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When a rigid body collides with a liquid surface with sufficient velocity, it creates a
splash curtain above the surface and entrains air behind the sphere, creating a cavity
below the surface. While cavity dynamics has been studied for over a century, this
work focuses on the water entry characteristics of deformable elastomeric spheres,
which has not been studied. Upon free surface impact, an elastomeric sphere deforms
significantly, giving rise to large-scale material oscillations within the sphere resulting
in unique nested cavities. We study these phenomena experimentally with high-speed
imaging and image processing techniques. The water entry behaviour of deformable
spheres differs from rigid spheres because of the pronounced deformation caused
at impact as well as the subsequent material vibration. Our results show that this
deformation and vibration can be predicted from material properties and impact
conditions. Additionally, by accounting for the sphere deformation in an effective
diameter term, we recover previously reported characteristics for time to cavity pinch
off and hydrodynamic force coefficients for rigid spheres. Our results also show that
velocity change over the first oscillation period scales with the dimensionless ratio
of material shear modulus to impact hydrodynamic pressure. Therefore, we are able
to describe the water entry characteristics of deformable spheres in terms of material
properties and impact conditions.

Key words: aerodynamics, flow-structure interactions, interfacial flows (free surface)

1. Introduction

Water entry has been studied for over 100 years, with the earliest images taken
by Worthington at the turn of the century (Worthington 1908), and much of the
foundational work performed in the 1940s and 50s with military application in mind
(May & Woodhull 1948; Richardson 1948; May 1952). The topic of water entry is
still of interest today with several significant research papers published in the last
20 years investigating topics such as cavity physics, projectile dynamics and even
ricochet off the water surface (Seddon & Moatamedi 2006; Duclaux et al. 2007;
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Duez et al. 2007; Aristoff & Bush 2009; Truscott, Epps & Belden 2014; Belden
et al. 2016, respectively).

Cavity characteristics vary with Froude number, Bond number, Capillary number
and by varying object geometry, rotation and wetting angle (Truscott et al. 2014). For
example, low-speed impact events with sufficiently small capillary numbers will not
form subsurface cavities (Duez et al. 2007). When a cavity forms it is often described
by the manner in which the cavity collapses (or pinches off). Cavities are categorized
according to the depth at which pinch off occurs, and these categories include: surface
seal, deep seal, shallow seal and quasi-static seal (Aristoff et al. 2008; Aristoff &
Bush 2009). The results herein occur within the high Bond number parameter space
(Bo > 300), where surface tension is negligible and only deep seal type pinch-off
events have been observed. Previous studies provide theoretical predictions for pinch-
off time and depth which produce good agreement with experiments employing steel
spheres (high solid–liquid density ratio) where deceleration can be neglected. Aristoff
et al. (2010) revealed that a small mass ratio associated with a decelerating sphere
can reduce the depth of pinch off, but does not alter pinch-off time.

Beyond revealing scaling for pinch-off depth and time, several studies have explored
the effect of unique impact conditions on cavity physics and body dynamics. Simply
changing the geometry of the projectile generates a cavity with a cross-section
resembling the outer profile of the impacting body (Enriquez et al. 2012). For slender
bodies it has been shown that even nose shape and entry angle can greatly alter
cavity form and dynamics (May 1952; Bodily, Carlson & Truscott 2014). Spinning
the projectile perpendicular to the free surface prior to impact creates asymmetrical
cavities and generates unbalanced forces (Truscott & Techet 2009a). Similar findings
have resulted from covering half of a hydrophilic sphere with a hydrophobic coating
(Truscott & Techet 2009b). Both of these methods generate asymmetrical cavities
and cause the impacting body to veer from the primary axis of travel. Some groups
have extended the work to biological organisms, for instance, Chang et al. (2016)
experimentally investigated plunge-diving birds using a simplified model. Their
experiment involved an elastic beam attached to a rigid cone (representing the bird
neck and head, respectively), and focused specifically on when buckling occurs as
it relates to possible physical damage, as opposed to how significant deformations
affect cavity shape and entry dynamics as discussed herein.

Recently, the authors investigated deformable spheres impacting a water surface at
an oblique angle, primarily concerned with the effect of deformability on ricochet
(Belden et al. 2016). It was shown that induced vibrations interact with the cavity in
unique ways resulting in nested cavities, but also inefficient skipping. However, we
are not aware of any research addressing the normal entry behaviour of deformable
elastomeric spheres. Figure 1 presents two high resolution photographs which
qualitatively display some of the differences between the water entry of rigid
and highly deformable spheres, including differences in cavity shape and sphere
deceleration. In this paper, we use an experimental approach to investigate the unique
phenomena associated with water entry of highly deformable spheres.

2. Methods

We investigated the water entry characteristics of elastomeric spheres experimentally
by varying sphere impact velocity U0, diameter D and material stiffness, as
characterized by the neo-Hookean shear modulus G∞. Spheres were made from
an incompressible platinum-cure silicone rubber called Dragon Skinr, which is
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(a) (b)

FIGURE 1. Two spheres with shear moduli G∞ differing by four orders of magnitude
experience very different water entry dynamics. (a) A rigid sphere (G∞= 5.66× 105 kPa),
with a solid–liquid density ratio near unity, impacts the free surface forming a canonical
subsurface cavity. (b) A deformable sphere (G∞ = 12.69 kPa), with otherwise nearly
identical properties and impact conditions as (a), forms an altered subsurface cavity due
to relatively large deformations and material oscillation. Images were taken at the same
time after impact. (Photo credit C. Mabey.)

produced by Smooth-On, Inc. Shear modulus was varied by adding a silicone thinner
to the mixture to produce three discrete values (G∞= 1.12, 6.70 and 70.2 kPa), which
were determined by sphere compression tests (see appendix A). The constituents of
the silicone rubber were measured by mass ratio, mixed, then placed in a vacuum
chamber to remove entrained air. Mixtures were poured into aluminium moulds to
form spheres with two different diameters (D = 51 and 100 mm). Spheres had a
density of ρs = 1070 kg m−3 and the density of water is represented by ρw. The
water entry of rigid spheres with identical ρs = 1070 kg m−3 were also investigated
for comparison.

The experimental set-up is summarized in figure 2(a). Spheres were dropped from
three discrete heights (0.53, 1.53 and 2.27 m) into a 0.81× 0.81 m2 glass tank filled
to ∼1 m with water. The entry event was filmed using two Photron SA3 high-speed
cameras at 2000 frames per second with diffuse back lighting. The scalar λ represents
the deviation of the deformed sphere from the initial diameter. Before splash curtain
dome over, the changing diameter λD of the sphere was measured by fitting a circle
(cyan) to the top view of the sphere as shown in figure 2(b). After dome over, λD
was measured below the free surface (side view figure 2c). The lowest point of the
sphere yb (red cross figure 2c) was also measured directly from the images. The
separation line at the air–water–sphere interface is marked by a green horizontal line.
An ellipse was then fitted to the edge of the sphere below the separation line (yellow
outline). Because the sphere deformation is assumed to be symmetric about the y-axis,
measurements of λ from the side and top camera views are assumed to represent the
same quantity.
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FIGURE 2. (a) Spheres falling into a water filled tank were filmed using high-speed
cameras and diffuse back lighting. The event is described by the parameters: sphere
diameter D, impact velocity U0, a scalar defining sphere deformation λ and the depth
below the free surface of the sphere’s lowest point yb and the sphere’s centre yc. (b) Image
processing was used to measure λD prior to dome over. (c) Image processing was used
to locate yb throughout the entry event (red cross). A curve was fitted to the edge of
the sphere below the air–water–sphere interface (green line). A corresponding ellipsoid,
with an assumed symmetry about the y-axis and a volume constrained by the undeformed
sphere, was applied (yellow outline).

3. Results
Figure 1 displays high resolution images of two spheres with nearly identical impact

conditions (U0 = 2.4 m s−1, D = 51 mm), except that the sphere in (a) has shear
modulus G∞= 5.66× 105 kPa (rigid) while the sphere in (b) has shear modulus G∞=
12.7 kPa. The cavity formed by the deformable projectile differs in the oscillatory
profile of the cavity walls, in addition to being shallower and wider. Because the
cavity physics and projectile dynamics are evidently different for a deformable sphere,
characterizing the initial deformation and resulting material oscillation in the sphere
is critical to understanding water entry physics for deformable objects.

Figure 3(a,b) lends additional insight into why a cavity produced by a deformable
sphere deviates from that formed by a rigid sphere. At 12 ms after impact, the
sphere has deformed significantly into an oblate spheroid, creating a wider cavity
than a rigid sphere. Elastic forces cause the sphere to rebound from this initial
deformation into a prolate spheroid with its major axis aligned with the vertical
(t = 29 ms). The continually oscillating sphere now proceeds to a second radial
expansion that penetrates through the cavity wall, forming a smaller cavity within the
first (t= 43 ms), resulting in a so-called matryoshka cavity (Hurd et al. 2015; Belden
et al. 2016). For this case pinch off occurs within the second cavity (t= 96 ms).

For each experimental test, the position of the bottom of the sphere yb was tracked
through a series of high-speed images. In figure 3(c), yb/D is plotted as a function
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FIGURE 3. (a) A sphere deforms significantly as it impacts and enters the water (G∞ =
6.70 kPa, D = 51 mm and U0 = 5.3 m s−1); after the initial deformation the sphere
oscillates between oblate and prolate shapes, creating a second cavity within the first.
Pinch off occurs within this second, smaller cavity (t = 96 ms, supplemental movie 1,
available at https://doi.org/10.1017/jfm.2017.365). (b) The water entry event captured
from a top view highlights the changing diameter and splash curtain dome over event.
(c) The measured position of yb is plotted against dimensionless time where vertical lines
correspond to the images above. (d) Plotting the parameter λ as a function of time portrays
a decaying sinusoid. Image sequences (a,b) are both shown in supplemental movie 1.

of dimensionless time t/tp (tp: time to pinch off), in which the sphere oscillation is
evident. Figure 3(d) shows the measured value of λ, which reaches an initial large
peak due to the impact event (t= 12 ms), and then decays throughout the water entry.
This decay in λ is typical for all deformable sphere water entry events studied.

Figure 4(a) presents a simplified description of the sphere oscillation in which
the sphere deforms into an oblate spheroid with symmetry about the y-axis. Here,
λ represents the principal stretch in the x and z directions, and by conservation of
volume the principal stretch in the y direction is λy= 1/λ2. Defining λ in this way is
based on the observation that the primary mode of deformation in the sphere during
water entry is equi-biaxial tension, and λ is a measure of the principal stretch in the
sphere. The parameter λpN represents the maximum stretch of the sphere in the x–z
plane for the Nth deformation period.

Based on the decaying behaviour of λ during water entry, we aim to address if
the source of damping is in the sphere material, water or both. First, we isolate
the response of the sphere by performing a series of tests in which the spheres are
dropped onto horizontal rigid surfaces (appendix A, figure 12, supplemental movie 2).
Impact with the rigid surface results in an initially large sphere deformation that
decays in time. Based on these observations, we apply a viscoelastic model to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.365
https://doi.org/10.1017/jfm.2017.365


Water entry of deformable spheres 917

0.02 0.04 0.06 0.08 1.00

T
 (

s)

0

0.05

0.10

D

y x

0 0.05 0.10 0.15

0.9

1.0

1.1

1.2

1.3
Experiment
Model
Time scaled model

10–2 100

1.0

1.2

1.4

1.6

1.8

t (s)

(a)

(a) (b)

(c) (d)

FIGURE 4. (a) When a deformable sphere impacts the water surface it flattens into
an oblate spheroid with an increased cross-sectional diameter at t = T/4 (λp1D) before
rebounding back into a sphere at T/2. The sphere then forms a prolate spheroid at 3T/4,
then returns to a spherical shape in a single period T (not shown). The principal stretch
λ defines the deviation of the sphere from its un-stretched diameter D. The subscript pN
refers to the maximum value of λ within the Nth period. (b) The oscillation period of λ
scales with D/

√
G∞/ρs (the slope of the linear fit is 1.4). The analytical model predicts

a slightly smaller slope (1.2). Large data points represent large spheres (D = 100 mm)
and small data points represent small spheres (D= 51 mm). (c) The peak value of λ for
a given period and given sphere radius appears to depend only on G∞/ρwU2

0 . Shading
denotes period number (N) as indicated in the legend. Symbols represent experimental
data and lines represent model prediction. Thin lines represent small spheres (D= 51 mm)
and thick lines represent large spheres (D= 100 mm). (d) The measured values of λ in
time, for the experimental case featured in figure 3, are represented by grey triangles. The
behaviour predicated by the analytical model is represented by a dashed line. The solid
line portrays a time-adjusted model with frequency shifted to correspond with the scaling
in (b).

sphere material (Bergström & Boyce 1998) as summarized in appendix A. The
model includes parameters to account for viscous damping, but the equilibrium
stress is still governed by the hyperelastic neo-Hookean model (parameterized by
shear modulus G∞). The rigid surface impact data are used to calibrate the dynamic
parameters of the viscoelastic model. Second, to see if the damping in the material
model can explain the decay observed in the water entry events, we construct a
simplified model of the sphere oscillation (derived in appendix A). The sphere is
prescribed an initial stretch λ0= λp1 at t= t0 and allowed to oscillate freely for t> t0.
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The analysis is performed for all experimental cases and the results are summarized
in figure 4.

Figure 4(b) shows that the oscillation period predicted by the model is slightly less
than that observed in the experiments. Because the viscoelastic model parameters were
calibrated to an experimental test isolated from the water, we suggest the observed
lower frequency (longer period) of the sphere in water is attributable to the added
mass experienced by the sphere. Some mass of water has to be accelerated during
portions of the sphere oscillation period (e.g. between t = 3T/4 and t = 5T/4 in
figure 4a). However, if we scale the response in time by a ratio of experimental
to modelled periods, Texp/Tmodel, then the predicted oscillations show good agreement
with the experiments. Despite the difference in period, the magnitude of the predicted
peaks in λ are consistent with experiments (figure 4c,d), suggesting that the dominant
source of damping is in fact in the sphere material. We note that the model agrees
more accurately at the peaks than the valleys because an oscillating sphere complies
with the idealization of the model (ellipsoidal assumption) more closely in its oblate
shape than its prolate shape as is observed in figure 5(d).

Figure 5(a–d) shows the cavity growth and pinch off resulting from the impact
of four spheres (D = 51 mm, U0 = 6.5 m s−1) with G∞ decreasing from 5.66 ×
105 kPa (a) to 1.12 kPa (d). The cavity in image sequence (b) is created by a
sphere with a shear modulus of G∞ = 70.2 kPa. The resulting cavity and pinch off
strongly resembles those created by the rigid sphere in (a), except for the presence
of small-scale undulations on the cavity walls due to sphere vibration. The sphere
in (c) has a shear modulus an order of magnitude smaller than that in (b); it deforms
significantly upon impact creating a much wider cavity and shallower pinch-off
event. The smaller G∞ results in higher magnitude but lower frequency oscillations,
creating a second impact-like event within the first cavity. Deformations are even
more pronounced in sequence (d). Pinch off occurs within the second cavity formed
for image sequences (c) and (d). Spheres with lower values of G∞ are often observed
to decelerate so rapidly that they occupy the space where a deep seal would normally
occur as seen in figure 5(e). In this instance the contact line of the second cavity
recedes up the surface of the sphere and pinches off at the top.

Water entry events are often classified by cavity characteristics, with a common
parameter being time to pinch off (tp). The dimensionless time tpU0/D is plotted
against Froude number (Fr = U0/

√
gD) in figure 6(a) for all tested cases, which is

the same non-dimensionalization employed by Aristoff et al. (2010) for decelerating
rigid spheres (dashed line). However, the scaling does not provide an effective data
collapse for deformable elastomeric spheres. Instead we normalize using a new
term Deff = λpND, which represents the maximum deformed diameter that the sphere
assumes within the cavity in which pinch off occurs. For example, in the case seen in
figure 5(d), pinch off occurred within the second cavity resulting in Deff = λp2D. This
adjustment provides a more convincing data collapse as can be seen in figure 6(b),
where the solid line is a fit to the data (slope = 1.3).

We have described the effects of elastomeric sphere deformation on the global
features of water entry, and now turn attention to sphere dynamics. Based on the
description of the sphere as an ellipsoid (figure 4a), the position of the centre of
mass is defined as

yc = yb +
R
λ2
, (3.1)

where, as already discussed, yb is tracked from images (figure 3c). Any noise in
measurements of λ would be amplified in (3.1); therefore, we use the time-scaled
results of the model simulations to define λ. The velocity and acceleration of the
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FIGURE 5. (a–d) The water entry of four spheres with identical diameter (D= 51 mm),
density (ρs = 1070 kg m−3) and impact velocity (U0 = 6.5 m s−1) but varying shear
moduli: (a) G∞ = 5.66 × 105 kPa, (b) G∞ = 70.2 kPa, (c) G∞ = 6.70 kPa, (d) G∞ =
1.12 kPa. (e) For the largest and most compliant spheres tested (D = 100 mm, U0 =

6.5 m s−1 and G∞ = 1.12 kPa) spheres decelerate more rapidly, occupying the space
where pinch off would occur. The attached cavity recedes upward along the sphere,
pinching at the top of. Image sequences (a–e) correspond to supplemental movies 3–7
respectively.

centre of mass, ẏc and ÿc, are computed from derivatives of smoothing splines fit
to yc, as was done in Truscott, Epps & Techet (2012). Figure 7(a–c) displays ẏc

as a function of dimensionless time for all values of shear modulus G∞, where
D= 51 mm and U0 ranges from 3.0 to 6.5 m s−1. The values of ẏc for rigid spheres
(G∞ = 5.66 × 105) are plotted as blue curves. The vertical lines indicate the end of
the first oscillation period for the elastomeric spheres (corresponding grey shades
match the legend in (a)). Elastomeric spheres experience a greater deceleration than
the rigid spheres as λD increases. However, the deformable spheres quickly transition
to a deceleration rate similar to that of a rigid sphere as the magnitude of λ decreases
(compare slopes of grey curves to blue curve after the first oscillation period marked
by the vertical lines). Finally, after pinch off (t/tp > 1), a steady state is reached
and spheres fall at nearly constant velocity (λ→ 1). Notice that in (c) the softest
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FIGURE 6. (a) Dimensionless pinch off plotted against Fr does not produce a convincing
collapse as was the case with rigid spheres in the study by Aristoff et al. (2010). The
dashed line represents the theoretical scaling proposed in the same study. (b) Rather a
more accurate scaling is achieved by a dimensionless pinch-off time scaled by Deff = λpN ,
which represents the maximum deformed diameter that the sphere assumes within the
cavity in which pinch off occurs (slope of linear fit = 1.3).

spheres (lightest grey) lose nearly all of their velocity during the first deformation
cycle, whereas more rigid spheres lose a significantly smaller portion.

We perform a scaling analysis of the water entry event to gain insight into the
sphere deceleration over the first deformation period. For simplicity, added mass is
neglected and thus the dominant forces include drag, gravity and buoyancy. Because
the spheres are nearly neutrally buoyant, gravitational and buoyant terms cancel and
a simple equation of motion for the impacting sphere can be expressed as

ρs∀ ÿc =
1
2ρwAU2CD, (3.2)

where ∀ represents the volume of the sphere, A the cross-sectional area, U the velocity
of the centre of mass and CD the coefficient of drag. We simplify this expression
by defining a characteristic acceleration (U1 −U0)/T =1U/T , where U1 denotes the
velocity of the sphere centre of mass after the first deformation period. By noting that
∀∼D3, A∼D2 and CD ∼ 1, we can approximate (3.2) as

1U
T
≈
ρw

ρs

U2
0

D
. (3.3)

We previously showed that T∼D/
√

G∞/ρs (figure 4b), and for tested spheres ρw/ρs∼

1. This allows us to rearrange (3.3) to

1U
U0
≈

(
G∞
ρwU2

0

)−1/2

. (3.4)

The velocity 1U/U0 is plotted against G∞/ρwU2
0 in figure 7(d). This dimensionless

number, which is a ratio of material shear modulus to impact hydrodynamic pressure,
collapses the data. For G∞/ρwU2

0 & 0.2, the data follow the scaling predicted by (3.4).
However, in the limit of small G∞ and large U0 spheres deform significantly, and
the argument A ∼ D2 no longer holds as there is a more complicated dependence
of λ on the material properties and impact conditions. Furthermore, it is likely that
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FIGURE 7. Dimensionless velocity (|ẏc|/U0) is plotted against dimensionless time (t/tp) for
spheres impacting with three different velocities: (a) U0 = 3.0 m s−1, (b) U0 = 5.3 m s−1

and (c) U0 = 6.5 m s−1. Compared to rigid spheres (blue curves), deformable spheres
experience a larger deceleration rate after impact over the first cycle of sphere deformation.
After the first oscillation period, deformable spheres follow a deceleration similar to rigid
spheres, and then transition to a nearly constant velocity after pinch off. (d) The large
initial change in velocity is investigated by plotting 1U/U0 = (U1 − U0)/U0, where
U1 is the velocity of the sphere centre of mass after one oscillation period, against
G∞/ρwU2

0 . For G∞/ρwU2
0 & 0.2, 1U/U0 scales with (G∞/ρwU2

0)
−1/2, as predicted by a

scaling analysis from the equation of motion for the sphere. For G∞/ρwU2
0 . 0.2, 1U/U0

asymptotes to the limit of 1, with nearly all of U0 being lost over the first period of
oscillation.

added mass plays a more significant role as G∞/ρwU2
0→ 0 (see appendix B). When

G∞/ρwU2
0 < 0.2, we find 1U→U0 within the first oscillation period. Nonetheless, the

experimental data follow the proposed scaling well, and this allows us to predict how
the impact dynamics of deformable spheres will differ from their rigid counterparts
based on material properties and impact conditions.

At this point, it is worth commenting on the expected role of added mass during
the water entry event. Prior research on rigid sphere water entry has shown that forces
arising from added mass are significant in the early moments of impact, primarily at
times before the entire sphere has passed the free surface (Faltinsen & Zhao 1998;
Truscott et al. 2012, 2014). As discussed earlier, it is likely that the added fluid mass
is responsible for the longer oscillation period of the spheres in water. This added
mass would be expected to resist sphere acceleration in the direction of travel as the
sphere oscillates. While added mass undoubtedly affects the physics of deformable
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FIGURE 8. Force coefficients for deformable spheres (CF) calculated by averaging over
each deformation period (y direction) are plotted as a function of dimensionless time
(black symbols). The data encompass all sphere diameters, shear moduli and impact
velocities tested. Force coefficients (CF) for rigid spheres entering the free surface with the
same specific gravity as the deformable spheres are plotted as a function of dimensionless
time (blue curves). The period-averaged values for deformable spheres CF follow the
instantaneous values for rigid spheres CF, except during the first sphere deformation period
in which deformable spheres experience larger drag from increased λD.

sphere water impact, we argue that it is unlikely to significantly affect the trends
in 1U/U0 for G∞/ρwU2

o & 0.2 (see appendix B for more details). This is supported
by the good agreement between the experimental data and the predicted trend in
figure 7(d).

To further investigate how the water entry of a deformable elastomeric sphere
differs from that of a rigid sphere, we calculate the total force coefficient acting on
the sphere in the y direction as a function of time. The oscillating behaviour of the
sphere results in a varying instantaneous force coefficient CF. Therefore, we calculate
a period-averaged force coefficient,

CF =
ρs∀ ÿc

1
2
ρwẏ

2
bπ

(
λpND

2

)2 , (3.5)

where ÿc and ẏb are the acceleration and velocity of the centre of mass and sphere
bottom averaged over a single oscillation period, respectively. Using (3.5), values for
CF are plotted in figure 8 as a function of dimensionless time t/tp for all experimental
cases. The period-averaged values CF follow the instantaneous experimental values CF
for three cases of rigid sphere water entry (blue curves). This trend holds except for
the first sphere deformation period (t/tp ≈ 0.2 to 0.4 depending on G∞), for which
the deformable spheres experience larger drag from increased λD. Over this period,
the spheres deform into ellipsoids with a large aspect ratio and thus we expect the
force coefficient to be larger. For example, for an ellipsoid with λ = 1.3, we expect
the force coefficient to be between 3–7 times larger than that of a sphere, depending
on Reynolds number (Daugherty & Franzini 1977).
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4. Conclusion
We have shown that deformable elastomeric spheres form cavities that differ from

those formed by rigid spheres by being shallower, wider and having undulatory cavity
walls. These differences stem from the sphere flattening upon surface impact followed
by material oscillation. We describe the deformation and oscillation in terms of both
material properties and impact conditions. This allows us to define an effective
diameter, which accounts for the deformation and provides effective scaling for time
to pinch off and a period-averaged force coefficient. The large sphere deformation,
particularly over the first period, is responsible for the increased loss in velocity as
compared to rigid spheres. We have shown how this reduction in velocity scales with
the ratio of material shear modulus to impact hydrodynamic pressure (G∞/ρwU2

0).
Surprisingly, we find that, except for the unique initial deceleration and altered cavity
dynamics which we have quantified in terms of stiffness and impact velocity, the
dynamics for the water entry of deformable elastomeric spheres mirrors that of rigid
spheres.
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Appendix A. Viscoelastic model
A.1. Describing the sphere deformation

The model of sphere deformation is shown in figure 9. The deformation is described
by assuming a volume preserving stretch that deforms the sphere into an ellipsoid,
with semi-axes (λR, λR, λ3R) aligned with the e1 − e2 − e3 coordinate system. The
incompressibility condition requires that λ3= 1/λ2. The total deformation gradient can
be expressed as

F = λ(e1 ⊗ e1 + e2 ⊗ e2)+
1
λ2

e3 ⊗ e3, (A 1)

where ⊗ denotes the tensor product of two vectors.
We suppose that the solid can be idealized as a linear viscoelastic Bergstrom–Boyce

material (Bergström & Boyce 1998). In this model, the total deformation gradient is
decomposed into elastic and plastic parts F = F eF p. For the simple deformation here,
both F e and F p are volume preserving stretches parallel to the basis vectors, so we
can write

F p
= λp(e1 ⊗ e1 + e2 ⊗ e2)+

1
λ2

p

e3 ⊗ e3, (A 2)

F e
= λe(e1 ⊗ e1 + e2 ⊗ e2)+

1
λ2

e

e3 ⊗ e3, (A 3)

where
λ= λeλp. (A 4)
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(a) (b)

FIGURE 9. Nominal deformation of the sphere into an axisymmetric ellipsoid.

This allows us to calculate the left Cauchy–Green deformation tensor for the total and
elastic deformation gradients

B= FF T
= λ2(e1 ⊗ e1 + e2 ⊗ e2)+

1
λ4

e3 ⊗ e3, (A 5)

Be
= F eF eT

= λ2
e(e1 ⊗ e1 + e2 ⊗ e2)+

1
λ4

e

e3 ⊗ e3. (A 6)

The invariants of the tensors are

I1 = tr(B)= 2λ2
+

1
λ4
, (A 7)

I2 =
1
2
(I2

1 − B : B)=
1
2

[(
2λ2
+

1
λ4

)2

−

(
2λ4
+

1
λ8

)]
, (A 8)

Ie
1 = tr(Be)= 2λ2

e +
1
λ4

e

, (A 9)

Ie
2 =

1
2
(Ie

1
2
− Be
: Be)=

1
2

[(
2λ2

e +
1
λ4

e

)2

−

(
2λ4

e +
1
λ8

e

)]
. (A 10)

We also need measures of total, elastic and plastic strain rates. We use the symmetric
part of the velocity gradient as the strain rate measure

D = sym(ḞF−1)= De
+ Dp, (A 11)

De
= sym(Ḟ eF e−1), (A 12)

Dp
= sym(F eḞ pF p−1F e−1). (A 13)

For the simple stretch considered here, we obtain

Dp
=
λ̇p

λp
(e1 ⊗ e1 + e2 ⊗ e2)− 2

λ̇p

λp
e3 ⊗ e3. (A 14)

A.2. Material model theory
For the special case of an incompressible material, the Bergstrom–Boyce model
assumes that the stress can be derived from an elastic strain energy of the form

U(I1, I2, Ie
1, Ie

2)=U∞(I1, I2)+UT(Ie
1, Ie

2). (A 15)

We can regard this as a nonlinear version of the 3-parameter Maxwell model
(figure 10), in which UT represents the energy in spring k1 (this energy eventually
relaxes to zero if a constant strain is applied to the material) and U∞ represents the
energy in spring k2.
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FIGURE 10. Nonlinear version of the 3-parameter Maxwell model that provides the
framework for describing the stress in the Bergstrom–Boyce model.

The stresses are related to the derivatives of the strain energy in the usual way,
giving

σ = 2
[(
∂U∞
∂I1
+ I1

∂U∞
∂I2

)
B−

∂U∞
∂I2

B2

]
+ 2

[(
∂UT

∂Ie
1
+ Ie

1
∂UT

∂Ie
2

)
Be
−
∂UT

∂Ie
2

Be2

]
+ p1.

(A 16)
To model the material used for the spheres presented in this paper, we choose U∞

and UT to be the incompressible neo-Hookean potential

U∞ =
G∞
2
(I1 − 3), (A 17)

UT =
GT

2
(Ie

1 − 3). (A 18)

For this choice, we obtain

σ =G∞B+GTBe
+ p1. (A 19)

We also need an evolution equation for the plastic part of the stretch F p. Bergstrom–
Boyce suggest the following equation:

Dp
= ε̇0

(√
Ip

1 −
√

3+ ξ
)n (

τe

τ0

)m 3
2

τ

τe
, (A 20)

where ε̇0, m, n, τ0 are material properties, ξ is a constant, τ =GT(Be
− (1/3)tr(Be)1)

is the deviatoric part of the ‘dynamic’ stress and τe =
√

3τ : τ/2 is the Von Mises
uniaxial equivalent dynamic stress. For the volume preserving stretching deformation
considered here,

τ

GT
= λ2

e(e1 ⊗ e1 + e2 ⊗ e2)+
1
λ4

e

e3 ⊗ e3 −
1
3

(
2λ2

e +
1
λ4

e

)
(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)

=
1
3

(
λ2

e −
1
λ4

e

)
(e1 ⊗ e1 + e2 ⊗ e2 − 2e3 ⊗ e3), (A 21)

and

τe =GT

∣∣∣∣λ2
e −

1
λ4

e

∣∣∣∣ . (A 22)

Invoking (A 14) in (A 20) we find

λ̇p

λp
=

1
2
ε̇0

(√
Ip

1 −
√

3+ ξ
)n (

τe

τ0

)m

sign
(
λ2

e −
1
λ4

e

)
, (A 23)

where
Ip

1 = 2λ2
p +

1
λ4

p

. (A 24)
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A.3. Dynamics
Finally, we need the equation of motion for λ, which will be obtained from the
principle of virtual work (Bower 2009)∫

V
(σ : δD) dV +

∫
V
ρs(a · δv) dV +

∫
V
ρs(b · δv) dV −

∫
A
(t · δv) dA= 0, (A 25)

where δv = δV̇x is a virtual velocity field, x denote the coordinates of a material
particle before deformation and

δV̇ = δλ̇(e1 ⊗ e1 + e2 ⊗ e2)−
2δλ̇
λ

e3 ⊗ e3. (A 26)

In this analysis, we neglect the effects of gravity and assume there are no external
tractions; thus the third and fourth terms in (A 25) vanish. Invoking (A 5)–(A 6) and
(A 19), the first term in (A 25) becomes∫

V
(σ : δD) dV =

4
3
πR3

[
2G∞

(
λ−

1
λ5

)
+ 2GT

1
λ

(
λ2

e −
1
λ4

e

)]
δλ̇. (A 27)

To evaluate the remaining terms, the following identities are useful∫
V0

dV0 =
4π

3
R3,∫

V0

xi dV0 = 0,∫
V0

xixj dV0 =
4π

15
R5δij,


(A 28)

where xi denote the coordinates of a material particle with respect to the centre of the
sphere and the integrals are evaluated over the undeformed sphere. The inertia term
(second term in (A 25)) can be expressed as∫

V
ρs(a · δv) dV =

∫
V
ρs[F̈x] · [δV̇x] dV =

4π

15
ρsR5
[F̈F : δV̇F−T

]

= 2
(
λ̈−

6λ̇2
− 2λλ̈
λ7

)
δλ̇. (A 29)

Collecting terms gives

4
3
πR3

[
2G∞

(
λ−

1
λ5

)
+ 2GT

1
λ

(
λ2

e −
1
λ4

e

)]
+

8π

15
ρsR5

(
λ̈−

6λ̇2
− 2λλ̈
λ7

)
= 0.

(A 30)
Equations (A 4), (A 22)–(A 24) and (A 30) are solved in Matlab to resolve the stretch
λ(t) given initial conditions λ(0)= λ0, λp(0)= 1 and λ̇= λ̇e = λ̇p = 0.

A.4. Material model calibration
The material model is defined by 7 parameters: G∞, GT , ε̇0, m, n, τ0 and ξ . Without
access to the material testing facilities that would be required to fully characterize

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.365


Water entry of deformable spheres 927

0.05 0.10 0.15 0.20 0.25 0.30 0.350

20

40

60

80

100

120

140

160

0.05 0.10 0.15 0.20 0.25 0.30 0.350

0.05 0.10 0.15 0.20 0.25 0.30 0.350

2

4

6

8

10

12

14

16

18

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Experiment (0.1 mm s–1)

Abaqus (Neo-Hookean model prediction)

F
[N

]

F
[N

]

(a)

(c)

(b)

FIGURE 11. Results from quasi-static testing in which the actual spheres used in the
water entry experiments are compressed on an Instron machine at a rate of 0.1 mm s−1.
The dashed blue lines show the experimental measurements of force as a function of
normalized displacement d/D. The solid black lines are predictions from an Abaqus
simulation using a hyperelastic neo-Hookean model. The shear modulus G∞ was adjusted
to find the best fit between the simulation and experiment. The three plots correspond to
the three stiffness values: (a) G∞= 70.2 kPa, (b) G∞= 6.70 kPa and (c) G∞= 1.12 kPa.

the silicone materials used in this paper, we adopt a two-part approach to estimate
parameters. First, the long-time modulus G∞ is estimated from quasi-static testing in
which the actual spheres used in the water entry experiments are compressed on an
Instron machine.

This test set-up was then numerically modelled using the finite element software
Abaqus where the sphere was modelled as an axisymmetric solid compressed
between two rigid planes accounting for large deformation and frictionless contact.
Commanding a displacement profile to match the experimental values, the resulting
force is observed. Minimizing the difference in force between the numerical and
experimental results is achieved by varying the neo-Hookean shear modulus, G∞.
The assumption here is that the response is slow enough that the behaviour is
quasi-static and all rate effects can be neglected, thus we only need to calibrate
one parameter (Abaqus 2016). This is consistent with the strain energy defined in
(A 17). We then varied G∞ to find the value that produced the best fit between the
numerically simulated and experimentally measured force–displacement curves. The
results of these tests and numerical simulations are shown in figure 11.
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(b)
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FIGURE 12. Experiments of the spheres impacting with a rigid horizontal surface were
used to calibrate the viscoelastic material model. Results are shown for a sphere with
diameter D= 100 mm and G∞ = 6.70 kPa. (a) Sample high-speed images from the h=
1.53 m test. (b) The sphere is dropped from three heights above the table and the stretch
λ is measured from high-speed images (squares). The viscoelastic parameters are found by
simultaneously finding the best fit between simulations (lines) of λ(t) and the experimental
data for all drop heights for a given sphere. Shading indicates the height the spheres were
dropped from.

Sphere radius, R (m) G∞ (Pa) GT (Pa) ξ τ0 m n ε̇0

0.025 74 690 74 690 0.0866 1.0 1.0 −0.2481 0.0049
0.025 6 900 6 900 0.0866 1.0 1.0 −0.1902 0.021
0.025 1 235 1 235 0.0866 1.0 1.0 −1.0 0.0056
0.0487 74 690 74 690 0.0866 1.0 1.0 −0.2402 0.0024
0.0487 6 900 6 900 0.0866 1.0 1.0 −0.488 0.0041
0.0487 1 235 1 235 0.0866 1.0 1.0 −0.50 0.0066

TABLE 1. Summary of material properties for the silicone spheres studied herein.

To estimate the ‘dynamic’ parameters of the material model, we perform an
experiment in which all 6 spheres used in the water entry tests are dropped from 3
heights each onto a rigid horizontal surface. The maximum stretch in the plane of the
image is measured, as shown in figure 12. The sphere response is then simulated using
the dynamic model defined in (A 4), (A 22)–(A 24) and (A 30) with the initial stretch
λ0 set to the peak value measured in the experiment. We allow two parameters of the
material model to be free – ε̇0, n – and perform a nonlinear least-squares minimization
to find the parameters that yield the best fit to the sphere stretch measurements. The
material model parameters are summarized in table 1. The simulation results using
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these material parameters to model the sphere response following impact with the
rigid surface are shown in figure 12. In modelling the sphere response during water
entry, these material parameters are used and the simulations is initialized with λ0
measured from the experiments.

Appendix B. Added mass
The scaling analysis outlined in (3.2)–(3.4) neglected the effect of added mass. Here

we include an added mass term in the equation of motion for yc to evaluate the effect
on the scaling arguments. Equation (3.2) becomes

ρs∀ ÿc =−ρw∀Cmÿc +
1
2ρwU2CDA, (B 1)

where Cm is an added mass coefficient. Solving for ÿc gives

ÿc =
ρw

2∀(ρs +Cmρw)
U2CDA. (B 2)

Using the same scales as used in deriving (3.4) gives

1U
U0
≈

ρw

ρs +Cmρw

U0
√

G∞/ρs
, (B 3)

and since for the spheres studied herein ρs ≈ ρw, we find

1U
U0
≈

1
1+Cm

(
G∞
ρwU2

0

)−1/2

, (B 4)

which differs from (3.4) only by the prefactor. Based on values of Cm for fully
submerged ellipsoids (Newman 1977), we estimate a representative range of this
prefactor as 0.35–0.86 corresponding to a range of λ = 1.5–0.74. Therefore,
as λ becomes larger, which occurs as G∞/ρwU2

0 gets small, the added mass
has a more profound effect on the relationship between 1U/U0 and G∞/ρwU2

0 .
However, for larger values of G∞/ρwU2

0 , equation (B 4) approaches (3.4). Indeed,
for G∞/ρwU2

0 & 0.2 the data in figure 7(d) follow the trend predicted by the scaling
analysis that excludes added mass.
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