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Linear modelling of self-similar jet turbulence
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Coherent structures in the far field of a round turbulent jet are investigated experimentally
and modelled by local linear stability analysis (LSA) and local resolvent analysis (RA). The
study aims to determine the potential and limitations of mean flow-based linear models
predicting the far field dynamics. Particular emphasis is placed on the high wavenumber
and frequency range. The study is based on time-resolved stereoscopic particle image
velocimetry (PIV) data acquired in the self-similar region of the jet. Spectral proper
orthogonal decomposition (SPOD) is applied to the dataset to identify empirical coherent
structures with azimuthal wavenumbers ranging from m = 0 to m = ±5. The leading
SPOD mode features low-rank behaviour over a wide frequency range and is found to
account for the major part of total turbulent production. Thus, the leading SPOD mode
captures the anisotropic part of turbulence, which is still significant even at the highest
resolved frequencies reaching into the inertial subrange. The LSA determines stable but
discrete eigenmodes that are excellently in line with the SPOD modes. This applies
especially to modes at mid-range to high frequencies and higher azimuthal wavenumbers
where the LSA predicts strongly decaying modes. Moreover, the RA modes are in
very good agreement with LSA and SPOD modes, indicating a predominantly resonant
mechanism. The present study shows that an unexpectedly wide range of turbulent scales
in the self-similar region of the jet can be reproduced based on linearized mean-field
models.

Key words: jets

1. Introduction

The far field of turbulent jets has been the focus of numerous studies for many decades.
The special characteristic of this flow is self-similarity of turbulent scales in the productive
and dissipative range. The self-similarity of all turbulent scales provides a generic flow
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configuration which is well suited to perform studies that address fundamental questions
in turbulence research.

Self-similarity of the mean-field and turbulent dynamics has been addressed by many
studies, such as Wygnanski & Fiedler (1969), who showed that not only the mean field
but also higher-order moments, namely the Reynolds stresses, scale in accordance with
similarity theory. Hot-wire measurements in the far field region of a round Reynolds
number ReD = 13 000 jet by Burattini, Antonia & Danaila (2005) confirmed that a very
large range of the turbulent spectrum scales in accordance with similarity theory.

With respect to the self-similarity of modal far field structures, the studies of Gamard
et al. (2002) and Gamard, Jung & George (2004) provide clarification. Within these
studies, an array of 138 hot-wire probes was used to measure velocity in cross-stream
sections of the flow. The modal structures were quantified by decomposing the fluctuations
into azimuthal Fourier modes and subsequently performing a spectral proper orthogonal
decomposition (SPOD). The resulting POD eigenspectra of modes with azimuthal
wavenumbers m = 0, 1, 2 were shown to scale according to self-similarity theory. In the
work of Wänström (2009), the self-similar features of a ReD = 20 000 jet were studied
based on streamwise and cross-stream particle image velocimetry (PIV) measurements.
Wänström (2009) focused on the spectral analysis of the flow field by performing a
spatial Fourier analysis in self-similar coordinates. Their spatial spectra demonstrate
the self-similarity of the entire resolved turbulent spectrum reaching into the inertial
subrange. Hodžić (2018) extended the work of Wänström (2009) by proposing a tensor
formulated framework to study self-similar jet turbulence. The approach is based on the
decomposition of the flow field into streamwise amplitude-decaying Fourier modes using
stretched spherical coordinates. A Lumley decomposition (commonly referred to as POD)
was performed on the decomposed velocity field and the resulting eigenfunctions were
evaluated with respect to their contribution to the terms in the turbulent kinetic energy
transport equations. The evaluation of the turbulent production showed that many modes
receive a significant amount of energy from the mean flow even in the range where the
average spectrum follows Kolmogorov’s −5/3 law. These findings suggest that a large
part of the turbulent spectrum is still directly related to the mean field, which questions
the classic local isotropic hypothesis. This finding is promising for modelling turbulent
structures based on linearized mean field stability theory as it suggests a wide model
applicability.

In recent years, linearized mean-field stability analysis has been applied to numerous
turbulent flow configurations to determine the intrinsic instabilities that drive the
formation of coherent structures. This analysis is based on the mean flow that was
naturally modified by coherent structures at their nonlinearly saturated state and the
resulting eigenmodes are conceptualized as coherent structures evolving from this flow
state. Considering the near field of natural and forced jets, excellent agreement has been
shown in a number of experimentally and numerically based studies (e.g. Gudmundsson
& Colonius 2011; Cavalieri et al. 2013; Oberleithner, Rukes & Soria 2014b; Beneddine
et al. 2016). Most of the successful examples dealt with flows driven by a strong modal
instability mechanism such as convective Kelvin–Helmholtz-type instabilities or global
instabilities. However, in the absence of such strong instabilities, coherent structures are
often observed not to be represented by a single (unstable) eigenmode but rather by the
non-modal response to stochastic forcing. Recent studies (e.g. Jordan et al. 2017; Tissot
et al. 2017a) support the idea that non-modal growth plays an important role in the coherent
structure evolution of jets, especially downstream of the potential core, where the strong
influence of the Kelvin–Helmholtz-type instability is absent. Current studies indicate that
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an optimal response (or resolvent) analysis provides a suitable framework to model such
dynamics that is driven by intrinsic nonlinear forcing (e.g. Tissot et al. 2017b; Schmidt
et al. 2018). It was further demonstrated that an eddy viscosity model may improve
the prediction capability within the framework of modal linear stability analysis (LSA)
(Crouch, Garbaruk & Magidov 2007; Oberleithner, Paschereit & Wygnanski 2014a; Rukes,
Paschereit Oliver & Oberleithner 2016; Tammisola & Juniper 2016) and resolvent-based
models (Morra et al. 2019; Pickering et al. 2019).

Within self-similar theory of turbulent round jets, the mean-field and turbulent
properties can be scaled by a single characteristic length and velocity scale. Adopting this
scaling, the mean field becomes homogeneous in the streamwise and azimuthal directions
and the stability analysis can be formulated as a one-dimensional problem. By neglecting
the non-parallelism of the mean flow one may employ local quasi-parallel stability
methods such as spatial or temporal modal stability analysis (Michalke 1964; Huerre
& Monkewitz 1990; Schmid & Henningson 2001). Another option is to account for the
non-parallel flow effects by recasting the perturbation ansatz in self-similar coordinates.
In a recent study by Mullyadzhanov, Yavorsky & Oberleithner (2019), the results of a
local quasi-parallel stability approach were compared to a (quasi-global) stability analysis
carried out in spherical coordinates which takes the non-parallel base flow into account.
Their analysis is based on the self-similar Landau solution of a laminar jet. They show
that for low azimuthal and axial wavenumbers, the stability modes differ substantially
between the two schemes, while for moderate to high wavenumbers, the non-parallel
effects are negligible and both methods converge. Hence, a local quasi-parallel approach
seems sufficient to model turbulent structures at moderate and high axial and azimuthal
wavenumbers. For the modelling of the very low end of the turbulent spectrum global or
quasi-global approaches need to be considered.

The objective of this work is to investigate to what extent mean field stability
models predict the far field dynamics of self-similar turbulent jets. We compare results
from mean-field stability models with coherent structures extracted from time-resolved
measurements at sampling rates that resolve the frequency/wavenumber regime where the
averaged turbulent spectrum follows the −5/3 law, thus reaching into the inertial subrange.
Hence, the focus of this work lies on the moderate to high frequency/wavenumber range,
where moderate refers to frequencies/wavenumbers which are higher than the maximum
peak in the average energy spectrum and high to frequencies/wavenumbers that are
associated with the inertial subrange in the averaged spectrum. The underlying growth
mechanisms of low frequency large-scale coherent structures are not the focus of this
work. Therefore, it seems appropriate to apply quasi-parallel stability methods that neglect
non-parallel flow effects which might become relevant for very low azimuthal and axial
wavenumbers. Moreover, the self-similar nature of the round turbulent jet allows the results
from stability analysis and empirical mode decomposition to be presented in a self-similar
fashion, which eases the generalization of the results. This work further complements
current efforts in modelling coherent structures in the near field of turbulent jets within
the context of jet noise prediction, which naturally focuses on low axial and azimuthal
wavenumbers with high acoustic efficiency (e.g. Schmidt et al. 2018; Cavalieri, Jordan &
Lesshafft 2019; Lesshafft et al. 2019).

The remainder of this paper is structured as follows: the experimental set-up and
measurement procedures are presented in § 2. Subsequently, the self-similar features of
the current dataset are analysed in § 3. The frequency-domain SPOD is used to extract
coherent structures and is briefly described in § 4 along with the results. Subsequently, the
methodology for linear stability analysis (LSA) and resolvent analysis (RA) is outlined in
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Figure 1. Schematic of water jet facility at the Laboratory for Turbulence Research in Aerospace and
Combustion (LTRAC).

§ 5 and results and comparison with the experimental findings are presented. Furthermore,
the success of both modelling approaches in the context of turbulent length scales is
assessed and modelling accuracy is discussed. Conclusion are drawn in § 6.

2. Experimental set-up and measurement procedures

The experiments were carried out in the water jet test rig illustrated in figure 1. The flow
is generated by a piston-in-cylinder system which is controlled by a stepper motor-driven
lead screw. A contracting nozzle with exit diameter of D = 2.1 mm is mounted at the
downstream end of the cylinder. The nozzle exit is in plane with an artificial flat wall
insert in the tank to guarantee well-defined outflow conditions. The tank consists of acrylic
walls and is filled with water up to the top, where it is closed using an acrylic lid with a
glass insert that serves as optical access for the laser illumination. The thin air layer and
bubbles at the top of the tank are carefully removed before closing the lid to assure that
there is no air–water interface or any optically distorting objects. The water added to the
tank during the experiments is fed into a riser tube that is mounted at the downstream
top end of the tank. The water is seeded with neutrally buoyant hollow glass spheres of
11 μm diameter. Before each measurement, the water body was left to settle for at least
10 minutes. The limited measurement time due to the finite cylinder reservoir was tested
to be sufficient to conduct continuous jet experiments. In a previous study by Cater & Soria
(2002), continuous jet experiments were carried out with the same set-up and, as in this
study, the far field was found to be statistically stationary after a time span long enough to
conduct measurements.

A high-speed three-component two-dimensional stereoscopic PIV (SPIV) system with
two pco.dimax S4 cameras with a resolution of 2016 px × 2016 px and a Quantronix
Darwin-Duo Nd:YLF laser system were used to acquire time-resolved data in the
streamwise and cross-stream sections of the flow. For the streamwise measurements, 30◦
water-filled prisms were mounted on the tank walls to ensure proper optical access and
minimize optical distortions due to changes in refractive indices, as described by Parker,
von Ellenrieder & Soria (2005). For the cross-stream measurements 40◦ water-filled
prisms were used. In both cases, the cameras were equipped with Scheimpflug adapters.

In the stereoscopic calibration procedure, a calibration grid featuring equally spaced
markers on both sides of the board was used. The measurement volume was mapped by
three to five images by carefully traversing the calibration grid through the laser sheet
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Figure 2. Measurement domains for streamwise and cross-stream SPIV.

using a micrometer. The first and last image positions were set to be outside the laser sheet
which had a thickness of approximately 1 mm for measurements in the streamwise sections
of the flow and 1.5 mm for the cross-stream sections. For the mapping of image and object
coordinates, a least-square polynomial fit was performed, using a cubic dependence for
the two in-plane components and quadratic dependence for the out-of-plane component,
as proposed by Soloff, Adrian & Liu (1997).

The presented results were derived from velocity data at two cross-stream sections of the
flow (r–θ -plane) at x∗/D = 50 and x∗/D = 80 and streamwise data (x–r-plane) spanning
a region of 35 < x∗/D < 95. The streamwise data were acquired in two measurement
domains spanning 35 < x∗/D < 74 and 48 < x∗/D < 95. The domains are schematically
shown in figure 2. In our notation, the superscript ()∗ denotes dimensional quantities for
the axial coordinate x∗, radial coordinate r∗, velocity fields/vectors u∗ and frequency ω∗.
All other dimensional quantities such as the nozzle diameter D, centreline velocity ucl,
half-width radius r1/2 etc. are not marked by the superscript ()∗ to maintain readability.
The acquired velocity data are transformed to a cylindrical coordinate system where
u∗ = (u∗, v∗, w∗) are the dimensional axial, radial and tangential velocity components.
In the following, all quantities such as coordinates, velocities and frequencies are
non-dimensionalized by the velocity half-width radius r1/2 and the centreline velocity ucl if
not explicitly stated otherwise. The non-dimensional quantities are written without the ()∗
superscript, e.g. the non-dimensional velocity components are expressed by u = u∗/ucl =
(u, v, w).

For all presented experiments, the nozzle exit bulk velocity was set to u0 = 8 m s−1

based on the nozzle exit diameter. The corresponding Reynolds number based on the
bulk velocity and nozzle diameter is ReD = 17 000. During one experimental realization
(one piston run), 3149 velocity fields were acquired at full image resolution and at a
sampling rate of 140 Hz resulting in an acquisition time of approximately 22.5 s. The
image acquisition was started 20 s after the piston motion initiation to ensure a statistically
stationary flow. The pulse delay between the single-exposed image pairs depended on the
maximum velocity in each measurement domain and ranged from 190 to 510 μs. The
single-exposed image pairs were evaluated using a multi-grid/multi-pass cross-correlation
algorithm (Soria 1996). The final window size was set to 32 px × 32 px with an overlap
of 50 %, and an initial window size of 64 px × 64 px. The spatial resolution varies
for different measurement realizations with the final vector spacing being in the range
of 0.15Δx∗/D to 0.25Δx∗/D, which results in a vector spacing between 0.025Δx =
0.025Δr∗/r1/2 and 0.09Δx.
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Figure 3. Variation of (a) inverse of centreline velocity u0/ucl and (b) velocity half-width radius r1/2/D with
streamwise direction.

3. Self-similar scaling of the mean field, Reynolds stresses and turbulent spectra

Self-similar flows have extensively been investigated in the last decades due to
their fundamental characteristics with regard to turbulence evolution. The concept of
self-similarity constitutes a flow state in the far field in which the mean velocity and the
turbulence scale by a single local length and velocity parameter. For a round turbulent
jet, suitable local length and velocity scales are usually the velocity half-width radius r1/2,
which scales proportional to the axial position, and the centreline velocity ucl, which scales
inversely proportional to the axial distance (Rajaratnam 1976),

ucl

u0
= A

(
x∗

D
− x∗

0
D

)−1

(3.1)

r1/2

D
= b

(
x∗

D
− x∗

0,2

D

)
. (3.2)

Herein, the parameter A is referred to as the decay rate, while b is the spreading rate and
x∗

0 and x∗
0,2 denote a virtual origin of the flow. All of these parameters depend on the

experimental set-up and initial conditions as reviewed by George (2012).
In the following, the present dataset is assessed with respect to self-similar scaling in

terms of the overall scaling laws of the mean, Reynolds stresses and the turbulent spectrum.
In figure 3(a) the inverse of the centreline velocity u0/ucl and in figure 3(b) the velocity
half-width radius r1/2/D are shown for all investigated streamwise and cross-stream
measurement domains. It should be noted that, due to the high spatial resolution of
the SPIV data, the dot markers shown in the figure appear as a continuous line. All
four experimental realizations show excellent agreement and the linear trend is clearly
observable for both quantities. The corresponding velocity decay and jet spreading rate
defined in (3.1) and (3.2) are A = 6.1 and b = 0.091, respectively. These values are in the
typical range of 5 < A < 7 and 0.08 < b < 0.1 for the far field of round turbulent jets, as
summarized in the review of Abdel-Rahman (2010). In the present study, the values for
the virtual origin are x∗

0/D = 1.5 and x∗
0,2/D = 1. Since these values are highly sensitive

to minor changes of the decay and spreading rate, we neglect the slight difference between
them and set them to x∗

0/D = x∗
0,2/D = 1.5 from here on.

Profiles of mean velocities and Reynolds stresses are shown in figure 4, where the
overbar indicates time-mean values. Accordingly, all profiles collapse when normalized
by ucl and r1/2. The slightly imperfect match and noisiness of the mean tangential (w̄)
and transverse (v̄) velocity components is due to their low magnitude, which is two orders
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Figure 4. Self-similar mean velocity profiles and turbulence statistics. Profiles were acquired at streamwise
distances ranging from x∗/D = 39.5 to x∗/D = 63.3. Superimposed grey lines correspond to data taken from
Wänström (2009).

of magnitude lower than for the axial velocity component. Therefore, the average values
are affected by the limits of SPIV accuracy and are prone to unavoidable errors due
to calibration or misalignment. The grey lines superimposed on the profiles of ū, u′u′,
v′v′ and u′v′ in figure 4 correspond to data from Wänström (2009) obtained by PIV
measurements at a Reynolds number of ReD = 20 000. As can be seen, the profile of
the axial velocity component is in very good agreement with the present study and the
Reynolds stresses are also in quite good agreement. Overall, the collapse of the mean
and Reynolds stress profiles indirectly confirm the self-similarity of the energy containing
(outer) turbulent scales as they largely determine these quantities.

To confirm the self-similarity of the inner turbulent scales the turbulent spectrum is
determined at different streamwise locations and displayed in self-similar quantities as a
function of the non-dimensional frequency

ω = ω∗ r1/2

ucl
= ω∗ (x − x0)

2 bD
Au0

, (3.3)

with ω∗ denoting the dimensional angular frequency. Figure 5 shows the spectral density
estimates for the axial velocity component Euu, determined from streamwise sections of
the flow ranging from x∗/D = 60 to x∗/D = 90 at r = r∗/r1/2 = 1. Additionally, the
spectral density estimates from cross-stream data at x = 80 is superimposed. The spectra
collapse for the energy containing range and the high frequency range. Discrepancies at
the very high frequency limit are due the noise floor of the SPIV (Atkinson et al. 2014).
Nonetheless, the collapse of the spectrum confirms the self-similar nature of all scales that
were resolved in the SPIV.
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Figure 5. Spectral density estimates at r = 1 from streamwise and cross-stream data.
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Figure 6. Contribution to total turbulent kinetic energy of each azimuthal wavenumber m.

4. Data-driven modal decomposition and coherent structure identification

To determine coherent structures in the far field we first decompose the velocity
fluctuations from the cross-stream measurements into azimuthal Fourier modes

ûm(r, t) =
∫ 2π

0
u′(r, θ, t) exp(−imθ)dθ, (4.1)

where m denotes the azimuthal wavenumber and θ the azimuthal coordinate. The
contribution of individual azimuthal wavenumbers, ranging from m = −10 to m = 10,
to the total turbulent kinetic energy is presented in figure 6. The energy shows a broad
distribution with negative and positive mode numbers containing approximately the
same energy, as expected for an axisymmetric non-swirling flow, where the co- and
counter-winding modes are equally dominant. Overall, a slight dominance of m = ±1 is
observed, followed by m = ±2, m = 0, and monotonically decreasing trends for |m| ≥ 3.
These findings are in agreement with the results of Wänström (2009) and Mullyadzhanov
et al. (2018).

To extract frequency ranked coherent structures, we employ SPOD, as introduced by
Lumley (1967). This method has been used extensively to identify coherent structures
in the near field (e.g. Jung, Gamard & George 2004; Gudmundsson & Colonius 2011;
Schmidt et al. 2018) and the far field (Gamard et al. 2002, 2004) of turbulent jets, as well as
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supersonic impinging jets (Karami & Soria 2018). Due to its clear frequency separation, it
allows for a consistent comparison with linear stability models. In the following, the SPOD
approach is briefly described. For a detailed discussion of SPOD and its connection to
linear mean-field modelling, the reader is referred to Towne, Schmidt & Colonius (2018).

As a first step in performing the SPOD, the recorded PIV snapshot sequence is
decomposed into azimuthal Fourier modes according to (4.1) and the time series is
split into several segments. Next, each segment is transformed into frequency domain
via temporal Fourier transformation. Subsequently, for each discrete frequency ω and
azimuthal wavenumber m, a POD is performed by computing the cross-spectral correlation
between all segments i of ûi

m,ω, reading

Rij
m,ω = 1

S

∫
r

ûi
m,ω(û j

m,ω)† dr, (4.2)

where ()† corresponds to the complex conjugate and S is the number of segments. In the
final step, the eigenvalue problem

Rm,ωai
m,ω = λi

m,ωai
m,ω (4.3)

is solved numerically and the spatial modes are derived by the projection of the snapshots
ûj,m,ω onto the eigenvectors ai

m,ω, which are ranked by kinetic energy given by the
eigenvalues λi

m,ω. A large gap between the first and the subsequent eigenvalues indicates
low-rank dynamics.

Figure 7 shows the SPOD eigenvalue spectra for modes m = 0 (top) to m = 5 (bottom)
for the first 10 SPOD eigenmodes vs the non-dimensional frequency ω. In (a), λi

m,ω is
displayed as a fraction of the total turbulent kinetic energy of the flow and (b) shows the
spectrum of the relative energy of each SPOD mode with respect to all other modes at
the same frequency and azimuthal wavenumber, reading λi

m,ωk
/
∑S

j=1 λ
j
m,ωk . The latter

representation helps to identify regions where the first SPOD mode comprises a large
fraction of the energy in relation to the following SPOD modes and, therefore, features a
low-rank character.

Figure 7(c) displays the turbulent production of the first SPOD mode (P1
m,ω, black line)

and the total production of all SPOD modes (Ptot
m,ω, red line). The turbulent production of

the ith SPOD mode is given as

Pi
m,ω =

∫ ∞

0
ûi

m,ωv̂i
m,ω

dū
dr

r dr, (4.4)

which is derived from a Fourier transform of the transport equation of turbulent kinetic
energy (Schiavo, Wolf & Azevedo 2017). This quantity represents the contribution of the
ith SPOD mode at frequency ω and azimuthal wavenumber m to the overall production,
and it quantifies the energy flux between the mean field and the SPOD modes. Integrating
Pi

m,ω over all i SPOD modes, azimuthal wavenumbers m and frequencies ω yields the total
turbulent production in its integral form P = ∫ ∞

0 u′v′(dū/dr)r dr. Thus, the comparison
shown in figure 7(c) reveals the contribution of the first SPOD mode to the overall
production in dependence of frequency and azimuthal wavenumber.

The SPOD eigenvalue spectra in figure 7(a) show a broadband distribution for all
six considered azimuthal wavenumbers. Mode m = 1 is the only mode that features a
distinct increase in energy in the frequency range of 0.3 < ω < 1. The peak frequency
coincides well with the peak of the SPOD eigenfunctions centred around Strouhal number
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Figure 7. SPOD eigenvalue spectrum (a), normalized SPOD eigenvalue spectrum to show low-rank behaviour
(b) and turbulent production (c) of the leading SPOD mode (black line) and all SPOD modes (red line) for a
given azimuthal wavenumber. Spectra are shown for m = 0 to m = 5. In (a,b), black lines are associated with
the leading SPOD mode and grey-scale data are associated with the subsequent nine SPOD modes in sequential
order.

St = 0.08 reported by Gamard et al. (2004), which corresponds in our notation to ω = 0.5.
Note that, based on the self-similar scaling laws expressed by (3.1), (3.2) and (3.3), the
non-dimensional frequency ω can be interchanged, by definition, with a non-dimensional
streamwise coordinate χ , expressed as

χ =
(

x∗

D
− x∗

0
D

) √
ω∗bD
Au0

= √
ω. (4.5)

Hence, the pronounced increase in energy of the m = 1 mode from low to
moderate frequencies as indicated by the energy spectrum is equivalent to a spatially
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growing structure. Within this notation, all higher azimuthal wavenumbers can be seen
as spatially decaying structures, at least within the resolved frequency range.

Figure 7(b) reveals that all modes feature low-rank dynamics over a very wide frequency
range. The low-rank dynamics is most pronounced for azimuthal wavenumber m = 1,
with an exception at very low frequencies. Towards very high frequencies, the low-rank
behaviour decreases for all other azimuthal wavenumbers. Furthermore, with increasing
azimuthal wavenumber m > 2, the low-rank dynamics decreases continuously. In total,
the first SPOD mode captures between 50 % and 70 % of the total kinetic energy at
each azimuthal wavenumber. Hence, a substantial proportion of the broadband turbulent
spectrum is represented by only the first SPOD mode, indicating that dominant coherent
structures are present in the far field dynamics. In comparison to the jet near field,
the dominance of the first SPOD mode in almost the entire frequency and azimuthal
wavenumber ranges stands out as a characteristic of the far field. In the near field, low-rank
behaviour is restricted to low to mid-range frequencies, as shown by Schmidt et al. (2018),
and substantially decreases with increasing azimuthal wavenumber.

Turbulent production (4.4) is shown in figure 7(c), with the black lines representing the
production calculated based on the first SPOD mode and the red line marking the total
production from all SPOD modes at a given azimuthal wavenumber (Ptot

m,ω = ∑
i Pi

m,ω).
Both quantities are positive for all frequencies and all azimuthal wavenumbers, except for
the axisymmetric m = 0 mode. Thus, besides this exception, energy is transferred from the
mean to the turbulent field for all resolved frequencies. Moreover, for moderate (ω > 1)
to high frequencies (ω > 5) and azimuthal wavenumbers, the production captured by the
first SPOD mode (black line) equals the total production. This implies that the SPOD
neatly isolates the anisotropic coherent structures that determine the energy flux from the
mean to the turbulent field. As will be shown in § 5.3, the highest resolved frequencies
reach into the inertial subrange of the turbulent spectrum, where turbulence is typically
assumed to be isotropic and production is small. The onset of local isotropy is indicated by
the increase of relative energy of the subdominant SPOD modes at high frequencies (see
figure 7b), which represent the non-productive isotropic structures. This can be concluded
from the strong congruence of total production and the production of the leading SPOD
mode only.

The axisymmetric mode m = 0 reveals exceptional behaviour and requires further
discussion. It is the only mode that features negative production in a certain frequency
range and shows generally very low levels of production (note the linear scaling of the
y-axis for the production of m = 0 shown in figure 7c). Similar findings with respect to
the production of the m = 0 mode were reported by Hodžić (2018). Within that work, the
production was calculated based on a POD decomposition of the velocity fluctuations in a
cross-stream section of the flow. Herein, m = 0 showed very low values for the production
over the entire radius while m = 1 to m = 10 strongly contributed to the overall turbulent
production.

Finally, the three-dimensional spatial structure of the leading SPOD mode of azimuthal
wavenumber m = 1 is shown in figure 8. It is reconstructed by combining streamwise
and cross-stream data and exploiting the self-similar nature of the turbulent flow.
A demonstration of the self-similarity of the SPOD modes is shown in the Appendix in
figure 18 for m = 1 and figure 19 for m = 3. Further details on the reconstruction of the
self-similar wavepacket are also provided in the Appendix. The self-similar wavepacket
in figure 8 shows the real part of the three velocity components, where (a) corresponds
to the axial component, (b) the radial component and (c) displays the tangential velocity
component. As indicated by the two different abscissas, the structure can be represented
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Figure 8. Self-similar wavepacket of m = 1 mode. Axial (a), radial (b) and tangential (c) velocity components.
SPOD modes on the right are shown for ω = 1 taken at x = x∗/D = 50 and x = x∗/D = 80, demonstrating the
self-similarity of the wavepacket. Black dashed circle marks characteristic length scale r1/2.

in terms of the non-dimensional frequency ω or non-dimensional streamwise coordinate
χ , which are related via the self-similar scaling laws (4.5). The radial coordinate is scaled
accordingly as ρ = (r∗/D)

√
ω∗bD/Au0. Hence, the displayed wavepacket represents the

fluctuations of the m = 1 mode at any dimensional frequency or spatial location within the
flow. On the right in figure 8, the SPOD modes derived from data in the two cross-sections,
x = x∗/D = 50 and x = x∗/D = 80, are displayed at a non-dimensional frequency of
ω = 1 to illustrate their self-similar nature.

The self-similar representation of the wavepacket clearly reveals spatially growing and
decaying regimes in terms of streamwise distance or frequency. The same was already
elucidated from the m = 1 SPOD spectra (figure 7a). It is further interesting to note that,
at short streamwise distance (or low frequencies), where turbulent production is high,
the structures are located in the outer region of the jet, while with larger streamwise
distance (and higher frequency), the structure decays and is located closer to the jet centre.
A detailed description of the growth mechanisms of this structure is not the focus of this
work and will be the topic of future work.

5. Linear modelling of coherent structures

In this section, two methods are employed to model the coherent structures in the far field
based on the linearized mean-field equations: a local spatial linear stability analysis (LSA)
and a local resolvent analysis (RA). Both analyses are based on the measured self-similar
mean velocity profile with the mean flow assumed to be quasi-parallel with respect to the
axial wavelength of the fluctuations. This holds true for coherent structures at moderate to
high frequencies and wavenumbers, which are the main focus of this study.

5.1. Local LSA
For the LSA, the time- and space-dependent flow u(x, t) is decomposed into a
time-averaged part ū(x), and a fluctuating part u′(x, t):

u(x, t) = ū(x) + u′(x, t). (5.1)
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For the stability analysis we aim to describe the fluctuating part as normal modes.
Therefore, (5.1) is substituted into the full nonlinear equations of motion and the
continuity equation for an incompressible isothermal flow, which yields the following set
of differential equations in non-dimensional form:

∂u′

∂t
+ (u′ · ∇)ū + (ū · ∇)u′ + ∇p′ − ν∇2u′ = −(u′ · ∇)u′ + (u′ · ∇)u′, (5.2)

∇ · u′ = 0, (5.3)

with ν = ν∗/uclr1/2 as the non-dimensional kinematic viscosity. The first nonlinear term
on the right-hand side of (5.2) is neglected due to linearization ((u′ · ∇)u′ = 0) and
the second nonlinear term (u′ · ∇)u′ vanishes for frequencies ω /= 0. Furthermore, we
employ an eddy viscosity which modifies the linear operator. Based on dimensional
considerations, one may assume ν∗

t ∼ uclr1/2, which implies νt to be constant in x and
dependent on r. For the sake of simplicity, we employ an eddy viscosity that is also
constant in r. A radially dependent eddy viscosity was also tested which only had marginal
impact on the results of the LSA (not shown here). The effective νt was obtained by a
least-square fit of the Boussinesq equation to the measured mean profile and Reynolds
stresses according to

νt = − u′v′

dū/dr
, (5.4)

yielding νt = 0.0259, which corresponds to an effective Reynolds number of Reeff =
ν−1

t = 38.6. The two orders of magnitudes lower molecular viscosity ν was subsequently
neglected for simplicity. The eddy viscosity is incorporated in (5.2) and (5.3), yielding

∂u′

∂t
+ (u′ · ∇)ū + (ū · ∇)u′ + ∇p′ − νt∇2u′ = 0 (5.5)

∇ · u′ = 0. (5.6)

For the solution of (5.5) and (5.6) we employ a quasi-parallel spatial stability approach.
The fluctuating quantities are expressed as spatially growing or decaying normal modes
which are periodic in the axial and azimuthal directions, i.e.

u′(x, t) = û(r) exp(i(αx + mθ − ωt)) + c.c., (5.7)

p′(x, t) = p̂(r) exp(i(αx + mθ − ωt)) + c.c., (5.8)

where α is the complex streamwise wavenumber, ω the real frequency, m the real
azimuthal wavenumber, û the complex radial amplitude function and c.c. represents the
corresponding complex conjugate.

With the normal mode formulation (5.7) and (5.8), (5.5) and (5.6) can be rearranged
into an eigenvalue problem

Dq̂(r) = αEq̂(r), (5.9)

with complex eigenvalues α = αr + iαi and complex eigenfunctions q̂ = [û, p̂]T. Within
the analysis, homogeneous Dirichlet boundary conditions are set at r → ∞. On the jet
axis, the boundary conditions depend on the azimuthal wavenumber m. All boundary
conditions are set in accordance with the method used in Khorrami, Malik & Ash (1989),
which also involves a matrix companion method to reduce the quadratic eigenvalue
problem to a linear problem in α. The resulting eigenvalue problem (5.9) is solved
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Figure 9. (a) Growth rate −αi of least stable eigenmode vs frequency ω for azimuthal wavenumbers m = 0 to
m = 5. (b) LSA eigenvalue distribution for m = 1: growth rate −αi vs streamwise wavenumber αi at ω = 0.2
(unstable) and (c) at ω = 1 (stable). Colour coding corresponds to the alignment metric M between the first
SPOD mode and eigenfunctions from LSA.

numerically using a spectral method (Khorrami et al. 1989). Detailed explanation about
the numerical approach can be found in Oberleithner et al. (2011).

To obtain an overall assessment of the linear stability of the mean flow, figure 9(a)
depicts the spatial growth rate −αi obtained by the LSA for azimuthal wavenumbers
ranging from m = 0 to m = 5. The growth rates correspond to those of the leading (least
stable) mode at each azimuthal wavenumber and are shown as a function of frequency
ω. The results reveal that only mode m = 1 is linearly unstable with the neutral point at
ωn = 0.33. A spatio-temporal analysis was further conducted to ensure that the m = 1
mode is not absolutely unstable (not shown here). All other azimuthal wavenumbers
are stable over the entire frequency range. For m ≥ 2, the growth rates of the leading
mode continuously decrease with increasing m. This trend is in line with the SPOD
eigenvalue spectrum that shows less pronounced low-rank behaviour for higher azimuthal
wavenumbers.

To exemplify the LSA results, the eigenvalue spectrum of azimuthal wavenumber m = 1
is shown in figure 9(b) at a frequency of ω = 0.2 (unstable regime) and in figure 9(c)
at ω = 1 (stable regime). Both spectra show several discrete eigenvalues marked by
colour coded circles and a continuous spectrum. For ω = 0.2 two continuous branches
merge along αr ≈ 0 and two continuous branches merge at higher axial wavenumbers
that originate at −αi = 2 and αr = −2. The latter two branches strongly depend on
the frequency and move outside the shown domain for ω = 1 (Salwen & Grosch 1981;
Rodríguez et al. 2015). The eigenvalues within these branches depend on the numerical
discretization and contain core and shear-layer modes, as shown by Rodríguez et al. (2015).
In contrast, the discrete eigenmodes are numerically converged and reveal, for ω = 0.2, an
unstable mode that is separated from the remaining sub-leading modes. At ω = 1, the
leading mode is also separated from the sub-leading modes but features a negative growth
rate, corresponding to a spatially decaying mode. The overall structure of the eigenspectra
as shown here is the same for most frequencies and azimuthal wavenumbers considered
in this work, with a clear separation of continuous and discrete modes, even at very high
frequencies where the discrete modes are strongly damped. Only at near-zero frequencies
is it found that the discrete modes interfere with the third and fourth continuous branches.

In order to assess the congruence of the LSA eigenspectrum with the SPOD modes,
the discrete modes are colour coded with an alignment metric M. It is defined as
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Figure 10. Alignment between first SPOD mode and five least stable LSA modes. Alignment of leading
mode is shown in the top row and subsequent modes below.

(Cavalieri et al. 2013)

M = | 〈ûm,ω, a1
m,ω

〉 |∥∥ûm,ω

∥∥ ∥∥a1
m,ω

∥∥ , (5.10)

where the mode shapes are weighted by the radial coordinate r and 〈·, ·〉 denotes the inner
product between the weighted mode shapes from LSA and the first SPOD mode and ‖ · ‖
denotes the corresponding Euclidean norm. A value of M = 1 indicates perfect alignment
between the LSA eigenfunctions and the first SPOD mode while M = 0 corresponds to
completely uncorrelated mode shapes. As shown in figure 9(b,c) for both frequencies,
the leading mode agrees very well with the first SPOD mode. In the unstable regime
(ω = 0.2), the second least stable eigenvalue is also in fairly good agreement with the first
SPOD mode. In contrast, the leading mode in the stable regime (ω = 1) is the only mode
that shows excellent alignment with the empirical mode. The dominance of the leading
mode in relation to the sub-leading modes can be interpreted as a low-rank behaviour of
the LSA modes. This behaviour applies to a wide frequency and azimuthal wavenumber
range, as will be demonstrated in the following.

Figure 10 shows the alignment between the first SPOD mode and the five leading LSA
modes for various frequencies and azimuthal mode numbers. The congruence between the
first SPOD and leading LSA mode of azimuthal wavenumber m = 0, shown in the top
row of figure 10(a), is excellent over a wide range of frequencies. However, the agreement
drops at low and very high frequencies. At low frequencies, the third least stable mode
(third row) is in better agreement with the empirical mode shapes. For m = 0 the second
and fourth least stable modes are only weakly correlated with the SPOD modes with
values of M < 0.2. The poor alignment of these eigenmodes with the first SPOD mode
is reasonable since the second and fourth least stable LSA modes represent shear-layer
modes which are uncorrelated with the first m = 0 SPOD mode that represents a core
mode. The blank areas in the second, fourth and fifth lines correspond to regions where
the eigenvalues could not be distinguished from one another properly. For azimuthal
wavenumber m = 1, the leading LSA mode is in excellent agreement with the empirical
modes up to the highest resolved frequencies. At the lower end of the resolved frequency
range, the leading LSA mode does not represent the first SPOD mode and neither is any
sub-leading mode in agreement with the empirical modes. Thus, the leading LSA mode
shows dominant low-rank behaviour over almost the entire frequency range except for very
low frequencies. The blank areas in the alignment contours of the fourth and fifth least
stable modes in figure 10(b) are again due to difficulties in tracking the eigenvalues due
to their interference with the continuous spectrum. For azimuthal wavenumber m = 2,
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Figure 11. Mode shapes of tangential velocity component from LSA (a) and SPOD (b) at several frequencies
for m = 1. Black dashed circle marks characteristic length scale r1/2. (c) displays normalized magnitudes of
axial, radial and tangential velocity components at ω = 1. Solid lines correspond to LSA results and dashed
lines represent SPOD modes.

the leading LSA mode is in very good agreement with the first SPOD mode over the
entire frequency range and additionally the second leading mode is in good agreement
at low frequencies. Higher azimuthal wavenumbers m > 2 generally feature very similar
trends as observed for m = 2. In summary, at mid-range to high frequencies, the empirical
mode shapes of all azimuthal wavenumbers are represented very well solely by the leading
LSA mode which is clearly prominent in terms of alignment and separation from the
sub-dominant modes. This also holds for high azimuthal wavenumbers and frequencies
where the growth rate is negative and very low.

For a visual comparison with the experiments, the LSA mode shapes for azimuthal
wavenumber m = 1 are shown in figure 11(a) along with the first SPOD mode (b). The
displayed mode shapes correspond to the tangential velocity component and are shown
at five discrete frequencies. The black dashed circle marks the location of the half-width
radius r = 1. As observed in the alignment metric in figure 10(b), the match between the
LSA and SPOD modes is very good for a large frequency range, except for the lowest
displayed frequency of ω = 0.1. In figure 11(c), the normalized magnitudes of axial u,
radial v and tangential w velocity components are shown at a frequency of ω = 1. The
velocity is normalized such that the energy norm (

∫ ∞
0 (|u|2 + |v|2 + |w|2)r dr) for SPOD

and LSA modes equals 1. In figure 12 the same plot is shown for an azimuthal wavenumber
of m = 3. As quantified in figure 10(c) for m = 2 (which is also applicable for m > 2),
very good agreement between the LSA and SPOD mode shapes are observed over the
entire resolved frequency range.

5.2. Local resolvent analysis
LSA predicts the mean flow to be linearly stable for all modes except for the m = 1 mode at
low frequencies. However, SPOD reveals low-rank dynamics for structures within a wide
frequency and wavenumber range that correlates very well with discrete but stable LSA
modes. The occurrence of coherent structures in the flow that are in line with strongly
damped stable LSA eigenmodes suggests that the empirical modes are driven by nonlinear
forcing which cannot be accounted for by the LSA. This calls for a resolvent analysis (RA)
that is capable of determining the optimal response modes in linearly stable flows.

RA is carried out in a local framework following the approach of McKeon & Sharma
(2010) with the addition of an eddy viscosity model. In accordance with the LSA, the

919 A7-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

29
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.292


Guidelines for authors

2

ω = 0.1 ω = 0.3 ω = 1 ω = 3 ω = 8 ω = 1

–2

0r

2

–2

0r

321

r

1.2

1.0

0.8

0.6

0.4

0.2

0

N
o
rm

al
iz

ed
 |û
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ŵ
 | |û |
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Figure 12. Mode shapes of tangential velocity component from LSA (a) and SPOD (b) at several frequencies
for m = 3. Black dashed circle marks characteristic length scale r1/2. (c) displays normalized magnitudes of
axial, radial and tangential velocity components at ω = 1. Solid lines correspond to LSA results and dashed
lines represent SPOD modes.

linear operator is modified by introducing a constant eddy viscosity νt = 0.0259 and the
remaining nonlinearities are cast into a forcing term f that is interpreted as intrinsic
turbulent forcing. The resulting system of equations reads

∂u′

∂t
+ (u′ · ∇)ū + (ū · ∇)u′ + ∇p′ − νt∇2u′ = f ′. (5.11)

∇ · u′ = 0. (5.12)

As for the LSA, a normal mode ansatz is introduced. This ansatz applies to both response
and forcing modes

u′(x, t) = û(r) exp(i(αrx + mθ − ωt)) (5.13)

p′(x, t) = p̂(r) exp(i(αrx + mθ − ωt)) (5.14)

f ′(x, t) = f̂ (r) exp(i(αrx + mθ − ωt)). (5.15)

Here, αr is a real axial wavenumber, ω a real frequency and m the real azimuthal
wavenumber.

By introducing these ansatz functions, (5.11) and (5.12) can be reformulated as

q̂ = C(−iωI − L)−1Bf̂ = Hf̂ , (5.16)

where H refers to the resolvent operator. The resolvent analysis constitutes an optimization
problem whereby the optimization parameter is the gain defined as

σ 2 =

∥∥∥Ψ̃

∥∥∥2

∥∥∥Φ̃

∥∥∥2 . (5.17)

Here, Φ̃ and Ψ̃ correspond to forcing and response modes, respectively. The norm in (5.17)
is defined as the L2 norm. The optimal response modes Ψ̂ i and forcing modes Φ̂ i form an
orthonormal basis and are obtained by a singular value decomposition of the resolvent
operator H. A system is called to be of low rank, if the gain assigned to the optimal mode
is significantly higher than the remaining ones.
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Figure 13. Gain σ vs axial wavenumber αr at ω = 1 for m = 1, m = 2 and m = 3. Gain of the optimal mode
is plotted in black and the subsequent 9 sub-optimal modes are plotted in grey scale in sequential order.
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Figure 14. Gain σ vs ω for m = 1, m = 2 and m = 3 for optimal (black) and following 9 sub-optimal modes
(grey scale) in sequential order. Axial wavenumber αr corresponds at each frequency ω to the wavenumber
associated with the largest gain.

Within the present study, the linear operators in (5.16) are constructed via an finite
element method (FEM)-based formulation following the procedure of Kaiser, Lesshafft &
Oberleithner (2019). Analogous to the LSA approach, homogeneous Dirichlet boundary
conditions are set at r → ∞ and the boundary conditions on the jet axis depend on the
azimuthal wavenumber.

In figure 13, the optimal and sub-optimal resolvent gains are shown as a function of the
axial wavenumber αr at a selected frequency of ω = 1. For the three shown azimuthal
wavenumbers, a peak in the resolvent gain curves is observed, which flattens with
increasing azimuthal wavenumber, and the gap between the optimal and first sub-optimal
mode decreases. These trends are qualitatively in line with the growth rates −αi from LSA,
which continuously decrease with increasing m for m > 1.

In order to compare the results of the RA with the SPOD modes, an axial wavenumber
αr has to be selected for each frequency ω. Within the present study, the axial wavenumber
associated with the largest gain is selected, which corresponds approximately to the point
of maximum alignment between the SPOD and RA mode. Figure 14 shows the resulting
resolvent gain curves σ for the optimal and subsequent sub-optimal response modes as
a function of frequency. The trends observed in figure 13 are even more pronounced in
this representation. For m = 1, a very large gap between the gain of the optimal and
first sub-optimal mode can be observed almost over the entire frequency range. Only at
very high frequencies does the low-rank behaviour diminish. Furthermore, m = 1 is the
only azimuthal wavenumber for which a distinct peak in the gain spectrum is observed.
The gain of the optimal mode peaks at ω = 0.33. This corresponds to the neutral point
determined from LSA. At this point, the resolvent gain is infinite by definition. In the
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Figure 15. Alignment between first five SPOD modes and five optimal and sub-optimal RA modes.
Alignment of the optimal mode is shown in the top row and subsequent modes below.

unstable regime at frequencies below ω = 0.33, the RA is not properly defined and neither
the gain nor respective mode shapes are considered fully reliable. As the present analysis
targets a broad range of frequencies and azimuthal wavenumbers, the inconsistency
in this small frequency range appears acceptable. For m > 1 the gain of the optimal
mode continuously decreases with increasing frequency and azimuthal wavenumber.
Furthermore, the gain separation between the optimal and sub-optimal modes decreases,
showing less pronounced low-rank behaviour.

To assess the congruence between RA and the empirical modes, the alignment between
the first five SPOD modes and corresponding five RA modes is shown in figure 15 for
three azimuthal wavenumbers. The alignment between the first SPOD and optimal RA
mode for m = 0, 1, 2 shows very similar trends as for the least-stable LSA mode shown in
figure 10. Again, the agreement is excellent over the entire frequency range, except at very
low frequencies for m = 0 and m = 1 and at very high frequencies for m = 0. Interestingly,
the very good agreement in the high frequency regime is also present where the RA gain
curves cannot be considered low rank. The alignment between the sub-optimal RA and
SPOD modes is relatively weak throughout, except for m = 0, where a slight increase in
correlation towards lower frequencies is observable. The same applies to the sub-optimal
RA modes for m = 1 around ω = 0.4. However, note that the sub-leading SPOD modes
are substantially less energetic than the leading one, and the correlations are noisy and
inconclusive.

Overall, SPOD, LSA and RA show consistent characteristics. All three methods
indicate low-rank behaviour of the flow dynamics over a wide frequency and azimuthal
wavenumber range. From the empirical prospective, the azimuthal wavenumber m = 1 is
the most energetic and the SPOD mode shows the most pronounced low-rank behaviour.
The LSA reveals a corresponding single eigenmode that is the least stable compared to
all other azimuthal wavenumbers. Likewise, the RA reveals the largest gain and most
pronounced low-rank behaviour. For higher frequencies and azimuthal wavenumbers, a
reduction in SPOD mode energy and SPOD and RA low-rank behaviour is observed,
which goes along with the more stable LSA modes.

5.3. Accuracy of linear models in the context of turbulent scales
Since both modelling approaches, LSA and RA, show good agreement with the empirical
modes, we seek to relate them to the scales of the turbulent spectrum. Furthermore, the
congruence and discrepancies between the two models is assessed to potentially identify
mechanisms governing the far field dynamics.
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Figure 16. (a) spectral density estimates from spatial Fourier analysis on jet axis. Markers in (a) represent an
estimate of the highest resolved axial, radial and tangential wavenumbers associated with the first SPOD mode
for m = 5. (b) dispersion relation for m = 0 to m = 5 for LSA (solid) and RA (dashed).

To generally classify the turbulent scales resolved in this study, the empirical and
analytical data are presented as a function of the axial wavenumber. For the empirical
data, a wavenumber spectrum is determined from a spatial Fourier transform of the SPIV
data taken in streamwise sections of the flow, following the method proposed by Wänström
(2009). On the jet axis, the wavenumber spectrum reduces to

û(κ) =
∫

ξ

u′(ξ) e−iκξ dξ, (5.18)

where ξ = ln(x − x0) is the logarithmically scaled axial coordinate as proposed by Ewing
et al. (2007) and κ the corresponding non-dimensional axial wavenumber. The latter is
related to αr, with αr = bκ and b being the jet spreading rate. The fluctuating velocity
u′ in (5.18) is normalized by ucl. Based on the wavenumber spectra, the spectral density
estimates are determined for the axial normal stresses Ψuu according to

Ψuu(αr) = 1
2π

û†(αr)û(αr), (5.19)

and respectively for the radial normal stresses Ψvv .
In figure 16(a) the derived spectral density estimates are shown. From the shape of

the wavenumber spectrum, the turbulent scales can be classified in the outer productive
range with strong anisotropic turbulence (αr < 4) and the inner scales that behave
nearly isotropic, characterized by the αr

−5/3 slope, which is characteristic of the inertial
subrange. The approximate isotropy of the turbulent scales is also indicated by the
equality of the axial and radial normal stresses. The increase of the energy at very high
frequencies/wavenumbers is due to the noise floor of SPIV. Overall, the spectrum shows
that the scales resolved by SPIV reach far into the inertial subrange.

In order to display the LSA and RA modes as a function of the axial wavenumber, the
dispersion relation is required, which is shown in figure 16(b). The solid lines correspond
to the LSA results and are directly derived from the least stable LSA mode. The dashed
lines represent the RA results, which correspond to the axial wavenumber associated with
maximum gain (refer to figure 13). The LSA and RA dispersion relations agree generally
very well.

To assess the LSA- and RA-based modelling with respect to the turbulent scales, the
alignment metrics (5.10) between the leading LSA and optimal RA modes and the first
SPOD mode are displayed in figures 17(a) and 17(b), respectively, as a function of the
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Figure 17. Alignment of mode m = 0 (top) to m = 5 (bottom) of first SPOD mode and leading mode from
LSA (a) and for first SPOD mode and optimal response mode from RA (b). Alignment between leading LSA
mode and optimal RA mode is shown in (c).

axial wavenumber for azimuthal wavenumbers m = 0 to m = 5. Both types of analyses
show strikingly similar trends. Particularly for axial wavenumbers higher than αr = 4,
which are associated with the inertial subrange in the averaged turbulent spectrum, a
surprisingly good correlation between both models and the first SPOD modes is observed.
A slight deterioration of the alignment at the upper end of the wavenumber range can be
attributed to aliasing effects/the PIV noise floor that affects the turbulent spectrum. The
discrepancies between models and empirical modes at higher wavenumbers for m = 0
seem to be of a physical nature.

As the SPOD modes are anisotropic, their axial wavenumber is not necessarily the same
as the radial and azimuthal wavenumbers. In fact, as can be inferred from figure 12, the
SPOD and analytic modes feature lower radial and azimuthal wavenumbers in comparison
to the axial wavenumbers. To account for this, the dominant radial and tangential
wavenumbers of the first SPOD mode are estimated from the shape of the m = 5 mode
at a frequency of ω = 10, which corresponds to the mode with the smallest scale resolved.
The wavelength in radial direction is estimated by visually inspecting the shape of the
radial and tangential velocity components in dependence on the radial coordinate. The
wavelength in the azimuthal direction is evaluated at the radial location where the radial
and tangential velocity magnitudes reach their peak values, which approximately coincide.
The resulting wavenumbers are αrad = 2π/λrad ≈ 5.24 and αtang = 2π/λtang ≈ 5. The
axial wavenumber is determined from LSA as αax = αr = 10.1. All three values are
indicated by yellow markers in figure 16(a). It shows that, although the radial and
tangential wavenumbers are lower than the axial wavenumber, all three scales reach into
the inertial subrange.

The comparison of the length scales of the leading SPOD mode with the turbulent
spectrum allows for a number of observations. Even for the highest resolved frequencies,
the first SPOD mode yields non-negligible production and anisotropic structures
(confirmed by figure 7). Meanwhile, an increase in isotropic turbulence is reflected
by a weakening of the low-rank behaviour of the SPOD modes. Thus, the small-scale
isotropic structures associated with the inertial subrange must primarily be represented
by subdominant SPOD modes which are neither captured by sub-optimal RA modes (see
figure 15) nor by sub-leading LSA modes (not shown here). Nevertheless, the comparison
with turbulent scales shows that both RA and LSA are capable of successfully modelling
a remarkably large range of frequencies in the jet far field.

In a study by Sasaki et al. (2017), high frequency wavepackets were modelled based on
parabolized stability equations (PSE) in the jet near field for m = 0 to m = 4. In this study,
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very good agreement in the alignment was reported between the leading PSE mode and
SPOD mode, which was obtained in the full spatial domain. This applied to a very wide
frequency range and all investigated azimuthal wavenumbers. However, high values of
alignment were only found in the spatially unstable regime and the alignment deteriorated
quickly in the decaying regime. These contrasting findings with regard to stable modes
at high frequencies may be explained by the following aspects of the fully developed
turbulence in the jet far field. First, in the present study, an eddy viscosity model is used
that is known to work well in the jet far field. Second, the modelled coherent structures
show positive production throughout the entire frequency range, which links them to the
mean field. This is not necessarily the case for the jet near field. Potentially, this explains
why linear models based on the mean flow capture such a wide range of the far field
dynamics.

Since both modelling approaches, LSA and RA, yield very similar values in the
alignment with the first SPOD mode over a very wide range of turbulent scales, we seek
to determine congruence and discrepancies between the two models.

In figure 17(c) the alignment between the least stable LSA and optimal response
modes are shown. Astonishingly, the alignment for low and moderate azimuthal and axial
wavenumbers is almost perfect. In this regime, the resolvent gains associated with the
optimal mode show low-rank behaviour and the LSA growth rate is not too far from
zero. Those conditions typically result in a strong agreement between LSA and RA
(Beneddine et al. 2016; Symon et al. 2018) unless a pseudo-resonant mechanism (based
on non-normality of the linear operator) is present.

Interestingly, figure 17(c) indicates that, for azimuthal wavenumbers m ≥ 3, the
alignment between each model and the first SPOD mode is better than the alignment
between the two models. This results from the radial position of maximum velocity
fluctuation magnitude that differs between the models. In relation to the first SPOD mode,
the LSA eigenfunctions are centred slightly closer to the jet axis whereas the resolvent
modes are located further away from the jet axis.

Despite the small difference between the modelling results, very good agreement
between both models and the empirical modes is obtained for higher azimuthal and
streamwise wavenumbers. This is also true for the high wavenumber regime, where the
LSA predicts strongly decaying modes and where the RA modes do not feature low-rank
behaviour. The good match between LSA and RA strongly hints toward a predominantly
resonant stability mechanism with negligible pseudo-resonant amplification (Symon et al.
2018).

Figure 17(a,b) further shows a deviation of both models from the empirical SPOD
modes at low axial wavenumbers for m = 0 and m = 1. This deviation may be linked
to non-parallel flow effects that are relevant at very low axial and azimuthal wavenumbers.
This is supported by the work of Mullyadzhanov et al. (2019), where a local (or
quasi-global) LSA of the Landau jet was performed in spherical coordinates which
takes the non-parallel base flow into account. They observed strong deviations from a
local quasi-parallel approach for modes m = 0 and m = 1 at low frequencies that are
associated with high axial wavelengths, while the results converged for high frequencies
and corresponding short axial wavelengths. This suggests that the current mismatch at low
frequencies observed for m = 1 and m = 0 is attributed to non-parallel flow effects rather
than non-modal stability mechanisms.

On a more general note, discrepancies between the two modelling approaches can also
stem from the eddy viscosity model employed in the analysis. The LSA was found to be
very robust towards small changes in the eddy viscosity, whereas the local RA reacted
quite sensitively, which leaves room for further improvement.
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6. Conclusions

The self-similar region of an axisymmetric turbulent jet at a Reynolds number ReD =
17 000 was experimentally investigated by means of time-resolved stereoscopic particle
image velocimetry. The two-dimensional-three-component (2D-3C) velocity data allowed
the resolution of a large range of turbulent scales reaching far into the inertial subrange.
The key goal of the present study was to extract self-similar coherent structures in the mid
to high wavenumber/frequency regime and compare them with models from linearized
mean-field stability theory. To this end, SPOD was employed to decompose the velocity
fields into coherent structures with different azimuthal wavenumbers and frequencies. For
the modelling, LSA and RA were carried out in a local parallel framework based on the
self-similar mean flow profiles and a simple eddy viscosity model to modify the linear
operator.

It was shown that the presented dataset follows consistently self-similar scaling laws in
terms of centreline velocity, velocity half-width radius, mean field, Reynolds stresses and
turbulent spectra. Furthermore, we provided evidence that the wavepackets observed in
this jet flow also scale according to similarity theory.

The modes extracted via SPOD show low-rank behaviour over a wide frequency range
and for all azimuthal wavenumbers considered in this study. Mode m = 1 features the
most pronounced low-rank dynamics, which persists up to the top end of the resolved
frequency range. Considering the turbulent production of the leading SPOD modes, all
azimuthal wavenumbers, except for m = 0, feature positive values throughout the entire
resolved frequency range. For moderate to high frequencies, the total turbulent production
is dominated by the first SPOD mode. This indicates that, in this frequency range, the first
SPOD mode captures the anisotropic part of turbulence, which extracts energy from the
mean flow, whereas the subsequent SPOD modes represent isotropic turbulent structures.

The empirical SPOD modes were compared to analytical modes based on mean field
stability theory. A classical local stability analysis was conducted, which determined that
only m = ±1 is linearly unstable, whereas all other azimuthal wavenumbers m were found
to be stable. Unexpectedly, even for very high frequencies and azimuthal wavenumbers
where all eigenmodes are strongly damped, a single discrete least stable eigenvalue could
be identified that correlates very well with the first SPOD mode.

Analogous to LSA, the RA gain spectrum shows pronounced low-rank behaviour for
a wide range of frequencies and excellent agreement with the SPOD. Unexpectedly, the
agreement is also excellent at very high frequencies and wavenumbers where neither the
RA nor the SPOD show low-rank behaviour. The RA further shows the exceptional role of
mode m = 1, with the most pronounced low-rank behaviour also at very high frequencies.

In conclusion, both linear analyses, LSA and RA, yield modes that are in very good
agreement with the empirical SPOD modes even in regimes where the LSA predicts stable
strongly damped modes and the RA modes do not feature low-rank behaviour. Thus, the
linear analysis based on the mean field captures the dynamics in terms of eigenmodes
(LSA) and optimal response modes (RA), however, the nonlinear forcing that drives
the empirical modes cannot be considered by the LSA, which predicts strongly negative
growth rates. The congruence between LSA and RA modes suggests that the amplification
mechanism of the coherent structures is predominantly resonant where non-normality only
plays a subordinate role. Discrepancies in the alignment between the empirical SPOD
modes and modelled modes at low frequencies for m = 0 and m = 1 are likely to be
attributable to non-parallel flow effects.

The current work shows that mean flow LSA and RA are capable of modelling a
large part of the broadband dynamics of self-similar jet turbulence. In terms of the

919 A7-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

29
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.292


P. Kuhn, J. Soria and K. Oberleithner

considered azimuthal wavenumbers, m = 0 to m = ±5 capture approximately 77 % of the
total turbulent kinetic energy in the jet far field. With respect to the turbulent spectrum,
good agreement of the modelled modes with the empirical SPOD modes is obtained up
to the highest resolved frequencies, which reach into the inertial subrange of the turbulent
spectrum. Furthermore, no substantial deterioration of the modelling quality is observed
in this range.

Based on these observations, we hypothesize that the validity of mean-field-based
models in self-similar turbulent jets over such a wide frequency range and for decaying
stable modes can be attributed to three main factors. First, we use an eddy viscosity
model which is known to work well in the far field. Second, due to self-similar scaling
the eddy viscosity is constant in the axial direction, and also for all frequencies. Third, the
turbulent production is positive in the entire resolved frequency range (except for m = 0).
Hence, energy is transferred from the mean flow to the coherent structures, establishing
a connection between the mean field and the mean-field-based models in a very wide
frequency range.
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Appendix. Reconstruction of self-similar wavepacket

We seek to extract a wavepacket representation of the coherent structures that follow
self-similar scaling laws. In this section, the procedure for how we reconstruct such
a three-dimensional wavepacket for azimuthal mode m = ±1 is presented, along with
evidence for the self-similar scaling of these wavepackets. Within this process, all acquired
data from streamwise and cross-stream sections of the flow are taken into account, as
visualized in figure 2.

The three-dimensional reconstruction of the m = ±1 mode is performed in self-similar
coordinates according to the following procedure: overall, three quantities are required.
The first two quantities are obtained via SPOD from cross-stream data; the radial
amplitude distribution (|û(r)|, |v̂(r)|, |ŵ(r)|) and the radial phase angle (arg{û(r)},
arg{v̂(r)}, arg{ŵ(r)}) in dependence on ω serve as a basis for the wavepacket
reconstruction. To obtain smooth amplitude and phase angle distributions, data from both
cross-stream measurement domains (x = 50 and x = 80) are processed individually and
averaged subsequently. A comparison of m = 1 mode shapes from the two cross-stream
sections is shown in figure 18 to illustrate the self-similarity of SPOD modes. In addition,
the same plot is shown for m = 3 in figure 19. As a third quantity in the three-dimensional
reconstruction, a relation between self-similar phase velocity cph = c∗

ph/ucl on the jet axis
and frequency ω is required.

The phase velocity can be extracted for mode m = ±1 from streamwise measurement
domains by the procedure illustrated in figure 20. As a first step, each snapshot is
decomposed into fluctuations that are symmetric and antisymmetric with respect to the
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Figure 18. Mode shapes of axial (û), radial (v̂) and tangential (ŵ) velocity components for m = 1 at
frequencies ω = 0.5 (a,c) and ω = 1.5 (b,d). (a,b) Show data from cross-section x = 50 and (c,d) from x = 80.
Velocity components are normalized by the maximum of the axial component. Black dashed circle marks
characteristic length scale r1/2.
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Figure 19. Mode shapes of axial (û), radial (v̂) and tangential (ŵ) velocity components for m = 3 at
frequencies ω = 0.5 (a,c) and ω = 1.5 (b,d). (a,b) Show data from cross-section x = 50 and (c,d) from x = 80.
Velocity components are normalized by the maximum of the axial component. Black dashed circle marks
characteristic length scale r1/2.

jet centreline. In a streamwise section of the flow, mode m = ±1 is represented by
antisymmetric fluctuations, therefore, we only consider these velocity fluctuations in all
three velocity components. Please note that the illustrated decomposition in step 1 in
figure 20(a) displays the axial and transverse (instead of radial) components and omits
the tangential component for the sake of brevity.

As a second step, we perform an SPOD (see figure 20b) based on this conditioned
dataset. The resulting SPOD modes are expected to correspond mainly to mode m = ±1
because this is the most dominant antisymmetric mode and can be identified by the
non-zero velocity fluctuation of the radial/transverse component on the jet axis, as shown
in figure 20(b). A comparison of the radial amplitude distribution from streamwise and
cross-stream data, as well as frequency spectra, confirms this assumption (not shown here).

As a third step, we extract the phase angle φ on the jet axis from the first SPOD mode at
each dimensional frequency ω∗ (see figure 20c). For the extraction, the radial/transverse
velocity component v̂ is chosen since the corresponding phase angle distribution is fairly
constant along the radius. In figure 20(c) the extracted phase angle is shown in dependence
on x∗ for various frequencies.
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Figure 20. Schematic of the extraction of self-similar wavenumber αr from streamwise data for the
reconstruction of wavepackets.
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Figure 21. Self-similar wavenumber αr for m = 1 extracted from streamwise flow data. Dimensional
frequency ω∗ increases with lighter colours. Red dashed line marks fit with αr = 1.524 ω0.7205.

In step four, a streamwise wavenumber is calculated from the extracted phase angle
for each frequency mode. This quantity can be transferred into self-similar coordinates,
reading αr = (dφ/dx∗)r1/2. It is shown in figure 21 for all frequency modes plotted
against ω. The second axis on top marks the self-similar streamwise coordinate χ .
Accordingly, the streamwise wavenumbers of all extracted wavepackets determined at
different frequencies collapse to a single curve when plotted in a self-similar fashion.

For m = ±1, we can now reconstruct a wavepacket that scales in accordance with
similarity theory. Since the SPOD modes are not as distinct at higher frequencies,
the extracted phase angles are somewhat noisy. This results in a wavy pattern of the
wavenumber αr, as seen in figure 21. In order to obtain smooth results for the wavepacket
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reconstruction, the data are approximated by the analytic expression αr = 1.524 ω0.7205,
which is also shown as a red line in figure 21. Both investigated axial domains
(35 < x < 74 and 48 < x < 95) result in the same self-similar wavenumber αr, which
corroborates the self-similar state of the flow and the validity of this approach to extract
this information from streamwise data. The self-similar phase velocity is then calculated
according to cph = c∗

ph/ucl = ω/αr = 0.6562 ω0.2795 and the wavelength is derived by
λ = 2π/αr.

Up to this point in the analysis, the self-similar scaling of the wavepacket was an
assumption based on the self-similarity of the statistical quantities and turbulent spectra.
The fact that the determined wavenumber αr can be transferred from an axial dependence
to a dependence on ω justifies this assumption a posteriori.
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