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Abstract

We present some applications of intermediate logics in the field of Answer Set Programming

(ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic

and other intermediate logics is given. Some equivalence notions and their applications are

discussed. Some results on intermediate logics are shown, and applied later to prove properties

of answer sets. A characterization of answer sets for logic programs with nested expressions is

provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It

is known that the answer set semantics for logic programs with nested expressions may select

non-minimal models. Minimal models can be very important in some applications, therefore

we studied them; in particular we obtain a characterization, in terms of intuitionistic logic,

of answer sets which are also minimal models. We show that the logic G3 characterizes the

notion of strong equivalence between programs under the semantic induced by these models.

Finally we discuss possible applications and consequences of our results. They clearly state

interesting links between ASP and intermediate logics, which might bring research in these

two areas together.
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1 Introduction

Answer Set Programming (ASP), Stable Logic Programming or A-Prolog, is the

realization of much theoretical work on Non-monotonic Reasoning and AI applica-

tions of Logic Programming (LP) in the last 15 years. The main syntactic restriction

needed in this paradigm is to eliminate function symbols from the language. This is

because using infinite domains the answer sets are no longer necessarily recursively

enumerable (Marek and Remmel, 2001). The two most well known systems that

compute answer sets are dlv1 and smodels2.

Our work is intended to provide an alternative view of the theory of answer

set programming through different tools and relations with intuitionistic and other

intermediate logics. We provide a characterization of answer sets by intuitionistic

1 http://www.dbai.tuwien.ac.at/proj/dlv
2 http://saturn.hut.fi/pub/smodels
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logic as follows:

“A formula is entailed by a logic program in the answer set semantics if and only if

it can be proved in every intuitionistically complete and consistent extension of the

program formed by adding only negated literals.”

This is a generalization of a recent result given by Pearce where he considered

disjunctive programs only. In our approach we consider the class of augmented

programs, which allow nested formulas in the head and the body of clauses. Erdem

and Lifschitz (2001) provided some evidence on how augmented programs can be

used to represent and solve real life problems.

Our result provides foundations of defining the notion of non-monotonic

inference of any propositional theory (using the standard connectives {¬,∧,∨,→})
in terms of a monotonic logic (namely intuitionistic logic). We propose the follow-

ing interpretation: We understand the knowledge, of a given theory T , as all

the formulas F such that F is derived from T using intuitionistic logic. This makes

sense since in intuitionistic logic, according to Brouwer (1981), A can be inter-

preted as “I know A”. We will also identify a set of beliefs for the theory T .

We will say it is safe to believe a formula F if and only if F belongs to every

intuitionistically complete and consistent extension of T by adding only negated

literals.

Take, for instance, ¬a→ b. The agent knows ¬a→ b, ¬b→¬¬a and so on. The

agent, however, does not know neither a nor b. Nevertheless, one believes more than

one knows. But a cautious agent must have his/her beliefs consistent to his/her

knowledge. This agent will try to assume negated literals in order to infer more

information. Thus, in our example, our agent can believe ¬a, since this assumption

is consistent, in order to conclude b. At this point the agent can decide, for any

formula constructed from a and b, either if it is true or false. The theory is now

complete.

The agent could also try to assume ¬b in order to conclude ¬¬a, but he/she

would not be able to intuitionistically prove a and the theory can not be completed.

Thus it was not safe to believe ¬b. It also makes sense that a cautious agent could

try to believe ¬¬a rather than to believe a (recall that a is not equivalent to ¬¬a in

intuitionistic logic). Our results agree with the position of Kowalski (2001), namely

“that Logic and LP need to be put into place: Logic within the thinking component

of the observation-thought-action cycle of a single agent, and LP within the belief

component of thought”.

One important issue to know is when two programs are “equivalent” with respect

to the answer set semantics. We consider a definition for “equivalence” that is given

in Lifschitz et al. (2001). We say that P1 and P2 are strongly equivalent if for every

program P , P1 ∪P and P2 ∪P have the same answer sets. If two programs are

strongly equivalent, we know that we can replace one by the other in any larger

program without changing the declarative semantics. This is an important concept

for software engineering. It has been shown that the logic of Here-and-There (HT)

or G3 characterizes the class of strongly equivalent augmented programs under this

definition (Lifschitz et al., 2001).
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If we want to use a program P2 instead of another one P1, it will be perfect if

both programs have the same answer sets. This condition is, however, sometimes

too much to expect. It will suffice if we can identify, through a simple relation,

the answer sets of the first program knowing those of the second. A conservative

extension (Osorio et al., 2001) is one form of this weaker type of equivalence.

In order to define a “strong” version of this notion of equivalence we find useful

to split the signature of programs into some user atoms and reserved atoms. The

idea is that users are allowed to write programs using only the user atoms, while

reserved atoms are used for internal program transformations. Given a user program

P1 and an internal program P2, we say that P2 is a strong conservative extension

of P1 if for every user program P , it holds that P2 ∪P is a conservative extension

of P1 ∪P . We show then that for every augmented program P there is a disjunctive

program P ′ such that P ′ is a strong conservative extension of P . We also illustrate

how to compute such a program P ′.

Minimal models are of general interest for several theoretical and practical reasons

(Bell et al., 1993; Gelfond et al., 1989; Liberatore, 1999; Lobo and Subrahmanian,

1992; Minker and Perlis, 1985). We therefore devote a section to study them in the

context of answer sets. We first provide a characterization, in terms of intuitionostic

logic, of answer sets that are also minimal models. And we show that two programs

are strongly equivalent, with respect to the induced semantic, if and only if they are

equivalent in the 3-valued logic G3.

In this paper, we restrict our attention to finite propositional theories; the

semantics can be extended to theories with variables by grounding. Function symbols

are, however, not allowed to ensure the ground program to be finite. This is a

standard procedure in ASP. We assume that the reader has some basic background

in logic and Answer Set Programming.

Our paper is structured as follows. In section 2 we present the general syntax of

clauses and define several types of programs. We also provide the definition of answer

sets for augmented logic programs as well as some background on logic. In section 3

we present our notions of equivalence and provide some useful transformations to

simplify the structure of programs. In section 4 we present our main result, the

characterization of answer sets in terms of intuitionistic logic. In section 5 we study

the class of answer sets that are minimal models. In section 6 we discuss several

interesting consequences of the proposed approach and our main result. In section 7,

we present some conclusions and ideas for future work. Finally as an appendix, in

section Appendix A, we present the proofs of our results.

2 Background

In this section we review some basic concepts and definitions that will be used along

this paper. We introduce first the syntax of formulas and programs based on the

language of propositional logic. We also describe some common classes of logic

programs and give the definition of answer sets. Finally, we make some comments

on intermediate logics that will be used in later sections to study the notions of

answer sets and non monotonic reasoning.
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2.1 Propositional logic

We use the language of propositional logic in order to describe rules within logic

programs. Formally, we consider a language built from an alphabet consisting of

atoms: p0, p1, . . .; connectives: ∧,∨,←,⊥; and auxiliary symbols: ‘(’, ‘)’, ‘.’.

Where ∧,∨,← are 2-place connectives and ⊥ is a 0-place connective. Formulas

are defined as usual. The formula 	 is introduced as an abbreviation of ⊥←⊥, ¬F
as an abbreviation of ⊥←F , and F ↔ G as an abbreviation of (G←F) ∧ (F←G).

The formula F→G is another way of writing the formula G←F , we use the second

form because of tradition in the context of logic programming.

A signature L is a finite set of atoms. If F is a formula then the signature of F ,

denoted as LF , is the set of atoms that occur in F . A literal is either an atom a (a

positive literal) or a negated atom ¬a (a negative literal). A theory is just a set of

formulas.

2.2 Logic programs

A logic program is a finite set of formulas. The syntax of formulas within logic

programs has been usually restricted to clauses with very simple structure. A clause

is, in general, a formula of the form H←B where H and B are known as the head

and body of the clause respectively. Two particular cases of clauses are facts, of the

form H←	, and constraints, ⊥←B. Facts and constraints are sometimes written

as H and ← B respectively.

We introduce several kinds of clauses commonly found in literature. A free clause

is built from a disjunction of literals in the head and a conjunction of literals in the

body. Such a clause has the form

h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm.

where each hi and bj is a literal. Either the head or the body of a free clause could

be empty to denote a constraint or a fact. A general clause is a free clause that

does not allow negation in the head, all literals in the head of the clause should

be positive atoms. Finally, a disjunctive clause is a general clause with a non-empty

head, i.e. it is not a constraint.

A nested formula is a formula built from the connectives ∧, ∨ and ¬ arbitrarily

nested. An augmented clause is a less restricted form of clause where both H and B

can be nested formulas. Note, however, that embedded implications are not allowed

in augmented clauses. The formula a← (b→ c) is not, for instance, an augmented

clause. The following are examples of clauses just defined

a∨ b← c∧ d∧¬e. disjunctive, general, free, augmented

⊥← p∧ q. general, free, augmented (constraint)

a∨¬b← p∧¬q. free, augmented

a∨¬a. free, augmented (fact)

¬(p∧¬q)← a∨ (¬b∧ c). augmented

We also say that a logic program is free if it contains only free clauses. Similarly,

disjunctive and augmented programs are introduced. We would also use the term
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logic program alone to denote a set of arbitrary propositional formulas with no

restrictions at all.

2.3 Answer sets

We now present the definition of answer sets for augmented programs. This material

is taken from Lifschitz et al. (1999) with minor modifications since they consider

a broader syntax of formulas. They consider two kinds of negation: default and

classical. Our negation ¬ corresponds to their default negation not. Classical negation

is not considered since it is easy to simulate it using a proper renaming of atoms.

They also include an if-then-else constructor, but it is only an abbreviation of

another formula. Hence, it is fair to say that their programs extend our augmented

programs only by allowing the use of “classical” negation.

Atoms, as well as the connectives ⊥ and 	, are called elementary formulas.

Formulas built from ∧ and ∨ over elementary formulas are called basic. Similarly

basic clauses and programs are constructed from basic formulas. The definition

of answer sets is given first for basic programs, without default negation, and is

extended later to the class of augmented programs (Lifschitz et al., 1999).

Definition 2.1

(Lifschitz et al., 1999) We define when a set of atoms X satisfies a basic formula F ,

denoted X |= F , recursively as follows:

for elementary F , X |=F if F ∈X or F =	.

X |=F ∧G if X |=F and X |=G.

X |=F ∨G if X |=F or X |=G.

Note that the previous definition does not contain the case of implication, since

the syntax of augmented formulas does not allow to embed them as a subformula.

Only one implication is allowed in each clause, and this is taken into account in the

next definition.

Definition 2.2

(Lifschitz et al., 1999) Let P be a basic program. A set of atoms X is closed under

P if, for every clause H←B ∈P , X |=H whenever X |=B.

Definition 2.3

(Lifschitz et al., 1999) Let X be a set of atoms and P be a basic program. X is an

answer set of P if X is minimal among the sets of atoms closed under P.

Definition 2.4

(Lifschitz et al., 1999) The reduct of an augmented formula or program, relative to

a set of atoms X, is defined recursively as follows:

for elementary F, FX =F .

(F ∧G)X =FX ∧GX .

(F ∨G)X =FX ∨GX .

(¬F)X =⊥ if X |=FX and (¬F)X =	 otherwise.

(H←B)X =HX←BX .

PX =
{
(H←B)X | H←B ∈P

}
.
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Observe that the reduct of an agumented program, obtained as in previous

definition, is a basic program. Using this reduct operator we are able to extend the

definition of answer sets to the class of augmented programs.

Definition 2.5 (Answer Sets)

(Lifschitz et al., 1999) Let P be an augmented program and X be a set of atoms. X

is an answer set of P if it is an answer set of the reduct PX .

Example 2.6

Consider the following program P :

a←¬¬a.
¬b← c∨ b.

If we take X = {a} then the reduct is PX:

a←	.
	← c∨ b.

Here it is easy to verify that {a} is closed under this reduct and, since the empty

set ∅ is not, it is the minimal set with this property. Then it follows that {a} is an

answer set of P . However note that the empty set ∅ is also an answer set of P , since

it produces a different reduct and is closed under it.

2.4 Intermediate logics

The main goal of the research presented in this paper is to study the current

definition of answer sets in terms of mathematical logic. We present an extremely

simple, logical characterization of answer sets applicable to augmented programs,

based on a well-known alternative to classical logic, namely intuitionistic logic.

Several interesting consequences of our approach are discussed in more detail in

section 6.

We briefly describe in the following lines multivalued and intuitionistic logics.

Interesting relations between these logics and the answer set semantics are studied

in later sections. Some notation, definitions and simple results are given at the end

of this section.

2.4.1 Gödel multivalued logics

These logics are defined generalizing the idea of truth tables and evaluation

functions of classical logic. Gödel defined the multivalued logics Gi, with values

in {0, 1, . . . , i− 1}, with the following evaluation function I:

• I(B←A) = i− 1 if I(A) � I(B) and I(B) otherwise.

• I(A∨B) = max(I(A), I(B)).

• I(A∧B) = min(I(A), I(B)).

• I(⊥) = 0.

An interpretation is a function I:L→ {0, 1, . . . , i− 1} that assigns a truth value to

each atom in the language. The interpretation of an arbitrary formula is obtained by

https://doi.org/10.1017/S1471068403001881 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001881


Applications of intuitionistic logic in Answer Set Programming 331

propagating the evaluation of each connective as defined above. Recall that ¬ and

	 were introduced as abbreviations of other connectives. An interpretation is said

to be definite if it assigns only values 0 or i− 1, and indefinite if some intermediate

value is assigned to an atom.

For a given interpretation I and a formula F we say that I is a model of F if

I(F) = i− 1. Similarly I is a model of a program P if it is a model of each formula

contained in P . If F is modeled by every possible interpretation we say that F is a

tautology. Notice that G2 coincides with classical logic C. The 3-valued logic G3 is

particularly useful for some of our results.

2.4.2 Intuitionistic logic

This is an important logic, which has been an area of great interest during the last

years. It is based on the concept of proof or knowledge, rather than truth in classical

logic, to explain the meaning and use of logical connectives.

Intuitionistic logic, denoted I, can be defined in terms of Hilbert type proof

systems of axioms and inference rules. Equivalent definitions can be given in terms

of natural deduction systems and Kripke models (Troelstra and van Dalen, 1988;

van Dalen, 1980). Surprisingly, no definition using a truth table scheme is possible.

Provable formulas are called theorems. Gödel observed that there are infinitely many

logics located between intuitionistic and classical logic (Zakharyaschev et al., 2001).

In particular, it has been shown that

I ⊂ · · · ⊂ Gi+1 ⊂ Gi ⊂ · · · ⊂ G3 ⊂ G2 = C

where ⊂ denotes proper inclusion of the set of provable formulas on each logic.

We use the term intermediate logic to denote all logics, sets of classical tautologies

closed under modus ponens and propositional substitution, that contains all the

intuitionistic theorems. We say that a logic is a proper intermediate logic if it is an

intermediate logic and is not the classical one. Observe that the multivalued logics

Gi are intermediate logics.

2.4.3 Notation and general definitions

We use the standard notation �X F to denote that F is provable (a tautology, a

theorem) in logic X. If T is a theory we understand the symbol T �X F to mean

that �X F← (F1 ∧ · · · ∧Fn) for some formulas Fi contained in T . This is not the

usual definition given in literature, but can be shown to be equivalent because of

results like the Deduction Theorem. Similarly, if U is a theory, we use the symbol

T �X U to denote T �X F for every F ∈U.

A theory T is said to be consistent, with respect to logic X, if it is not the case

that T �X ⊥. Also, a theory T is said to be (literal) complete if, for every atom

a∈LT , we have either T �X a or T �X ¬a. We say that a program is incomplete if

it is not complete.

We use the notation T �X U to stand for the phrase: T is consistent and T �X U.

Finally we say that two theories T1 and T2 are equivalent under logic X, denoted

by T1 ≡X T2, if it is the case that T1 �X T2 and T2 �X T1.
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3 Equivalence notions

Given two programs we find useful to define several forms of equivalence relations.

The most natural equivalence notion that can be defined in terms of the answer set

semantics is that two programs are equivalent if they have exactly the same answer

sets. However, this notion of equivalence is, sometimes too weak since it does not

satisfy certain properties we would expect from an equivalence relation. Some other

equivalence notions with richer properties need to be defined.

3.1 Strong Equivalence

Observe that, for instance, replacing equivalent pieces of programs in a larger

program does not always ensure that the original and the transformed program

are equivalent. The notion of strong equivalence is defined looking for this kind of

properties.

Definition 3.1

(Lifschitz et al., 2001) Two programs P1 and P2 are strongly equivalent if P1 ∪P is

equivalent to P2 ∪P for every program P .

If two programs are strongly equivalent, we know that one of them can be replaced

with the other in a larger program without changing the declarative semantics. It is

clear that strong equivalence implies equivalence, but the converse is not true.

Example 3.2

Consider the programs P1 = {a← ¬b} and P2 = {a}, they are equivalent because

{a} is the unique answer set for both programs. However P1∪{b← a} has no answer

sets, while P2 ∪ {b← a} has the answer set {a, b}.

As a result of the study of strong equivalence of logic programs, an important

relation between the answer set semantics and intermediate logics appeared in the

following theorems.

Theorem 3.1

(Lifschitz et al., 2001) Let P1 and P2 be two augmented programs. Then P1 and P2

are strongly equivalent iff P1 and P2 are equivalent in G3 logic.

One intended use of this equivalence definition is to simplify programs. We can,

for instance, translate an augmented program into a free program preserving strong

equivalence.

Definition 3.3

Let P be an augmented program. Using distributive properties of conjunction,

disjunction and negation (all of them valid in G3 logic) rewrite each clause in P

in the form H←B, where H is a conjunction of simple disjunctions and B is a

disjunction of simple conjunctions.
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Using the following equivalences we can eliminate conjunctions in the head of

clauses, disjunctions in the body and atoms with two (or more) negations:

A ∧ B ← C ≡G3

A← C

B ← C

A ∨ ¬¬B ← C ≡G3
A← ¬B ∧ C

A← B ∨ C ≡G3

A← B

A← C

A← ¬¬B ∧ C ≡G3
A ∨ ¬B ← C

We write AugFree(P ) to denote the resulting free program.

Example 3.4

We present now an example to explain how to compute the program AugFree(P )

for a given program P . Suppose that we have the following augmented program P :

¬(a∧¬b)∧ c← d∧ (e∨¬f).

We can introduce negations into subformulas, applying distributive properties of

negation, until negation only appears in front of atoms:

(¬a∨¬¬b)∧ c← d∧ (e∨¬f).

Now, using distributive properties of conjunction and disjunction, we can write the

head (resp. body) of clauses in their normal conjunctive (resp. disjunctive) form:

(¬a∨¬¬b)∧ c← (d∧ e)∨ (d∧¬f).

The head consists now of a conjunction of disjunctions. Using one of the proposed

equivalences we can remove all this conjunctions:

¬a∨¬¬b← (d∧ e)∨ (d∧¬f).

c← (d∧ e)∨ (d∧¬f).

Similarly, we proceed to remove disjunctions in the body:

¬a∨¬¬b← d∧ e.
¬a∨¬¬b← d∧¬f.
c← d∧ e.
c← d∧¬f.

We can finally remove atoms with two (or more) negations using the proposed

equivalences:

¬a←¬b∧ d∧ e.
¬a←¬b∧ d∧¬f.
c← d∧ e.
c← d∧¬f.

This program obtained corresponds to what we call AugFree(P ).

An immediate consequence, obtained by the construction of AugFree(P ), is an

equivalence relation with respect to the logic G3.

Proposition 3.2

(Osorio et al., 2001) Let P be an augmented program. Then P is equivalent under

G3 logic to the free program AugFree(P ).
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Using the machinery of logic we can conclude, from Theorem 3.1 and Proposi-

tion 3.2 above, that the defined transformation preserves strong equivalence. Form-

ally we state the following theorem.

Theorem 3.3

(Lifschitz et al., 1999) Let P be an augmented program. Then P is strongly equivalent

to the free program AugFree(P ).

Lifschitz et al. (1999) showed, using a similar transformation, that augmented

programs can be translated into free programs without changing the corresponding

answer sets. Just observe that Lifschitz et al. (1999) use the term “equivalence” to

denote a “strong equivalence” as we introduced it here. We emphasize the fact that

this result, with the language restricted to one kind of negation, can be obtained

very easily through equivalence relations in logic.

Example 3.5

Consider the following augmented program P :

a←¬¬a.
¬b← c∨ b.

It is possible to construct, applying the rules described in Definition 3.3, a free pro-

gram which, by Theorem 3.3, is strongly equivalent to P . The program AugFree(P )

obtained is:

a∨¬a.
¬b← c.

¬b← b.

3.2 Conservative extensions

If we want to use a program P2 instead of another one P1 it will be perfect if

both programs have the same answer sets, but this condition is sometimes too

much to expect. It will suffice, however, if we can identify through a simple relation

the answer sets of the first program knowing those of the second. A conservative

extension (Osorio et al., 2001) is one form of this weaker type of equivalence.

Definition 3.6

Given two programs P1 and P2, we say that P2 is a conservative extension of P1 if it

holds that M1 is an answer set of P1 iff M2 is an answer set of P2, where M1 and

M2 satisfy M1 =M2 ∩LP1
.

Note that our definition is different from that in Baral (2003), since we do not ask

for P1⊆P2 to hold. In order to define a “strong” version of this equivalence notion

we find it useful to split the signature of atoms, used to construct logic programs,

into two disjoint sets LU and LR that we call the user and reserved signature

respectively. Unless stated otherwise, we assume that logic programs are restricted

to the user signature, such programs are called user programs. A program that is

allowed to contain reserved atoms is called an internal program.
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Definition 3.7

Given a user program P1 and an internal program P2, we say that P2 is a strong

conservative extension of P1 if for every user program P , it holds that P2 ∪P is a

conservative extension of P1 ∪P .

The idea is that users are allowed to write programs using only atoms from the

user signature. The reserved signature will be used when new atoms are needed to

perform internal program transformations to, for instance, simplify the structure of

programs and compute answer sets. The notion of strong conservative extension

allows to apply such transformations locally to fragments of programs.

A well-known transformation, that preserves this kind of equivalence, has been

used to translate general programs into disjunctive ones.

Definition 3.8

Given a general program P =D∪C , written as a disjoint union where D is a disjunct-

ive program and C the set of constraints in P . We define GenDis(P ) =D∪ {p←B ∧
¬p | (⊥←B)∈C}, where p is a new atom in LR .

The following lemma is a direct consequence of the behavior of this transforma-

tion, see Baral (2003).

Lemma 3.4

(Baral, 2003) Let P be a general program. GenDis(P ) is a strong conservative

extension of P .

Sakama and Inoue (1998) showed that every free program can be transformed,

through a conservative extension, into a general one. We use instead the more

economical transformation presented in Osorio et al. (2001). Essentially, the same

idea is presented in Definition 2 of Janhuenen (2001).

Definition 3.9

(Osorio et al., 2001) Given a free program P , let S be the set containing all atoms

a such that ¬a appears in the head of some clause in P , and let ϕ be an injective

function, ϕ: S→LR , that assigns a new reserved atom to each element in S . Let

P ′ be the program obtained from P by replacing each occurrence of ¬a with ϕ(a)

for every atom a∈ S , and let ∆S =
⋃

a∈ S {ϕ(a)←¬a,⊥← a∧ϕ(a)}. Then we define

FreeGen(P ) =P ′ ∪∆S .

Again, the following proposition is obtained as a direct consequence of results

presented in Osorio et al. (2001).

Proposition 3.5

(Osorio et al., 2001) Let P be a free program. FreeGen(P ) is a strong conservative

extension of P .

Note that in this case, if we have already determined answer sets of P2, it is

possible to easily recover answer sets for P1 just by taking the set intersection of

each model with LP1
. It turns out that, in fact, if M is an answer set of P1 then

MS =M ∪ϕ(S \M) is an answer set of P2.
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Example 3.10

Let P be the free program:

a∨¬a.

FreeGen(P ) is the program:

a∨ x.
x←¬a.
⊥← x∧ a.

Recall that P has two answer sets M1 = {} and M2 = {a}. We obtain, as expected,

that FreeGen(P ) has also two answer sets: {x} and {a}.

Observe that if P2 is obtained from P1 by a finite sequence of strong conservative

and/or strong equivalence transformations, then P2 is also a strong conservative

extension of P1.

Using this transformations we can, starting from an augmented program P ,

construct P1 = AugFree(P ), P2 = FreeGen(P1) and P3 = GenDis(P2). This chain of

equivalences show that augmented programs are not more expressive than disjunctive

ones under the answer set semantics. This means that, if we are able to compute

answer sets of simple disjunctive programs, we can easily compute answer sets

of more elaborated programs up to the augmented type. Formally we state the

following theorem.

Theorem 3.6

For every augmented program P there is a disjunctive program P ′ such that P ′ is a

strong conservative extension of P .

This result has also been presented in Pearce et al. (2002) where a polynomial

transformation, based on a technique that involves renaming subformulas, is used

instead of our AugFree(P ). They even presented a working implementation3 and

proved nice properties like modularity (a consequence of the transformation be-

ing a strong conservative extension). For theoretical purposes any of these two

transformations is equally valid in the following discussions.

4 Characterization of answer sets

In this section we present one of our main results in Theorem 4.2, which provides

a characterization of answer sets of augmented programs in terms of intuitionistic

logic and we propose a definition of answer sets for general propositional theories.

Given a signature L and a set of atoms M⊆L we define the complement of M

as M̃ =L \M. The set L is not always given explicitly, we assume L=LP when

a program P is clear by context.

Pearce (1999b) provided a first characterization of answer sets in terms of

intuitionistic logic. He proved (his Theorem 3.4) that a formula is entailed by a

disjunctive program in the answer set semantics if and only if it belongs to every

3 http://www.cs.uni-potsdam.de/~torsten/nlp/
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intuitionistically complete and consistent extension of the program formed by adding

only negated atoms.

Theorem 4.1

(Pearce, 1999b) Let P be a disjunctive program. (i) If M is an answer set of P , then

P ∪¬(LP \M) is intuitionistically consistent and complete. (ii) Let P ∪∆ be intu-

itionistically consistent and complete, where ∆⊆¬LP ; then {a∈LP | P ∪∆ �I a}
is an answer set of P .

Using our notation this theorem states that a set of atoms M is an answer set of

P if and only if P ∪¬M̃ �I M. This same result also holds for the class of general

programs, we can allow the use of constraints. However, it fails to characterize

answer sets if we allow negation in the head of clauses (free programs). Take for

instance the free program P = {a∨¬a}. According to Definition 2.5 this program has

two answer sets: {a} and ∅. But only ∅, which corresponds to ¬M̃ = {¬a}, satisfies

Pearce’s condition. For the other case, the condition is reduced to a∨¬a �I a, but

this is not even possible in classical logic.

We will see in the next section that the original approach from Pearce is actually

characterizing another important notion in ASP, answer sets satisfying the condition

in Theorem 4.1 are also minimal models.

However, to actually obtain the answer sets of a program, according to

Definition 2.5, we propose to extend it not only with negated atoms, but allow

twice negated atoms too. In the previous example, we would have a∨¬a,¬¬a �I a,

recovering the answer set {a}. We prove that this idea actually characterizes the

notion of answer sets up to the class of augmented programs.

Theorem 4.2

Let P be an augmented program and M be a set of atoms. M is an answer set of

P if and only if P ∪¬M̃ ∪¬¬M �I M.

This enhanced version of the theorem characterizes the notion of answer sets for

augmented programs, and also provides a natural way to extend the definition of

answer sets for logic programs containing arbitrary propositional formulas. Recall

that the current definition of answer sets can only be applied to augmented programs,

while the intuitionistic statement in Theorem 4.2 does not seem to imply any

particular condition on the syntax of formulas in the program P . This will allow,

for instance, the use of embedded implications inside clauses that were not allowed

in augmented programs.

Here we sketch the idea of the proof followed by an example constructed over

a particular instance. The main idea is to reduce augmented programs, using

transformations described in the previous section, into disjunctive programs where

we use Pearce’s result as a starting point.

Suppose we have an augmented program P . We obtain first a free program

P1 = AugFree(P ) by unwinding clauses in P . Now, negation in the head of clauses

in P1 can be eliminated to obtain a general program P2 = FreeGen(P1). Finally,

constraints are removed to finish with a purely disjunctive program P3 = GenDis(P2).
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As a consequence of equivalence theorems of the previous section, answer sets of

our disjunctive program P3 are related, by a simple one-to-one relation, with answer

sets of P . We can apply the result from Pearce, Theorem 4.1, to the disjunctive

program P3 and traverse the chain of transformations backwards to recover the

original program P .

First, we observe that answer sets of P2 satisfy the same condition given by Pearce.

This fact is obtained applying the following lemma to P2.

Lemma 4.3

Let P be a general program and M be a set of atoms.

GenDis(P )∪¬(LGenDis(P ) \M) �I M if and only if P ∪¬(LP \M) �I M.

Now, for the class of general programs, we can prove that both characterizations –

proposed in Theorems 4.1 and 4.2 – coincide. Formally, we state the following lemma.

Lemma 4.4

Let P be a general program and M be a set of atoms.

P ∪¬M̃ �I M if and only if P ∪¬M̃ ∪¬¬M �I M.

The crucial step in the proof is the following lemma, it allows us to remove

additional atoms added to the language of P2 when using the transformation

FreeGen(P1). This would not be possible if we do not include the set ¬¬M to

extend the program. The set S is obtained as in Definition 3.9, also recall that (by

Proposition 3.5) the answer sets of P and FreeGen(P ) are related by the identity

MS =M ∪ϕ(S \M).

Lemma 4.5

Let P be a free program and M be a set of atoms.

FreeGen(P )∪¬(LFreeGen(P ) \MS )∪¬¬MS �I MS if and only if

P ∪¬(LP \M) ∪ ¬¬M �I M.

The final step is more simple, since the transformation of augmented to free

programs already has some nice properties in terms of the G3 logic. For our

characterization we only need to show:

Lemma 4.6

Let P be an augmented program and M be a set of atoms.

AugFree(P )∪¬M̃ ∪¬¬M �I M if and only if P ∪¬M̃ ∪¬¬M �I M.

Note that the language of AugFree(P ) and P is the same. Following the chain of

implications we are able to state that M is an answer set of the original P if and

only if P ∪¬M̃ ∪¬¬M �I M. That is our Theorem 4.2. We clarify the idea of the

proof with a concrete example.

Example 4.1

Consider again the augmented program P :

a←¬¬a.
¬b← c∨ b.
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As we know from Example 2.6 the set M = {a} is an answer set for this program.

Following Theorem 3.3, as done in Example 3.5, we construct the equivalent free

program P1 = AugFree(P ):

a∨¬a.
¬b← c.

¬b← b.

For this program we will replace atoms in S = {a, b} that appear negated in the

head of clauses with new atoms, as in Proposition 3.5, to build a general program,

which is still equivalent. This program P2 = FreeGen(P1) will contain

a∨ x. x←¬a.
y← c. ⊥← a∧ x.
y← b. y←¬b.

⊥← b∧ y.

with MS = {a, y} as the corresponding answer set. The final transformation P3 =

GenDis(P2) leads to the fully disjunctive program:

a∨ x. x←¬a.
y← c. p← a∧ x∧¬p.
y← b. y←¬b.

p← b∧ y ∧¬p.

Now we can apply Theorem 4.1 from Pearce and obtain a proof for the

intuitionistic claim P3 ∪ {¬b,¬c,¬x} �I {a, y}. First, we can apply Lemma 4.3

to obtain P2 ∪ {¬b,¬c,¬x} �I {a, y}. Now, according to Lemma 4.4, we can include

the facts ¬¬MS in the intuitionistic formula P2 ∪ {¬b,¬c,¬x,¬¬a,¬¬y} �I {a, y}.
Recall that P2 = FreeGen(P1) =P ′1 ∪∆S as written above. We can replace P ′1 with

P1, as described in the proof of Lemma 4.5, to obtain the proof

P1 ∪ {x← ¬a,⊥ ← a ∧ x, y ← ¬b,⊥ ← b ∧ y,¬b,¬c,¬x,¬¬a,¬¬y} �I a .

The atoms x and y added to the language of program when doing the transformation

can now be mapped to the symbols ⊥ and 	, respectively. We use this trick to

eliminate them from the proof and to obtain:

P1 ∪ {⊥ ← ¬a,⊥ ← a ∧ ⊥,	 ← ¬b,⊥ ← b ∧ 	,¬b,¬c,¬⊥,¬¬a,¬¬	} �I a .

This substitution works since, after some reductions, clauses originally contained in

∆S are shown to be equivalent either to theorems or premises already listed. For this

particular example formulas reduce to:

P1 ∪ {¬¬a,	,	,¬b} ∪ {¬b,¬c,	} ∪ {¬¬a,	} �I a.

After removing such theorems, duplicate premises, and replacing P1 with the original

P , by Lemma 4.6, we finally obtain P ∪ {¬b,¬c} ∪ {¬¬a} �I a.
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The characterization provided by Theorem 4.2 has several important consequences.

We have as an immediate result a characterization of equivalence of logic programs

(under the answer set semantics) in terms of intuitionistic logic.

Corollary 4.7

Let P1 and P2 be two augmented programs sharing the same signatureL. P1 and P2

are equivalent if and only if, for every set of atoms M ⊆ L, P1 ∪¬M̃ ∪¬¬M �I M

iff P2 ∪ ¬M̃ ∪ ¬¬M �I M.

Another nice feature is that this characterization allows us to generalize the notion

of answer sets to programs containing arbitrary propositional formulas as clauses.

We propose the following definition.

Definition 4.2

Let P be a logic program and M be a set of atoms. M is an answer set of P if

P ∪¬M̃ ∪¬¬M �I M.

A similar extension for the notion of answer sets for arbitrary theories can be

found in Lifschitz et al. (2001). They propose a generalization of answer sets in terms

of the equilibrium logic introduced by Pearce (1999a). It is an interesting question

left open to determine whether this two approaches are equivalent when dealing

with arbitrary propositional theories. Our conjeture is that they, indeed, coincide.

In section 6, we will discuss in detail several benefits and consequences of such a

definition. The important thing to observe is that this proposed definition provides

a methodology of representing knowledge in a uniform way in the very well known

intuitionistic logic, where known theoretical results can be applied to produce new

interesting effects. Now, programs with implication in the body have a meaning

(following Definition 4.2), and we can explore their use. Michael Gelfond points out

(e-mail communication) that “the ability to use implication in the body seems to

suggest the following translation:

r is true if every element with property p has property q. (*)

(Assume that the universe is finite)

The natural translation is

∀X(p(X)→ q(X))→ r.

If no implication is allowed in the formal language the translation of this English

statement it loses its universal character. It now depends on the context and is

prone to error.” Hence, we believe that the use of our language could help to solve

practical problems of representing knowledge. This makes sense since statements of

type (*) are very frequent. In our language, a formula of the form ∀Xα(X) could be

introduced as an abbreviation of the conjunctive formula α(a1)∧ . . . ∧ α(an), where

{a1, . . . , an} is the Herbrand Universe of the program.

5 Answer sets and minimal models

In this section, we consider two valued interpretations, models and minimal models as

usual in logic programming, see Lloyd (1987). Minimal models are of general interest
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for, at least, the following reasons: First, every answer set of a general program is a

minimal model. Secondly, they are closely related to circumscription (Gelfond et al.,

1989; Minker and Perlis, 1985) and default logic (Lobo and Subrahmanian, 1992).

Thirdly, they are of theoretical and practical interest for a large class of optimization

problems (Liberatore, 1999). Finally, computation of minimal models can be the

first step towards computing answer sets of general programs (see, for instance, Bell

et al. (1993)).

In a few words, we can say that the set M is a minimal model of P if M is a

model of P (with respect to classical logic), and it is minimal (with respect to set

inclusion) among all other models of P . First, we provide a characterization of this

notion in terms of provability in classical logic.

Lemma 5.1

For a given augmented program P , P ∪ ¬M̃ �C M iff M is a minimal model of P .

We say that a set of atoms is a min-answer set if it is simultaneously a minimal

model and an answer set. The following is also a main result of the paper. It provides

a characterization of min-answer sets in terms of intuitionistic logic.

Theorem 5.2

Let P be an augmented program. M is a min-answer set of P iff P ∪ ¬M̃ �I M.

Observe that this is the same condition given by Pearce in Theorem 4.1. We

conclude that he was actually characterizing min-answer sets and not answer sets in

general. It turns out that answer sets of disjunctive programs are always minimal

models, and thus both characterizations coincide on this restricted class of programs.

We also want to note that min-answer sets are not the same thing as minimal

answer sets. By a minimal answer set we understand an answer set which is minimal

among all answer sets of a program. The next proposition and the following example

should make this difference clear.

Proposition 5.3

If M is a min-answer set of P , then M is a minimal answer set of P .

Example 5.1

The converse of Proposition 5.3 is not true. Let P the program:

a∨¬a.
b← a.

b←¬b.

The unique answer set of P is {a, b} and, since it is unique, it is also a minimal

answer set of P . But {a, b} is not a minimal model, since {b} is the unique minimal

model of P , hence P has no min-answer sets.

As a corollary of Theorems 3.6 and 5.2, we can conclude that the class of answer

sets is not more expressive than the class of min-answer sets.
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Corollary 5.4

For every augmented program P , there exists a computable disjunctive program P ′

such that the min-answer sets of P ′, restricted to LP , are each and every answer set

of P .

The following theorem provides a characterization of strong equivalence, similar

to the one in Theorem 3.1, for the class of min-answer sets. We observe that the

logic G3 can be used, again, to test for strong equivalence.

Theorem 5.5

Let P1 and P2 be two logic programs. Then P1 and P2 are strongly equivalent with

respect to the min-answer set semantics if and only if P1 and P2 are equivalent in

the logic G3.

The proof is more complicated than that needed to prove Theorem 3.1 in Lifschitz

et al. (2001), as we observe in Example 5.2. Moreover, we use the 3-valued logic G3

instead of the Kripke semantics for HT.

Example 5.2

Consider the programs P1 = {a← a} and P2 = {a∨¬a}. These two programs are not

strongly equivalent with respect to the answer set semantics simply because they are

not equivalent. For the min-answer set semantics the situation is more complicated.

Both programs are equivalent because M = ∅ is the unique min-answer set of each

program. However, they are not strongly equivalent because, if we add the clause

P = {a←¬a} to each program, the two programs are no longer equivalent since

P1 ∪P has no min-answer sets while P2 ∪P has exactly one min-answer set: {a}.

It is easy to verify, using the characterization of min-answer sets in Theorem 5.2,

that programs equivalent under G3 are strongly equivalent. For the converse we

use the following two propositions that will allow us, under the assumption that

two programs are not equivalent in G3, to construct a third program that, when

appended to the first two, will break equivalence with respect to the semantic of the

min-answer sets.

Remark 5.6

Let A and B be two formulas. If A �≡G3
B then there is a 3-valued interpretation I

which models A and not B (or models B and not A).

Proposition 5.7

Let P1 and P2 be arbitrary programs. If there is a 3-valued interpretation I such

that I models P1 and does not model P2 then there exists a program P such that:

(i) P1 ∪P is consistent and complete while P2 ∪P is inconsistent; or (ii) P1 ∪P
is incomplete and cannot be completed (preserving consistency) by adding only

negated atoms while P2 ∪P is both consistent and complete.

The following is an example to illustrate Proposition 5.7.
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Example 5.3

Consider the programs P1 = {a← a} and P2 = {a∨¬a}. Let I be the 3-valued

interpretation that evaluates I(a) = 1. Observe that I models P1 (since I(P1) = 2)

and does not model P2 (since I(P2) = 1). Now if we take P = {a←¬a} the program

P1 ∪P becomes incomplete (and unable to be completed by adding negated atoms)

while P2 ∪ P is consistent and complete since it proves a. It turns out that P1 ∪P
has no min-answer sets, while P2 ∪ P has the min-answer set {a}.

We end this section with a question that we have not been able to answer yet.

Suppose we have an augmented program P . Using Theorem 2 in Pearce et al. (2002),

which states a transformation of augmented to disjunctive programs computable

in polynomial time that preserves the answer set semantics, we can compute the

corresponding disjunctive program P ′.

Recall now that, in the restricted class of disjunctive programs, the semantics of

answer sets and min-answer sets coincide. Thus, under the assumption that we have

a min-answer set solver, we could compute the min-answer sets of P ′ which are

exactly the answer sets of P ′. By the properties of the transformation in Pearce

et al. (2002) we can recover, by a very simple transformation, the answer sets of the

original program P .

Our question is if there is a similar, polynomial time computable, transformation

that could be used to compute min-answer sets for augmented programs under

the assumption that we have an answer set solver. In other words, is the class of

min-answer sets more expressive than the class of answer sets? If the answer is no,

which is our conjecture, then both semantics would be equivalent in their power

of representing problems. And there would be a great chance to obtain feedback

between these two paradigms. On the other hand, if the answer is yes, then the

min-answer sets would be more powerful than just answer sets. This would open

a new line of research on the class of problems that could be expressed using the

min-answer set semantics.

6 Applications and consequences

There are several nice consequences of Theorem 4.2. The first feature is that it

provides a natural extension of the definition of answer sets for logic programs

without depending on their particular restrictions of syntax or structure. It has been

a usual approach to restrict the language of logic programs to some subsets of

propositional logic while, the condition given in Theorem 4.2, does not imply any

of such restrictions. We could use now, for instance, embedded implications in our

programs, which are not allowed in the class of augmented formulas.

The proposed Definition 4.2 offers now an explanation of answer sets in terms of

intuitionistic logic, where a wide variety of research has been done. We explore here

some ideas that, thanks to results shown in this paper, allow us to better understand

and generalize the notion of answer sets.
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6.1 Safe beliefs

Consider a logic agent, whose base knowledge of the world and its behavior is

described by a set of propositional formulas P . Under the premise that P is

consistent, our agent can start infering from this base knowledge. Intuitionistic

logic, a logic of knowledge, seems to be a natural inference system for this approach.

We can say then that our agent knows F , a propositional formula in general, if

P �I F .

However, we also want our agent to be able to do non-monotonic inference.

Informally speaking we allow our agent to guess or suppose things in order to make

more inference. But there is no reason, however, to just believe everything that seems

possible. We only suppose facts if there is some reason to believe them or, more

precisely, if they are helpful to produce any new knowledge.

Under this context we can rephrase the definition of answer sets. For this we

introduce the symbol M, the closure of M, as M =M ∪¬M̃. This M contains a

complete set of beliefs for our agent, the following definition states when this set of

beliefs can be considered as safe.

Definition 6.1

Let P be a logic program and M be a set of atoms. Then M is a set of safe beliefs

if it satisfies P ∪¬¬M �I M.

A very natural reading of the previous definition in the described context is:

“If a set of beliefs M is (i) consistent with the base knowledge and (ii) if we can

suppose that the facts contained in M are true, and this is enough to be sure about this

facts, then it is safe to believe M.” This suppose corresponds to the double negation

in the intuitionistic statement. Observe that safe beliefs, defined this way, exactly

correspond to the answer sets of P .

An immediate benefit of such a definition is that it extends the syntax of programs

allowing embedded implication in clauses. This broader syntax can allow us to write

some rules for describing problems in a more natural way. We even suspect that this

kind of syntax can be helpful to model concepts like aggregation in logic programs,

as the ones described in Osorio and Jayaraman (1999) and Osorio et al. (1999).

Further research has to be done in this direction to present more concrete results.

On the theoretical point of view, there are also several benefits provided by this

approach. Equivalence notions can be easily described in terms of logic. The fact

that logic G3 characterizes strong equivalence can be proved to hold for answer sets

under this new definition. This is done in Navarro (2002), where a proof, that does

not depend on the syntax of formulas, is given.

Other interesting result, presented in Osorio et al. (2002c), is that the proposed

definition of answer sets does not strictly depend on the underlying logic. It is proved

that any proper intermediate logic does define the same semantic.

We try to demonstrate with this arguments various interesting possibilities on

answer sets using logic. We show in Osorio et al. (2002b) how G3 can be used to

debug a progam by taking advantage of the 3-valued nature of G3.

https://doi.org/10.1017/S1471068403001881 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001881


Applications of intuitionistic logic in Answer Set Programming 345

6.2 Answer sets in other logics

In this paper, we do not consider the so-called classical negation, but it can easily

be included in the same intuitionistic framework by a simple renaming method

(Baral, 2003; Gelfond and Lifschitz, 1990). However, if we are interested in using

this classical negation with all of its power we can just replace intuitionistic logic by

a Nelson logic in our proposed Definition 4.2 – see Osorio et al. (2002).

Another interesting extension we can provide, due to this intuitionistic character-

ization, is a definition of answer sets for logic programs containing modal formulas.

Modal logics were originated when trying to formalize notions like necessary and

possible in logic. The new pair of connectives K and B introduced have been also

interpreted to model similar notions like tense, moral obligation and knowledge.

Using the well-known Gödel embedding of intuitionistic logic into modal logic S4

we can provide a natural definition of answer sets based on this logic. The actual

definition of the Gödel mapping ◦, that satisfies �I A if and only if �S4 A◦, can be

found in Zakharyaschev et al. (2001).

We have to define some sort of basic acceptable knowledge as unary formulas,

containing just one atom and unary connectives, that will play the role of the

M above. For a modal logic program P and a complete set of basic acceptable

knowledge M it would be reasonable to define M as an answer set, or safe beliefs

so to say, of P if it satisfies P ∪KBM �S4 M. More precise definitions have to be

given, but the main idea should be clear.

The use of modal formulas seems very appropriate, since we would be able to

explicitly model the concept of knowledge in logic programs. Then the generalization

to multimodal logics should be a natural extension. This could provide a general

framework where multiple agents can simultaneously reason, with the power of

non-monotonic inference, about the knowledge and beliefs of each other. Some

advances in this research line are presented in Osorio et al. (2002a).

A similar exercise can be done to define answer sets using linear logic. It is known

that intuitionistic logic can be embedded in the propositional fragment of linear

logic (Girard, 1987). Thanks to our results and the given embedding, it is possible to

define the notion of an answer set in an environment with limited resources and thus

provide some foundations for a framework of ASP as provability in linear logic –

see Osorio et al. (2002).

7 Conclusions and related work

Work that relates ASP with classical logic can be found in Eshgi and Kowalski

(1989) and Niemelä and Simons (1996). Erdem and Lifschitz relate answer sets

and supported models in Erdem and Lifschitz (2001). Work that relates ASP with

epistemic and modal logic can be found in Lifschitz and Schwarz (1993) and Marek

and Truszczyński (1993). Our work follows the approach started by Pearce (1999b).

We generalize his characterization, given for disjunctive programs, to augmented

programs. We also study the class of answer sets which are also minimal models

(min-answer sets) not done before to our knowledge.
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We provide a characterization of answer sets in intuitionistic logic as follows: a

formula is entailed by an augmented program in the answer set semantics if and

only if it is proved in every intuitionistically complete and consistent extension of the

program formed by adding only negated literals. As we explain in the introduction,

our result provides the foundations to explain the notion of non-monotonic inference

of any theory (using the standard connectives {¬,∧,∨,←}) in terms of a monotonic

logic (namely intuitionistic logic).

An immediate application of our result is to be able to have a definition of ASP

for arbitrary propositional theories. A similar result was presented in Lifschitz et al.

(2001) where a generalization of answer sets in terms of the, so called, equilibrium

logic is stated. Our result provides, in particular, a natural way to extend the notion

of answer sets in other logics.

Of particular interest to us are multimodal logics, because they can be used to

naturally model the interaction of several agents. However, this is an open problem

as we have explained. We believe that, in general, our results presented in this

paper re-emphasize that the approach of answer sets is a solid paradigm to model

non-monotonic reasoning.

We find a characterization of min-answer sets in terms of intuitionistic logic. We

observe that, in some way, the class of answer sets is no more expressive than

the class of min-answer sets. We may ask: “Is the class of min-answer sets more

expressive than the class of answer sets?” We argue that, no matter what the answer

is, it will have impact in the theory of ASP.

Our results are given for propositional theories but they can easily be generalized

to universally quantified theories without functional symbols. It would be interesting,

however, to generalize our results to arbitrary first order theories. Due to the large

amount of knowledge in intuitionistic logic, we expect to obtain a lot of feedback

between these two areas.
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Appendix A Proofs

In this section we present references to some basic results and the proofs of our

main theorems and propositions in this paper.

A.1 Basic results

The following are some basic results and definitions that were proved in other

sources and will be important for the proofs of our new results.
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Lemma Appendix A.1

(van Dalen, 1980) Let T be any theory, and let F,G be a pair of equivalent

formulas (under any intermediate X). Any theory obtained from T by replacing

some occurrences of F by G is equivalent to T (under logic X).

Lemma Appendix A.2

(Osorio et al., 2001) Let T1, T2 be two theories and let A be a formula such that

LT1∪{A} ∩LT2
= ∅. If T2 is a set of negative literals and T1 ∪T2 �I A then T1 �I A.

Definition Appendix A.1

(Osorio et al., 2001) The set P of positive formulas is the smallest set containing all

formulas without negation connectives (¬). The set N of two-negated formulas is the

smallest set X with the properties:

1. If a is an atom then (¬¬a) ∈ X.

2. If A ∈ X then (¬¬A) ∈ X.

3. If A,B ∈ X then (A ∧ B) ∈ X.

4. If A ∈ X and B is any formula then (A ∨ B), (B ∨ A), (A← B) ∈ X.

For a given set of formulas Γ, we define the positive subset of Γ, denoted Pos(Γ), as

the set Γ ∩ P.

Proposition Appendix A.3

(Osorio et al., 2001) Let Γ be a subset of P∪N, and let A∈P be a positive formula.

If Γ �I A then Pos(Γ) �I A.

A.2 Proofs about equivalence

Proof of Theorem 3.6

Let P be an augmented program. By Theorem 3.3, P1 = AugFree(P ) is strongly

equivalent to P . Then, by Proposition 3.5, P2 = FreeGen(P1) is a conservative

extension of P1. Similarly, by Lemma 3.4, P3 = GenDis(P2) is a conservative extension

of P2. Through the chain of equivalences we obtain that P3 is a conservative extension

of P . �

A.3 Reductions for general programs

We present here some definitions and simple results of reductions, motivated by

results in Dix et al. (2001), for the class of general programs. They are helpful in the

proof of Theorem 4.2, particularly at Lemma 4.4.

Definition Appendix A.2 (First Reduction)

(Osorio et al., 2002c) Let P be a general program and M be a set of atoms. We define

the first reduction of P with respect to ¬M, denoted Redu1(P ;¬M), as the program

obtained applying the following transformation to each clause H←B contained in

P :

• Delete from B all literals ¬a such that ¬a∈¬M.

• Delete from H all literals a such that ¬a∈¬M.

• Delete the clause if there is some literal a in B such that ¬a∈¬M.
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Lemma Appendix A.4

Let P be a general program and M be a set of atoms. The second reduction satisfies

P ∪¬¬M ≡I Redu2(P ;¬¬M)∪¬¬M.

Definition Appendix A.3 (Second Reduction)

Let P be a general program and let M be a set of atoms. We define the second

reduction of P with respect to ¬¬M, denoted Redu2(P ;¬¬M), as the program

obtained applying the following transformation to each clause H←B contained in

the program P :

• If H =⊥ then delete from B all literals a such that ¬¬a∈¬¬M.

• Delete the clause if there is some literal ¬a in B such that ¬¬a ∈ ¬¬M.

Lemma Appendix A.5

(Osorio et al., 2002c) Let P be a general program and M be a set of atoms such that

P ∪¬M is consistent. If P ′= Redu1(P ;¬M) then the following properties hold:

1. P ∪¬M ≡I P
′ ∪¬M.

2. LP ′ ∩M = ∅.

Proof

The two transformation steps in the reduction can be justified since it is possible

to show, using intuitionistic logic, ¬¬a �I (⊥← a∧B) ↔ (⊥←B) and ¬¬a �I

H←¬a∧B, respectively. �

A.4 Proofs about the characterization of answer sets

Proof of Lemma 4.3

In the following paragraph the set M̃ always represents the set LP \M, that is the

set complement of M with respect to the signature of the program P . Observe that,

making this assumption, the set LGenDis(P ) \M = (LP ∪ {p}) \M = M̃ ∪ {p}.
The transformation step that defines GenDis(P ) preserves equivalence in intuition-

istic logic, since ¬p �I (⊥←B)↔ (p←B ∧¬p). So in particular GenDis(P )∪¬M̃ ∪
{¬p} �I M iff P ∪¬M̃ ∪ {¬p} �I M iff, by Lemma Appendix A.2 and since p /∈ LP ,

P ∪¬M̃ �I M. �

Proof of Lemma 4.4

First suppose P ∪ ¬M̃ �I M. Since A→¬¬A is an intuitionistic theorem P ∪
¬M̃ �I ¬¬M. Therefore P ∪ ¬M̃ ∪¬¬M is consistent and since intuitionistic logic

is monotone we have P ∪ ¬M̃ ∪¬¬M �I M.

Now suppose P ∪ ¬M̃ ∪ ¬¬M �I M, it is immediate that P ∪ ¬M̃ is consistent.

Now, we want to show that P ∪ ¬M̃ �I M. If P ′= Redu1(P ;¬M̃) then, by Lemma

Appendix A.5, P ∪¬M̃ ≡I P
′ ∪¬M̃ and LP ′ ∩ M̃ = ∅.

Since P ∪¬M̃ ∪¬¬M �I M, then P ′ ∪¬M̃ ∪¬¬M �I M. It is also clear that

LP ′ ∪¬¬M ∩L¬M̃ = ∅, so we can apply Lemma Appendix A.2 to get P ′ ∪¬¬M �I M.

Let P ′′= Redu2(P ′;¬¬M). SinceLP ′ ∩ M̃ = ∅, thatLP ′ ⊆M. So, by definition of

Redu2, disjunctive clauses containing negative literals in P ′ will be always removed.

Also, note that P ′′ can not contain constraints. If P ′ contains a constraint of the
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form ⊥←B and is not removed is because only positive literals occur in B. However

redu2 will, for this clause, remove all literals in the body and leave a clause ⊥←	.

But this is a contradiction, since we already know that P ∪¬M̃ ∪¬¬M is consistent.

So P ′′ is an entirely positive program and, moreover, P ′′ ⊆P ′.

Since, by Lemma Appendix A.4, P ′ ∪¬¬M ≡I P
′′ ∪¬¬M we have P ′′ ∪¬¬M �I

M and, using Proposition Appendix A.3, P ′′ �I M. But we already know that

P ∪¬M̃ �I P
′ ∪¬M̃ and, since P ′′ ⊆P ′, in particular P ∪¬M̃ �I P

′′. So finally we

obtain, as desired, P ∪¬M̃ �I M. �

Proof of Lemma 4.5

Suppose FreeGen(P )∪¬M̃S ∪¬¬MS �I MS . Recall that FreeGen(P ) can be written

as P ′ ∪∆S and, since P ∪∆S �I P
′, P ∪∆S ∪¬M̃S ∪¬¬MS �I MS . Since MS =M ∪

ϕ(S \M) we can break the sets ¬M̃S and ¬¬MS as disjoint subsets from user and

reserved atoms. That is ¬M̃S =¬M̃ ∪ ¬[ϕ(S ∩M)] and ¬¬MS =¬¬M ∪¬¬[ϕ(S \
M)].4

Similarly we can write ∆S as the disjoint union ∆M ∪∆(S\M). Then, since ¬¬M ∪
¬[ϕ(S ∩M)] �I ∆M , we have that

P ∪ ∆(S\M) ∪ ¬M̃ ∪ ¬¬M ∪¬[ϕ(S ∩M)]∪¬¬[ϕ(S \M)] �I M .

In the intuitionistic proof for each a∈M as shown above we can map each symbol

x∈ϕ(S ∩M) to ⊥ and each symbol y ∈ ϕ(S \M) to 	. This will lead to a proof for

P ∪¬M̃ ∪¬¬M �I M, since premises in ∆(S\M), ¬[ϕ(S ∩M)] and ¬¬[ϕ(S \M)] are

mapped either to intuitionistic theorems or elements in ¬M̃.

To prove the other implication assume P ∪¬M̃ ∪¬¬M �I M. From definition of

∆S we have that P ∪∆S ∪¬M̃ ∪¬¬M is consistent, also note that ∆S ∪¬M̃ ∪¬¬M �I

ϕ(S \M)∪¬[ϕ(S ∩M)]. It follows then that

P ′ ∪ ∆S ∪¬M̃ ∪¬¬M ∪¬[ϕ(S ∩M)] ∪ ¬¬[ϕ(S \M)] �I M ∪ϕ(S \M)

as we wanted. �

Proof of Lemma 4.6

By construction we have P ≡G3
AugFree(P ). In particular, for every set of atoms

M, this implies P ∪¬M̃ ∪¬¬M ≡I AugFree(P )∪¬M̃ ∪¬¬M. So we finally obtain

P ∪¬M̃ ∪¬¬M �I M iff AugFree(P )∪¬M̃ ∪¬¬M �I M. �

Proof of Theorem 4.2

The set of atoms M is an answer set of the augmented program P iff, by Theorem 3.3,

M is an answer set of P1 = AugFree(P ) iff, by Proposition 3.5, MS is an answer

set of P2 = FreeGen(P1) iff, by Lemma 3.4, MS is an answer set of P3 = GenDis(P2)

iff, by Theorem 4.1, P3 ∪¬M̃S �I MS iff, by Lemma 4.3, P2 ∪¬M̃S �I MS iff, by

Lemma 4.4, P2 ∪¬M̃S ∪¬¬MS �I MS iff, by Lemma 4.5, P1 ∪¬M̃ ∪¬¬M �I M iff,

by Lemma 4.6, P ∪¬M̃ ∪¬¬M �I M. �

4 Note that M̃ =LP \M, while M̃S =(LP ∪ϕ(S)) \MS .
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Proof of Corollary 4.7

We have that the two programs P1 and P2 are equivalent in the answer set semantics

iff, by definition, (M is an answer set of P1 iff M is an answer set of P2) iff, by

Theorem 4.2, (P1 ∪ ¬M̃ ∪ ¬¬M �I M iff P2 ∪ ¬M̃ ∪ ¬¬M �I M). �

A.5 Proofs about answer sets and minimal models

Proof of Lemma 5.1

Suppose that P ∪ ¬M̃ �C M. Then M is model of P . Suppose then that M is not

a minimal model of P . Then there exists N, a model of P such that N⊂M, take

a∈M \N. In particular ¬a∈¬Ñ, thus P ∪ ¬Ñ �I ¬a. But, since P ∪ ¬M̃ �I a and

¬M̃⊆¬Ñ, P ∪ ¬Ñ �I a and N is not a model.

For the converse, if M is a minimal model of P then P is consistent (it has one

model) and P ∪ ¬M̃ is also consistent. But it is easy to check that M, since it is

minimal, is the unique model of P ∪ ¬M̃. So P ∪ ¬M̃ �C M. �

Proof of Theorem 5.2

Suppose that M is a min-answer set of P so P ∪ ¬M̃ ∪ ¬¬M �I M, because M is

an answer set of P . Since M is a minimal model, we know that P ∪ ¬M̃ �C M, by

Lemma 5.1, then P ∪¬M̃ �I ¬¬M. By the last assertion and since P ∪¬M̃∪¬¬M �I

M, we have P ∪ ¬M̃ �I M and P ∪ ¬M̃ is consistent, i.e. P ∪ ¬M̃ �I M.

For the converse, suppose P∪¬M̃ �I M so P∪¬M̃ �I ¬¬M, hence P∪¬M̃∪¬¬M
is consistent in intuitionistic logic and M is an answer set of P . On the other hand,

if P ∪ ¬M̃ �I M then P ∪ ¬M̃ �C M and we know that P ∪ ¬M̃ is consistent in

intuitionistic logic, which implies consistency in classical logic. By Lemma 5.1, we

have that M is a minimal model of P . �

Proof of Proposition 5.3

Suppose that M is a min-answer set of P , but P is not a minimal answer set of P .

Then there is N⊂M, such that N is a minimal answer set of P . In particular N is

a model of P . But this is not correct, since M is a minimal model of P . �

Proof of Corollary 5.4

Follows by Theorem 3.6 and the well known fact that, for disjunctive programs, the

answer sets are minimal models. �

Proof of Proposition 5.7

We assume that I ′ is defined as in the proposition above. Observe in particular that,

if I models A then I ′ models A too.
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Consider also the following definition: For a given interpretation I in G3 the

program T (I) is defined as the minimum set X which satisfies

1. If I(a) = I(b) = 1 and a �= b then (b← a)∈X.

2. If I(a) = 1 then (a←¬a)∈X.

3. If I(a) = 2 then (a)∈X.

4. If I(a) = 0 then (⊥← a)∈X.

We have two main cases in the proof of this proposition:

1. There is a definite interpretation I that models P1 and not P2. Let P =T (I)

(as just defined). Then, by construction, P1 ∪P is a consistent and complete

extension of P1, while P2 ∪P is inconsistent.

2. If every interpretation that models P1 and not P2 is indefinite, then let I be

one of such interpretations and P =T (I). Since I models P1 we have that I ′

models P1 too. Notice that I �= I ′ since I contains some 1 assignments and I ′

not.

Since I models P , we have I models P1 ∪P . Again I ′ models P1 ∪P too. But

I �= I ′ so there are two different interpretations that model P1 ∪P and hence it is not

complete. Nor it can be completed by adding negated atoms ¬a since the program

will become inconsistent (if I(a) = 1 or I(a) = 2) or still be incomplete (if I(a) = 0).

We prove now that I ′ models P2. If not I ′ will model P1 and not P2 but I ′ is

definite contradicting the hypothesis of this case. Again, since I ′ models P , I ′ models

P2 ∪P .

It will be shown that I ′ is the only interpretation that models P2 ∪P . Suppose K

is another interpretation that models P2 ∪P , and hence K models P2.

Case 1. I(a) = 2. Then a∈P ⊂P2 ∪P . But K(a) �= 2 will imply K(P2 ∪P ) �= 2

contradicting the fact that K models P2 ∪P . So if I(a) = 2 then K(a) = 2.

Case 2. I(a) = 0. Then ¬a∈P ⊂P2 ∪P . But K(a) �= 0 will imply K(¬a) �= 2 and

K(P2 ∪P ) �= 2 contradicting the fact that K models P2 ∪P . So if I(a) = 0 then

K(a) = 0.

Case 3a. I(a) = 1 and K(a) = 0. Then (¬a → a)∈P ⊂P2 ∪P . But K will evaluate

K(¬a→ a) = 0 and K(P2 ∪P ) = 0 arising contradiction again.

Case 3b. I(a) = 1 and K(a) = 1. Then, if exists, take another atom b such that I(b) = 1.

Now {a→ b, b→ a} ⊂P ⊂P2 ∪P and, since K models P2 ∪P , K(a↔ b) = 2, hence

K(a) =K(b) = 1. So in this case I(a) = 1 implies K(b) = 1 for all atoms b, leading to

I =K . But, from hypothesis, I did not model P2 and K does. Contradiction.

Case 3c. Previous two cases state I(a) = 1 implies K(a) = 2 and, together with

cases 1 and 2, are sufficient to imply K = I ′. So, as claimed, I ′ is the only model for

P2 ∪P . �

Proof of Theorem 5.5

Let P1 and P2 be two logic programs. If P1 and P2 are equivalent in G3 then, for

any P , P1 ∪ P and P2 ∪ P are equivalent in G3. We will prove assuming that M is a
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min-answer set of P1 ∪P that it is also a min-answer set of P2 ∪P . Since P1 ≡G3
P2

it is immediate that M is an answer set of P2 ∪P by Theorem 3.1.

Now, since M is a minimal model of P1 ∪P , P1 ∪P ∪¬M̃ �C M but, in particular,

P1 ∪P ≡C P2 ∪P and therefore P2 ∪P ∪¬M̃ �C M. By Lemma 5.1, M is a minimal

model of P2 ∪P . The same argument proves that every min-answer set of P2 ∪P is a

min-answer set of P1 ∪P . So the two programs are strongly equivalent with respect

to the sematic of the min-answer sets.

For the converse, suppose that P1 and P2 are not equivalent in G3 then, by

Remark 5.6, there is an interpretation that models P1, but not P2 which, by

Proposition 5.7, implies they are not strongly equivalent with respect to the semantic

of the min-answer sets. �
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