for the notion of the grade jA(M) of a

module M over a ring A and to Definition A.5 for the notion of a Cohen–Macaulay

module over O[[K0]]; this also gives us the definition of a Cohen–Macaulay module

over O∞[[K ]] or R∞[[K ]] for any compact open K ⊂ K0.

We have natural isomorphisms (for every i > 0)

Hi (O∞/a⊗O∞ C̃(∞)) ∼= H̃i (XU p ,O)m,
where a = ker(O∞→ O). Recall that K1 denotes a pro-p Sylow subgroup of K0, and B
is the Borel subgroup of G.

Proposition 4.2.1. Suppose that we have the following:

(a) Hi (XU p K1 , k)m = 0 for i outside the range [q0, q0+ l0] (note that H∗(XU p K1 , k)m is

non-zero).

(b) jO[[K0]]

(⊕
i>0 H̃i (XU p ,O)m

)
> l0.

Then, we have the following:

(1) H̃i (XU p ,O)m = 0 for i 6= q0 and H̃q0(XU p ,O)m is a Cohen–Macaulay

O[[K0]]-module with

pdO[[K0]]
(H̃q0(XU p ,O)m) = jO[[K0]](H̃q0(XU p ,O)m) = l0.

(2) Hi (C̃(∞)) = 0 for i 6= q0 and Hq0(C̃(∞)) is a Cohen–Macaulay O∞[[K0]]-module

with

pdO∞[[K0]]

(
Hq0(C̃(∞))

)
= jO∞[[K0]]

(
Hq0(C̃(∞))

)
= l0.
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(3) Hq0(C̃(∞)) is a Cohen–Macaulay R∞[[K0]]-module with

pdR∞[[K0]]

(
Hq0(C̃(∞))

)
= jR∞[[K0]]

(
Hq0(C̃(∞))

)
= dim(B),

where dim(B) = ( n(n+1)
2 − 1)[F : Q].

If we moreover suppose that

(c) jk[[K0]]

(⊕
i>0 H̃i (XU p , k)m

)
> l0,

then H̃i (XU p , k)m = 0 for i 6= q0 and both H̃q0(XU p ,O)m and Hq0(C̃(∞)) are

$ -torsion-free.

Proof. We have Hi (k⊗L
O∞[[K1]]

C̃(∞)) ∼= Hi (XU p K1 , k)m by Proposition 3.4.16(1). So
the assumption that Hi (XU p K1 , k)m = 0 for i outside the range [q0, q0+ l0] implies

(Lemma 2.1.7) that the minimal resolution F of C̃(∞) (viewed as a complex of

O∞[[K1]]-modules) is concentrated in degrees [q0, q0+ l0].
Fix H ⊂ K1 a normal compact open subgroup of K0, which is uniform pro-p.

We now apply Lemma A.10 to the shifted complex O∞/a⊗O∞ F[−q0] of finite free

O[[H ]]-modules to deduce that Hi (O∞/a⊗O∞ F) ∼= H̃i (XU p ,O)m vanishes for i 6= q0 and

pdO[[H ]](H̃q0(XU p ,O)m) = jO[[H ]](H̃q0(XU p ,O)m) = l0. Lemma A.7 gives the first claim

of the proposition: note that the perfect complex O∞/a⊗O∞ C̃(∞) of O[[K ]]-modules

has homology equal to H̃q0(XU p ,O)m concentrated in a single degree, so H̃q0(XU p ,O)m
has finite projective dimension as a O[[K ]]-module.

Now we move on to the second claim of the proposition. We begin by showing that

C̃(∞) has non-zero homology only in degree q0. As we will explain, this follows from the

fact (which we have just established) that O∞/a⊗O∞ C̃(∞) has non-zero homology only

in degree q0. To see this, we recall that O∞ = O[[x1, . . . , xg]], and begin by showing that

O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞) has non-zero homology only in degree q0. For each i , we

have an injective map (part of a short exact sequence coming from a degenerating Tor
spectral sequence)

Hi (O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞))/xg ↪→ Hi (O∞/a⊗O∞ C̃(∞)),

so it follows from Nakayama’s lemma, applied to the finitely generated O∞[[K1]]-module

Hi (O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞)), that Hi (O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞)) is zero for i 6=
q0. Repeating this argument, we eventually deduce that Hi (C̃(∞)) is zero for i 6= q0.

Since F is a chain complex whose first non-zero term has degree q0, we have O∞/a⊗O∞
Hq0(F) = Hq0(O∞/a⊗O∞ F) ∼= H̃q0(XU p ,O)m, so Lemma A.16 implies that

jO∞[[H ]](Hq0(F)) > jO[[H ]](H̃q0(XU p ,O)m) = l0.

Another application of Lemmas A.10 and A.7 gives us the second claim of the proposition.

Next, we establish the third claim. It follows from Corollary A.29 and what we have

established above that Hq0(C̃(∞)) is a Cohen–Macaulay R∞[[H ]]-module, with grade

and projective dimension as in the claim. Lemmas A.7 and 3.4.15 establish the claim

as stated once we verify that Hq0(C̃(∞)) has finite projective dimension over R∞[[K1]].

To verify this, let G be a minimal resolution of Hq0(C̃(∞)), viewed as a complex of
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R∞[[K1]]-modules concentrated in degree q0. The complex R∞⊗R∞[[K1]]
G (we mod

out by the augmentation ideal for K1) has bounded and finitely generated homology

since Hi (R∞⊗R∞[[K1]]
G) = Hi (O∞⊗O∞[[K1]] C̃(∞)) and C̃(∞) is a perfect complex of

O∞[[K1]]-modules. Since R∞ is regular, R∞⊗R∞[[K1]]
G is therefore a perfect complex of

R∞-modules, so k⊗R∞[[K1]]
G also has bounded homology. We deduce that the minimal

complex G is itself bounded, so Hq0(C̃(∞)) has finite projective dimension over R∞[[K1]].

For the last part of the proposition, if we assume that

jk[[K0]]

⊕
i>0

H̃i (XU p , k)m

 = l0,

then we may apply Lemma A.10 to the shifted complex O∞/mO∞ ⊗O∞ F[−q0] of finite

free k[[H ]]-modules to deduce that H̃i (XU p , k)m = 0 for i 6= q0. This shows that

TorOi (O/$, H̃q0(XU p ,O)m) = H̃q0+i (XU p , k)m = 0

for i > 0, so H̃q0(XU p ,O)m is $ -torsion-free. Arguing as for the second part, we deduce

that Hi (C̃(∞)/$) = 0 for i 6= q0 and hence Hq0(C̃(∞)) is also $ -torsion-free.

Remark 4.2.2. (1) Hypothesis (b), that jO[[K0]]

(⊕
i>0 H̃i (XU p ,O)m

)
> l0 of the above

proposition is implied by the codimension conjecture of Calegari and Emerton [17,

Conjecture 1.5] (indeed equality is conjectured to hold here). For PGL2 over an

imaginary quadratic field, this hypothesis holds (for example, by the argument

of [17, Example 1.12]).

(2) Hypothesis (a), that Hi (XU p K1 , k)m = 0 for n outside the range [q0, q0+ l0], is

conjectured in [20, Conjecture B(4)(a)]. Again, for PGL2 over an imaginary

quadratic field, the hypothesis holds: we have l0 = 1, q0 = 1 and the dimension of

XU p K1 is equal to 3, so it suffices to check that H0(XU p K1 , k)m = H3(XU p K1 , k)m =
0, which follows from the fact that m is non-Eisenstein.

(3) In contrast to the other hypotheses, hypothesis (c) seems difficult to verify even

for PGL2 over an imaginary quadratic field. We cannot rule out (for example)

H̃1(XU p ,O)m containing a $ -torsion submodule that is torsion-free over k[[K0]],

in which case jk[[K0]] H̃1(XU p , k)m = 0.

Remark 4.2.3. It follows from the second part of the proposition that the map R∞→
EndD(O∞)(C̃(∞)) (which commutes with the G action) arises from a map R∞→
EndO∞[G](Hq0(C̃(∞))). In particular, the action of R∞ on C̃(∞) can be thought of as

taking place in, for example, the derived category of O∞[[K0]]-modules with compatible

G-action.

4.3. Miracle flatness and ‘big R = T’

We have a surjective map RS → TS(U p)m. If this map is an isomorphism, the global

Euler characteristic formula for Galois cohomology gives an expected dimension of 1+
(

n(n+1)
2 − 1)[F : Q] − l0 for both these rings. See [32, Conjecture 3.1].
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The following proposition shows that this dimension formula, as well as the

isomorphism RS
∼= TS(U p)m, is implied by a natural condition on the codimension (over

k[[K0]]) of the fibre of the completed homology module H̃q0(XU p ,O)m at the maximal

ideal m of the Hecke algebra. The method of proof is in some sense a precise version of

the heuristics discussed in [32, § 3.1.1], which compare the Krull dimension of TS(U p)m
and the Iwasawa theoretic dimensions of H̃q0(XU p ,O)m and its mod m fibre. A related

argument was found independently by Emerton and Paškūnas, and will appear in a

forthcoming paper1 of theirs.

Proposition 4.3.1. Suppose that assumptions (a) and (b) of Proposition 4.2.1 hold, and
that we moreover have

jk[[K0]](H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m) > dim(B).

Recall that we are assuming Hypothesis 4.1.3, which implies that R∞ is a power series

ring over O.

Then we have the following:

(1) Hq0(C̃(∞)) is a flat R∞-module.

(2) The ideal R∞a is generated by a regular sequence in R∞.

(3) The surjective maps
R∞/a→ RS → TS(U p)m

are all isomorphisms and H̃q0(XU p ,O)m is a faithfully flat TS(U p)m-module.

(4) The rings RS
∼= TS(U p)m are local complete intersections with Krull dimension

equal to dim(R∞)− dim(O∞)+ 1 = 1+ ( n(n+1)
2 − 1)[F : Q] − l0.

(5) If assumption (c) of Proposition 4.2.1 holds, then TS(U p)m is $ -torsion-free.

Proof. First we note that by Lemma A.16 and Proposition 4.2.1, we have

jk[[K0]](H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m) 6 jR∞[[K0]]

(
Hq0(C̃(∞))

)
= dim(B)

since

R∞/mR∞ ⊗R∞ Hq0(C̃(∞)) = H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m.

So our assumption implies that we have equality of codimensions here. The first claim

then follows immediately from Propositions 4.2.1 and A.30.

For the second part, write a = (x1, . . . , xg), where O∞ = O[[x1, . . . , xg]] (so g =
dim(O∞)− 1). Note that, by Proposition 4.2.1 (which in particular says that the

complexes C̃(∞) and O∞/a⊗O∞ C̃(∞) both have homology concentrated in a single
degree), we have

TorO∞i (O∞/a, Hq0(C̃(∞))) = H̃q0+i (XU p ,O)m = 0

for i > 0. So (by considering the Koszul complex for (x1, . . . , xg)) we see that (x1, . . . , xg)

is a regular sequence on Hq0(C̃(∞)). Since Hq0(C̃(∞)) is a flat R∞-module and its

1This has now appeared: [34].
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reduction mod mR∞ is non-zero (by Nakayama, since the module is finitely generated

over R∞[[K0]]), it follows from [46, Theorem 7.2] that Hq0(C̃(∞)) is a faithfully flat

R∞-module and we can conclude that (x1, . . . , xg) is a regular sequence in R∞ – this can

be seen by considering the Koszul homology groups

H R∞
∗ ((x1, . . . , xg), Hq0(C̃(∞))) ∼= H R∞

∗ ((x1, . . . , xg), R∞)⊗R∞ Hq0(C̃(∞)),

and by faithful flatness, we have H R∞
i ((x1, . . . , xg), R∞) = 0 for i 6= 0 and therefore

(x1, . . . , xg) is a regular sequence in R∞. This gives the second part.
For the third part, since Hq0(C̃(∞)) is a flat R∞-module, H̃q0(XU p ,O)m = O∞/a⊗O∞

Hq0(C̃(∞)) is a flat R∞/a-module. As before, it follows from [46, Theorem 7.2] that

H̃q0(XU p ,O)m is a faithfully flat R∞/a-module and is in particular faithful. It follows

that the surjective maps appearing in the third part must also be injective since the

action of R∞/a on H̃q0(XU p ,O)m factors through these maps. This completes the proof

of the third part.

The fourth part follows immediately from the second and third parts.

The fifth part follows from the fact that TS(U p)m acts faithfully on H̃q0(XU p ,O)m
(by Lemma 3.4.20), which is $ -torsion-free (under our additional assumption) by

Proposition 4.2.1. Alternatively, one can redo the argument of part (2) of the proposition

to show that ($, x1, . . . , xg) is a regular sequence in R∞, and so in particular, $ is not

a zero divisor in R∞/a ∼= TS(U p)m.

Remark 4.3.2. To explain the condition

jk[[K0]](H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m) > dim(B),

we first note that the parabolic induction of a k-valued character from B to G has

codimension dim(B) over k[[K0]]. We moreover expect this to be the codimension

of any ‘generic’ irreducible admissible smooth k-representation of G, with other

irreducibles having at least this codimension. In the case G = PGL2(Qp), this is true:

any infinite-dimensional irreducible smooth k-representation of G has codimension

dim(B) = 2 [56, Proof of Corollary 7.5], whilst the finite-dimensional representations have

codimension 3.

It seems reasonable to expect that the smooth representation(
H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m

)∨
is a finite length representation of G, and therefore we expect it to have codimension

> dim(B) also.
We also point out that our assumption that R∞ is regular is essential in order to apply

Proposition A.30. See Remark 4.1.5.

5. The p-adic local Langlands correspondence for GL2(Qp)

In this section, we specialise to the case where n = 2 and p splits completely in F , and

use the techniques of [19] to study the relationship of our constructions to the p-adic

local Langlands correspondence for GL2(Qp).
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5.1. A local–global compatibility conjecture

We continue to make the assumptions in § 4, as well as assumptions (a) and (b) of

Proposition 4.2.1.

In addition, we assume that

• n = 2,

• p splits completely in F ,

• if ρm|Gv is ramified for some place v - p, then v is not a vexing prime in the sense
of [29], and

• for each place v|p, ρm|Gv is either absolutely irreducible or is a non-split extension of

characters, whose ratio is not the trivial character or the mod p cyclotomic character.

This last assumption allows us to use the results of [19]; it guarantees in particular

that each ρm|G Fv
admits a universal deformation ring Rdef

v . Since n = 2, l0 is just equal

to r2, the number of complex places of F .
From now on, in a slight abuse of notation for each place v|p, we write Gv for PGL2(Fv)

and Kv for PGL2(OFv ), and we write G for
∏
v|p Gv. Recall that K0 =

∏
v|p Kv.

Since our interest is primarily in phenomena at places dividing p, we content ourselves

with the ‘minimal level’ situation at places not dividing p; that is, we choose R∞ and

the level U p as in the second paragraph of Remark 4.1.4, and assume Hypothesis 4.1.3

holds for this choice. (The reader may object that this level is not necessarily S-good; as

usual in the Taylor–Wiles method, this difficulty is easily resolved by shrinking the level

at an auxiliary place at which ρm admits no ramified deformations, and for simplicity of

exposition, we ignore this point.)

We would like to understand the action of (
⊗̂

v|p,ORdef
v )[G] on Hq0(C̃(∞)). When

F = Q, it follows from the local–global compatibility theorem of [33] that this action is

determined by the p-adic local Langlands correspondence for GL2(Qp), and it is natural

to expect that the same applies for general number fields F .

More precisely, for each place v|p, we can associate an absolutely irreducible

k-representation πv of GL2(Fv) to ρm|G Fv
via the recipe of [19, Lemma 2.15(5)]; note

that by [19, Remark 2.17], the central character of πv is trivial, so we can regard it as a

representation of Gv.

Definition 5.1.1. If H is a p-adic analytic group and A is a complete local Noetherian

O-algebra, then we write CH (A) for the Pontryagin dual of the category of locally

admissible A-representations of H (cf. Appendix B and [19, § 4.4]).

We let Pv � π∨v be a projective envelope of π∨v in CGv (O). By [49, Proposition 6.3,

Corollary 8.7], there is a natural isomorphism Rdef
v → EndCGv (O)(Pv). (This is a large

part of the p-adic local Langlands correspondence for GL2(Qp).)

Write P :=
⊗̂

v|p,OPv, which is naturally an Rloc
p :=

⊗̂
v|p,ORdef

v -module. For each v|p,

we make a choice (in its strict equivalence class) of the universal deformation of ρm|G Fv

to Rdef
v so that we can regard R∞ as an Rloc

p -module. For some g > 0, we can and do

choose an isomorphism of Rloc
p -algebras R∞ ∼= Rloc

p ⊗̂O O[[x1, . . . , xg]].
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Conjecture 5.1.2. For some m > 1, there is an isomorphism of R∞ [G]-modules

Hq0(C̃(∞)) ∼= R∞ ⊗̂Rloc
p

P⊕m .

Remark 5.1.3. We do not know what the value of m in Conjecture 5.1.2 should be

in general. The natural guess is that m = 2r1 , where r1 is the number of real places

of F , since this is the dimension of the (g, K )-cohomology in degree q0 of the trivial

representation for the group ResF/Q PGL2. This guess is justified by Corollary 5.1.8.

Indeed, if Hq0(X K0U p , σ )m is non-zero for some irreducible E-representation of K0, then

Corollary 5.1.8 shows that m is equal to the multiplicity of a system of Hecke eigenvalues

(away from S) in Hq0(X K0U p , σ )m.

We now explain some consequences of this conjecture for completed homology and

homology with coefficients. In the proof of the following result, we will briefly need

the notion of the atome automorphe κv associated with ρm|G Fv
; recall that if ρm|G Fv

is irreducible, then κv = πv is an irreducible supersingular representation of Gv, while

if ρm|G Fv
is reducible, κv is a non-split extension of irreducible principal series

representations with socle πv (see for example the beginning of [49, § 8]).

Proposition 5.1.4. Assume Conjecture 5.1.2. Then we have an isomorphism of local

complete intersections RS
∼= TS(U p)m with Krull dimension equal to 1+ 2[F : Q] − l0.

Furthermore, there is an isomorphism of TS(U p)m [G]-modules

H̃q0(XU p ,O)m ∼= TS(U p)m⊗̂Rloc
p

P⊕m .

If we moreover make assumption (c) of Proposition 4.2.1, then TS(U p)m is

$ -torsion-free.

Proof. The isomorphism RS
∼= TS(U p)m and the properties of these rings will follow

immediately from Proposition 4.3.1 once we know that

jk[[K0]](H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m) = 2[F : Q].

Now, since we are assuming Conjecture 5.1.2, we have

H̃q0(XU p ,O)m/mH̃q0(XU p ,O)m = R∞/mR∞ ⊗R∞ Hq0(C̃(∞))

= P⊕m
⊗Rloc

p
Rloc

p /mRloc
p

=

(⊗̂
v|p

Pv⊗̂Rdef
v

k
)⊕m

=

(⊗̂
v|p
κ∨v

)⊕m

(where in the last line we have used [49, Propositions 1.12, 6.1, 8.3] and that Rdef
v =

EndCGv (O)(Pv)). By Lemma A.11, we are therefore reduced to showing that for each v|p,

jk[[Kv]](κ
∨
v ) = 2.
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By the same argument as Lemma A.15, it is enough to show that jk[[GL2(OFv )]]
(κ∨v ) = 3

(we pass from k[[GL2(OFv )]] to k[[PGL2(OFv )]] by quotienting out by a central regular

element that acts trivially on κ∨v ). By Lemma A.8, we are reduced to the same statement

for irreducible principal series and supersingular representations of GL2(Qp), which is

proved in [56, Proof of Corollary 7.5].

Finally, we have

H̃q0(XU p ,O)m = R∞/aR∞⊗R∞ Hq0(C̃(∞))

= RS ⊗R∞ Hq0(C̃(∞))

= TS(U p)m⊗R∞ Hq0(C̃(∞))
∼= TS(U p)m⊗̂Rloc

p
P⊕m,

as required.

We recall from [19, § 2] some notation for Hecke algebras and crystalline deformation
rings. (In fact, our setting is slightly different, as we are working with PGL2 rather

than GL2, but this makes no difference in practice and we will not emphasise this point

below.) Let σ be an irreducible E-representation of K0. Any such representation is of

the form
⊗

v|p σv, where σv is the representation of Gv given by σv = detav ⊗Symbv E2

for integers av, bv satisfying bv > 0 and 2av + bv = 0. We write σ ◦ for the K0-stable

O-lattice
⊗

v|p σ
◦
v , where σ ◦v = detav ⊗Symbv O2. We have Hecke algebras H(σ ) :=

EndG(c-IndG
K0
σ), H(σ ◦) := EndG(c-IndG

K0
σ ◦).

A Serre weight is an irreducible k-representation of K0. These are of the form
⊗

v|p σ v,

where σ v = detav ⊗Symbv k2 for integers av, bv satisfying 0 6 bv 6 p− 1 and 2av + bv =
0. Note that for any σ , there is a unique σ with σ ◦⊗O k = σ ; we say that σ ◦ lifts σ .

As explained in the proof of Lemma B.7, we have Hecke algebras H(σ ) ∼=
⊗

v|p H(σ v),
where H(σ v) := EndGv (c-IndGv

Kv σ v)
∼= k[Tv] is a polynomial ring in one variable by [8,

Proposition 8].

5.1.5. Actions of Hecke algebras. We now describe how to define actions of the

Hecke algebras H(σ ) and H(σ ◦) on objects of certain derived categories.

Let σ be a Serre weight. Suppose M is a pseudocompact A[[K0]]-module with a

compatible action of G, where A is a complete Noetherian local O-algebra with finite

residue field, which is flat over O. For example, A could be either O[1Q] or O∞. Then

the A-module σ ⊗O[[K0]] M has a natural action of H(σ ). Indeed, we have isomorphisms

(σ ⊗O[[K0]] M)∨ ∼= Homcts
O[[K0]]

(σ ,M∨) = HomG(c-IndG
K0
σ ,M∨)

by Lemma B.3 and Frobenius reciprocity (note that M∨ ∈ Modsm
G (A), where the

definition of this category is recalled in Appendix B), and H(σ ) naturally acts on

HomG(c-IndG
K0
σ ,M∨).

We have a similar story in the derived category. If we let M∨→ I • be an injective

resolution of M∨ in Modsm
G (A), then each (I i )∨ is projective as a pseudocompact

A[[K0]]-module (by [31, Proposition 2.1.2]), and is in particular a flat O[[K0]]-module,
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so we have a natural action of H(σ ) on

σ ⊗L
O[[K0]]

M = σ ⊗O[[K0]] (I
•)∨

in D(A).
Similarly, if σ ◦ is a lattice in σ , we have a natural action of H(σ ◦) on

Homcts
O[[K0]]

(σ ◦, I i ) = lim
−→

s
HomK0(σ

◦/$ s, I i ) = lim
−→

s
HomG(c-IndG

K0
(σ ◦/$ s), I i )

for each n, where the first equality uses Lemma B.2, and therefore a natural action of

H(σ ◦) on

σ ◦⊗L
O[[K0]]

M = σ ◦⊗O[[K0]] (I
•)∨

in D(A).
As a particular example of this construction, we get a natural action of H(σ ◦) on

C(K0U p, σ ◦)m, in D(O), since we have an isomorphism

C(K0U p, σ ◦)m ∼= σ
◦
⊗

L
O[[K0]]

H̃q0(U
p,O)m.

Here we are using the part of Proposition 4.2.1 that shows that H̃i (U p,O)m = 0 for

i 6= q0. One can also define the action of H(σ ◦) on C(K0U p, σ ◦) directly, similarly to

the definition of the Hecke action at places away from p, and this gives the same Hecke

action.

We say that a representation r : G Fv → GL2(Qp) is crystalline of Hodge type σv if

it is crystalline with Hodge–Tate weights (1− av,−av − bv), and we write Rdef
v (σv) for

the reduced, p-torsion-free quotient of Rdef
v corresponding to crystalline deformations

of Hodge type σv. We write Rloc
p (σ ) :=

⊗̂
v|p Rdef

v (σv) and R∞(σ ) := R∞⊗Rloc
p

Rloc
p (σ ).

By [42, Theorem 3.3.8], Rdef
v (σv) is equidimensional of Krull dimension 2 less than Rdef

v ,

so by Lemma 4.1.1, R∞(σ ) is equidimensional of dimension dimO∞− l0.

We have a homomorphism H(σ ) η
→ Rloc

p (σ )[1/p], which is the tensor product over

the places v|p of the maps H(σv)→ Rdef
v (σv)[1/p] defined in [18, Theorem 4.1], which

interpolates the (unramified) local Langlands correspondence.

Proposition 5.1.6. Assume Conjecture 5.1.2. Then, for any irreducible E-representation

σ of K0, the action of Rloc
p on

C(K0U p, σ ◦)m ∈ D(O)

factors through Rloc
p (σ ). Furthermore, if h ∈ H(σ ◦) is such that η(h) ∈ Rloc

p (σ ), then h
acts on C(K0U p, σ ◦)m via η(h).

In particular, we get the same statements for the action of Rloc
p and H(σ ◦) on the

homology groups Hi (X K0U p , σ ◦)m for any i .

Proof. As in the proof of Proposition 3.4.19, it follows from Lemma A.33 that we have

a natural quasi-isomorphism (where we regard σ ◦ as a right O∞[[K0]]-module)

σ ◦⊗O∞[[K0]] C̃(∞)→ C(K0U p, σ ◦)m.
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Conjecture 5.1.2 implies that Hq0(C̃(∞)) is a flat O[[K0]]-module, so we have an

isomorphism in D(O)

σ ◦⊗O∞[[K0]] C̃(∞) = O⊗L
O∞

(
σ ◦⊗O[[K0]] Hq0(C̃(∞))

)
[+q0]

Taking Conjecture 5.1.2 into account, it now suffices to show that the action of Rloc
p on

σ ◦⊗O[[K0]] P factors through Rloc
p (σ ), and that if h ∈ H(σ ◦) is such that η(h) ∈ Rloc

p (σ ),

then h acts on σ ◦⊗O[[K0]] P via η(h).
We have σ ◦⊗O[[K0]] P = ⊗v|p(σ ◦v ⊗O[[Kv]] Pv), so it suffices to show that the action

of Rdef on σ ◦v ⊗O[[Kv]] Pv factors through Rdef
v (σv), and that if hv ∈ H(σ ◦v ) is such

that η(hv) ∈ Rdef
v (σv), then hv acts on σ ◦v ⊗O[[Kv]] Pv via η(hv). By Lemma B.3, we have

a natural isomorphism

(σ ◦v ⊗O[[Kv]] Pv)∨ ∼= Homcts
O[[Kv]](Pv, (σ

◦
v )
∨),

where we note that since σ ◦v is a finitely generated O[[Kv]]-module, we do not need

to take a completed tensor product. Lemma B.2 implies that this is isomorphic to

lim
−→s

Homcts
O[[Kv]](Pv, (σ

◦
v /$

s)∨), so we deduce that

(σ ◦v ⊗O[[Kv]] Pv) ∼= lim
←−

s

(
Homcts

O[[Kv]](Pv, (σ
◦
v /$

s)∨)
)∨
.

[18, Lemma 4.14] then shows that we have an isomorphism

σ ◦v ⊗O[[Kv]] Pv ∼= Homcts
O[[Kv]](Pv, (σ

◦
v )

d)d ,

where (−)d denotes the Schikhof dual (as defined in loc. cit.). The result now follows

from [50, Corollaries 6.4, 6.5] and [19, Proposition 6.17].

Remark 5.1.7. It follows from the argument appearing at the end of the above proof that

if P is a projective pseudocompact O[[K0]]-module, then we have a natural isomorphism

σ ◦⊗O[[K0]] P ∼= Homcts
O[[K0]]

(P, (σ ◦)d)d .

We can also deduce the following modularity lifting theorem from Conjecture 5.1.2.

Corollary 5.1.8. Assume (in addition to our running assumptions) Conjecture 5.1.2.
Then, for any irreducible E-representation σ of K0, Hq0(X K0U p , σ )m is a free module

of rank m (where m is the multiplicity in the statement of Conjecture 5.1.2) over

RS ⊗Rloc
p

Rloc
p (σ )[1/p] (if this ring is non-zero).

In particular, all characteristic 0 points of the global crystalline deformation ring

RS(σ ) := RS ⊗Rloc
p

Rloc
p (σ ) are automorphic, and the maximal $ -torsion-free quotient of

RS(σ ) is isomorphic to a Hecke algebra acting faithfully on Hq0(X K0U p , σ )m.

Moreover, the annihilator of Hq0(X K0U p , σ ◦)m in RS(σ ) is nilpotent, and RS(σ ) is a

finite O-algebra.

Proof. By [50, Corollary 6.5], P(σ ◦) = σ ◦⊗O[[K0]] P is a maximal Cohen–Macaulay

module with full support over Rloc
p (σ ). Since Rloc

p (σ )[1/p] is regular, it follows that
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P(σ ◦)[1/p] is locally free with full support over Rloc
p (σ )[1/p]. In fact, as explained in

the proof of [19, Proposition 6.14], it follows from [50, Proposition 4.14, 2.22] that

P(σ ◦)[1/p] is locally free of rank one over Rloc
p (σ )[1/p]. We deduce from Conjecture 5.1.2

that σ ◦⊗O[[K0]] Hq0(C̃(∞))[1/p] is locally free of rank m over R∞⊗Rloc
p

Rloc
p (σ )[1/p].

Reducing mod a (and noting that R∞/a ∼= RS by Proposition 5.1.4) we deduce that

σ ◦⊗O[[K0]] H̃q0(XU p ,O)m[1/p] is locally free of rank m over RS ⊗Rloc
p

Rp(σ )[1/p]. We

complete the proof by noting that we have a natural isomorphism

σ ◦⊗O[[K0]] H̃q0(XU p ,O)m ∼= Hq0(X K0U p , σ ◦)m,

so RS ⊗Rloc
p

Rp(σ )[1/p] is a finite-dimensional algebra (hence semi-local) and therefore

the locally free module of rank m, Hq0(X K0U p , σ ◦)m, is in fact free of rank m.

The moreover part follows from [61, Lemma 2.2] since σ ◦⊗O[[K0]] Hq0(C̃(∞)) is a nearly

faithful R∞(σ )-module, so reducing mod a shows that Hq0(X K0U p , σ ◦)m is a nearly

faithful RS(σ )-module, as well as a finite O-module.

Remark 5.1.9. As discussed in Remark 5.1.14, we could work with general potentially

semistable types, and then the proof of Corollary 5.1.8 goes through unchanged to give an

automorphy lifting theorem for arbitrary potentially semistable lifts of ρm with distinct

Hodge–Tate weights, which satisfy the conditions imposed by S at places v - p.

Remark 5.1.10. Using Proposition 5.1.4, we can give an alternative argument to show

that Conjecture 5.1.2 implies many cases of the Fontaine–Mazur conjecture, in exactly the

same way that Emerton deduces [33, Corollary 1.2.2] from his local–global compatibility

result. If we assume Conjecture 5.1.2, then any characteristic zero point of RS whose

associated Galois representation is de Rham with distinct Hodge–Tate weights at each

place v|p is automorphic, in the sense that its associated system of Hecke eigenvalues

appears in Hq0(X KU p , σ )m for some compact open K ⊂ K0 and some irreducible
E-representation σ of K0.

Moreover, again assuming Conjecture 5.1.2 and following Emerton’s argument, we can

show that any characteristic zero point of RS whose associated Galois representation is

trianguline at each place v|p arises from an overconvergent p-adic automorphic form of

finite slope, in the sense that its associated system of Hecke eigenvalues appears in the

Emerton–Jacquet module JB(((H̃q0(XU p ,O)m)d [ 1p ])
an).

Remark 5.1.11. Assuming Conjecture 5.1.2, we obtain an action of the graded

RS(σ )-algebra Tor
Rloc

p
∗ (RS , Rloc

p (σ )) = TorR∞
∗ (R∞/a, R∞(σ )) on the graded module

H∗(X K0U p , σ ◦)m = H∗
(

R∞/a⊗L
R∞

(
σ ◦⊗O[[K0]] Hq0(C̃(∞))

))
.

When Rloc
p (σ ) is the representing object of a Fontaine–Laffaille moduli problem, the

groups Tor
Rloc

p
i (RS , Rloc

p (σ )) are the homotopy groups of a derived Galois deformation

ring (since RS is a complete intersection of the predicted dimension, see the discussion

in [36, § 1.3]) and the action of the graded algebra on H∗(X K0U p , σ ◦)m is free. This is
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an example of the main theorem of [36]. Note that it is not obvious that the action of

Tor
Rloc

p
∗ (RS , Rloc

p (σ )) on H∗(X K0U p , σ ◦)m is independent of the choice of non-principal

ultrafilter made to carry out the patching. Under some additional hypotheses, this

independence is shown in [36], by comparing the action of the derived Galois deformation

ring with the action of a derived Hecke algebra.

Proposition 5.1.6 shows that Conjecture 5.1.2 implies a local–global compatibility

statement at p. We are now going to formulate a conjectural local–global compatibility

statement, which will be sufficiently strong to imply Conjecture 5.1.2.

Note that for any Taylor–Wiles datum (Q, (γv,1, . . . , γv,n)v∈Q), (3.3.9) gives an action

of Rloc
p on the complex

C̃(Q) := lim
←−
Up,s

C(UpU p
1 (Q), s)mQ,1

in D(O[1Q]). For any σ , the complex σ ◦⊗O[[K0]] C̃(Q) is naturally quasi-isomorphic

(in particular, the quasi-isomorphism is O[1Q]-equivariant) to C(K0U p
1 (Q), σ

◦)mQ,1 .

Again, this is deduced from Lemma A.33. We therefore obtain an action of Rloc
p

on C(K0U p
1 (Q), σ

◦)mQ,1 in D(O[1Q]). We also have a natural action of H(σ ◦) on

σ ◦⊗O[[K0]] C̃(Q) in D(O[1Q]), as described in § 5.1.5. To apply the construction of

that section, we must note that C̃(Q) has homology concentrated in degree q0. Indeed,

assumption (a) in Proposition 4.2.1 implies that the minimal resolution F of C̃(Q)
as a complex of O[1Q][[K1]]-modules is concentrated in degrees [q0, q0+ l0]. We
also have jO[[K0]](Hq0(C̃(Q))) > l0 because the quotient module O⊗O[1Q ] Hq0(C̃(Q)) ∼=
H̃q0(XU p ,O)m has grade l0 (by Proposition 4.2.1). Applying Lemma A.10 to the complex

F[−q0], we deduce that C̃(Q) has homology concentrated in degree q0.

Proposition 5.1.6 motivates the following conjecture, which is a further refinement of

Conjectures 3.3.3 and 3.3.7.

Conjecture 5.1.12. For any Taylor–Wiles datum (Q, (γv,1, . . . , γv,n)v∈Q), and any

irreducible E-representation of K0, σ , the action of Rloc
p on H∗(X K0U p

1 (Q)
, σ ◦)mQ,1 factors

through Rloc
p (σ ). Furthermore, if h ∈ H(σ ◦) is such that η(h) ∈ Rloc

p (σ ), then h acts

on Hq0(X K0U p
1 (Q)

, σ ◦)mQ,1 via η(h).

Remark 5.1.13. The reader may be surprised by Conjecture 5.1.12, which in particular

implies that the factors at places dividing p of the Galois representations associated
with torsion classes in the homology groups H∗(X K0U p

1 (Q)
, σ ◦)mQ,1 are controlled by

the crystalline deformation rings, which are defined purely in terms of representations
over p-adic fields (and are p-torsion-free by fiat). Nonetheless, since we believe

that Conjecture 5.1.2 is reasonable, Proposition 5.1.6 gives strong evidence for

Conjecture 5.1.12; similarly, [50, Corollary 6.5] shows that the crystalline deformation

rings can be reconstructed from P, and this alternative construction makes it more

plausible that they can also control integral phenomena. We are also optimistic that

the natural analogues of Conjecture 5.1.12 should continue to hold beyond the case

of GL2(Qp).
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Remark 5.1.14. We have avoided the notational clutter that would result from allowing

non-trivial inertial types, but the natural generalisation of Proposition 5.1.6 to more

general potentially crystalline (or even potentially semistable) representations can be

proved in the same way. The axioms in § 5.2 only refer to crystalline representations;

accordingly, Corollary 5.3.2 shows that (in conjunction with our other assumptions)

Conjecture 5.1.12 implies a local–global compatibility result for general potentially

semistable representations. (It is perhaps also worth remarking that rather than

assuming Conjecture 5.1.12, we could instead assume a variant for arbitrary potentially

Barsotti–Tate representations, or indeed any variant to which we can apply the ‘capture’

machinery of [28, § 2.4].)

In the rest of this section, we will explain (following [19]) that Conjecture 5.1.12 implies

Conjecture 5.1.2.

5.2. Arithmetic actions

We now introduce variants of the axioms of [19, § 3.1], and prove Proposition 5.2.2, which

shows that if the axioms are satisfied for Hq0(C̃(∞)), then Conjecture 5.1.2 holds. We

will show in § 5.3 that (under our various hypotheses) Hq0(C̃(∞)) indeed satisfies these

axioms.

Fix an integer g > 0 and set R∞ = Rloc
p ⊗̂O O[[x1, . . . , xg]]. (Of course, in our

application to Hq0(C̃(∞)), we will take g as in § 5.1.)

Then an O[G]-module with an arithmetic action of R∞ is by definition a non-zero

R∞[G]-module M∞ satisfying axioms (AA1)–(AA4).

(AA1) M∞ is a finitely generated R∞[[K0]]-module.

(AA2) M∞ is projective in the category of pseudocompact O[[K0]]-modules.

Set

M∞(σ ◦) := σ ◦⊗O[[K0]] M∞.

This is a finitely generated R∞-module by (AA1). For each σ ◦, we have a natural action

of H(σ ◦) on M∞(σ ◦), and thus of H(σ ) on M∞(σ ◦)[1/p].

(AA3) For any σ , the action of R∞ on M∞(σ ◦) factors through R∞(σ ). Furthermore,

M∞(σ ◦) is maximal Cohen–Macaulay over R∞(σ ).

(AA4) For any σ , the action of H(σ ) on M∞(σ ◦)[1/p] is given by the composite

H(σ ) η
→ Rloc

p (σ )[1/p] → R∞(σ )[1/p].

Remark 5.2.1. Our axioms are not quite the obvious translation of the axioms of [19, § 3.1]

to our setting. First, our definition of M∞(σ ◦) is different; however, by Remark 5.1.7, it

is equivalent to the definition given there. More significantly, in (AA3), we do not require

that M∞(σ ◦)[1/p] is locally free of rank one over its support.

Since Rloc
p (σ )[1/p] is equidimensional and regular (by [42, Theorem 3.3.8] and [7,

Lemma 3.3]), M∞(σ ◦)[1/p] is (being maximal Cohen–Macaulay by (AA3)) locally

free over its support. (This is standard, but for completeness we give an argument.
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Write R = Rloc
p (σ )[1/p], M = M∞(σ ◦)[1/p], and let p ∈ SuppR(M). By [38, Chapter 0,

Corollary 16.5.10], Mp is Cohen–Macaulay over Rp and we have

dimR(M) = dimR(M/pM)+ dimRp(Mp).

By [38, Chapter 0, Proposition 16.5.9], we have dimR(M/pM) = dim R/p and since M is

maximal Cohen–Macaulay over R, we have dimR(M) = dim R. Since dim Rp+ dim R/p 6
dim R [38, Chapters 0, 16.1.4.1], we deduce that dimRp(Mp) > dim Rp and therefore

dimRp(Mp) = dim Rp. So Mp is maximal Cohen–Macaulay over Rp. Since R is regular,

and maximal Cohen–Macaulay modules over regular local rings are free [59, Tag 00NT],

we deduce that M[1/p] is locally free over R(σ )[1/p].)
We do not make any prescription on the rank of M∞(σ ◦)[1/p] over its support (or

even require this rank to be constant), and this is reflected in the multiplicity m in

Proposition 5.2.2.

We now follow the approach of [19] to show that any O[G]-module with an arithmetic

action of R∞ is obtained from the p-adic local Langlands correspondence for GL2(Qp).

The following result shows that in order to establish Conjecture 5.1.2, it is enough to show
that the action of R∞[G] on Hq0(C̃(∞)) is arithmetic. We will follow the proof of [19,

Theorem 4.30] very closely, indicating what changes are necessary to go from their G
(which equals GL2(Qp)) to our G (which is a product of copies of PGL2(Qp)). We also

need to make some additional adjustments due to the absence of a rank one assumption

in axiom (AA3).

Proposition 5.2.2. Let M∞ be an O[G]-module with an arithmetic action of R∞. Then

for some integer m > 1, there is an isomorphism of R∞ [G]-modules

M∞ ∼= R∞ ⊗̂Rloc
p

P⊕m .

Proof. As we have already remarked, we will closely follow the arguments of [19, § 4].

To orient the reader unfamiliar with [19], we make some brief preliminary remarks. As

a consequence of the results of [49, 50], it is not hard to show that the natural action

of R∞[G] on R∞ ⊗̂Rloc
p

P⊕m is an arithmetic action. We show that M∞ is a projective

object of CG(O), and that its cosocle only contains copies of π∨ :=
⊗̂

v|pπ
∨
v . From this,

we can deduce the existence of an isomorphism of O[[x1, . . . , xg]]-modules of the required

kind, and we need only check that it is Rloc
p -linear. By a density argument, we reduce to

showing that the corresponding isomorphism for M∞(σ ) is Rloc
p (σ )-linear (for each σ ).

This in turn follows from (AA4) (and the fact that η : H(σ )→ Rloc
p (σ )[1/p] becomes an

isomorphism upon passing to completions at maximal ideals, cf. [19, Proposition 2.13];

this is due to the uniqueness of the Hodge filtration for crystalline representations, which

is a phenomenon unique to the case of GL2(Qp)).

We now begin the proof proper. Set π∨ :=
⊗̂

v|pπ
∨
v ; by Lemma B.8, P is a projective

envelope of π∨ in CG(O). The argument of [19, Proposition 4.2] goes through essentially

unchanged, and shows that for each Serre weight σ with corresponding lift σ ◦, we have
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the following:

(1) If M∞(σ ◦) 6= 0, then it is a free R∞(σ )-module of some rank m. Furthermore, the

action of H(σ ) on M∞(σ ) factors through the natural map Rloc
p (σ )/$ → R∞(σ )/$ ,

and M∞(σ ) is a flat H(σ )-module.

(2) If M∞(σ ◦) 6= 0, then there is a homomorphism H(σ )→ k such that π ∼=

c-IndG
K0
σ ⊗H(σ ) k. Accordingly, HomG(π,M∨∞)

∨ ∼= M∞(σ )⊗H(σ ) k.

(3) If π ′ is an irreducible smooth k-representation of G, then HomG(π
′,M∨∞) 6= 0 if and

only if π ′ ∼= π .

Since H(σ ) =
⊗

v|p H(σ v) ∼= k[Tv]v|p, the proofs of [19, Lemmas 4.10, 4.11, Theorem 4.15]
go through with only notational changes so that M∞ is a projective object of CG(O).

Write A = O[[x1, . . . , xg]], and choose a homomorphism A→ R∞ inducing an

isomorphism Rloc
p ⊗̂O A ∼= R∞. We claim that there is an isomorphism in CG(A)

M∞ ∼= A ⊗̂O P⊕m . (5.2.3)

By (3) above, all of the irreducible subquotients of cosocCG (O) M∞ are isomorphic to π∨,

so by [19, Proposition 4.19, Remark 4.21] it is enough to show that HomG(π,M∨∞)
∨

is a free A/$ -module of rank m. To see this, note that by (2) above, we have

HomG(π,M∨∞)
∨ ∼= M∞(σ )⊗H(σ ) k, which by (1) is a free R∞(σ )⊗H(σ ) k-module of

rank m. By (1) again (together with [19, Lemma 2.14]), the map A→ R∞ induces an

isomorphism A/$ ∼= R∞(σ )⊗H(σ ) k, as required.
It remains to show that (5.2.3) is Rloc

p -linear. We claim that the action of R∞
on A ⊗̂O P⊕m is arithmetic; admitting this claim, the proofs of [19, Theorems 4.30, 4.32]

go over with only minor notational changes to show the required Rloc
p -linearity.

It is obviously enough to show that the action of Rloc
p on P is an arithmetic action

(with g = 0). (AA1) holds by the topological version of Nakayama’s lemma (since
⊗̂

v|pκ
∨
v

is a finitely generated k[[K0]]-module), while (AA2) holds by [50, Corollary 5.3]. (AA3)

holds by [50, Corollaries 6.4, 6.5], while (AA4) follows from the main result of [49] exactly

as in the proof of [19, Proposition 6.17].

5.3. Local–global compatibility

We now discuss the axioms (AA1)–(AA4) in the case M∞ = Hq0(C̃(∞)).

Proposition 5.3.1. Assume (in addition to our running assumptions) Conjecture 5.1.12.

Then the action of R∞[G] on Hq0(C̃(∞)) is arithmetic.

Proof. Certainly Hq0(C̃(∞)) is finitely generated over R∞[[K0]], by Proposition 3.4.16(2)

and Remark 3.4.17, so axiom (AA1) holds.

Next we show that the R̄∞ action on Hi (σ
◦
⊗O[[K0]] C̃(∞)) factors through R̄∞(σ ) for

all i . Indeed, by 3.4.14, we have natural isomorphisms

Hi (σ
◦
⊗O[[K0]] C̃(∞)) ∼= lim

←−
Up,J

Hi (σ
◦
⊗O[[K0]] C(Up, J,∞)),

where the inverse limit is taken over pairs (J,Up) such that Up acts trivially on σ ◦⊗O
O∞/J . Each homology group Hi (σ

◦
⊗O[[K0]] C(Up, J,∞)) can be obtained by applying
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the ultraproduct construction to the groups Hi (σ
◦
⊗O[[K0]] C(Up, J, N )), and it follows

from Conjecture 5.1.12 that the action of R̄∞ on all these groups factors through R̄∞(σ ).
It follows in the same way from Conjecture 5.1.12 that if h ∈ H(σ ◦) is such that η(h) ∈
Rloc

p (σ ), then h acts on Hq0(σ
◦
⊗O[[K0]] C̃(∞)) via η(h), so axiom (AA4) holds.

We can now apply Lemma A.10 (or [20, Lemma 6.2]) to the complex

of O∞-modules σ ◦⊗O[[K0]] C̃(∞) (more precisely, we replace C̃(∞) by a quasi-isomorphic

complex of finite projective modules in degrees [q0, q0+ l0], which we can do by

Proposition 4.2.1(2)). As in the proof of [20, Theorem 6.3], since the action of O∞
on H∗(σ ◦⊗O[[K0]] C̃(∞)) factors through R∞(σ ), and dim R∞(σ ) = dimO∞− l0, we

have jO∞(H∗(σ
◦
⊗O[[K0]] C̃(∞))) > l0. We deduce that the complex σ ◦⊗O[[K0]] C̃(∞)

has non-zero homology only in degree q0, and that Hq0(σ
◦
⊗O[[K0]] C̃(∞)) = σ ◦⊗O[[K0]]

Hq0(C̃(∞)) is maximal Cohen–Macaulay over R̄∞(σ ). We have now established that axiom

(AA3) holds.

Finally, it remains to check (AA2). By [16, Proposition 3.1], it is enough to show that

for each Serre weight σ , we have TorO[[K0]]
1 (σ , Hq0(C̃(∞))) = 0. Once again, we apply

Lemma A.10 (or [20, Lemma 6.2]) – this time to the complex of O∞/$ -modules σ ⊗O[[K0]]

C̃(∞). We see that it suffices to prove that jO∞/$ (H∗(σ ⊗O[[K0]] C̃(∞))) > l0. We let σ ◦

be the lift of σ . From what we have already shown about the complex σ ◦⊗O[[K0]] C̃(∞),
we deduce that we have

Hq0(σ ⊗O[[K0]] C̃(∞)) = O/$ ⊗O Hq0(σ
◦
⊗O[[K0]] C̃(∞))

and

Hq0+1(σ ⊗O[[K0]] C̃(∞)) = TorO1 (O/$, Hq0(σ
◦
⊗O[[K0]] C̃(∞)))

with all other homology groups vanishing.
The action of O∞/$ on these two groups factors through R∞(σ )/$ , since the action

on Hq0(σ
◦
⊗O[[K0]] C̃(∞)) factors through R∞(σ ), and dim R∞(σ )/$ = dimO∞/$ − l0,

so we deduce the desired inequality for jO∞/$ (H∗(σ ⊗O[[K0]] C̃(∞))).

Corollary 5.3.2. Assume (in addition to our running assumptions) Conjecture 5.1.12.
Then Conjecture 5.1.2 holds. In particular, we obtain as consequences the ‘big R = T’

result of Proposition 5.1.4 and the automorphy lifting result of Corollary 5.1.8.

Proof. This is immediate from Propositions 5.2.2 and 5.3.1.

5.4. The totally real and imaginary quadratic cases

We conclude by discussing the cases in which unconditional results seem most in reach.

If F is totally real, then l0 = 0, and the existence of Galois representations is known; the
only assumption that is not established is assumption (a) of Proposition 4.2.1, that the

homology groups Hi (XU p K1 , k)m vanish for i 6= q0. It might be hoped that a generalisation

of the results of [24] to non-compact Shimura varieties could establish this. Of course the

totally real cases where l0 = 0 are less interesting from the point of view of this paper,

as they could already have been studied using the methods of [18].

If F is imaginary quadratic, then the biggest obstacle to unconditional results is

Conjecture 5.1.12; indeed, as explained in Remarks 3.3.4 and 3.3.8, the other hypotheses
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on the Galois representations seem to be close to being known, and as explained in

Remark 4.2.2, assumptions (a) and (b) of Proposition 4.2.1 are known in this case.
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Appendix A. Non-commutative algebra

In this section, we make some definitions and establish some results for non-commutative

Iwasawa algebras, which generalise standard facts about complete regular local rings.

Section A.1 contains the basic definitions that will be needed for discussing our results

on patching completed homology.

A.1. Depth and dimension

Definition A.2. Let A be a ring and let M be a left or right A-module. We denote the

projective dimension of M over A by pdA(M). We define the grade jA(M) of M over A
by

jA(M) = inf{i : ExtiA(M, A) 6= 0}.

If all the ExtiA(M, A) vanish, we have jA(M) = ∞. If A is local with maximal ideal mA,

then we define the depth depthA(M) of M by

depthA(M) = inf{i : ExtiA(A/mA,M) 6= 0}.

Similarly, if all the ExtiA(A/mA,M) vanish, we set depthA(M) = ∞.

A Noetherian ring A is called Auslander–Gorenstein if it has finite left and right

injective dimension and if for any finitely generated left or right A-module M , any integer

m, and any submodule N ⊂ ExtmA(M, A), we have jA(N ) > m.

An Auslander–Gorenstein ring is called Auslander regular if it has finite global

dimension.

Finally, let A be an Auslander regular ring and let M be a finitely generated left

A-module. We define the dimension δA(M) of M over A by

δA(M) = gld(A)− jA(M),

where gld(A) is the global dimension of A.

Let K be a compact p-adic analytic group. We are going to apply the above definitions

for A = O[[K ]], the Iwasawa algebra of K with coefficients in O. Note that taking inverses
of group elements induces an isomorphism between O[[K ]] and its opposite ring, so there

is an equivalence between the categories of left and right O[[K ]]-modules.

O[[K ]] is Noetherian, and when K is moreover a pro-p group, O[[K ]] is a local ring

with O[[K ]]/mO[[K ]] = k.

Remark A.3. If M is an O[[K ]]-module, then jO[[K ]](M) is sometimes referred to as the

codimension of M (cf. [17, § 1.2]).
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When K is pro-p and torsion-free, Venjakob [63] has established that O[[K ]] has nice

homological properties, which are summarised in the next proposition.

Proposition A.4 (Venjakob). Let K be a compact p-adic analytic group, which is

torsion-free and pro-p. Let 3 = O[[K ]] and let M be a finitely generated 3-module.

(1) 3 is Auslander regular with global dimension gld(3) and depth depth3(3) both equal

to 1+ dim(K ).

(2) The Auslander–Buchsbaum equality holds for M:

pd3(M)+ depth3(M) = depth3(3) = 1+ dim(K ).

(3) We have

pd3(M) = max{i : Exti3(M,3) 6= 0}.

In particular, we have pd3(M) > j3(M).

Proof. All these statements are contained in [63]. For the first part of the proposition,

Auslander regularity is [63, Theorem 3.26]. The depth of3 is equal to its global dimension

by [63, Lemma 5.5(iii)]. The computation of the global dimension of3 follows from results

of Brumer [16, Theorem 4.1], Lazard [43, Théorème V.2.2.8] and Serre [57].

The Auslander–Buchsbaum equality is [63, Theorem 6.2]. Finally, the formula for

pd3(M) is [63, Corollary 6.3].

Definition A.5. If K is a compact p-adic analytic group, then a non-zero finitely

generated O[[K ]]-module M is Cohen–Macaulay if ExtiO[[K ]](M,O[[K ]]) is non-zero for

just one degree i .

Remark A.6. If K is furthermore torsion-free and pro-p, then by Proposition A.4, a

finitely generated O[[K ]]-module M is Cohen–Macaulay if and only if depthO[[K ]](M) =
δO[[K ]](M).

If K is an arbitrary compact p-adic analytic group, then O[[K ]] is not necessarily local

(although it is semi-local), and is not necessarily Auslander regular. But the notions of

grade and projective dimension are still well behaved because we can apply the following

lemma with H a normal compact open subgroup of K , which is torsion-free and pro-p.

Lemma A.7. Suppose K is a compact p-adic analytic group and let H ⊂ K be a normal

compact open subgroup. Let M be an O[[K ]]-module.

• For all i > 0, we have an isomorphism of O[[H ]]-modules

ExtiO[[H ]](M,O[[H ]]) ∼= ExtiO[[K ]](M,O[[K ]]).

In particular, we have jO[[K ]](M) = jO[[H ]](M).

• Suppose M is finitely generated and of finite projective dimension over O[[K ]]. Suppose

that H is torsion-free and pro-p. Then

pdO[[K ]](M) = pdO[[H ]](M).
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Proof. The first item follows from [4, Lemma 5.4]. The second item is a combination of

the first with the fact that we have

pd3(M) = max{i : Exti3(M,3) 6= 0}

for 3 = O[[H ]] by Proposition A.4 and we also have the same equality for 3 = O[[K ]]
by [63, Remark 6.4].

From now on, in this subsection, we fix a compact p-adic analytic group K and assume

that K is torsion-free and pro-p. We let 3 = O[[K ]], and let d = 1+ dim(K ), so d is the

global dimension of 3.

We use the following fundamental fact (again due to Venjakob) in this section.

Lemma A.8. If we have a short exact sequence of finitely generated 3-modules 0→ L →
M → N → 0, then j3(M) = min( j3(L), j3(N )).

Proof. This is [63, Proposition 3.6].

The next two lemmas are generalisations of [20, Lemmas 6.1, 6.2].

Lemma A.9. If N is a finitely generated 3-module with projective dimension j , and

0 6= M ⊆ N , then j3(M) 6 j .

Proof. Since 3 is Auslander regular, this follows immediately from [63, Proposition 3.10].

Lemma A.10. Suppose l0 is an integer with 0 6 l0 6 d. Let P• be a chain complex of

finite free 3-modules, concentrated in degrees 0, . . . , l0. Assume that H∗(P•) 6= 0. Then

j3(H∗(P•)) 6 l0 and if equality occurs, we have the following:

(1) P• is a projective resolution of H0(P•).

(2) We have pd3(H0(P•)) = j3(H0(P•)) = l0.

We have the same statements if we replace 3 with � := 3/$ = k[[K ]].

Proof. Let m > 0 be the largest integer such that Hm(P•) 6= 0. Consider the complex

Pl0 → · · · → Pm+1
dm+1
→ Pm .

By the definition of m, this complex is a projective resolution of Km := Pm/ im(dm+1). It
follows that pd3(Km) 6 l0−m.

Since Hm(P•) is a non-trivial submodule of Km , by Lemmas A.8 and A.9, we have

j3(H∗(P•)) 6 j3(Hm(P•)) 6 pd3(Km) 6 l0−m 6 l0,

as claimed.

If we have the equality j3(H∗(P•)) = l0, then equality holds in all the above inequalities,

so that in particular m = 0, Km = H0(P•), and the other claims follow immediately.

The proof with 3 replaced by � is identical, using the fact that the relevant lemmas

all hold with 3 replaced by � (which is again Auslander regular).
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We finish this subsection with a lemma computing the codimension of a tensor product

of two modules.

Lemma A.11. Let G, H be compact p-adic analytic groups. Let M, N be finitely generated

k[[G]]- and k[[H ]]-modules. Then jk[[G×H ]](M ⊗̂k N ) = jk[[G]](M)+ jk[[H ]](N ).

Proof. By Lemma A.7, we can assume that G and H are torsion-free pro-p.

Set � = k[[G× H ]], �1 = k[[G]] and �2 = k[[H ]]. Note that we can naturally identify
� with the completed tensor product �1 ⊗̂k �2. Let P•→ M and Q•→ N be finite

free resolutions of M and N , respectively (they exist since �1 and �2 have finite global

dimension).

We denote by P• ⊗̂k Q• the finite free complex of � modules obtained from totalising
the double complex (Pi ⊗̂k Pj )i, j . This is a finite free resolution of M ⊗̂k N . We have

natural isomorphisms

Hom�(P• ⊗̂k Q•, �) = Hom�1(P•, �1) ⊗̂k Hom�2(Q•, �2).

The equality jk[[G×H ]](M ⊗̂k N ) = jk[[G]](M)+ jk[[H ]](N ) follows immediately. Indeed, we

have a spectral sequence

Exti�1
(M, �1) ⊗̂k Ext j

�2
(N , �2)⇒ Exti+ j

� (M ⊗̂k N , �).

A.12. Gelfand–Kirillov dimension

In this section, we assume that K is a compact p-adic analytic group, which is uniform

pro-p. (Note that any compact p-adic analytic group contains a normal open subgroup,
which is uniform pro-p, so this will not be a problematic assumption in our applications.)

We again let 3 = O[[K ]], and set d = 1+ dim(K ). We let � = 3/$3. We denote by

J� the Jacobson radical of �. The ring � is again Auslander regular, and for finitely

generated � modules, the dimension δ� (or equivalently the grade j�) can be computed

as a Gelfand–Kirillov dimension.

Proposition A.13. Let M be a finitely generated �-module. We have

δ�(M) = lim sup logn dimk M/J n
�M.

Proof. This is [3, Proposition 5.4(3)].

A.14. Comparing dimensions

We again assume that K is uniform pro-p and let 3 = O[[K ]]. Fix a topological

generating set a1, . . . , am for K . We consider two more Auslander regular rings A =
3 ⊗̂O O[[x1, . . . , xr ]] and B = 3 ⊗̂O O[[y1, . . . , ys]] together with a map A→ B induced

from a (local O-algebra) map O[[x1, . . . , xr ]] → O[[y1, . . . , ys]].

Note that we can think of A and B as the Iwasawa algebras 3O[[K ×Zr
p]] for

appropriate r , and K ×Zr
p is uniform pro-p, so we can apply the results of the previous

subsections to A and B.

We set A = A/$ A and B = B/$ B. The goal of this subsection is Lemma A.19, which

shows that if M is a finitely generated B-module, which is also finitely generated as
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an A-module, then δA(M) = δB(M). This generalises a well-known fact in commutative

algebra [38, Chapter 0, Proposition 16.1.9].

Lemma A.15. Suppose M is a finitely generated A-module, and let x be one of

$, x1, . . . , xr . Then, we have the following:

• If M is killed by x, δA(M) = δA/x (M).

• if M is x-torsion-free, δA(M) = 1+ δA/x (M/x M).

Proof. First we assume that M is killed by x . The base change spectral sequence [65,

Example 5.6.3] for Ext is

E i, j
2 : ExtiA/x (M,Ext j

A(A/x, A)) H⇒ Exti+ j
A (M, A),

and Ext j
A(A/x, A) is zero unless j = 1, when we have Ext1A(A/x, A) = A/x . Since M is

killed by x , jA(M) > 0, and we have

ExtiA/x (M, A/x) = Exti+1
A (M, A)

for i > 0. We deduce that jA(M) = 1+ jA/x (M), and therefore δA(M) = δA/x (M).
Now we assume that M is x-torsion-free. [44, Theorem 4.3] implies that jA(M/x M) >

1+ jA(M), so we have an exact sequence

0→ Ext jA(M)
A (M, A)

×x
→ Ext jA(M)

A (M, A)→ Ext1+ jA(M)
A (M/x M, A)

and Ext jA(M)
A (M, A) is a non-zero finitely generated A-module. By Nakayama’s lemma, we

see that Ext jA(M)
A (M, A)/x Ext jA(M)

A (M, A) is non-zero, and so Ext1+ jA(M)
A (M/x M) is also

non-zero. This implies that jA(M/x M) = 1+ jA(M). The first part of the lemma then

gives jA/x (M/x M) = jA(M) and so δA(M) = 1+ δA/x (M/x M).

Lemma A.16. Suppose M is a finitely generated A-module and let x be one of

$, x1, . . . , xr . Then

jA(M) > jA/x (M/x M).

In particular,

jA(M) > j3(M/(x1, . . . , xr )M)

and

jA(M) > j�(M/($, x1, . . . , xr )M).

Proof. The ‘in particular’ part of the lemma follows from the first part by induction.

Applying Lemma A.15, we see that if M is x-torsion-free, then jA(M) = jA/x (M/x M).
In general, we have an exact sequence

0→ M[x∞] → M → M/M[x∞] → 0,

where M/M[x∞] is x-torsion-free, so we have a short exact sequence

0→ A/x ⊗A M[x∞] → A/x ⊗A M → A/x ⊗A (M/M[x∞])→ 0.
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By Lemma A.8, it now suffices to show that if M is killed by x N for some N > 1,

then jA(M) > jA/x (M/x M). Consider the filtration {0} = x N M ⊂ x N−1 M ⊂ · · · ⊂
x M ⊂ M . We have jA(M) = mini ( jA(x i M/x i+1 M)) by a repeated application of

Lemma A.8 and we therefore have jA(M) = 1+mini ( jA/x (x i M/x i+1 M)) by another

application of Lemma A.15. Multiplication by x i gives a surjective A-linear map

M/x M → x i M/x i+1 M , so jA/x (M/x M) 6 jA/x (x i M/x i+1 M) for all i (by Lemma A.8

again). In particular, we have jA(M) = 1+ jA/x (M/x M), which gives the desired

conclusion.

Lemma A.17. We have JA B = B JA and JA JB = JB JA.

Proof. JA is the (right, left, two-sided) ideal of A generated by a1− 1, . . . , am −

1, x1, . . . , xr and JB is the (right, left, two-sided) ideal of B generated by a1− 1, . . . , am −

1, y1, . . . , ys . The lemma is now easy since the xi map to central elements in B.

The next lemma is a mild variation on [64, Lemma 3.1].

Lemma A.18. Suppose M is a finitely generated B-module, which is also finitely generated

as an A-module. Then δA(M) = δB(M).

Proof. We show the lemma by comparing Gelfand–Kirillov dimensions. Since M is

a finitely generated A-module, M/JA M is a finite-dimensional k-vector space. By

Lemma A.17, JA M is a B-submodule of M . So M/JA M is an Artinian B-module.

Therefore J k
B
(M/JA M) = 0 for some positive integer k. So J k

B
M ⊂ JA M ⊂ JB M . Using

the fact that JA JB = JB JA (Lemma A.17), an induction shows that

J k N
B

M ⊂ J N
A

M ⊂ J N
B

M

for all N > 1. Using Proposition A.13, we conclude that δA(M) = δB(M).

Lemma A.19. Suppose M is a finitely generated B-module, which is also finitely generated

as an A-module. Then δA(M) = δB(M).

Proof. M has a finite filtration by B-submodules {0} = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M such

that each Mi/Mi−1 is either $ -torsion-free or killed by $ . Each Mi is also a finitely

generated A-module. By Lemma A.8, we have δA(M) = maxi (δA(Mi/Mi−1)) and δB(M) =
maxi (δB(Mi/Mi−1)), so we may assume that M is either $ -torsion-free or killed by $ .

Applying Lemmas A.15 and A.18 gives δA(M) = δB(M).

A.20. Comparing depths

We retain the assumptions and notation of the previous subsection. Recall that we have

two 3-algebras A = 3 ⊗̂O O[[x1, . . . , xr ]] and B = 3 ⊗̂O O[[y1, . . . , ys]]. The goal of this

subsection is Lemma A.28, which shows that if M is a finitely generated B-module,

which is also finitely generated as an A-module, then depthA(M) 6 depthB(M). In fact,

we can show that depthA(M) = depthB(M) (which again generalises a well-known result

in commutative algebra [38, Chapter 0, Proposition 16.4.8]) but proving the inequality

suffices for our applications and is already sufficiently painful.
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We set R = k[[x1, . . . , xr ]] = A/J3A and S = k[[y1, . . . , ys]] = B/J3B. We have a map

of local k-algebras R→ S.

Lemma A.21. Suppose I is an injective left B-module. Then I is injective as a left

3-module.

Proof. Suppose 0→ L → M → N → 0 is a short exact sequence of left 3-modules. Since

B is a flat right 3-module, we have an exact sequence of left B-modules

0→ B⊗3 L → B⊗3 M → B⊗3 N → 0

and hence an exact sequence

0→ HomB(B⊗3 N , I )→ HomB(B⊗3 M, I )→ HomB(B⊗3 L , I )→ 0.

Finally, the tensor-hom adjunction implies that

0→ Hom3(N , I )→ Hom3(M, I )→ Hom3(L , I )→ 0

is exact.

For any left B-module M , note that Hom3(k,M) = {m ∈ M : J3m = 0} is naturally

a left S-module. We denote by RHomS
3(k,M) the object of D+(S) given by taking

an injective A-module resolution of M and applying Hom3(k,−) to get a complex

of S-modules. By Lemma A.21, we have natural isomorphisms of Abelian groups

H i (RHomS
3(k,M)) = Exti3(k,M).

Remark A.22. Note that the natural S-module structure on Exti3(k,M) can also be

defined using the facts that Exti3(k,M) = ExtiB(B⊗3 k,M) (extension of scalars) and

that B⊗3 k is a (B, S)-bimodule.

Remark A.23. For an A-module M , we can similarly define RHomR
3(k,M).

Lemma A.24. For a B-module M, there is a natural isomorphism

RHomR
3(k,M) = ιS

R
RHomS

3(k,M),

where ιS
R

is the derived functor of the (exact) forgetful functor from S-modules to

R-modules.

Proof. We can compute RHomR
3(k,M) using an injective B-module resolution of M

since an injective B-module is acyclic for the functor Hom3(k,−) from A-modules

to R-modules. Computing RHomS
3(k,M) using the same injective resolution gives the

desired isomorphism.

Lemma A.25. For B-modules M, we have natural isomorphisms

RHomB(k,M) = RHomS(k,RHomS
3(k,M))

and

RHomA(k,M) = RHomR(k, ι
S
R

RHomS
3(k,M)).
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Proof. Consider the functor Hom3(k,−) from B-modules to S-modules. This takes

injectives to injectives since for an S-module X , we have HomS(X,Hom3(k,M)) =
HomB(X,M).

The functor HomS(k,Hom3(k,−)) from B-modules to Abelian groups is naturally

equivalent to the functor HomB(k,M). The derived functor of the composition of

functors is given by RHomS(k,RHomS
3(k,−)), and this gives the first collection of natural

isomorphisms.

Applying the same argument to A-modules, together with Lemma A.24, we get the
second collection of natural isomorphisms.

At this point, we recall that for a commutative Noetherian local ring X with maximal

ideal mX , there is a good notion of depth for objects in D+(X) [40].2

Definition A.26. For M ∈ D+(X), we define

depthX (M) = inf{i : ExtiX (X/mX ,M) 6= 0}.

Lemma A.27. Let M ∈ D+(S). We have

depthR(ι
S
R

M) 6 depthS(M).

Proof. Combine [40, Theorem 6.1] (which shows that our definition of depth coincides

with the definition given in [40, § 2]) with [40, Proposition 5.2(2)].

Lemma A.28. Let M be a B-module. We have

depthA(M) 6 depthB(M).

Proof. By Lemmas A.25 and A.27, we have

depthA(M) = depthR(ι
S
R

RHomS
3(k,M))

6 depthS(RHomS
3(k,M)) = depthB(M).

Corollary A.29. Suppose M is a finitely generated B-module, which is also finitely
generated as an A-module. Moreover, suppose that M is a Cohen–Macaulay A-module.

Then M is a Cohen–Macaulay B-module, with depthB(M) = δB(M) = δA(M).

Proof. By Lemma A.28, we have δA(M) = depthA(M) 6 depthB(M). We also have

depthB(M) 6 δB(M), by parts (2) and (3) of Proposition A.4 (or by local duality). Since

δA(M) = δB(M) (by Lemma A.19), all these inequalities are equalities.

Proposition A.30 (Miracle Flatness). Let M be a finitely generated Cohen–Macaulay
A-module.

Then M is a flat O[[x1, . . . , xr ]]-module if and only if

jA(M) = j�(M/($, x1, . . . , xr )M).

2In fact, one need not restrict to bounded complexes; see [35].
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Proof. We let R = O[[x1, . . . , xr ]] and mR = ($, x1, . . . , xr ) ⊂ R. First suppose M is

a flat O[[x1, . . . , xr ]]-module. Then ($, x1, . . . , xr ) is an M-regular sequence (using

Nakayama’s lemma for finitely generated A-modules to see that M/($, x1, . . . , xr ) 6= 0;

we are assuming M 6= 0 since Cohen–Macaulay modules are by definition non-zero). It

follows from Lemma A.15 that we have the desired equality of codimensions.

Conversely, suppose that jA(M) = j�(M/($, x1, . . . , xr )M). We claim that

($, x1, . . . , xr ) is an M-regular sequence. To prove the claim, it suffices (by induction

on r) to show that for x ∈ {$, x1, . . . , xr } we have the following:

(1) jA(M) = jA/x (M/x M).

(2) x is M-regular.

(3) M/x M is a Cohen–Macaulay A/x-module.

By Lemma A.16, we have jA(M) > jA/x (M/x M) > j�(M/mR M), so our assumption

implies that (1) holds.

Next we check that x is M-regular. As in the proof of Lemma A.16, we have a short

exact sequence

0→ M[x∞] → M → M/M[x∞] → 0,

where M/M[x∞] is x-torsion-free. Suppose for a contradiction that M[x∞] is

non-zero. By [63, Propositions 3.9, 3.5(v)], M has pure δ-dimension dimA(M). By [63,
Proposition 3.5(vi)(b)], we therefore have jA(M[x∞]) = jA(M) (if a module has pure

δ-dimension, all its non-zero submodules have the same dimension). As in the proof of

Lemma A.16, we also have jA(M[x∞]) = 1+ jA/x (M[x∞]/x M[x∞]). Combining the two

equalities, we get jA/x (M[x∞]/x M[x∞]) = jA(M)− 1, which (by Lemma A.8) contradicts

(1), since M[x∞]/x M[x∞] is a submodule of M/x M . This completes the proof that (2)

holds.

Now we must show that M/x M is a Cohen–Macaulay A/x-module. By Lemma A.15,

we have jA(M/x M) = 1+ jA/x (M/x M) = 1+ jA(M). By (2), we have a short exact
sequence

0→ M
×x
→ M → M/x M → 0.

Considering the long exact sequence for HomA(−, A), we see that ExtiA(M/x M, A) = 0
for all i 6= 1+ jA(M). The argument of the first paragraph of the proof of Lemma A.15
now implies that ExtiA/x (M/x M, A/x) = 0 for all i 6= jA(M), and this shows that M/x M
is Cohen–Macaulay (by Remark A.6).

Finally, we have established the claim that ($, x1, . . . , xr ) is an M-regular sequence.

It follows that TorR
1 (R/mR,M) = 0. If I is an ideal in R, then I ⊗R M is naturally a

finitely generated A-module and is therefore separated for the mR-adic topology. Now [46,

Theorem 22.3] implies that M is a flat R-module (the previous sentence shows that M is

mR-adically ideal-separated, in Matsumura’s terminology).

A.31. An application of the Artin–Rees lemma

We now recall a version of the Artin–Rees Lemma.
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Lemma A.32. Let K be a compact p-adic analytic group, and let M be an

O[[K ]]-submodule of O[[K ]]⊕t , for some t > 1. Let K ′ be an open uniform pro-p subgroup

of K , and let J denote the two-sided ideal of O[[K ]] generated by the maximal ideal m of

the local ring O[[K ′]]. Then there is a constant c > 0 such that M ∩ (J m+c)⊕t
⊂ J m M

for all m > 0.

Proof. The associated graded of O[[K ]] for the J -adic filtration is finite over the

Noetherian ring grmO[[K ′]], so it is itself Noetherian. Now we can apply [45,
Proposition II.2.2.1, Theorem II.2.1.2(2)]. This shows that the J -adic filtration on O[[K ]]
has the Artin–Rees property (defined in [45, Definition II.1.1.1]), and the statement of

the lemma is a special case of this property.

Lemma A.33. Keep the same notation as in the previous lemma. Suppose we have

flat O[[K ]]/J m-modules Mm for each n > 1, with Mm = Mm+1/J m Mm+1. Then M :=
lim
←−m

Mm is a flat O[[K ]]-module and

Q⊗O[[K ]] M = lim
←−

Q⊗O[[K ]] Mm

for every finitely generated (right) O[[K ]]-module Q.

In particular, we have M/J m M = Mm .

Proof. This follows from [59, Tag 0912]. The reference assumes that the rings in question

are commutative, so we will write out the proof in our setting. Set A = O[[K ]] to

abbreviate our notation.

We first show that Q⊗A M = lim
←−

Q⊗A Mm for every finitely generated (right)

A-module Q. Since A is Noetherian, we may choose a resolution F2 → F1 → F0 → Q → 0
by finite free A-modules Fi . Then

F2⊗A Mm → F1⊗A Mm → F0⊗A Mm

is a chain complex whose homology in degree 0 is Q⊗A Mm and whose homology in

degree 1 is

TorA
1 (Q,Mm) = TorA

1 (Q, A/J m)⊗A/J m Mm

as Mm is flat over A/J m . Set K = ker(F0 → Q). We have

TorA
1 (Q, A/J m) = (K ∩ (J m F0))/J m K ,

so Lemma A.32 implies that there exists a c > 0 such that the map

TorA
1 (Q, A/J n+c)→ TorA

1 (Q, A/J m)

is zero for all m.
It follows from [59, Tag 070E] that lim

←−
Q⊗A Mm = coker(lim

←−
F1⊗A Mm → lim

←−
F0⊗A

Mm). Since the Fi are finite free, this equals coker(F1⊗A M → F0⊗A M) = Q⊗A M , as

claimed. Taking Q = A/J m , we obtain M/J m M = Mm .

It remains to show that M is flat. Let Q → Q′ be an injective map of finitely generated

right A-modules; we must show that Q⊗A M → Q′⊗A M is injective. By the above, we

see

ker(Q⊗A M → Q′⊗A M) = ker(lim
←−

Q⊗A Mm → lim
←−

Q′⊗A Mm).
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For each m, we have an exact sequence

TorA
1 (Q

′,Mm)→ TorA
1 (Q

′′,Mm)→ Q⊗A Mm → Q′⊗A Mm,

where Q′′ = coker(Q → Q′). Above we have seen that the inverse systems of Tor’s are

essentially constant with value 0. It follows from [59, Tag 070E] that the inverse limit of

the rightmost maps is injective, as required.

Appendix B. Tensor products and projective covers

B.1. Tensor products

We recall from [16, § 2] that if R is a pseudocompact ring and M, N are pseudocompact

(right, respectively, left) R-modules, then the completed tensor product M ⊗̂R N is a

pseudocompact R-module, which satisfies the usual universal property for the tensor

product in the category of pseudocompact R-modules. M ⊗̂R N is the completion of
M ⊗R N in the topology induced by taking Im(M ⊗R V +U ⊗R N ) as a fundamental

system of open neighbourhoods of 0, where U (respectively V ) runs through the open

submodules of M (respectively N).

If A and B are pseudocompact R-algebras, and M, N (respectively) are pseudocompact

A and B-modules, then M ⊗̂R N is naturally a pseudocompact A ⊗̂R B-module.

Lemma B.2. Let M, N be pseudocompact O-modules. Suppose M = lim
←−i

Mi and N =
lim
←− j

N j , where Mi and N j are also pseudocompact O-modules. Suppose that the transition

maps M j → Mi and N j → Mi are surjective. Then the natural map

lim
−→
i, j

Homcts
O (Mi , N∨j )→ Homcts

O (M, N∨)

is an isomorphism.

The natural map

M ⊗̂O N → lim
←−
i, j

Mi ⊗̂O N j

is also an isomorphism.

Proof. The first claim is (a special case of) [16, Lemma A.3]. The second claim is a

special case of [16, Lemma A.4].

Lemma B.3. Let M, N be pseudocompact O-modules. There is a natural isomorphism(
M ⊗̂O N

)∨ ∼= Homcts
O (M, N∨),

where N∨ has the discrete topology.

Proof. By Lemma B.2, we may assume that M and N are finite length O-modules. By

the universal property of the tensor product, we have

(M ⊗O N )∨ = HomO(M, N∨).

We now recall some terminology about categories of smooth representations of p-adic

analytic groups from [30]. Let G be a p-adic analytic group, with a compact open
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subgroup K0 (all the notions recalled below will be independent of the choice of K0).

We let A denote a complete Noetherian local O-algebra with finite residue field and

maximal ideal mA. In particular, A is a pseudocompact O-algebra. Modsm
G (A) denotes the

abelian category of smooth G-representations with coefficients in A [30, Definition 2.2.5].

Pontryagin duality gives an anti-equivalence of categories between Modsm
G (A) and the

category of pseudocompact A[[K0]]-modules with a compatible G-action [30, (2.2.8)].

Here we write A[[K0]] for A ⊗̂O O[[K0]].

An object V ∈ Modsm
G (A) is admissible if V∨ is a finitely generated A[[K0]]-module (we

take this as the definition, but see [30, Lemma 2.2.11]). An element v ∈ V is called locally

admissible if the G-subrepresentation of V generated by v is admissible, and V is called
locally admissible if every element of V is locally admissible.

Similarly, an element v ∈ V is called locally finite if the G-subrepresentation of V
generated by v is a finite length object in Modsm

G (A), and V is called locally finite if every

element of V is locally finite.

Lemma B.4. Let G, H be p-adic analytic groups and suppose that V ∈ Modsm
G (O) and

W ∈ Modsm
H (O). Suppose that V and W are locally admissible. Then (V∨ ⊗̂O W∨)∨ =

Homcts
O (V∨,W ) is a locally admissible object of Modsm

G×H (O).

Proof. Let M = V∨ and N = W∨. Since V and W are locally admissible, we can write

M = lim
←−i

Mi and N = lim
←− j

N j , where the M∨i and N∨j are admissible and the transition

maps in the inverse systems are surjective. It follows from Lemma B.2 that it suffices to

prove the lemma under the additional assumption that V and W are admissible.

Let K1 and K2 be compact open subgroups of G and H , respectively. We may

assume that M and N are finitely generated O[[K1]]- and O[[K2]]-modules respectively.

In particular, we have (continuous) surjections O[[K1]]
⊕a
→ M and O[[K2]]

⊕b
→ N .

Therefore, we have a surjective map of O[[K1]] ⊗̂O O[[K2]] = O[[K1× K2]]-modules:

O[[K1]]
⊕a
⊗̂O O[[K2]]

⊕b
= O[[K1× K2]]

⊕ab
→ M ⊗̂O N .

In particular, (M ⊗̂O N )∨ is admissible.

We recall that an irreducible admissible object V of Modsm
G (k) is called absolutely

irreducible if V ⊗k k′ is irreducible in Modsm
G (k′) for every field extension k′/k (or

equivalently for every finite extension). See [31, § 4.1] for this definition and the following

facts. If V is an admissible irreducible representation in Modsm
G (k), then k′ = EndG(V ) is a

finite extension of k and V ⊗k k′ is a finite direct sum of admissible absolutely irreducible

objects of Modsm
G (k′).

Lemma B.5. Let G, H be p-adic analytic groups and suppose that V ∈ Modsm
G (O) and

W ∈ Modsm
H (O). Suppose that V and W are locally finite and locally admissible. Then

(V∨ ⊗̂O W∨)∨ = Homcts
O (V∨,W ) is a locally finite object of Modsm

G×H (O).
If V and W are admissible absolutely irreducible, then (V∨ ⊗̂O W∨)∨ = V ⊗k W is an

admissible absolutely irreducible representation of G× H .

Proof. Let M = V∨ and N = W∨. Since V and W are locally finite, we can write M =
lim
←−i

Mi and N = lim
←− j

N j , where the M∨i and N∨j are of finite length and the transition
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maps in the inverse systems are surjective. It follows from Lemma B.2 that it suffices

to prove the lemma under the additional assumption that V and W are of finite length.

By induction on the length, we can assume that V and W are irreducible admissible. In

this case (since V and W are killed by $ ), Homcts
O (M, N∨) = lim

−→U
Homk(M/U, N∨) =

V ⊗k W , where U runs over open submodules of M , and the first equality follows from

Lemma B.2.

Now it remains to show that if V and W are irreducible admissible, then V ⊗k W
has finite length, and if moreover V and W are absolutely irreducible, then V ⊗k W is

absolutely irreducible. By extending scalars to a finite extension of k over which both V
and W are direct sums of absolutely irreducible representations, we can reduce to the
case where V and W are absolutely irreducible (descending back, we see that V ⊗k W is

a finite direct sum of irreducibles, which can be obtained by Galois descent from a direct

sum of absolutely irreducible representations in the extension of scalars).

We have

HomG(V, V ⊗k W ) = HomG(V, V )⊗k W

since V has finite length. By Schur’s lemma, we can identify HomG(V, V ⊗k W )

with W .

Suppose U ⊂ V ⊗k W is a non-zero G× H -subrepresentation. Then HomG(V,U ) is

an H -subrepresentation of HomG(V, V ⊗k W ) = W . Since V ⊗k W is locally finite as a

G-representation, with every simple submodule isomorphic to V , we have HomG(V,U ) 6=
0 and therefore HomG(V,U ) = W . This says that for all w ∈ W , the map v 7→ v⊗w lies

in HomG(V,U ). In other words, v⊗w ∈ U for all v ∈ V, w ∈ W . So U = V ⊗W . The

same argument applies after any extension of scalars k′/k, so we deduce that V ⊗k W is

absolutely irreducible.

Lemma B.6. Let G, H be p-adic analytic groups. Suppose that both G and H have the

property that locally admissible representations are locally finite. Let X be an admissible

absolutely irreducible object of Modsm
G×H (k). Then there is a finite extension k′/k such that

the extension of scalars Xk′ ∈ Modsm
G×H (k

′) is isomorphic to V ⊗k′ W , for some admissible

absolutely irreducible representations V ∈ Modsm
G (k′) and W ∈ Modsm

H (k
′).

Proof. Since X is admissible as a G× H -representation, it is locally admissible as a

G-representation. Indeed for every x ∈ X , there is a compact open subgroup K2 ⊂ H
such that x ∈ X K2 , and X K2 is a locally admissible G-representation. It follows from our

assumptions that X is a locally finite G-representation.

So, there is a simple admissible V ∈ Modsm
G (O) with HomG(V, X) 6= 0. The

H -representation HomG(V, X) is admissible, and hence locally finite. Indeed, if K2 ⊂ H
is compact open, then X K2 is an admissible G-representation and HomG(V, X)K2 =

HomG(V, X K2) is a finitely generated O-module by [30, Lemma 2.3.10]. We conclude

that there is a simple admissible W ∈ Modsm
H (O) with a injective H -linear map W →

HomG(V, X). It follows that we have a non-zero G× H -linear map V ⊗k W → X . There

is a finite extension k′/k such that the extensions of scalars Vk′ and Wk′ are direct sums

of absolutely irreducible representations. By Lemma B.5, Xk′ is isomorphic to the tensor

product of two of these absolutely irreducible representations.
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Lemma B.7. Let G =
∏m

i=1 Gi , where Gi = PGL2(Qp). Let V ∈ Modsm
G (O) be admissible

and finitely generated over O[G]. Then V is of finite length. In particular, locally

admissible G-representations are locally finite.

If V is absolutely irreducible as a G-representation, there is a finite extension

k′/k such that Vk′ is isomorphic to ⊗m
i=1Vi , where the Vi are absolutely irreducible

Gi -representations over k′.

Proof. Let K0 =
∏m

i=1 PGL2(Zp). Following the argument of [30, Theorem 2.3.8], it

suffices to show that every admissible quotient V of c-IndG
K0

W is of finite length,

where W is a finite-dimensional absolutely irreducible representation of K0 over k. After

extending scalars if necessary, W decomposes as a tensor product W =
⊗m

i=1 Wi of

representations of PGL2(Zp). As in loc. cit., we consider Homk[G](c-IndG
K0

W, V ), which is

a finite-dimensional k-vector space and a module over H(W ) := Endk[G](c-IndG
K0

W ). We

have a surjective map

Homk[G](c-IndG
K0

W, V )⊗H(W ) c-IndG
K0

W → V .

The Hecke algebra H(W ) is isomorphic to the convolution algebra of compactly
supported functions f : G → Endk(W ) such that f (h1gh2) = h1 ◦ f (g) ◦ h2 for all h1, h2 ∈

K0 and g ∈ G. With this description, one can show that

H(W ) ∼=

m⊗
i=1

Hi (Wi ),

where Hi (Wi ) = Endk[Gi ](c-IndGi
PGL2(Zp)

Wi ). By [8, Proposition 8], we have Hi (Wi ) ∼= k[Ti ]

and therefore we have H(W ) ∼= k[T1, . . . , Tm].

Now it suffices to show that

X ⊗H(W ) c-IndG
K0

W

is of finite length, where X is a finite-dimensional H(W )-module. By induction on the

dimension of X , extending scalars if necessary, we may assume that X ∼= H(W )/(T1−

λ1, . . . , Tm − λm), with λi ∈ k.

Since c-IndG
K0

W ∼=
⊗m

i=1 c-IndGi
PGL2(Zp)

Wi , we need to show that

m⊗
i=1

c-IndGi
PGL2(Zp)

Wi/(Ti − λi )

has finite length, which follows from Lemma B.5 and the results of [8, 14].

Finally, we repeatedly apply Lemma B.6 to show that if V is absolutely irreducible, it

factors as a tensor product after an extension of scalars.

Lemma B.8. Let G =
∏m

i=1 Gi , where Gi = PGL2(Qp). Let V =
⊗m

i=1 Vi be an absolutely

irreducible admissible representation of G (which factorises as shown). Let Vi ↪→ Ii , i =
1, . . . ,m be injective envelopes of Vi in Modloc adm

Gi
(O) (the category of locally admissible

representations). Dually, set Mi = V∨i and Pi = I∨i .

Then
⊗̂m

i=1 Pi →
⊗̂m

i=1 Mi is a projective envelope in CG(O) (see Definition 5.1.1).
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Proof. First we show that P :=
⊗̂m

i=1 Pi is projective in CG(O). Note that it follows from

Lemmas B.4 and B.7 that P∨ is locally admissible and locally finite. Let M =
⊗̂m

i=1 Mi ∈

CG(O). We induct on m. Let P ′ =
⊗̂m

i=2 Pi and G ′ =
∏m

i=2 Gi . By the universal property

of the completed tensor product, we have

Homcts
G1×G ′(P1⊗̂P ′,M) = Homcts

G1
(P1,Homcts

G ′ (P
′,M)), (B 9)

so projectivity of P follows from projectivity of P ′ and P1.

Now we prove that P → M is an essential surjection. Since P∨ is locally finite, it suffices

to show that M = cosoc(P) (see [19, Lemma 4.6]). Again we proceed by induction on m.

So we assume that cosoc(P ′) =
⊗̂m

i=2 Mi . Let N 6∼= M be a simple object of CG(O). We

want to show that Homcts
G (P, N ) = 0. Extending scalars to a field where N∨ is a direct

sum of absolutely irreducible representations, we reduce (using Lemma B.7) to the case

where N∨ is absolutely irreducible and we have a factorisation N ∼=
⊗̂m

i=1 Ni where the

N∨i are absolutely irreducible. Let N ′ =
⊗̂m

i=2 Ni . By (B 9), we have

Homcts
G (P, N ) = Homcts

G1
(P1,Homcts

G ′ (P
′, N )).

As an object of CG ′(O), we have N = N1 ⊗̂O N ′ = (lim
←−

N1/U ) ⊗̂O N ′, where the limit runs

over open submodules of N1 and so N1/U is a finite length O-module. In fact, since N1 is

simple, N1/U is just a finite-dimensional k-vector space. It follows from Lemma B.2 that,

in CG ′(O), we have an isomorphism N ∼= lim
←−
(N1/U ⊗O N ′) and so we obtain isomorphisms

Homcts
G ′ (P

′, N ) ∼= lim
←−

Homcts
G ′ (P

′, N1/U ⊗O N ′) = lim
←−

Homcts
G ′ (P

′, N ′)⊗O N1/U.

Applying a similar argument, we conclude that

Homcts
G (P, N ) ∼= Homcts

G1
(P1, N1) ⊗̂O Homcts

G ′ (P
′, N ′).

We immediately deduce (from our inductive hypothesis) that Homcts
G (P, N ) = 0. On

the other hand, the same argument shows that we have

Homcts
G (P,M) = Homcts

G1
(M1,M1) ⊗̂O Homcts

G ′ (M
′,M ′) = Homcts

G (M,M) = k.

We deduce that cosoc(P) = M , as desired.
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