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Several limit laws for the Zagreb indices of the classical Erdös–Rényi random graphs
are investigated in this paper. We have obtained the necessary and sufficient condition
for the asymptotic normality of the two Zagreb indices (suitably normalized), as well as
the explicit values for the means and variances of both the indices. Besides, the limiting
joint distribution of the numbers of paths of various lengths is also studied under several
conditions.

1. INTRODUCTION

In chemistry, a topological index is a map from the set of chemical compounds represented by
molecular graphs to the set of real numbers, where the graphs are generated from molecules
by replacing atoms with vertices and bonds with edges, or represent only bare molecular
skeletons, that is, molecular skeletons without hydrogen atoms. Many topological indices are
closely correlated with some physico-chemical characteristics of the underlying compounds.

The well-known Zagreb indices were introduced by chemists Gutman and Trinajstić [4].
Let G be a simple graph with vertex set V (G) and edge set E(G). The first Zagreb index
Z(G) and the second Zagreb index Z̃(G) of G are defined, respectively, as

Z(G) =
∑

v∈V (G)

[d(v)]2, Z̃(G) =
∑

uv∈E(G)

d(u)d(v),

where d(v) denotes the degree of the vertex v in G. That is, the first Zagreb index of a
graph is the sum of the squares of the degrees of all vertices, and the second Zagreb index
is the sum of products of the degrees of all pairs of adjacent vertices.

For a survey of the application of the Zagreb indices in chemistry, we refer to Nikolić,
Kovačević, and Miličević [8] and the references therein. Besides, the Zagreb indices also
attracts attention in graph theory (see, e.g., Abdo, Dimitrov, and Gutman [1], Nikiforov [7],
and Peled, Petreschi, and Sterbini [9]). Using the method of martingale limit theorem, the
first Zagreb index of a random recursive tree is studied by Feng and Hu [3].

Our main concern here is to study the Zagreb indices of the classical Erdös–Rényi
random graphs. This simple model is specified by two parameters: the number of vertices
in the graph n, and the probability of an edge p. Given n and p, we choose a graph on n
vertices by including an edge between each pair of vertices with probability p, independently
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for each pair. For numerous results on Erdös–Rényi random graphs, we refer the reader to
the books Bollobás [2] and Janson, �Luczak, and Ruciński [5].

The paper is organized as follows. We first show a simple relation between the first
Zagreb index and the numbers of edges and paths of length two, from which the mean and
variance of this index are given. Then as the size of the random graph goes to infinity, the
necessary and sufficient condition for the asymptotic normality of this index is given. We
also get the parallel results for the second Zagreb index, where the necessary and sufficient
condition for the asymptotic normality is the same as that of the first one. Finally, we also
study the asymptotic multivariate normality for the numbers of paths of various lengths
under several conditions.

2. THE FIRST ZAGREB INDEX

Let G(n, p) be an Erdös–Rényi random graph on the set of vertices {1, 2, . . . , n}. We shall
usually consider the probability p = p(n) as a function of n. For any pair 1 ≤ i, j ≤ n, we
define indicators Iij = 1(i and j is connected in G(n, p)). Note that Iii = 0, Iij = Iji, and
{Iij , 1 ≤ i < j ≤ n} is a family of i.i.d. Bernoulli random variables with success rate p.
Then the degree of any vertex i in G(n, p) is equal to

∑n
j=1 Iij . It thus follows that the first

Zagreb index of a random graph G(n, p) can be expressed as

Zn =
n∑

i=1

⎛⎝ n∑
j=1

Iij

⎞⎠2

=
n∑

i=1

⎛⎝ n∑
j=1

Iij +
∑
j �=k

IijIik

⎞⎠
= 2(En + P2,n), (1)

where

En =
n−1∑
i=1

n∑
j=i+1

Iij and P2,n =
n∑

i=1

∑
j<k

IijIik

denote the numbers of edges and paths of length two in G(n, p), respectively.

2.1. The Mean and Variance

First, we shall compute the first two moments of Zn. Note that En has a binomial
distribution with parameters

(
n
2

)
and p. Then

E[En] =
1
2
n(n − 1)p, (2)

Var[En] =
1
2
n(n − 1)p(1 − p). (3)

For P2,n, it is clear that

E[P2,n] = 3
(

n

3

)
p2 =

1
2
n(n − 1)(n − 2)p2. (4)

For any path of length two T in Kn, the complete graph on vertices {1, 2, . . . , n}, define a
indicator variable 1T = 1(T ⊂ G(n, p)). Note that 1T and 1T ′ are independent if T and T ′
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have no common edges. In Kn there are 3
(
n
3

) · 2(2n − 5) = n(n − 1)(n − 2)(2n − 5) ordered
pairs (T, T ′) such that T and T ′ have exactly one common edge. Then for the variance of
P2,n, we have

Var[P2,n] =
∑

T,T ′⊂Kn

Cov(1T ,1T ′)

= 3
(

n

3

)
Var[I12I13] + n(n − 1)(n − 2)(2n − 5)Cov(I12I13, I12I14)

=
1
2
n(n − 1)(n − 2)p2(1 − p)

[
1 + (4n − 9)p

]
=

1
2
n3p2(1 − p)(1 + 4np)(1 + O(n−1)). (5)

Since any path of length two contains exactly two edges, we can get that

Cov(En, P2,n) = 2 · 3
(

n

3

)
Cov(I12, I12I13)

= n(n − 1)(n − 2)p2(1 − p). (6)

Hence, by (1), (2) and (4), we have

E[Zn] = 2(E[En] + E[P2,n])

= n(n − 1)p + n(n − 1)(n − 2)p2

= n2p(1 + np)(1 + O(n−1)), (7)

and by (3), (5) and (6),

Var[Zn] = 4(Var[En] + Var[P2,n] + 2Cov(En, P2,n))

= 2n(n − 1)p(1 − p)[1 + 5(n − 2)p + (n − 2)(4n − 9)p2]

= 2n2p(1 − p)(1 + 5np + 4n2p2)(1 + O(n−1)). (8)

The first two moments lead to several weak laws for the first Zagreb index as follows.

Proposition 1: Let Zn be the first Zagreb index of a random graph G(n, p). As n → ∞,
the following assertions hold:

(i) If n2p → 0, then Zn
P−→ 0;

(ii) If there exists a constant c > 0 such that n2p → c, then Zn/2 D−→ Poi(c/2);

(iii) If n2p → ∞, then Zn/(n2p + n3p2) P−→ 1.

Proof: If n2p → 0, then both E[Zn] and Var[Zn] tend to 0, which implies (i). If n2p → ∞,
by (7) and (8) it is not hard to check that Var[Zn] = o(E[Zn])2, which yields Zn/E[Zn]
converges in probability to 1 by Chebyshev’s inequality. Then (iii) follows by (7). We now
let n2p → c > 0. Note that both E[P2,n] and Var[P2,n] tend to 0, which implies that P2,n

converges in probability to 0. Then by (1) and Slutsky’s theorem, to prove (ii), it is suf-
ficient to show that En converges in distribution to Poi(c/2), which in fact is known (see
Theorem 3.19 of Janson et al. [5]). �
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Symmetrically, if n2(1 − p) → c for some 0 ≤ c < ∞, we have the following result.

Proposition 2: Let Zn be the first Zagreb index of a random graph G(n, p). As n → ∞,
the following assertions hold:

(i) If n2(1 − p) → 0, then P(Zn = n(n − 1)2) → 1;
(ii) If there exists a constant c > 0 such that n2(1 − p) → c, then

n(n − 1)2 − Zn

4n

D−→ Poi(c/2);

(iii) If n2(1 − p) → ∞, then

n(n − 1)2 − Zn

n3(1 − p2)
P−→ 1.

Proof: If n2(1 − p) → ∞, it follows from (7) that

n(n − 1)2 − E[Zn] = n(n − 1)(1 − p)[n − 1 + (n − 2)p]

= n3(1 − p2)(1 + O(n−1)).

Then

Var[n(n − 1)2 − Zn] = Var[Zn] = o
(
E[n(n − 1)2 − Zn]

)2

,

which implies (iii) by Chebyshev’s inequality.
Consider now the complement graph G(n, p). Let En and P 2,n denote the numbers of

edges and paths of length two in G(n, p), respectively. For any pair 1 ≤ i, j ≤ n, we also
define Iij = 1(i and j is connected in G(n, p)). It is easy to see that Iij + Iij = 1 for any
1 ≤ i �= j ≤ n. Then

Zn =
n∑

i=1

⎛⎝n − 1 −
n∑

j=1

Iij

⎞⎠2

= n(n − 1)2 − 2(n − 1)
n∑

i=1

n∑
j=1

Iij +
n∑

i=1

⎛⎝ n∑
j=1

Iij

⎞⎠2

= n(n − 1)2 − (4n − 6)En + 2P 2,n.

If n2(1 − p) → c, then from the proof of Proposition 1 and by symmetric En converges in
distribution to Poi(c/2) and P 2,n converges in probability to 0, which implies (ii).

If n2(1 − p) → 0, also by symmetric both E[En] and Var[En] tend to 0. It thus follows
that the probability that G(n, p) is empty tends to 1. Then

P(Zn = n(n − 1)2) = P(G(n, p) is a complete graph) → 1,

and (i) holds. �
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2.2. Asymptotic Normality

Let {Xi}i∈I be a family of random variables defined on a common probability space. A
dependency graph for {Xi} is any graph L with vertex set V (L) = I such that if A and B
are two disjoint subsets of I with no edges between A and B, then the families {Xi}i∈A and
{Xi}i∈B are mutually independent. For any integer r ≥ 1 and i1, i2, . . . , ir ∈ I, we also let

NL(i1, i2, . . . , ir) =
r⋃

k=1

{j ∈ I : j = ik or j is adjacent to ik in L}

denote the closed neighborhood of {i1, i2, . . . , ir} in L.
The following lemma plays an important role in our proofs of the asymptotic normality

for the Zagreb indices of G(n, p) as n → ∞. It first appeared in Mikhailov [6], and was also
stated as Theorem 6.33 in Janson et al. [5].

Lemma 1: Suppose that {Sn}∞n=1 is a sequence of random variables such that Sn =∑
α∈An

Xnα, where for each n, {Xnα, α ∈ An} is a family of random variables with
dependency graph Ln. Suppose further that there exist numbers Mn and Qn such that∑

α∈An
E[|Xnα|] ≤ Mn and, for every α1, α2 ∈ An,∑

α∈NLn (α1,α2)

E[|Xnα||Xnα1 ,Xnα2 ] ≤ Qn.

As n → ∞, if MnQ2
n/(Var[Sn])3/2 → 0, then

Sn − E[Sn]√
Var[Sn]

D−→ N(0, 1).

We now state the necessary and sufficient condition for the asymptotic normality of the
first Zagreb index of G(n, p) as n → ∞.

Theorem 1: Let Zn be the first Zagreb index of a random graph G(n, p). As n → ∞, if
n2p(1 − p) → ∞, then

Zn − n(n − 1)p − n(n − 1)(n − 2)p2

n
√

2p(1 − p)(1 + 5np + 4n2p2)
D−→ N(0, 1).

Conversely, if (Zn − an)/bn
D−→ N(0, 1) for some constants an and bn, then n2p(1− p) → ∞.

Proof: The second statement of the theorem is clear from Propositions 1 and 2. If
n2p(1 − p) does not go to ∞, then there exists a sequence {nk, k = 1, 2, . . .} such that
n2

kp(1 − p) → c1 and p(nk) → c2 with 0 ≤ c1 < ∞ and 0 ≤ c2 ≤ 1. Clearly, c2 = 0 or 1.
Thus n2

kp → c1 or n2
k(1 − p) → c1. By Propositions 1 and 2, either n2

kp → c or n2
k(1 − p) → c,

the subsequence {Znk
} rules out asymptotic normality for any normalization.

Now we turn to the first statement. By (7) and (8), the desired result is equivalent to

Zn − E[Zn]√
Var[Zn]

D−→ N(0, 1). (9)

We shall prove (9) by three steps.
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Step 1: we show that (9) holds under a stronger condition n2p(1 − p)3 → ∞.
To proceed, Lemma 1 will be applied. Let us denote the set of all edges and paths

of length two in Kn by {Tα}α∈An
, where An is an index set and its cardinality is equal

to
(
n
2

)
+ 3
(
n
3

)
= 1

2n(n − 1)2. For any α ∈ An, we let Xα = 1(Tα ⊂ G(n, p)), for simplicity
omitting subscripts n. Construct a graph Ln with vertex set An by connecting every pair of
indices α and β such that the corresponding graphs Tα and Tβ have a common edge. Then
it is evidently a dependency graph for {Xα}. Note that

Zn = 2(En + P2,n) = 2
∑

α∈An

Xα.

We now verify the conditions of Lemma 1 for Zn/2 =
∑

α∈An
Xα. The value of Mn

can be simply set as n2p(1 + np). Suppose that α1, α2 ∈ An are given. Consider the union
Tα1 ∪ Tα2 , which has the vertex set V . Let KV be the complete graph on V . Note that KV

has at most 6 vertices, and the cardinality of NLn
(α1, α2) ∩ {α : Tα ⊂ KV } is not more than

36. Moreover, each Tβ for β ∈ NLn
(α1, α2) \ {α : Tα ⊂ KV } is such a path that one edge is

in KV and another one is not, hence the number of such β is less than 8n. We thus have∑
α∈NLn (α1,α2)

E[|Xα||Xα1 ,Xα2 ] < 36 + 8np < 36(1 + np).

Therefore, we can set Qn = 36(1 + np). It follows that

MnQ2
n

(Var[En + P2,n])3/2
=

362n2p(1 + np)3[
1
2n2p(1 − p)(1 + 5np + 4n2p2)

]3/2
(1 + O(n−1))

= O([n2p(1 − p)3]−1/2) → 0,

which implies by Lemma 1 that (9) holds if n2p(1 − p)3 → ∞.
Step 2: We show that (9) also holds if n2(1 − p) → ∞ and np → ∞.
At this time, we have Var[En] = o(Var[En + P2,n]) and Var[P2,n] ∼ Var[En + P2,n].

By Theorem 6.5 of Janson et al. [5],

En − E[En]√
Var[En]

D−→ N(0, 1),
P2,n − E[P2,n]√

Var[P2,n]
D−→ N(0, 1).

Then

Zn − E[Zn]√
Var[Zn]

=
(En + P2,n) − E[En + P2,n]√

Var[En + P2,n]

=
En − E[En]√

Var[En]

√
Var[En]√

Var[En + P2,n]
+

P2,n − E[P2,n]√
Var[P2,n]

√
Var[P2,n]√

Var[En + P2,n]
D−→ N(0, 1).

Step 3: we shall summarize the above two steps to get (9) under the desired condition
n2p(1 − p) → ∞.
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It is enough to show that for any sequence {nk, k = 1, 2, . . .}, there exists a subsequence
{n′

k, k = 1, 2, . . .} such that
Zn′

k
− E[Zn′

k
]√

Var[Zn′
k
]

D−→ N(0, 1). (10)

For any sequence {nk, k = 1, 2, . . .}, if n2
kp(1 − p)3 → ∞ as k → ∞, then by Step 1, we

have (Znk
− E[Znk

])/(Var[Znk
])1/2 converges in distribution to N(0, 1). If n2

kp(1 − p)3 →
∞ does not hold, then there exists a subsequence {n′

k, k = 1, 2, . . .} and a constant c < ∞
such that (n′

k)2p(1 − p)3 → c as k → ∞. Since (n′
k)2p(1 − p) → ∞, we have

(1 − p)2 =
(n′

k)2p(1 − p)3

(n′
k)2p(1 − p)

→ 0.

Thus p → 1 and
n′

kp → ∞, (n′
k)2(1 − p) → ∞.

Now by Step 2, it follows that (10) holds. The proof of Theorem 1 is complete. �

Remark: The condition n2p(1 − p) → ∞ is equivalent to that n2p → ∞ and n2(1 − p) → ∞.
Then the above theorem implies that Zn is asymptotic normal (suitably normalized) if and
only if both the numbers of edges in G(n, p) and its complement G(n, p) goes to infinity
with probability 1.

3. THE SECOND ZAGREB INDEX

Let Z̃n be the second Zagreb index of a random graph G(n, p). By the definition,

Z̃n =
n−1∑
i=1

n∑
j=i+1

Iij(1 +
∑
k �=j

Iik)(1 +
∑
l �=i

Ijl)

=
n−1∑
i=1

n∑
j=i+1

Iij +
n−1∑
i=1

∑
k �=j

IijIik +
n−1∑
i=1

n∑
j=i+1

∑
k �=j

∑
l �=i

IikIijIjl

= En + 2P2,n + P3,n + 3�n, (11)

where P3,n and �n denote the numbers of paths of length three and triangles in G(n, p),
respectively.

It is easy to see that

E[P3,n] = 12
(

n

4

)
p3, E[�n] =

(
n

3

)
p3.

By (2), (4), and (11), then we have

E[Z̃n] =
(

n

2

)
p + 6

(
n

3

)
p2 + 12

(
n

4

)
p3 + 3

(
n

3

)
p3

=
1
2
n(n − 1)p[1 + (n − 2)p]2

=
1
2
n2p(1 + np)2(1 + O(n−1)).
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We can further obtain the variance of Z̃n (see the details for the calculation in the
Appendix):

Var[Z̃n] =
1
2
n(n − 1)p(1 − p)[1 + (n − 2)p(12 + (31n − 60)p

+ (28n2 − 114n + 105)p2 + (9n3 − 58n2 + 117n − 69)p3)]

=
1
2
n2p(1 − p)[1 + 12np + 31n2p2 + 28n3p3 + 9n4p4](1 + O(n−1)).

Analogous to Propositions 1 and 2, and Theorem 1, we state the corresponding results
for the second Zagreb index in the following. They can be proved in a way very similar to
that used for the first Zagreb index, and hence we omit their proofs.

Proposition 3: Let Z̃n be the second Zagreb index of a random graph G(n, p). As n → ∞,
the following assertions hold:

(i) If n2p → 0, then Z̃n
P−→ 0;

(ii) If there exists a constant c > 0 such that n2p → c, then Z̃n
D−→ Poi(c/2);

(iii) If n2p → ∞, then 2Z̃n/(n2p(1 + np)2) P−→ 1;

(iv) If n2(1 − p) → 0, then P(Z̃n = n(n − 1)3/2) → 1;
(v) If there exists a constant c > 0 such that n2(1 − p) → c, then

n(n − 1)3/2 − Z̃n

3n2

D−→ Poi(c/2);

(vi) If n2(1 − p) → ∞, then

n(n − 1)3 − 2Z̃n

n4(1 − p3)
P−→ 1.

Theorem 2: Let Z̃n be the second Zagreb index of a random graph G(n, p). As n → ∞, if
n2p(1 − p) → ∞, then

Z̃n − 1
2n(n − 1)p[1 + (n − 2)p]2

n
√

1
2p(1 − p)(1 + 12np + 31n2p2 + 28n3p3 + 9n4p4)

D−→ N(0, 1).

Conversely, if (Z̃n − an)/bn
D−→ N(0, 1) for some constants an and bn, then n2p(1 − p) → ∞.

From the fact Var[�n] = o(Var[Z̃n]), one can see that (�n − E[�n])/(Var[Z̃n])1/2

converges in probability to 0, that is, the contribution of �n to the second Zagreb index
can be always negligible. Moreover, the influence of the coefficients in (11) on our proof
can be also negligible. In fact, using the method in the proof of Theorem 1 one can obtain
that for any real numbers a > 0, b ≥ 0, c ≥ 0, the sequence {aEn + bP2,n + cP3,n} is also
asymptotically normal distributed (suitably normalized), as n → ∞. We shall generalize
this result for the numbers of paths of various lengths in the next section.
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4. PATHS

For any integer k ≥ 1, let Pk,n be the numbers of the paths of length k in a random graph
G(n, p) with P1,n = En. As a consequence of Theorem 6.5 of Janson et al. [5], if nk+1pk →
∞ and n2(1 − p) → ∞, then (Pk,n − E[Pk,n])/(Var[Pk,n])1/2 converges in distribution to
N(0, 1) as n → ∞ for any k ≥ 1. In this section, we shall study the limiting joint distribution
of the random (column) vector (P1,n, P2,n, . . . , Pm,n)′ under suitable normalization for any
fixed positive integer m as n → ∞.

The first two moments of Pk,n are given first. One can easily get the expectation of Pk,n

for k ≥ 1:

E[Pk,n] =
(k + 1)!

2

(
n

k + 1

)
pk =

1
2
nk+1pk(1 + O(n−1)). (12)

For the variance of Pk,n, it is manifestly difficult to compute the exact expression when
both k and n are large. However, we have the asymptotic expansion of Cov(Pk,n, Pl,n) for
1 ≤ k ≤ l ≤ n − 1 as follows (also see the details for the calculation in the Appendix):

Cov(Pk,n, Pl,n) =
n(1 − p)

2

k∑
j=1

j(l − k + j)(np)l+j−1(1 + O(n−1)). (13)

We now state the main result in this section as follows.

Theorem 3: For any fixed integer m ≥ 1, as n → ∞, the following assertions hold:

(i) If np → c for some constant c > 0, then

1√
n

(
P1,n − 1

2
cn, P2,n − 1

2
c2n, . . . , Pm,n − 1

2
cmn

)′
D−→ N(0,Σm),

where 0 is an m-dimensional vector of zeros and Σm = (σkl)m×m with

σkl =
1
2

min(k,l)∑
j=1

j(|l − k| + j)cmax(k,l)+j−1, 1 ≤ k, l ≤ m.

(ii) If np → 0 and nm+1pm → ∞, then⎛⎝P1,n − 1
2n2p√

1
2n2p

,
P2,n − 1

2n3p2√
1
2n3p2

, . . . ,
Pm,n − 1

2nm+1pm√
1
2nm+1pm

⎞⎠′
D−→ N(0, Im),

where Im is an identity matrix of size m.
(iii) If np → ∞ and n2(1 − p) → ∞, then√

2p

1 − p

(
P1,n − E[P1,n]

np
,
P2,n − E[P2,n]

2(np)2
, . . . ,

Pm,n − E[Pm,n]
m(np)m

)′
D−→ X1m,

where X is a standard normal random variable and 1m is the vector with all
entries of 1.

Proof: We shall prove (i), and only give a sketch of proofs of (ii) and (iii).
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If np → c > 0, we have E[Pk,n] = ckn/2 + O(1) by (12), and for 1 ≤ k ≤ l,

lim
n→∞ Cov

(
Pk,n√

n
,
Pl,n√

n

)
=

1
2

k∑
j=1

j(l − k + j)cl+j−1, (14)

by (13). For any integer m ≥ 1, let Σm(n) be the covariance matrix of random vector
Pm(n)/

√
n, where

Pm(n) := (P1,n, P2,n, . . . , Pm,n)′.

By (14), one can get that the matrix Σm, the limit of Σm(n) as n → ∞, is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
c c2 3

2
c3 · · · m

2
cm

c2 1
2
c2(1 + 4c) c3(1 + 3c) · · · 1

2
cm[(m − 1) + 2mc]

3
2
c3 c3(1 + 3c)

1
2
c3(1 + 4c + 9c2) · · · 1

2
cm

3∑
j=1

j(m − 3 + j)cj−1

· · · · · · · · · · · · · · ·
m

2
cm 1

2
cm[(m − 1) + 2mc]

1
2
cm

3∑
j=1

j(m − 3 + j)cj−1 · · · 1
2
cm

m∑
j=1

j2cj−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By adding −kck−1 multiplies of the first column to the kth column for k = 2, 3, . . . ,m, the
determinant of Σm satisfies that

det(Σm) =
1
2
cm det(Σm−1), m ≥ 2.

With the initial value det(Σ1) = c/2, the above recurrence implies that

det(Σm) = lim
n→∞ det(Σm(n)) =

1
2m

c
m(m+1)

2 , m ≥ 1. (15)

Hence the limiting covariance matrix Σm is positive definite.
Let {a1, a2, . . . , am} be a sequence of real numbers, and

Sm,n :=
m∑

j=1

ajPj,n.

It is now sufficient to prove that for any real numbers a1, a2, . . . , am with
∑m

j=1 a2
j = 1,

Sm,n − E[Sm,n]√
Var[Sm,n]

D−→ N(0, 1). (16)

We shall also apply Lemma 1. Denote by {Tα}α∈Bn
the set of all paths of length not

more than m in Kn, where Bn is an index set and its cardinality |Bn| is the number of all
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such paths, that is,

|Bn| =
1
2

m∑
i=1

(i + 1)!
(

n

i + 1

)
.

For any α ∈ Bn, let tα be the length of Tα and Xα = atα
1(Tα ⊂ G(n, p)). Then

Sm,n =
∑

α∈Bn

Xα.

We can also define a dependency graph L∗
n with vertex set Bn for {Xα : α ∈ Bn} by con-

necting every pair of indices α and β such that the corresponding graphs Tα and Tβ have
at least one common edge.

The procedure to verify the conditions of Lemma 1 is analogous to that in the proof of
Theorem 1. Write amax := max{|a1|, |a2|, . . . , |am|}, and

Mn := amax

m∑
j=1

E[Pj,n].

Then ∑
α∈Bn

E[|Xα|] ≤ Mn,

and Mn = O(n) by (12). We now determine the number Qn for sufficient large n. For any
given α1, α2 ∈ Bn, let V ∗ be the vertex set of the subgraph Tα1 ∪ Tα2 , in which the number
of vertices in V ∗ is not more than 2(m + 1). For any α ∈ NL∗

n
(α1, α2), consider the number

of vertices of Tα which are not in V ∗. Denote

N i := {α : α ∈ NL∗
n
(α1, α2) and Tα has exactly i vertices out of V ∗},

for i = 0, 1, . . . m − 1. Then ∪m−1
i=0 N i = NL∗

n
(α1, α2), and for any α ∈ N i,

E[|Xα||Xα1 ,Xα2 ] ≤ amaxp
i,

which implies that for any 0 ≤ i ≤ m − 1,∑
α∈Ni

E[|Xα||Xα1 ,Xα2 ] = O(nipi) = O(1).

Hence we can set Qn as a sufficient large constant, which is independent of n. Let λmin =
λmin(m) be the smallest eigenvalue of Σm. Then λmin > 0 by (15), and for any real vector
a = (a1, a2, . . . , am)′ with a′a = 1,

Var
( 1√

n
a′Pm(n)

)
= a′Σm(n)a ≥ λmin(1 + o(1)).

It thus follows that for any real numbers a1, a2, . . . , am with
∑m

j=1 a2
j = 1, if n is sufficiently

large, then

Var

⎡⎣ m∑
j=1

ajPj,n

⎤⎦ ≥ n

2
λmin.

We thus have
MnQ2

n

(Var[Sm,n])3/2
= O(n−1/2),

which implies (16) by Lemma 1.
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Applying Lemma 1 to prove (ii), one can verify that (16) is valid for the sum

S′
m,n =

m∑
j=1

aj(np)(m−j)/2Pj,n,

where a1, a2, . . . , am are also arbitrary fixed real numbers with
∑m

j=1 a2
j = 1. Note that, by

(13), in such case Cov(Pk,n, Pl,n) → 0 for any k �= l.
If np → ∞, then (13) also implies that Corr(Pk,n, Pl,n) → 1 for any k, l ≥ 1. To prove

(iii), one can verify that the sum

S′′
m,n =

√
2p

1 − p

m∑
j=1

ajPj,n

j(np)j−1

also satisfies (16) for any such real numbers a1, a2, . . . , am. �

APPENDIX: THE CALCULATIONS

Exact Variance of the Second Zagreb Index. To compute E[Z̃n], by (11) we need to get
the covariance matrix of the random vector (En, P2,n, P3,n,�n). The technique in (5) will be
repeatedly used in the following calculations.

Since there are 12
(n
4

)
paths of length three in Kn and each such path contains exactly three

edges,

Cov(En, P3,n) = 3 · 12

(
n

4

)
(p3 − p4) =

3

2
n(n − 1)(n − 2)(n − 3)p3(1 − p).

Similarly,

Cov(En,�n) = 3

(
n

3

)
(p3 − p4) =

1

2
n(n − 1)(n − 2)p3(1 − p).

For any path of length three in Kn, count such paths of length two that have exactly one or
two common edges with it. It is not hard to get the quantities are 6n − 16 and 2, respectively. Then

Cov(P2,n, P3,n) = 12

(
n

4

)
[(6n − 16)p4(1 − p) + 2p3(1 − p2)]

= n(n − 1)(n − 2)(n − 3)p3(1 − p)[1 + (3n − 7)p].

Also in a similar way, we have

Cov(P2,n,�n) =

(
n

3

)
[6(n − 3)p4(1 − p) + 3p3(1 − p2)]

=
1

2
n(n − 1)(n − 2)p3(1 − p)[1 + (2n − 5)p].

Note that any two distinct triangles in Kn have at most one common edge. It follows that

Var[�n] =

(
n

3

)
[p3(1 − p3) + 3(n − 3)p5(1 − p)]

=
1

6
n(n − 1)(n − 2)p3(1 − p)[1 + p + (3n − 8)p2].

In Kn, fix a path of length three and count the triangles which have common edges with it. Then
there are 2(n − 3) + n − 4 = 3n − 10 and 2 such triangles that have one and two common edges

https://doi.org/10.1017/S0269964812000447 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964812000447


THE ZAGREB INDICES OF RANDOM GRAPHS 259

with the fixed path, respectively. We thus have

Cov(P3,n,�n) = 12

(
n

4

)
[(3n − 10)p5(1 − p) + 2p4(1 − p2)]

=
1

2
n(n − 1)(n − 2)(n − 3)p4(1 − p)[2 + (3n − 8)p].

We now treat the variance of P3,n. Count the paths of length three which have common edges
with the specified one 1 − 2 − 3 − 4. For the case of only one common edge, consider the edge 1 − 2
and 2 − 3 separately. If a path of length three only have the common edge 1 − 2 with the specified
one, then it is one of the following three types:

x − y − 1 − 2, x − 1 − 2 − y, 1 − 2 − x − y,

where x, y are suitably chosen in {3, 4, . . . , n}. It is straightforward to see the numbers of desired
paths in the above three types are (n − 1)(n − 4), (n − 3)2 and (n − 2)(n − 4), respectively. Then
there are 3n2 − 17n + 21 paths just having the common edge 1 − 2 with the specified one. For the
paths that have only common edge 2 − 3, by symmetry we may just consider two types of paths:
x − y − 2 − 3 and x − 2 − 3 − y. One can see the total number of such paths is 2(n − 3)2 + [(n −
4)2 + (n − 3)] = 3n2 − 19n + 31. Hence, the number of paths of length three in Kn which have
only one common edge with the path 1 − 2 − 3 − 4 is

2(3n2 − 17n + 21) + 3n2 − 19n + 31 = 9n2 − 53n + 73.

With the fact that in Kn there are 4n − 11 paths of length three containing just two edges of the
path 1 − 2 − 3 − 4, we have

Var[P3,n] = 12

(
n

4

)
[p3(1 − p3) + (4n − 11)p4(1 − p2) + (9n2 − 53n + 73)p5(1 − p)]

=
1

2
n(n − 1)(n − 2)(n − 3)p3(1 − p)[1 + (4n − 10)p + (9n2 − 49n + 63)p2].

Collecting above all variances and covariances, by (3), (5), (6) and (11), we have

Var[Z̃n] = Var[En] + 4Var[P2,n] + Var[P3,n] + 9Var[�n]

+ 4Cov(En, P2,n) + 2Cov(En, P3,n) + 6Cov(En,�n)

+ 4Cov(P2,n, P3,n) + 12Cov(P2,n,�n) + 6Cov(P3,n,�n)

=
1

2
n(n − 1)p(1 − p)

[
1 + 4(n − 2)p[1 + (4n − 9)p]

+ (n − 2)(n − 3)p2[1 + (4n − 10)p + (9n2 − 49n + 63)p2]

+ 3(n − 2)p2[1 + p + (3n − 8)p2] + 8(n − 2)p + 6(n − 2)(n − 3)p2

+ 6(n − 2)p2 + 8(n − 2)(n − 3)p2[1 + (3n − 7)p]

+ 12(n − 2)p2[1 + (2n − 5)p] + 6(n − 2)(n − 3)p3[2 + (3n − 8)p]
]

=
1

2
n(n − 1)p(1 − p)

[
1 + (n − 2)p

(
12 + (31n − 60)p

+ (28n2 − 114n + 105)p2 + (9n3 − 58n2 + 117n − 69)p3
)]

=
1

2
n2p(1 − p)[1 + 12np + 31n2p2 + 28n3p3 + 9n4p4](1 + O(n−1)).

Covariances of Various Paths. It is now the goal to give the expressions of the covariances
between the numbers of paths of various lengths in general. In Kn, let Cn(k, l; i) denote the number
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of such paths of length k that have exactly i common edges with any given path of length l. It is
easy to see that Cn(k, l; i) is well defined. We claim that for 1 ≤ i ≤ min(k, l) and 1 ≤ k, l ≤ n − 1,

Cn(k, l; i) = (k − i + 1)(l − i + 1)nk−i(1 + O(n−1)). (17)

In fact, the main contribution to this quantity is the number of paths of length k, in which the i
common edges (with a given path of length l) are connected, that is, the common subgraph itself is
a path of length i. Note that each path of length m ≥ i contains exactly m − i + 1 paths of length
i. Consider to construct a path of length k which have exactly connected i common edges with a
given path of length l. Then we should choose suitably k − i more vertices from n − (i + 1) vertices
(the common component has already i + 1 vertices). Hence, there are (k − i + 1)(l − i + 1)nk−i(1 +
O(n−1)) ways to construct such paths of length k. If the i common edges are not connected, to
construct such a path of length k we should choose at most k − i − 1 more vertices. It is clear that
there are at most O(nk−i−1) ways.

Analogous to (5), for 1 ≤ k ≤ l ≤ n − 1, by (17) we have

Cov(Pk,n, Pl,n) =
(l + 1)!

2

(
n

l + 1

)
k∑

i=1

Cn(k, l; i)pk+l−i(1 − pi)

=
n(1 − p)

2

k∑
i=1

(k − i + 1)(l − i + 1)(np)k+l−i(1 + O(n−1))

=
n(1 − p)

2

k∑
j=1

j(l − k + j)(np)l+j−1(1 + O(n−1)).

Acknowledgment

This work was partially supported by NSFC (No. 10801122 and No. 11101395), RFDP (No. 20093402120014)
and the Fundamental Research Funds for the Central Universities.

References

1. Abdo, H., Dimitrov, D., & Gutman, I. (2012). On the Zagreb indices equality. Discrete Applied
Mathematics 160: 1–8.

2. Bollobás, B. (2001). Random graphs, 2nd Ed. Cambridge: Cambridge University Press.
3. Feng, Q. & Hu, Z. (2011). On the Zagreb index of random recursive trees. Journal of Applied Probability

48: 1189–1196.
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