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We investigate the validity and accuracy of two commonly used two-dimensional models
of a rotating, incompressible, shallow fluid layer: the shallow-water (SW) model and
the Serre/Green–Naghdi (GN) model. The models differ in just one respect: the SW
model imposes the hydrostatic approximation while the GN model does not. Both
models assume the horizontal velocity is independent of height throughout the layer.
We compare these models with their parent three-dimensional (3-D) model, initialised
with a height-independent horizontal velocity, and with a mean height small compared
to the domain width. For small to moderate Rossby and Froude numbers, we verify that
both models well approximate the vertically averaged 3-D flow. Overall, the GN model is
found to be substantially more accurate than the SW model. However, this accuracy is only
achieved using an explicit reformulation of the equations in which the vertically integrated
non-hydrostatic pressure is found from a novel linear elliptic equation. This reformulation
is shown to extend straightforwardly to multi-layer flows having uniform density layers.

Key words: shallow water flows, general fluid mechanics, vortex dynamics

1. Introduction

The hydrostatic two-dimensional (single-layer) shallow-water (SW) model has long
been used to study shallow free-surface flows of uniform density held down by gravity,
with or without the effects of background rotation (see Saint-Venant 1871; Gill 1982;
Vallis 2008). The SW model reduces the parent three-dimensional (3-D) model for a
fluid of uniform density by making the hydrostatic approximation (neglecting the vertical
acceleration) and assuming the horizontal flow is independent of height. This is justified
for long waves, i.e. when horizontal scales of motion are large compared with the fluid
height. A generalisation of the SW model known as the Green–Naghdi (GN) model (see
Green, Laws & Naghdi 1974; Green & Naghdi 1976; Ertekin 1984; Miles & Salmon
1985; Holm 1988; Demirbilek & Webster 1999; Dellar 2003; Dellar & Salmon 2005;
Dutykh et al. 2013; Dritschel & Jalali 2019, and references therein) relaxes the hydrostatic
approximation but retains the assumption that the horizontal flow is independent of height
(note: we consider only the first (lowest) level in a hierarchy of GN models, see Shields &
Webster (1988), Demirbilek & Webster (1999)). Historically, in fact Serre (1953) was the
first to derive the equations, which were re-discovered by Su & Gardner (1969).
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900 A33-2 D. G. Dritschel and M. R. Jalali

The relaxation of the hydrostatic approximation in the GN model results in a
considerably more complicated set of equations, as the additional terms involving the
non-hydrostatic acceleration depend on time derivatives of the velocity field u, making
the model implicit in u (see Pearce & Esler 2010; Dritschel & Jalali 2019, and references
therein). An alternative explicit formulation of the model uses a momentum variable m,
from which u is found from a linear elliptic equation (Holm 1988; Dellar 2003; Dellar &
Salmon 2005; Le Métayer, Gavrilyuk & Hank 2010; Dutykh et al. 2013). Below, we show
that in fact there is another, arguably simpler, alternative: just vertically average the parent
3-D model and deduce the (scalar) non-hydrostatic pressure from a linear elliptic equation.

The vast majority of previous works have applied the GN model to non-rotating flows,
often in one spatial dimension, and have demonstrated the often significantly greater
accuracy of the GN model over the SW one, for both linear and nonlinear flows. To our
knowledge, Pearce & Esler (2010) were the first to consider rotating flows, of relevance
to geophysical fluid dynamics. Here, we extend that study by comparing the GN and
SW models with their parent 3-D model for rotating free-surface flows at moderate
Rossby and Froude numbers characteristic of atmospheric and oceanic flows (cf. Vallis
2008). The following section reviews the parent 3-D model and briefly describes the
numerical approach used (details may be found in the appendices). Section 3 revisits
the two-dimensional (2-D) SW and GN models, and in particular derives a new explicit
reformulation of the GN model in which the non-hydrostatic pressure is diagnosed from
a simple, linear, and robustly convergent elliptic equation. Section 4 presents the main
results. There, we examine a highly nonlinear example of shear instability, initialised as
a height-independent flow in the 3-D simulation. The initial, variable free-surface height
is found by ‘balance’ to reduce the initial gravity-wave generation as in Dritschel & Jalali
(2019) (hereafter DJ19). The 2-D models use identical initial conditions (albeit for one
layer). The models also use identical numerical formulations in order to isolate the physical
differences between them. Our conclusions are offered in § 5.

2. Mathematical and numerical approach

We consider a 3-D inviscid incompressible fluid of uniform density ρ in a frame of
reference rotating uniformly about the z axis at the rate Ω = f /2 ( f is known as the
Coriolis frequency in the geophysical context). The fluid is taken to lie above a flat bottom
at z = 0 and have a local variable height h(x, t), where x = (x, y) is the horizontal
position vector and t is time. Gravity acts downwards. The fluid motion is governed by
Euler’s equations,

Du
Dt

− f v = −∂P
∂x
, (2.1)

Dv
Dt

+ fu = −∂P
∂y
, (2.2)

Dw
Dt

= −∂P
∂z

− g, (2.3)

∂u
∂x

+ ∂v

∂y
+ ∂w
∂z

= 0, (2.4)

in Cartesian coordinates, where D/Dt = ∂/∂t + u∂/∂x + v∂/∂y + w∂/∂z is the material
derivative, (u, v,w) is the velocity field, P = p/ρ is the pressure scaled by the constant

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.487


Two-dimensional models of a rotating shallow fluid layer 900 A33-3

density and g is the acceleration due to gravity. The boundary conditions are

w = 0 at z = 0, (2.5)

w = ∂h
∂t

+ u
∂h
∂x

+ v
∂h
∂y

at z = h, (2.6)

∂P
∂z

= −g at z = 0, (2.7)

and
P = 0 at z = h. (2.8)

We consider only periodic boundaries in x and in y. While the (scaled) pressure can take
any constant value at the free surface, without loss of generality we have taken P = 0
there.

2.1. A coordinate transformation using a material vertical coordinate
To facilitate the numerical solution of these equations, we introduce a change in the
vertical coordinate from z to the material coordinate θ (satisfying Dθ/Dt = 0), where
θ is taken to vary from 0 at z = 0, to the mean fluid height H (constant), at z = h(x, t).
The height of the coordinate surface θ = constant is denoted by z = z(x, y, θ, t). The
‘thickness’ ∂z/∂θ is denoted by ρθ . Note: we tacitly assume that these material coordinate
surfaces do not overturn (i.e. that z(x, y, θ, t) remains single valued over θ ). Thus, the
numerical model can only be applied to such ‘regular’ flows, but in practice this appears
not to be a restriction when modelling flows having low to moderate Rossby and Froude
numbers, as here. We find no evidence of shock formation in the results presented below
and in many additional simulations using this method.

To transform equations (2.1)–(2.4) to θ coordinates, we make use of the following
identities:

∂F
∂z

= 1
ρθ

∂F
∂θ
, (2.9)

together with

∂F
∂x

∣∣∣∣
z

= ∂F
∂x

− 1
ρθ

∂F
∂θ

∂z

∂x
and

∂F
∂y

∣∣∣∣
z

= ∂F
∂y

− 1
ρθ

∂F
∂θ

∂z

∂y
, (2.10a,b)

for any scalar field F. The vertical bar on the left in (2.10a,b) indicates that horizontal
derivatives are taken holding z fixed. Otherwise, they are taken holding θ fixed, as on the
right.

The horizontal momentum equations (2.1) and (2.2) then transform to

Du − f v = −∂P
∂x

+ 1
ρθ

∂P
∂θ

∂z

∂x
, (2.11)

Dv + fu = −∂P
∂y

+ 1
ρθ

∂P
∂θ

∂z

∂y
, (2.12)

where D = ∂/∂t + u∂/∂x + v∂/∂y. Conservation of mass, or volume due to
incompressibility (2.4), implies

∂ρθ

∂t
+ ∂

∂x
(uρθ)+ ∂

∂y
(vρθ) = 0, (2.13)
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900 A33-4 D. G. Dritschel and M. R. Jalali

which is an evolution equation for the layer thickness ρθ . In θ coordinates, both
the coordinate surface height z and the vertical velocity w are diagnosed from the
thickness ρθ

z(x, y, θ, t) =
∫ θ

0
ρθ(x, y, s, t) ds, (2.14)

w(x, y, θ, t) = Dz = u
∂z

∂x
+ v

∂z

∂y
−
∫ θ

0

(
∂

∂x
(uρθ)+ ∂

∂y
(vρθ)

)
ds, (2.15)

using (2.13). The free-surface height h is given by z at θ = H, i.e. h(x, y, t) = z(x, y,H, t).
Notice that the prognostic variables in θ coordinates are u, v and ρθ rather than u, v and

w in Cartesian coordinates. The derivation of the above equations also follows directly
from the standard isopycnal (constant density) or isentropic (constant entropy) coordinate
formulation used in geophysical fluid dynamics (Pedlosky 1987).

The pressure P must also be diagnosed in this formulation in order to calculate the
horizontal velocity tendencies in (2.11) and (2.12). The diagnostic equation is found by
first taking the divergence of the original momentum equations (2.1)–(2.3) in Cartesian
coordinates giving

∇2
3

∣∣
z P = f ζ |z − ∇3|z · (u3 · ∇3|z u3

)
, (2.16)

where ∇2
3|z is the 3-D Laplace operator in z coordinates, ∇3 is the 3-D gradient operator,

u3 = (u, v,w) is the 3-D velocity field and ζ |z is the vertical vorticity

ζ |z = ∂v

∂x

∣∣∣∣
z

− ∂u
∂y

∣∣∣∣
z

= ∂v

∂x
− 1
ρθ

∂v

∂θ

∂z

∂x
− ∂u
∂y

+ 1
ρθ

∂u
∂θ

∂z

∂y
, (2.17)

after converting to θ coordinates. Likewise, the nonlinear term in (2.16) may be written

∇3|z · (u3 · ∇3|z u3
) = −2

[
Jxy(u, v)

∣∣
z + Jyz(v,w)

∣∣
z + Jzx(w, u)|z

]
, (2.18)

where

Jab(F,G)|z = ∂F
∂a

∣∣∣∣
z

∂G
∂b

∣∣∣∣
z

− ∂F
∂b

∣∣∣∣
z

∂G
∂a

∣∣∣∣
z

, (2.19)

is the Jacobian of two scalar fields F and G with respect to any two Cartesian coordinates
‘a’ and ‘b’ (the vertical bar is absent when either a or b equals z). Using the coordinate
transformation in (2.9) and (2.10a,b), we find

Jxy(u, v)
∣∣
z = Jxy(u, v)+ Jyθ (u, v)

∂z

∂x
+ Jθx(u, v)

∂z

∂y
, (2.20)

Jyz(v,w)
∣∣
z = Jyθ (v,w), (2.21)

Jzx(w, u)|z = Jθx(w, u), (2.22)
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Two-dimensional models of a rotating shallow fluid layer 900 A33-5

where

Jxy(F,G) = ∂F
∂x

∂G
∂y

− ∂F
∂y

∂G
∂x
, (2.23)

Jyθ (F,G) = 1
ρθ

(
∂F
∂y

∂G
∂θ

− ∂F
∂θ

∂G
∂y

)
, (2.24)

Jθx(F,G) = 1
ρθ

(
∂F
∂θ

∂G
∂x

− ∂F
∂x

∂G
∂θ

)
. (2.25)

The Laplacian of the pressure in (2.16) may similarly be transformed using

∇2
3

∣∣
z P = ∂

∂x

∣∣∣∣
z

(
∂P
∂x

− 1
ρθ

∂P
∂θ

∂z

∂x

)
+ ∂

∂y

∣∣∣∣
z

(
∂P
∂y

− 1
ρθ

∂P
∂θ

∂z

∂y

)
+ ∂

∂z

(
1
ρθ

∂P
∂θ

)
,

(2.26)
followed by a second application of the transformation rules in (2.9) and (2.10a,b). After
dividing the pressure into a hydrostatic part Ph = g(h − z(x, y, θ, t)) and a remaining
non-hydrostatic part P̃ = P − Ph, we obtain the diagnostic equation satisfied by P̃

∇2P̃ + ∂2P̃
∂θ 2

= S0 + σ · ∇ ∂P̃
∂θ

+ 1
2

(
∂τ

∂θ
+ ∇ · σ

)
∂P̃
∂θ

+ τ
∂2P̃
∂θ 2

, (2.27)

where ∇ in the two-dimensional gradient operator, ∇2 = ∇ · ∇,

σ = 2
ρθ

∇z, τ = 1 − 1
ρθ 2

− 1
4
‖σ‖2, (2.28a,b)

and where we have kept the constant-coefficient parts on the left-hand side. The ‘source’
term S0, which is independent of P̃, is given by

S0 = f
(
∂v

∂x
− 1
ρθ

∂v

∂θ

∂z

∂x
− ∂u
∂y

+ 1
ρθ

∂u
∂θ

∂z

∂y

)
− g∇2h

+ 2
(

Jxy(u, v)+ Jyθ (u, v)
∂z

∂x
+ Jθx(u, v)

∂z

∂y
+ Jyθ (v,w)+ Jθx(w, u)

)
. (2.29)

In practice, the linear equation (2.27) for P̃ is solved iteratively (see appendix A for details).

2.2. The 3-D equations in (ql, δ, γl) variables
In rotating stratified flows, it has proved advantageous both theoretically and numerically
to employ an alternative set of prognostic variables which represent the underlying
geostrophic and hydrostatic balance in rapidly rotating, strongly stratified flows (see DJ19
and references therein). Geostrophic balance means that the horizontal acceleration is
negligible compared with the Coriolis acceleration, while hydrostatic balance means that
the vertical acceleration is negligible compared with gravity. The relative sizes of these
accelerations compared with rotation and gravity are measured by the Rossby number and
the Froude number, respectively (Vallis 2008).
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900 A33-6 D. G. Dritschel and M. R. Jalali

The prognostic variable set which has proved particularly useful consists of the
Rossby–Ertel potential vorticity (PV)

q = ωa|z · ∇3|z (θ/H) = (ω|z + f k) · ∇3|z (θ/H), (2.30)

where ω|z = ∇3|z × u3 is the vector vorticity and k is the vertical unit vector, the
horizontal divergence of the velocity field

δ = ∇ · u, (2.31)

where u = (u, v), and the horizontal divergence of the horizontal acceleration field

γ = ∇ · (Du), (2.32)

(Mohebalhojeh & Dritschel 2001; Smith & Dritschel 2006; Mohebalhojeh & Dritschel
2007; Dritschel, Gottwald & Oliver 2017). In (2.30), ωa|z is the absolute vorticity as seen
in the original, non-rotating reference frame. Because θ is a material coordinate (Dθ/
Dt = 0), it follows that q is materially conserved (Dq/Dt = 0), a result originally due to
Beltrami (1871) (see also Viúdez 2001).

For the full non-hydrostatic 3-D equations considered here, these variables result in
complicated ‘inversion relations’ (nonlinear elliptic equations) for the recovery of u, v
and ρθ from q, δ and γ . We instead use linearised approximations to q and γ defined
respectively as

ql = ζ − f ρ̃θ and γl = f ζ − c2∇2 h̃, (2.33a,b)

where ζ = ∂v/∂x − ∂u/∂y is the relative vorticity in θ coordinates, ρ̃θ = ρθ − 1 is the
thickness anomaly (with zero horizontal mean), c2 = gH is a characteristic squared surface
gravity-wave speed and

h̃(x, y, t) = h − H
H

= 1
H

∫ H

0
ρ̃θ (x, y, θ, t) dθ, (2.34)

is the dimensionless height anomaly. Note that taking the mean thickness to be unity
ensures that the mean height h is H, see (2.14).

The evolution equations for these new prognostic variables are readily recovered from
(2.11), (2.12) and (2.13), the latter rewritten here in terms of ρ̃θ as

∂ρ̃θ

∂t
+ ∇ · ((1 + ρ̃θ )u) = 0, (2.35)

after differentiation. The result is

∂ql

∂t
= −∇ · (qlu)− Jxy(az, z), (2.36)

∂δ

∂t
− γl = −∇ · (δu)+ 2Jxy(u, v)− ∇2P̃ − ∇ · (az∇z) , (2.37)

∂γl

∂t
− Gδ = −f

[∇ · (qlu)+ Jxy(az, z)
]+ G∇ · (ρ̃θu) , (2.38)

where

az = − 1
ρθ

∂P̃
∂θ
, (2.39)
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Two-dimensional models of a rotating shallow fluid layer 900 A33-7

is the vertical acceleration and the gravity-wave operator G is defined through

Gξ ≡ c2∇2

[
1
H

∫ H

0
ξ(x, y, s, t) ds

]
− f 2ξ(x, y, θ, t), (2.40)

for any field ξ . Thus, c2∇2 operates on the θ average of ξ only.

2.3. Inversion
The set of prognostic variables (ql, δ, γl) leads to a particularly simple way of recovering
the horizontal velocity field u and the thickness anomaly ρ̃θ . The definitions of the
prognostic variables in (2.31) and (2.33a,b) depend on u, v and ρ̃θ in a linear way, and
moreover with constant coefficients.

The first step is to decompose the horizontal velocity field into a mean part U =
(U(t),V(t)), a non-divergent part and divergent part, respectively expressed in terms of
a streamfunction ψ and a potential χ

u = U − ∂ψ

∂y
+ ∂χ

∂x
; v = V + ∂ψ

∂x
+ ∂χ

∂y
. (2.41a,b)

Using the definition of the vorticity ζ and the divergence δ, we obtain Poisson equations
for ψ and χ

∇2ψ = ζ ; ∇2χ = δ, (2.42a,b)

which are readily solved on each coordinate surface θ = constant after a horizontal
spectral transform in the doubly periodic domain considered. However, ζ is not one of
the new prognostic variables, but from (2.33a,b) involves ql and ρ̃θ through ζ = ql + f ρ̃θ .
Moreover, ρ̃θ is also not one of the new variables, but the definition of γl provides a simple
elliptic equation to find ρ̃θ

Gρ̃θ = f ql − γl, (2.43)

which is again readily solved after a horizontal spectral transform (the operator G is
defined in (2.40)). If we define η = γl/f 2 − ql/f , the formal solution is

ρ̃θ = η(kx , ky, θ, t)− c2k2

f 2 + c2k2

1
H

∫ H

0
η(kx , ky, s, t) ds, (2.44)

in spectral space where −∇2 → k2 = k2
x + k2

y , the squared horizontal wavenumber.
In practice, the integral is calculated using the trapezoidal integration formula (see
appendix B).

Once ρ̃θ is thereby obtained, we find ζ = ql + f ρ̃θ and thus the streamfunction ψ by
(2.42a,b). The remaining issue is the mean horizontal flow (U(t),V(t)). As in DJ19, we
find this by requiring that the (relative) horizontal momentum vanishes

〈ρθu〉 = 0 ⇒ U = −〈ρ̃θ ũ〉, (2.45)

where ũ is the horizontal velocity field excluding its mean part and 〈·〉 denotes a domain
average (over x , y and θ ). We show next that the (relative) horizontal momentum remains
zero if initially zero.
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900 A33-8 D. G. Dritschel and M. R. Jalali

2.4. Conservation
The original equations conserve mass, energy, horizontal momentum and (if the domain
possesses circular symmetry) angular momentum. The change of coordinates from z to θ
preserves this conservation but alters the forms of the conserved quantities.

The total mass (or volume here for an incompressible fluid) in any given layer between
material coordinate surfaces θ and θ + dθ is proportional to the layer thickness ρθ
integrated over x and y; its conservation follows directly from (2.13) after integration,
and using periodicity. This fact allows us to take ρθ = 1 + ρ̃θ and require ρ̃θ to have zero
horizontal mean.

Energy consists of a kinetic part

K = 1
2 AH〈ρθ(u2 + v2 + w2)〉, (2.46)

where A is the horizontal domain area, and an available potential part

P = 1
2

AHc2〈h̃2〉2, (2.47)

whose sum E = K + P is conserved (in P , 〈·〉2 denotes a horizontal domain average).
Conservation of energy follows because the equations of motion are invariant to time
translation.

In the presence of a background rotation Ω = f /2, horizontal momentum is conserved
only in an infinite domain (assuming u, v and ρ̃θ decay sufficiently rapidly towards
infinity). It has components

Mx = AH〈ρθ(u − f y)+ f y〉 and My = AH〈ρθ(v + f x)− f x〉, (2.48a,b)

and conservation follows from invariance to x and y translations. Note here AH〈·〉 is the
volume integral, not the domain average, and that the constant (in time) terms f y and −f x
are needed for convergence of the integral. In the horizontally doubly periodic domain
considered here, the relative momenta 〈ρθu〉 and 〈ρθv〉 satisfy

d〈ρθu〉
dt

= f 〈ρθv〉 and
d〈ρθv〉

dt
= −f 〈ρθu〉, (2.49a,b)

implying that they oscillate at the inertial frequency f . However, their squared magnitude
〈ρθu〉2 + 〈ρθv〉2 is conserved. Here, we set this to zero; then 〈ρθu〉 = 〈ρθv〉 = 0 for all
time (this determines the mean horizontal flow from (2.45)).

In a domain with circular symmetry, angular momentum is also conserved. It takes the
form

J = AH〈ρθ(xv − yu +Ω(x2 + y2))−Ω(x2 + y2)〉. (2.50)

Again, its conservation follows from rotational invariance of the equations. However, it is
not conserved in the domain considered.

Finally, there are so-called ‘Casimir invariants’ which arise from a particle-relabelling
symmetry. These take the form

C = 〈ρθF(q)〉, (2.51)

where F is an arbitrary convex function and q is the PV defined in (2.30). This follows
from the material conservation of PV: Dq = 0.
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Two-dimensional models of a rotating shallow fluid layer 900 A33-9

3. Two-dimensional shallow-water models revisited

The primary assumption in both the SW and GN models is that the horizontal velocity
field u is independent of height z. This appears to be a reasonable approximation for
a shallow fluid layer (as verified in § 4). The SW model goes further by making the
hydrostatic approximation, equivalent to neglecting the vertical acceleration.

Notably, Green & Naghdi (1976) argue against using an asymptotic expansion to derive
the GN equations, as there is no guarantee of consistency (i.e. conservation of invariants,
see also Miles & Salmon 1985). Regarding such asymptotic expansions, they state:

The methods appear to be powerful, systematic and compelling; however, this is
somewhat deceptive as the methods involve a scaling of certain variables which
amounts to a priori special assumptions. Proof is usually lacking that the expansions
obtained are asymptotic or unique or that solutions of the resulting equations
are asymptotic expansions of corresponding solutions of the three-dimensional
equations.

Instead, Green & Naghdi (1976) argue for making a single assumption:

The approximation adopted for the velocity field (see (4.9)) is equivalent to
assuming that its vertical component is a linear function of the vertical co-ordinate
z (of a fixed rectangular Cartesian co-ordinate system x , y, z) in the present
configuration and that its horizontal components are independent of z; this form
enables us to satisfy exactly the condition of incompressibility.

We next revisit this approach, and use it to derive a new form of the GN equations which
is especially suitable for numerical simulation.

3.1. Derivation by vertical averaging
We next derive the SW and GN models from the parent 3-D model. We start by assuming
the horizontal flow u is independent of z, following Green & Naghdi (1976). Immediately,
the continuity equation implies that the vertical velocity is a linear function of z,

w = −δ z where δ = ∇ · u, (3.1)

is the horizontal velocity divergence (also independent of z). Applying (3.1) at z = h, we
have

Dh = −δh ⇒ ∂h
∂t

+ ∇ · (hu) = 0, (3.2)

the usual mass-continuity equation. We next vertically average the horizontal momentum
equations, (2.1) and (2.2), after separating P into its hydrostatic part Ph = g(h − z) and the
non-hydrostatic remainder P̃

Du − f v = −g
∂h
∂x

− 1
h
∂P̄n

∂x
, (3.3)

Dv + fu = −g
∂h
∂y

− 1
h
∂P̄n

∂y
, (3.4)

where P̄n is the vertically integrated non-hydrostatic pressure

P̄n =
∫ h

0
P̃ dz. (3.5)

Here we have used the boundary condition P̃ = 0 at z = h and Leibniz’s theorem.
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900 A33-10 D. G. Dritschel and M. R. Jalali

At this stage, the SW model follows simply by dropping P̄n . Equations (3.2), (3.3) and
(3.4) are then a closed set in the prognostic variables h, u and v.

The GN model goes further by retaining P̄n . This is found from the vertical momentum
equation

Dw = −∂P̃
∂z

⇒ −(Dδ − δ2)z = −∂P̃
∂z
, (3.6)

(since w = −δ z and Dz = w) by vertically integrating

P̃ = P0 + 1
2(Dδ − δ2)z2, (3.7)

where P0(x, t) is an arbitrary function of horizontal position and time. However, P̃ must
vanish at z = h, implying

P0 = − 1
2(Dδ − δ2)h2, (3.8)

and thus
P̃ = 1

2(Dδ − δ2)(z2 − h2), (3.9)

a well-known result (see e.g. Dellar 2003; Le Métayer et al. 2010; Dutykh et al. 2013). To
close the system (3.2), (3.3) and (3.4), we need the vertically integrated non-hydrostatic
pressure P̄n

P̄n = − 1
3(Dδ − δ2)h3. (3.10)

Inserting this into the vertically averaged momentum equations (3.3) and (3.4) then leads
to the common, implicit form of the GN equations. The equations are implicit because a
time derivative of the velocity appears on both sides of the equations. This is the form of
the equations commonly stated in the literature.

Holm (1988) showed that one can obtain an explicit form of the equations if one
evolves the ‘momentum’ variable m = hu − 1

3∇(h3∇ · u), then uses the definition of m
to diagnose u. This is a linear, robustly convergent elliptic equation for u, so long as h > 0
(see also Dellar 2003).

An alternative, however, presents itself when using vertically integrated non-hydrostatic
pressure P̄n . The (horizontal) divergence of (3.3) and (3.4) implies (after some algebra)

Dδ − δ2 = γ̃ − ∇ ·
(

1
h
∇P̄n

)
, (3.11)

where
γ̃ ≡ f ζ − g∇2h + 2Jxy(u, v)− 2δ2, (3.12)

(notably this is the pressure source S0 in (2.29) when u is independent of z). But (3.10)
provides an alternative expression for Dδ − δ2

Dδ − δ2 = −3P̄n

h3
. (3.13)

Eliminating Dδ − δ2 between (3.11) and (3.13) then yields, after multiplication by h,

h∇ ·
(

1
h
∇P̄n

)
− 3P̄n

h2
= hγ̃ , (3.14)

a linear, robustly convergent elliptic equation for P̄n . Notably, this is a scalar equation
– only one variable needs to be diagnosed. Once P̄n is found from (3.14), the equations
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Two-dimensional models of a rotating shallow fluid layer 900 A33-11

of motion are explicit in h, u and v. Equations (3.2)–(3.4), (3.12) and (3.14) constitute the
explicit pressure-based GN equations. (Arguably, a more apt name would be the ‘vertically
averaged’ equations, due to their method of derivation here.)

3.2. The GN equations in ql, δ and γl variables
When studying flows close to geostrophic and hydrostatic balance, as here, a more useful
set of prognostic variables is (ql, δ, γl). The GN equations in these variables are easily
derived using the definitions ql = ζ − f h̃, δ = ∇ · u and γl = f ζ − c2∇2h̃, where h̃ is the
dimensionless height anomaly defined in (2.34). The equations read

∂ql

∂t
= −∇ · (qlu)+ Jxy(P̄n, h−1), (3.15)

∂δ

∂t
= −∇ · (δu)+ 2δ2 − 3P̄n

h3
, (3.16)

∂γl

∂t
= Gδ − f

[∇ · (qlu)− Jxy(P̄n, h−1)
]+ G∇ · (h̃u), (3.17)

where G = c2∇2 − f 2. They closely resemble their 3-D counterparts (2.36)–(2.38), apart
from the equation for δ, which here uses (3.13). The equation for δ is formally equivalent to
that obtained by taking the divergence of (3.3) and (3.4), owing to the diagnostic relation
(3.14) satisfied by P̄n . Notably, the SW equations for ql and γl follow from dropping P̄n in
(3.15) and (3.17), but the SW divergence equation does not follow from (3.16) with P̄n = 0,
but rather by replacing −3P̄n/h3 by γ̃ defined in (3.12). This apparent inconsistency arises
because (3.16) is derived directly from the vertical acceleration, see (3.6)–(3.10), and not
from the equivalent equation (3.11). The point is that they are equivalent only if P̄n satisfies
the diagnostic relation (3.14).

The inversion procedure to recover (h, u, v) from (ql, δ, γl) in the SW and GN models
is the same as described in § 2.3 for the 3-D model, except ρ̃θ there is replaced by h̃.

3.3. Conservation
The integral invariants in the GN model are exactly the same as in the 3-D model,
see § 2.4, after performing the integrals over θ , taking u independent of θ , using w =
−δz = −δhθ/H, and ρθ = h/H. This amounts to replacing ρθ by h/H and 〈·〉 by 〈·〉2, the
horizontal average, everywhere in § 2.4, except for the kinetic energy K in (2.46). There,
the vertical (θ ) average of w2 becomes δ2h2/3, so the kinetic energy becomes

K = 1
2

A〈h (u2 + v2 + 1
3δ

2h2)〉2, (3.18)

(Green et al. 1974; Miles & Salmon 1985). In the SW model, the expression for K does
not include δ2h2/3.

Besides integral invariants, the GN model also possess a material circulation invariant,
potential vorticity, equal to the vertical average of the 3-D Rossby–Ertel PV defined in
(2.30). In θ coordinates, this PV satisfies

Dq = ∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

= 0,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.487


900 A33-12 D. G. Dritschel and M. R. Jalali

i.e. conservation following fluid particles. If we now average over θ , taking u independent
of θ , we obtain the same equation for the vertical average PV, q̄, showing that the latter is
a material invariant of the 2-D equations.

To obtain q̄, we first use θ/H = z/h in (2.30) to find

∇3|z (θ/H) = k
h

− z
∇h
h2
.

Meanwhile, the absolute vorticity is equal to

ωa|z =
(

−z
∂δ

∂y
, z
∂δ

∂x
, ζ + f

)
.

Thus the 3-D PV is

q = ωa|z · ∇3|z (θ/H) = ζ + f
h

+ z2

h2
Jxy(h, δ). (3.19)

Taking a vertical average, we obtain the PV of the GN model,

q̄ = ζ + f
h

+ 1
3

Jxy(h, δ), (3.20)

in agreement with that originally derived by Miles & Salmon (1985). The shallow-water
PV does not include the Jacobian term.

3.4. Solitary wave test
We verify next that the code developed for the reformulated GN model (detailed in
appendix B) accurately reproduces an exact analytic solution for a solitary wave in the
absence of rotation ( f = 0). Le Métayer et al. (2010) provide the solution

h(x, t) = h0 + a sech2(b(x − c0t)) and u(x, t) = c0

(
1 − h0

h

)
,

where the parameters a, b, c0 and h0 are linked through the relationships

b = 1
2h0

√
3a

h0 + a
and c0 =

√
g(h0 + a).

Here a is the amplitude of the wave, 1/b is its characteristic width and c0 is its speed
of propagation. While this is not an exact solution in the periodic domain considered,
the parameters may be chosen so that it decays sufficiently rapidly, as done here. The
alternative is to use the exact cnoidal wave solution of Pearce & Esler (2010). This
would allow one to study convergence, but the objective here is simply to show that the
reformulated GN model is correct.

In figure 1, we compare the numerical solution of the reformulated GN model with the
above analytical solution after one period of propagation through the (x-periodic) domain,
T = 2π/c0, taking the domain width equal to 2π without loss of generality. Here, we have
chosen a = 0.04, h0 = 0.2, and c = √

gH = 1 where

H = 1
2π

∫ π

−π

h dx

is the mean fluid depth. This enables one to find g from c2/H and hence c0 = √
g(h0 + a).

For the parameters chosen, we have H ≈ 0.207202 and c0 ≈ 1.076238, giving a period
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FIGURE 1. Numerical propagation of a solitary wave for one full period T = 2π/c0 (the time
it takes to pass through the periodic domain). (a, c) Dashed lines show the initial (analytical)
solutions for h and u, which should be unchanged after one period. The solid lines show
the numerical solutions, here using a spatial grid of 256 grid points. Panels (b, d) show the
differences between the numerical and analytical solutions.

T ≈ 5.838100. The results in the figure show an excellent agreement between the
numerical and analytical solution. This verifies (at least without rotation and in one spatial
dimension) that the reformulated GN model is mathematically equivalent to the original
implicit GN model.

4. Results

In this section, we examine a characteristic example of shear instability at moderate
Rossby and Froude numbers, and for a mean height H equal to the horizontal scale of the
initial PV distribution (details are provided below). Simulations have been carried out at
two different resolutions, one double the other in each dimension, to verify the results are
not sensitive to resolution (in the 2-D models, we also examined resolutions up to eight
times finer in x and in y). We begin in § 4.1 with an overview of the numerical methods
used, leaving technical details to the appendices. Next, in § 4.2 the initial conditions and
flow parameters are specified. Then in § 4.3 we describe the evolution of the 3-D flow,
illustrating for the first time the structure of the non-hydrostatic pressure field P̃. Next,
in § 4.4 we compare the vertically averaged 3-D fields with the corresponding 2-D fields
from the SW and GN simulations, to get a first impression of the improvement afforded
by GN over the commonly used SW model. This is then quantified in § 4.5 using error or
difference norms, spectra, difference spectra and finally energy differences.

4.1. Numerical methods
The flow domain is doubly periodic horizontally and, in the 3-D simulation, bounded
between a flat bottom at θ = 0 and a free surface at θ = H. For all sets of equations,
we employ the same pseudo-spectral method horizontally wherein products are carried
out in physical space while derivatives and operator inversions are carried out in spectral
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space after a fast Fourier transform (FFT). The standard 2/3 de-aliasing rule is used to
avoid aliasing errors in all nonlinear products (Fox & Orszag 1973). In the SW model,
only quadratic products occur, but in the other models, higher-order products occur. In
such cases, de-aliasing is used repeatedly so that, for example, a cubic product is first
decomposed into a quadratic one which is de-aliased after it is calculated, then this
quadratic product is multiplied by the remaining field after de-aliasing. Also, the inverse
of a field is de-aliased before it is multiplied by another field.

De-aliasing is necessary to prevent the erroneous build up of grid-scale noise which can
lead to simulation failure. The numerical algorithms are based directly on those detailed
in DJ19, with the only difference being that here we use linearised PV ql in place of the
full Rossby–Ertel PV q. The latter permits one to use ‘contour advection’ (Dritschel &
Ambaum 1997) to evolve the PV, leading to a more accurate method with significantly
less numerical dissipation. However, in the 3-D model, this would lead to a much more
complicated algorithm, so it was decided to use the standard pseudo-spectral method
instead for all models. For the example studied, the contour advection and pseudo-spectral
SW simulations agree closely, with total energy differences <1.7 × 10−2 % at the lowest
resolution studied, 2562, and <3.3 × 10−4 % at the higher resolution, 5122.

Time stepping is carried out using an iterated semi-implicit method in which the linear
terms in (2.36)–(2.38) (and in the analogous 2-D model equations) are treated implicitly
while the nonlinear terms are treated explicitly (see appendix B for details). Iteration is
used to improve the estimate of the nonlinear terms at the end of the time step, and the
trapezoidal rule is used to average the nonlinear terms over the time step. We use a fixed
time step chosen to marginally resolve the highest frequency gravity wave in the SW model
(see appendix D in DJ19).

A hyperviscous diffusion operator of the form ν∇6 is used in all three prognostic
equations to absorb the natural nonlinear cascade to small scales which would otherwise
build up at the grid scale. We use the same coefficient ν in all three equations, and use
the same value previously used in DJ19. For ease of reference, all numerical parameter
settings are provided in appendix C.

Each method has been tested for accuracy by checking that the numerical results (field
norms, energy components, etc.) at early to intermediate times converge with increasing
spatial and temporal resolution. Errors scale as the inverse square of the grid resolution,
as expected.

4.2. Initial conditions
We examine the same flow studied previously in DJ19 except we consider a mean
height H twice as large, to better test how well the 2-D models capture the vertically
averaged 3-D flow. Briefly, the initial flow (having height-independent horizontal
velocity u) corresponds to a slightly perturbed zonal shear layer, specified in terms of
its initial PV in the SW model, q = (ζ + f )/(1 + h̃):

q(x, 0) = 4( y2(x)− y)( y − y1(x))

( y2(x)− y1(x))2
f + C, (4.1)

for y1(x) < y < y2(x), and q = C otherwise. Here

y1 = −1
2
Δy and y2 = 1

2
Δy + a2 sin 2x + a3 sin 3x, (4.2a,b)

and we have taken f = 4π for the Coriolis frequency (without loss of generality), Δy =
0.4 for the width of the shear layer and parameters a2 = 0.02 and a3 = −0.01 to break
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the zonal symmetry. We have deliberately chosen Δy = H to ensure that horizontal
scales comparable to and smaller than the mean depth are strongly activated. This tests
the hydrostatic approximation used in the SW model, and enables us to assess the
improvements afforded by the GN model.

The background PV, C, is chosen to ensure that the domain-mean relative vorticity
ζ vanishes (required mathematically), using the definition ζ = (1 + h̃)q − f . The height
anomaly h̃ itself is obtained by ‘balancing’ the initial flow, as in DJ19, which consists of
solving the diagnostic equations associated with setting ∂δ/∂t = ∂γl/∂t = 0. Balancing
helps to reduce the generation of gravity waves initially, allowing one to better study the
subsequent spontaneous emission of such waves and the degree to which balance persists
(see e.g. Ford, McIntyre & Norton 2000; Mohebalhojeh & Dritschel 2001; Norbury &
Roulstone 2002a,b; Mohebalhojeh & Dritschel 2007; Dritschel et al. 2017, and references
therein).

Once the initial balanced flow is obtained, the linearised PV anomaly is calculated
from ql = ζ − f h̃. The balancing procedure already provides δ and γl, and thus u also.
These 2-D fields are used to initialise all simulations, including the 3-D one. For the 3-D
initialisation, all that is required is to use the 2-D fields ql, δ and γl on each θ coordinate
surface. In this way, the horizontal velocity u is independent of depth (and equal in all
simulations initially), and the dimensionless layer thickness anomaly ρ̃θ = h̃. Note: there
is no need to add a 3-D perturbation to the initial flow because the non-hydrostatic pressure
P̃, if non-zero, necessarily varies with height due to the boundary conditions required. This
means that the horizontal acceleration, involving ∇P̃, varies with height, and this causes
variations in u and in all other 3-D fields to develop in time.

In the SW simulation, the mean depth H only appears in combination with gravity g in
the product c2 = gH, a characteristic short-scale squared gravity-wave speed. We specify
c through the ‘Rossby deformation length’ LD = c/f , here taken to be 0.5, giving c = 2π.
Rotation tends to suppress free-surface variations at scales <LD (see e.g. Vallis 2008). In
all other simulations, H is required as well, and we take H = 0.4, the same as the width Δy
of the initial PV strip in (4.1)–(4.2a,b). At the horizontal resolutions considered (2562 and
5122), this means that we resolve a wide range of horizontal scales having wavelengths
<H, giving ample scope for 3-D motions to develop. To ensure adequate resolution of
these motions, 32 uniformly spaced layers in θ are used for the 2562 simulation, and 64
are used for the 5122 simulation. The vertical grid scale Δθ is then very nearly half of the
horizontal grid scale Δx .

For the parameters chosen, the Rossby number Ro = |ζ |max/f starts at 0.659 and
subsequently varies between 0.602 and 0.757 over the course of the 5122 SW simulation
(0 ≤ t ≤ 25). The Froude number Fr = (‖u‖/√gh)max starts at 0.175 and subsequently
varies between 0.175 and 0.235. The depth anomaly h̃ varies between −0.250 and 0.036.

4.3. Three-dimensional flow evolution
To set the stage, we first examine images of selected fields at early, intermediate and
late times from the high-resolution 3-D simulation. Figure 2 shows vertical vorticity ζ ,
horizontal divergence δ and non-hydrostatic pressure P̃ at early, intermediate and late
times (the final time is t = 25). Note, ζ and δ are calculated in θ coordinates here.
The initial strip of vorticity destabilises and rolls up into a series of vortices which
subsequently interact and eject filaments of vorticity. The evolution is qualitatively similar
to that observed in 2-D flows (Dritschel 1989; Waugh & Dritschel 1991), especially for
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(a) (b)

(d) (e)

(c)

(g) (h) (i)

( f )

FIGURE 2. Vertical vorticity ζ (a–c), horizontal divergence δ (d–f ) and non-hydrostatic
pressure P̃ (g–i) at times t = 2, 10 and 25 (a–c, d–f and g–i, respectively) in an orthographic
perspective, seen from a longitude of 30◦ and co-latitude of 45◦, from the high resolution 3-D
simulation. The view shows the sub-domain |x | ≤ π, |y| ≤ 2, and 0 ≤ θ ≤ H, with θ stretched
by the ‘natural’ scale factor LD/H = 1.25 (see Dritschel, de la Torre Juárez & Ambaum 1999).
Evenly spaced iso-surfaces are rendered red for positive values and blue for negative values, and
the colours darken with depth. For a given contour interval �, surfaces correspond to the field
levels ±�/2, ±3�/2,. . . . (a)–(c) Δζ = 1, (d)–( f ) Δδ = 0.02 except in (d) where Δδ = 0.004
and (g)–(i) ΔP̃ = 0.004 except in (g) where ΔP̃ = 0.0008.

ζ which exhibits only very weak 3-D variations. This is consistent with the assumption
made by the 2-D models that the horizontal flow u is height independent. However, δ
exhibits much stronger 3-D variations and they grow in time (there are no 3-D variations
initially). Hence, the divergent part of u does vary with height, though the contribution
of δ to u is here much smaller than that of ζ to u. The reason why δ (and to a lesser
extent ζ ) develops 3-D variations is that the non-hydrostatic pressure P̃ is necessarily
height dependent, on account of the mixed boundary conditions ∂P̃/∂z = 0 at z = 0 and
P̃ = 0 at z = h. This means that P̃ tends to form paraboloidal structures with maximum
amplitude on the bottom boundary, as observed in figure 2(g–i). As ∇P̃ contributes to the
horizontal acceleration, then vertical variations necessarily develop in u and consequently
in ζ and in δ. The contribution to δ is much stronger than to ζ , since the curl of the
non-hydrostatic pressure gradient is much weaker than its divergence. Moreover, δ tends
to be significantly weaker than ζ at the Rossby and Froude numbers under consideration,
so the relative contribution of P̃ to δ is greater. Notably, in z coordinates, P̃ does not
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FIGURE 3. Divergence field δ at t = 25 shown in the same perspective as in figure 2 but over
the full domain and with a contour interval twice as small, Δδ = 0.01.

contribute directly to the vertical vorticity evolution, since the curl of the pressure gradient
vanishes. In summary, divergence is most affected by the 3-D variations induced by the
non-hydrostatic pressure.

A full-domain view of the divergence at the final time t = 25 is shown in figure 3.
Here the contour interval is halved to show more of the small-amplitude structures, many
of which are confined close to the bottom or to the free surface. The larger-amplitude
structures centred on y = 0 have larger scale and extend throughout depth, though it is not
readily apparent due to the high degree of complexity. This figure makes it clear, however,
that the divergent part of u is not height independent. This violates the primary assumption
made when deriving the 2-D models (see § 3), and the implications are examined next in
§ 4.4.

4.4. Comparison with the 2-D models
We next focus on the main issue: to what extent do the SW and GN models capture the
vertically averaged flow in the parent 3-D model? We first examine raw field differences
to gauge how well each 2-D model performs, then compare spectra, analyse difference
spectra and finally examine energy differences.

As a point of reference, figure 4 shows, at the final time only, the vertically averaged
fields of ζ , δ and γl (a–c) together with the dimensionless height anomaly h̃, the vertically
averaged field of γ̃ and the vertically integrated non-hydrostatic pressure P̄n . At this time,
the 2-D simulation results generally differ the most, though they closely resemble what is
shown in figure 4 apart from the SW results for P̄n (in the SW model P̄n = 0).

Three prominent vortices are seen in the vorticity field along with weaker vorticity
filaments generated earlier when the strip rolled up. The height anomaly field h̃ looks like
a smoothed version of ζ , and indeed under geostrophic balance h̃ ∝ ∇−2ζ . Geostrophic
balance assumes γl = f ζ − c2∇2h̃ = 0. Clearly, γl is not zero here, but nonetheless this
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FIGURE 4. Vertically averaged ζ , δ, γl (a–c), h̃, vertically averaged γ̃ and P̄n (d–f ), all at
t = 25, obtained from the high-resolution 3-D simulation. Different colourmaps are used for
ζ and h̃ to better render these fields.

balance explains much of the observed structure of h̃. An extended form of geostrophic
balance called ‘Bolin–Charney’ balance (Bolin 1955; Charney 1955) is obtained by
setting δ = 0 and f ζ − c2∇2h̃ + 2Jxy(u, v) = 0, i.e. γ̃ = 0 when δ = 0, see (3.12) (see
also appendix D in Mohebalhojeh & Dritschel 2001). Essentially, Bolin–Charney balance
includes the flow curvature through Jxy(u, v). From figure 4, this balance is much closer to
being realised than geostrophic balance: not only is the maximum value of |γ̃ | nearly 2.5
times smaller than that of |γl|, the pattern exhibited by γ̃ is entirely different. It is much
smaller scale and less organised, and moreover the root-mean-square (r.m.s.) value of γ̃ is
more than 7 times smaller than that of γl. At half-resolution (not shown), the maximum
is 6 times smaller and the r.m.s. is 16 times smaller, indicating that γ̃ is predominantly a
small-scale field (as has been verified by considering its power spectrum).

The horizontal divergence field δ exhibits multi-polar patterns around the three vortices,
evidence of a higher-order balance in the flow (e.g. the balance resulting from setting
∂δ/∂t = ∂γl/∂t = 0; see DJ19 who discuss this in relation to the 2-D models). The patterns
seen here are not gravity waves; these imbalanced motions are an order of magnitude
smaller in amplitude (not shown but see DJ19).

Finally, the pattern seen in the vertically integrated non-hydrostatic pressure P̄n is
consistent with its diagnostic relation (3.14). Roughly speaking, P̄n resembles that pattern
obtained by inverting Laplace’s operator on γ̃ . Note that P̄n is broader in scale and tends
to have the opposite sign to γ̃ at extrema.

We turn next to the difference fields obtained by subtracting the above fields from those
predicted by the SW and GN models. We concentrate on the representative set of variables
ζ , δ, h̃ and P̄n for brevity. As P̄n = 0 in the SW model, we start by comparing ζ , δ and
h̃ in figure 5. First of all, maximum differences are small in both 2-D models, <16.3 %
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FIGURE 5. Field differences at t = 25 between the 5122 SW and GN simulations, and the
corresponding 3-D simulation (a, d, b, e, and c, f , respectively). (a, d) Show the vertically
averaged vertical vorticity ζ , (b, e) show the vertically averaged horizontal divergence δ and
(c, f ) show the dimensionless height anomaly h̃.

for ζ , <8.0 % for δ and <0.75 % for h̃, with the largest differences consistently found for
the SW model. At half-resolution (not shown), these differences reduce to 8.3 % for ζ and
5.5 % for δ, but increase slightly to 0.76 % for h̃. This shows that the differences in ζ and δ
are predominantly at small scales, which become more important at higher resolution (this
is confirmed by examining power spectra in § 4.5). For δ, the GN model offers the least
improvement over the SW one, reducing maximum differences by approximately a factor
of 2, to 4.5 % (or 3.2 % at half-resolution).

For ζ and h̃, the GN model offers substantial improvements over SW. Maximum
differences in ζ are 13.6 times smaller in GN relative to SW. The differences in GN are
<1.2 %, somewhat surprising given the length and complexity of the flow evolution. This
error reduces to just 0.04 % at half-resolution, due to the weaker activity at small scales
(small positioning errors at high resolution, i.e. the location of sharp vorticity gradients
along the edges of the vortices, can lead to significant maximum and r.m.s. differences).
For h̃, maximum differences in the GN model are just 0.054 % at the higher resolution,
and 0.039 % at the lower resolution.

Regarding the non-hydrostatic pressure (which is neglected in the SW model), its
vertically integrated form P̄n is examined in figure 6 at the final time (t = 25). Here, we
show the GN field in (a), and its difference from the 3-D field in (b). Notably, maximum
differences are approximately 32.3 %, and are found primarily in the vortex cores (these
reduce to 23.4 % at half-resolution). However, there are differences throughout the domain
arising from the fact that P̄n in the 3-D simulation (see figure 4) exhibits significant
variations outside the vortex cores, unlike in the GN simulation. These variations are
higher-order effects not captured by the GN model, and likely relate to the assumption
that the horizontal velocity field u is independent of depth. This is discussed further at the
end of this section. Nonetheless, the ability of the GN model to capture a major portion of
the true P̄n must account for this model’s substantial gain in accuracy over the SW model.
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FIGURE 6. Vertically integrated non-hydrostatic pressure P̄n at t = 25 in the GN simulation
(a), and the difference between the GN and 3-D simulations (b). For reference, see figure 4( f )
for P̄n in the 3-D simulation.
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FIGURE 7. Time evolution, for the lower-resolution simulations, of the relative r.m.s. errors of
the dimensionless height anomaly h̃, the vertically averaged vertical vorticity ζ and the vertically
averaged horizontal divergence δ, for the SW and GN simulations, as labelled. The errors are
computed from the r.m.s. field differences divided by the r.m.s. three-dimensional field (after
vertical averaging). Note the log10 scale.

After all, the reformulated explicit GN model makes it clear that the only difference from
the SW model is the inclusion of P̄n .

4.5. Quantification of error
We next quantify the differences between the 2-D and 3-D simulations by examining
relative r.m.s. errors, spectra, difference spectra and energy differences.

The relative r.m.s. errors of h̃, ζ and δ versus time are shown in figure 7 at the lower
resolution, and in figure 8 at the higher resolution. For h̃ and ζ , the GN simulation exhibits
much lower error than the SW simulation, while for δ the errors are comparable, albeit
lowest in the GN simulation. The gain in accuracy of GN over SW is less striking at
higher resolution due to the fact that errors predominantly arise at small scales (see power
spectra below), and these small scales are more active at higher resolution.

To see how the error is distributed across scale, it is instructive to examine field
power spectra. For a given field, say ξ , its spectrum Sξ (k) is computed in the standard
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FIGURE 8. As in figure 7 but for the higher-resolution simulations.

way by Fourier transforming ξ , squaring the spectral amplitudes ξ̂ for each wavevector
(kx , ky), then summing these squared amplitudes for all wavevectors whose magnitude

k =
√

k2
x + k2

y lies in the shell k − 1/2 < k ≤ k + 1/2. Finally, Sξ (k) is multiplied by 2/nx ,
where nx is the grid resolution in x and in y (here 512 at the higher resolution), to be able
to compare different resolutions. Uneven sampling of shells is accounted for by further
multiplying Sξ (k) by the factor 2πk/N(k), where N(k) is the number of wavevectors lying
in each shell.

Selected field spectra in the high-resolution 3-D simulation are shown in figure 9
(broadly similar results are found at lower resolution). The spectra are computed three
ways. One is to first average each field (over θ ), then compute the spectrum from this
averaged field (dark solid lines in the figure). The next is to compute the spectrum of a field
in each layer, then average the spectrum (light solid lines). In this case, 3-D variations are
included. Finally, the spectrum is also computed from the departure of each field from its θ
average (dashed lines). This decomposition shows that 3-D variations are most pronounced
at small scales, i.e. for wavelengths comparable to or smaller than H (or for wavenumbers
k > 2π/H, marked as a vertical reference line in each panel of the figure). For ζ , the 3-D
variations contribute negligibly, but for ρ̃θ and δ they dominate for k > 2π/H. Hence, the
3-D variations seen in δ in figure 3 are confined to small scales; at large scales δ is in fact
predominantly 2-D.

We return next to comparing the SW and GN simulations with the 3-D one. Figure 10
compares h̃, ζ and δ spectra between the high-resolution simulations at the final time.
Note: spectra in the 3-D simulation are computed from the θ -averaged fields. Overall, the
agreement is excellent, in particular for h̃ and ζ , for which all curves lie on top of one
another (see below for a quantification of the differences). For δ, however, differences
appear predominantly at high wavenumbers k. There, the 3-D spectrum has several times
more power than either the SW or the GN spectra, both of which are close to one another.
At higher resolutions (up to at least 20482), the SW and GN spectra continue to show a
comparably steep slope at high wavenumbers.

Spectra for various difference fields are shown in figure 11. For a given field ξ in
either the SW or GN simulation, we first subtract the corresponding θ -averaged field
in the 3-D simulation to form Δξ , then compute its spectrum. The results in this figure
underscore the large improvement the GN model makes over the SW model. Thus,
including non-hydrostatic pressure allows one to much better approximate the vertically
averaged 3-D flow. Notably, this is true across all scales, with the biggest improvement
found for vorticity ζ , i.e. for the non-divergent motions. On the other hand, there is only
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FIGURE 10. Comparison of various spectra at t = 25 obtained from the high-resolution 3-D
simulation (after a θ average), and the corresponding SW and GN simulations (as labelled).
Spectra are shown for h̃, ζ and δ (a–c). Differences are only evident in the δ spectra at high k
(see below for difference spectra).

a modest improvement for height h̃ and divergence δ at scales smaller than the mean
depth, i.e. k > 2π/H. Fundamentally, this is due to the 3-D nature of the non-hydrostatic
pressure, which impacts both divergence and height (see e.g. figure 3). Similar results are
found at lower resolution, albeit with the GN model exhibiting a more substantial gain in
accuracy over the SW model (not shown).

Finally, we consider how well the various simulations compare energetically. The time
evolution of the kinetic K, potential P and total E = K + P energy differences (SW-3D
and GN-3D) are examined in figure 12. Over the time period considered, K varies from
1.897 to 1.977, P varies from 2.180 to 2.260, while E decreases from 4.157 to 4.156
(to three decimal places). The energy differences seen in figure 12 are much smaller than
these energy variations. The GN-3D K and P differences, for example, are<0.05 % of the
ranges in K and P . Furthermore, the GN-3D E differences are <1 % of the total decrease
in E found in the 3-D simulation. At half-resolution, these differences are even smaller:
0.04 % for K and P and 0.6 % for E .
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dashed vertical line marks the transition wavenumber k = 2π/H.
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FIGURE 12. Differences in kinetic, potential and total energies (a–c) between the higher
resolution SW and GN simulations, and the corresponding 3-D simulation (as labelled). Note
that the energy differences are multiplied by 104. For reference, the time mean kinetic, potential
and total energies in the 3-D simulation are 1.922, 2.235 and 4.157 (to three decimal places).

The SW-3D differences are substantially larger for both K and P , and do not vary
significantly with resolution (not shown). Note that the initial difference in E between
the SW and 3-D simulations arises from the fact that the SW model neglects the vertical
velocity contribution to K, see (3.18).

In every measure considered, the GN model provides a significantly better
approximation to the vertically averaged 3-D flow than the SW model. The (reformulated,
explicit) GN model moreover exhibits the same regularity, i.e. the same spectral decay at
high wavenumbers k � 2π/H, as the 3-D model (for the vertically averaged fields). The
SW model also exhibits comparable regularity. Both the GN and SW models are robust
at resolutions at least four times higher in x and in y, retaining the numerical parameter
settings set out in appendix C.

Why does the GN model perform so well? As already pointed out, the specific flow
examined here starts with horizontal scales equal to the mean fluid height H, and moreover
uses a Rossby deformation length LD ∼ H. We have seen that certain components of
the 3-D flow do have significant vertical variations, yet the vertically averaged flow
is nonetheless well captured by the GN model, in particular. To help understand this,
we next probe the 3-D flow to estimate the contribution of vertical variations to the
vertically averaged flow. Figure 13 shows the changes in mass ∂ρ̃θ/∂t and the acceleration
a = Du/Dt broken down into various contributions. Denoting u0 as the vertically averaged
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FIGURE 13. Local changes in mass ∂ρ̃θ /∂t (a) and in acceleration a (b) broken down into
various contributions (as labelled). In ∂ρ̃θ /∂t, ‘2-D’ refers to the contribution from the vertically
averaged flow, while ‘3-D’ refers to the remainder. In a, ‘AG’ refers to the ageostrophic
acceleration (see text for definition), ‘NH’ refers to the non-hydrostatic contribution, while ‘3-D’
refers to the vertically varying part of −u · ∇u.

horizontal flow, in ∂ρ̃θ/∂t (a) we show both the r.m.s. value of the 2-D contribution
−∇ · ((1 + h̃)u0) and the remaining, 3-D contribution versus time. The latter is more than
120 times smaller (500 times smaller at the lower resolution), so at most plays a very minor
role.

Regarding the acceleration, we examine three contributions. The first is the
‘ageostrophic’ acceleration aAG = −f k × u − g∇h, which is small when the flow Rossby
number Ro is small (here Ro ≈ 0.7). The next is the non-hydrostatic acceleration, aNH =
−∇P̃ (in z coordinates), and the third is the ‘3-D’ acceleration a3D = u0 · ∇u0 − u · ∇u,
equal to the vertically varying part of −u · ∇u. Again, the contribution of a3D is more
than 300 times smaller than aNH , which in turn is more than 40 times smaller than aAG
(these ratios are 1000 and 50, respectively, for the lower-resolution simulations). While
both aNH and aAG are calculated from the full 3-D flow, they are likely to be dominated
by the vertically averaged 2-D flow. The conclusion is that 3-D variations play very minor
roles in the flow regime studied.

Regarding numerical cost, the simulations were all performed on the same workstation,
on a serial processor (Intel i7-8700) in double precision. At 5122 resolution, the SW and
GN models required 5401 and 19,055 s of CPU time, respectively (the implicit GN model
used in DJ19 required 47 500 s). The extra cost of the (explicit) GN model is partly
associated with the iteration required to find the vertically integrated non-hydrostatic
pressure P̄n from (3.14), and partly associated with the evaluation of additional nonlinear
terms in (3.15)–(3.17). Whether this extra cost is worth it depends on the question being
asked: if one wants to understand the role of non-hydrostatic effects in fundamental
problems like balance and the spontaneous emission of gravity waves (where the GN and
SW dispersion relations differ significantly, see e.g. DJ19), then GN is necessary and is
certainly more cost effective than running a full 3-D simulation, which, at 512 × 512 × 64
resolution, required 3.95 × 106 s of CPU time. In this case, the GN simulation is 200
times more efficient. Moreover, the excellent agreement between the GN and 3-D results
demonstrates we can learn much from this new model.
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5. Conclusions

We have compared the traditional two-dimensional hydrostatic shallow-water model
and its non-hydrostatic extension with their parent three-dimensional model (Euler’s
equations) in the context of a rotating, homogeneous layer of fluid having a free upper
surface. We have focussed on a flow regime characteristic of a wide range of motions
occurring in the Earth’s atmosphere and oceans, namely when the Rossby and Froude
numbers are both smaller than unity (see e.g. Vallis 2008, and references). In an
example of shear instability, the roll up of a strip of potential vorticity (arguably a
generic process in geophysical flows), we have examined how well these two-dimensional
models capture the vertically averaged flow in the three-dimensional model, even when
the typical horizontal scale of the flow is comparable with the mean fluid depth H.
Under these circumstances, one would expect the long-wave assumption underpinning
both two-dimensional models to be invalid, particularly for the shallow-water model.
Surprisingly, this model nevertheless captures a large fraction of the actual vertically
averaged flow.

The non-hydrostatic two-dimensional model, the Serre/Green–Naghdi model – here
explicitly re-formulated to use non-hydrostatic pressure – does significantly better.
Whereas, in the high-resolution example considered, maximum errors in vorticity may
reach nearly 16.3 % in the shallow-water model, they are reduced to 1.2 % in the GN
model. This is a substantial error reduction. Maximum errors in the free-surface height
anomaly are much smaller: 0.75 % in the SW model reducing to just 0.054 % in the GN
model. However, results for the horizontal divergence are not nearly as impressive: only
moderate error reductions are achieved, from 8.0 % to 4.5 %. This is because the horizontal
divergence in the parent three-dimensional model exhibits significant 3-D variations,
inherited from non-hydrostatic pressure, particularly at horizontal scales of order H or
less. Thus, the fundamental assumption in the two-dimensional models that the horizontal
flow is independent of depth does not hold for the divergent part of the flow at these scales.

The GN model employed here is a mathematically reformulated, explicit version of
the original, implicit GN model (Ertekin 1984; Demirbilek & Webster 1999; Pearce &
Esler 2010; Dritschel & Jalali 2019). However, for numerical simulation, the explicit GN
model is not only much more efficient but also more robust and accurate. The explicit
GN model diagnoses the vertically integrated non-hydrostatic pressure P̄n from a simple,
linear, robustly convergent elliptical equation. This equation is found from combining
two results. The first comes from vertically integrating the vertical momentum equation,
using the fact that the vertical velocity must be a linear function of z on account of 3-D
incompressibility. In this way, the non-hydrostatic pressure is found to be a quadratic
function of z. Integrating gives P̄n . The second result comes from taking the horizontal
divergence of the horizontal momentum equations. Between these two results, one can
eliminate the time derivatives, leading to the elliptic equation for P̄n .

The approach taken to derive the explicit GN model may be extended in a variety of
ways. For example, one can apply it to derive multi-layer shallow-water formulations –
now including non-hydrostatic effects. The recipe is simple: first obtain an expression
for the vertically integrated non-hydrostatic pressure over each layer, making use of the
vertical momentum equation and the fact that the vertical velocity is a linear function
of z in each layer. Next, take the horizontal divergence of the horizontal momentum
equations. Combining these results gives diagnostic equations for the pressures, albeit
coupled now from layer to layer. Nonetheless, they are linear elliptic equations, and may
be readily solved numerically. This approach differs fundamentally from that taken to
derive higher-level GN models (see Shields & Webster 1988; Demirbilek & Webster 1999),
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and moreover remains explicit for any number of layers. Another advantage is that the
layers can differ in density; one must only assume the density is uniform in each layer. A
two-layer model is under development and we hope to report on this and the generalisation
to many layers in a future paper.
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Appendix A. The pressure solver

The numerical solution procedure for the non-hydrostatic pressure P̃ in (2.27) was tested
using analytical forms for ρθ and P̃, from which one can compute all terms involving P̃
in (2.27) explicitly. The ‘source’ term S0, which is independent of P̃, is calculated as the
residue in this equation, i.e.

S0 = ∇2P̃ + ∂2P̃
∂θ 2

− σ · ∇ ∂P̃
∂θ

− 1
2

(
∂τ

∂θ
+ ∇ · σ

)
∂P̃
∂θ

− τ
∂2P̃
∂θ 2

, (A 1)

where σ and τ are defined in (2.28a,b). Then, with S0 fixed, we numerically solve (2.27)
for P̃ starting from P̃ = 0 and iterate until convergence, here when the r.m.s. difference
in P̃ between two successive iterations falls below 10−9 times the r.m.s. value of P̃ in the
previous iteration. This is done using a fixed-point iteration, using the previous guess for P̃
to compute the terms on the right-hand side of (2.27) and inverting the constant-coefficient
operator on the left-hand side of (2.27) to find a new guess for P̃. (When performing
a simulation, the previous solution for P̃ is used as a first guess to speed convergence.)
Details of the numerical procedure are provided after discussing the test case.

The specific test carried out takes

ρθ = 1 + εκ cos(κθ) cos(αx) cos(βy),

where ε, κ , α and β are all constants (in the results below we have used ε = 0.1,
κ = 1, α = 1 and β = 2 in a domain of x and y width 2π, and mean height H = 1).
By integration, we obtain the heights of each coordinate surface θ = constant:

z = θ + ε sin(κθ) cos(αx) cos(βy)

– see (2.14). From this expression, we obtain all spatial derivatives needed to
compute the pressure-independent terms appearing in (2.27). For the non-hydrostatic
pressure P̃, we take

P̃ = (H − θ)eθ/H sin(ax) sin(by),

for constants a and b (we use a = 2 and b = 3 in the results below). This satisfies the
required boundary conditions ∂P̃/∂θ = 0 at θ = 0 and P̃ = 0 at θ = H. From the given
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form of P̃, it is then straightforward to compute all pressure derivatives needed to define
S0 in (A 1).

Numerically, we first discretise the domain by dividing x , y and θ into nx , ny and nθ
equally spaced intervals. Then the coefficients and the source S0 are evaluated at each
grid point and kept fixed in the subsequent iteration to find P̃. During each iteration,
the previous guess for P̃ is used to evaluate the terms involving P̃ on the right-hand
side of (2.27). As the domain is periodic in x and in y, a FFT is used to calculate all
horizontal derivatives of P̃ spectrally, while vertical differences use second-order centred
differences except at the boundaries. At θ = 0, we use ∂P̃/∂θ = 0 and a second-order
accurate one-sided formula for the second derivative

P̃′′
0 = 2P̃0 − 5P̃1 + 4P̃2 − P̃3

Δθ 2
,

where a prime denotes differentiation with respect to θ , while the numerical subscripts
are the indices of the θ -coordinate surfaces (referred to as ‘grid points’ below) and Δθ =
H/nθ . At θ = H, we use second-order extrapolation for the first and second derivatives

P̃′
nθ

= P̃′
nθ−1 + 1

2
Δθ

(
3P̃′′

nθ−1 − P̃′′
nθ−2

)
and

P̃′′
nθ

= 2P̃′′
nθ−1 − P̃′′

nθ−2,

as these proved more accurate than the one-sided formulas involving only P̃j for grid points
j ∈ [nθ − 3, nθ ].

With these pressure derivatives calculated, we next obtain the entire right-hand side of
(2.27), called S, by simple multiplication. This is then converted to semi-spectral space as
Ŝ (no transform is performed in θ ) to facilitate solving for the new guess for P̃. For each
horizontal wavevector (kx , ky), the spectral transform of P̃, written P̂, satisfies the simple
second-order differential equation

P̂′′ − k2P̂ = Ŝ,

where k2 = k2
x + k2

y . This is discretised using fourth-order compact differences following
Ghader et al. (2012). In the interior j ∈ [1, nθ − 1], this results in

P̂j+1 − 2P̂j + P̂j−1

Δθ 2
− k2

12
P̂j+1 − 5k2

6
P̂j − k2

12
P̂j−1 = 1

12
Ŝj+1 + 5

6
Ŝj + 1

12
Ŝj−1, (A 2)

while at j = 0 where P̂′ = 0,(
1

Δθ 2
− k2

6

)
P̂1 −

(
1

Δθ 2
+ k2

3

)
P̂0 = 1

6
Ŝ1 + 1

3
Ŝ0. (A 3)

We do not need an equation at j = nθ since P̂ = 0 there. This means that we exclude
the terms involving P̂nθ in (A 2) when j = nθ − 1. The above nθ equations in (A 2) and
(A 3) constitute a standard tri-diagonal problem to determine P̂j for j ∈ [0, nθ − 1] which
is easily solved. An inverse FFT then brings P̂ back to physical space as P̃.
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FIGURE 14. Dependence of the relative r.m.s. error in P̃ (a) and in P̃′ (b) as a function of
resolution nx (see text for details). The dashed line in (a, b) indicates an error scaling of
0.025n−2

x .

This completes one iteration. We continue with further iterations until convergence, then
calculate the first derivative P̃′ needed for the non-hydrostatic acceleration (2.39) in order
to form the tendencies for the prognostic variables. The first derivative P̃′ is also calculated
using fourth-order compact differences (Ghader et al. 2012). In the interior j ∈ [1, nθ − 1],
this results in

1
6

P̃′
j+1 + 2

3
P̃′

j +
1
6

P̃′
j−1 = P̃j+1 − P̃j−1

2Δθ
, (A 4)

while at j = nθ ,

2
3

P̃′
nθ

+ 1
3

P̃′
nθ−1 = − P̃nθ−1

Δθ
+ Δθ

6
Snθ , (A 5)

where Snθ is the entire right-hand side of (2.27) at θ = H. There is no equation for j = 0
since P̃′ = 0 at θ = 0. Moreover, the term involving P̃′

0 is absent in (A 4) when j = 1.
Furthermore, since P̃ = 0 when θ = H, the term involving P̃nθ is absent in (A 4) when j =
nθ − 1. The above nθ equations in (A 4) and (A 5) again constitute a standard tri-diagonal
problem, now in P̃′

j for j ∈ [1, nθ ].
To test the convergence of the iterative solver, we varied the resolution from nx = ny =

16 to 256 in factors of 2, and took nθ = nx/2. We measured error by comparing the
numerical solution for P̃ and P̃′ with their analytically known counterparts. The errors,
as measured by the r.m.s. difference divided by the r.m.s. value of the exact solution was
found to scale like n−2

x as expected – see figure 14. Even at the coarsest resolution, the
errors are only ≈10−4. Other parameter choices in the forms of ρθ and P̃ also exhibit
the same n−2

x error scaling, demonstrating the correctness of the numerical solver and
confirming its accuracy.

Appendix B. Time integration

This appendix provides details of the semi-implicit time stepping method used for all
model equations. The method used is closely similar to that described in appendix C in
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Two-dimensional models of a rotating shallow fluid layer 900 A33-29

DJ19, with the main differences coming from the forms of the nonlinear terms, owing to
the different prognostic variable set (ql, δ, γl) used here.

In general, the semi-implicit method is used to provide enhanced numerical stability at
larger time steps when modelling systems containing high frequency waves, such as the
free-surface gravity waves in the present context (Ritchie 1988). In the linearised SW and
3-D equations, these waves have a maximum frequency ∼ckmax at the largest horizontal
wavenumber magnitude kmax. An explicit method would need to resolve this frequency
for numerical stability, but a semi-implicit method is unconditionally stable for any time
step, at least for the linearised equations (accuracy for high frequency waves is sacrificed
for stability on the assumption that these waves have negligible impact on the flow
evolution).

For the linearised equations, the semi-implicit method is in fact fully implicit. For the
nonlinear equations, this is no longer the case and the nonlinear ‘source’ terms must be
evaluated from a previous estimate of the fields at the present and future time levels, n
and n + 1 (for a two-step method). Here, we follow the standard trapezoidal integration
approach used previously in DJ19 (see appendix C), wherein the source terms are evaluated
as a simple average of the two time levels. The future time level n + 1 is repeatedly
improved upon by iteration.

B.1. The 3-D model
The details of the method for the 3-D model equations are outlined next. We start by
re-writing (2.36)–(2.38) as

∂ql

∂t
= Nq − Dql, (B 1)

∂δ

∂t
− γl = Nδ − Dδ, (B 2)

∂γl

∂t
− Gδ = Nγ − Dγl, (B 3)

where Nq, Nδ and Nγ are the nonlinear source terms (the right-hand sides of (2.36)–(2.38)),
and

D = ν(−∇2)p (B 4)

is a hyper-diffusion operator used to absorb the nonlinear spectral cascade to small scales
and prevent the build up of high wavenumber noise.

The term Gδ in (B 3) couples the equations vertically, since the operator G defined in
(2.40) involves a vertical integral. After a horizontal Fourier transform (∇2 → −k2) and
discretising θ into nθ equal layers, we use trapezoidal integration over θ to obtain

Gδi = −f 2δi − c2k2
nz∑

m=0

μmδm (B 5)

on the surface θ = θi = iΔθ , where μ0 = μnz = 1/(2nz) and μm = 1/nz for 0 < m < nz.
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We next time discretise using the semi-implicit method. Time derivatives are evaluated
by simple differences, i.e. for any field ξ

∂ξ

∂t
≈ ξ n+1 − ξ n

Δt
, (B 6)

where n and n + 1 denote the time levels, while all remaining terms are time-averaged,
i.e.

ξ̄ = 1
2

(
ξ n + ξ n+1) . (B 7)

Then, using
ξ n+1 − ξ n

Δt
= ω0

(
ξ̄ − ξ n

)
,

where ω0 ≡ 2/Δt, and re-arranging (B 1)–(B 3) for the time averages q̄l,i, δ̄i and γ̄l,i, we
obtain

Rq̄l,i = Ñq,i ≡ N̄q,i + ω0ql,i
n, (B 8)

Rδ̄i − γ̄l,i = Ñδ,i ≡ N̄δ,i + ω0δ
n
i , (B 9)

Rγ̄l,i − Gδ̄i = Ñγ,i ≡ N̄γ,i + ω0γ
n
l,i, (B 10)

where
R = ω0 + D = ω0 + νk2p (B 11)

in spectral space.
These equations are solved by iteration in order to improve the approximations to the

nonlinear terms at time level n + 1. Initially, only quantities at time level n are known, so
we start with N̄q,i = Nn

q,i, N̄δ,i = Nn
δ,i and N̄γ,i = Nn

γ,i in (B 8)–(B 10). Equation (B 8) for q̄l,i
is decoupled from the other two and thus we have

q̄l,i = R
−1Ñq,i

directly. The remaining two equations for δ̄i and γ̄l,i are coupled, but they are easily
combined to give

(R2 − G)δ̄i = T̃δ,i ≡ RÑδ,i + Ñγ,i, (B 12)

(R2 − G)γ̄l,i = T̃γ,i ≡ RÑγ,i + GÑδ,i. (B 13)

While the operator G couples the equations vertically, their solutions are nevertheless
straightforward:

δ̄i = (R2 + f 2)−1

(
T̃δ,i − F

nz∑
m=0

μmT̃δ,m

)
, (B 14)

γ̄l,i = (R2 + f 2)−1

(
T̃γ,i − F

nz∑
m=0

μmT̃γ,m

)
, (B 15)

where

F = c2k2

R2 + f 2 + c2k2
(B 16)
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in spectral space. These solutions follow because the sums over m in (B 14) and (B 15) are
independent of i and the weights μm sum to unity. Alternatively, posing a solution of the
form (B 14) and inserting it into (B 12) gives the form of F.

From q̄l,i, δ̄i and γ̄l,i, estimates for the fields at time level n + 1 are obtained from

qn+1
l,i = 2q̄l,i − qn

l,i, δn+1
i = 2δ̄i − δn

i , γ n+1
l,i = 2γ̄l,i − γ n

l,i.

From these, we can obtain the corresponding velocity field and layer thicknesses by the
inversion procedure described in § 2.3. Then all quantities are known that are needed to
estimate the nonlinear terms at time level n + 1, giving an improved approximation to the
time-averaged quantities N̄q,i, N̄δ,i and N̄γ,i in (B 8)–(B 10). The above procedure is then
repeated, in practice two more times, before the solution is accepted.

B.2. The 2-D models
The SW and GN model equations are solved similarly. In the SW model, the operator G

reduces to −f 2 − c2k2 in spectral space (no vertical sum). Then (B 12) and (B 13) provide
δ̄ and γ̄l directly after division by R2 − G.

In the GN model, we make use of the diagnostic relation for P̄n in (3.14) to pull out
the expected linear dispersion relation in the semi-implicit system. We begin by re-writing
(3.16) and (3.17) as

∂δ

∂t
− P

−1γl = Nδ ≡ 2δ2 − ∇ · (δu)+ (HP)−1ξ −
(

3
h3

− 3
H3

)
P̄n, (B 17)

∂γl

∂t
− Gδ = Nγ ≡ G∇ · (h̃u)− f

[∇ · (qlu)− Jxy(P̄n, h−1)
]
, (B 18)

where
P = 1 + 1

3 k2H2 (B 19)

in spectral space, and

ξ = hγ̃ − Hγl + ∇h · ∇P̄n

h
+
(

3
h2

− 3
H2

)
P̄n (B 20)

is the non-constant-coefficient part of the diagnostic relation for P̄n , i.e.(
∇2 − 3

H2

)
P̄n = Hγl + ξ. (B 21)

Equation (B 21) is solved iteratively, updating ξ after each iteration, until the r.m.s.
difference between successive estimates of P̄n falls below 10−11. Thus, ξ is a product of
this iteration, and is available for use in (B 17) for semi-implicit time stepping. The system
of equations for δ̄ and γ̄l takes the form

(PR
2 − G)δ̄ = PRÑδ + Ñγ , (B 22)

(PR
2 − G)γ̄l = P(RÑγ + GÑδ). (B 23)

Here, as in the 3-D equations,

Ñδ ≡ N̄δ + ω0δ
n and Ñγ ≡ N̄γ + ω0γ

n
l , (B 24a,b)

where N̄δ and N̄γ are averages of the nonlinear source terms Nδ and Nγ in (B 17) and (B 18).
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Importantly, this approach differs from that taken in DJ19, who further simplified the
semi-implicit system as advocated by Mohebalhojeh & Dritschel (2004) (see appendix B
therein). The present approach, however, more accurately represents the effects of
hyperdiffusion and significantly better controls the high wavenumber portion of field
spectra in the GN equations (there is no significant improvement for the SW equations).

Appendix C. Numerical parameter settings

In all models, we use identical parameter settings to those used in DJ19. We use nx =
ny = nh horizontal grid points with nh = 256 or 512, and in the 3-D simulations we use
nθ = 32 or 64 grid intervals (or nθ + 1 grid points, two of which lie on the boundaries).
The time step is set to Δt = 0.32Δx/c, where Δx = 2π/nh is the grid spacing and c =√

gH. This allows one to marginally resolve the highest frequency gravity wave in the 3-D
and SW simulations (such waves have lower frequencies in the GN model, see DJ19).

To absorb the natural nonlinear cascade to small (horizontal) scales, third-order
hyperdiffusion of the form ν∇6 is added to each prognostic equation with

ν = 10f
(nh/2)6

,

corresponding to a damping rate of 10 per inertial period 2π/f at the smallest resolved
scale (see DJ19). Notably, no vertical diffusion is added.
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