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SUMMARY
This paper deseribes the control of multi-arm co-operating
manipulator systems handling a common object. Inverse
dynamics controllers with motive force compensation are
developed for the co-operating fixed-base, free-floating, and
free-flying space manipulator systems. Further, the relative
performances of all the three configurations are compared
on two tracking problems.
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manipulators.

1. INTRODUCTION
One of the most important and increasingly popular areas of
robotic systems research is the co-operative robotic system.
This is because of the capability of co-operating manip-
ulators to handle more difficult jobs that cannot be easily
handled by a single manipulator. These jobs include
handling large, heavy or non-rigid objects; mating of
mechanical parts; and space robotic applications. The
potential of these systems can only be achieved through an
efficient co-ordination control strategy. However, the con-
trol and analysis of co-ordinated systems to maintain any
desired co-operation are much more complex due to the
presence of inherent kinematic and dynamic interactions. In
addition, a set of closed kinematic chains is formed when
the object is held rigidly by a number of manipulators.
Further, when the contact surface is rigid, then the contact
force is a constraint reaction. Then, for this constrained
system with reduced degrees of freedom, the contact force
can only be controlled by directly controlling the actuator
torques.1 Then, this condition imparts sundry kinematic and
dynamic constraints on manipulator position, velocity and
acceleration. Thus, a co-operative manipulator system
cannot be controlled independently to meet given tracking
criteria. This is mainly due to the fact that an individual
controller associated with a particular manipulator would
respond to its own tracking errors regardless of the actions
of the other manipulators, thereby leading to the reduced
life span of components, parts damaging, and the satellite
tumbling out of control in space, etc.

Co-operative arm control methods broadly fall into three
categories:2 (i) the master-slave control,3–7 (ii) the hybrid
position/force control8,9 and (iii) the dynamic co-operation
method.10–12 In the master-slave method, the master arm is

position controlled and the slave arm follows the master
with a force feedback. Thc major problem associated with
this method is that the impedance of the slave arm must be
very small to exactly follow the motion of the master arm.
Further, it is not clear how the torque will be distributed
optimally among the arms during task execution. Due to
these reasons, the master-slave method is not effective at all
for co-operative control.9,13

The hybrid position/force control method of Raibert and
Craig14 was extended by Hayati8,15 to multi-arm co-
operating robots. In this control method, the extra degrees of
freedom of the multiple manipulator system are used to
control the internal force. This hybrid control method has
been criticised as being fundamentally flawed. A critical
analysis with a historical perspective on hybrid control
methods can be found in Vukobratovic and Stojic.17

Dynamic co-operation strategies take into account both
manipulator and object dynamics and use a computed
torque control algorithm to achieve the desired task.
Computed torque control-based approaches have the advan-
tage of being extended easily to various different types of
contact such as sliding, rolling etc.18,19 Luecke and Lai20

presented a joint error controller for multiple manipulators.
In this work, the internal force is cancelled by modifying
the trajectory specification by an amount proportional
to the internal force. Wen and Kreutz21,22 inde-
pendently developed a decoupled control approach for
multiple manipulators. Caccavale et al.23 have described a
task-space regulation scheme for a dual manipulator system
tightly grasping a rigid object. The regulator is based on
kinetostatic filtering of the control action and internal force
feedback.

A few numbers of publications are available on multiple-
arm space manipulator systems. Murphy et al.24 imple-
mented the control algorithm of Rodriguez25 control a dual-
arm co-operating manipulator system handling a common
object such that the centre of mass of the object achieves a
point-to-point motion control. However, they have reported
that the integration error amplifies the error in the tip forces,
which in turn leads to instability by violating the kinematic
constraint due to the closed chain. They have suggested a
possible method to overcome this problem by choosing one
arm to be a reference arm and then calculating the velocities
of the other arm from that of the reference arm. Then, these
velocities are integrated to yield the actual joint angles.
However, it is not clear how their proposition is going to
avoid this instability, because this particular constraint on
end-effector velocities is already included in the controller
development phase. Apart from this, they have also not
simulated any internal force controllers. Yokoji et al.26

developed an efficient resolved acceleration control
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algorithm for the generalized Jacobian matrix of a multi-
arm space manipulator system. They have shown that the
computational complexity of resolved acceleration control
and generalised Jacobian are two and five times greater than
that of their fixed-base counterpart, respectively. Papado-
poulos and Moosavian27 described the kinematics and
dynamics of multi-arm manipulators using body-fixed
barycentric vectors, and simulated that for target chasing
and capture operations in space. They advocated a structur-
ally simple transpose Jacobian control method because of its
simplicity and reduced computational burden compared to
model-based control algorithms. Yale and Agrawal28 dis-
cussed repositioning of an object rigidly grasped by space
free-floating manipulators. They used a polynomial refer-
ence trajectory and reported good control performance. Hu
and Vucovich29 used the concepts of Murphy et al.24 to
control a multi-arm free-floating space manipulator system
handling an object. They also used momentum conservation
and an inertially fixed system centre of mass to represent
spacecraft velocity in terms of the actively controlled joint
velocities. However, the incorporation of these features
rather restricts the workspace and increases the dynamic
singularity problems. In addition, the momentum conserva-
tion does not hold good when the manipulator end-effectors
are in contact with some surface. Thus, it severely restricts
the generality of any modelling and control philosophy.
They implemented a computed torque like, hybrid position/
force controller to track a desired trajectory of the centre of
mass of the object.

It can be observed from above that multiple co-operating
manipulators are independently studied, particularly for
fixed base and free-floating space manipulator systems.
However, no detailed work appears to have been carried out
on the multi-arm, co-operating, space, free-flying systems.
Moreover, no studies have been reported on the behaviour
of all the different manipulator systems in an integrated
environment. Therefore, in this paper, in addition to the
development of the control algorithms for fixed-base, free-
floating and free-flying systems, broadly two aspects of
co-operating manipulator systems have been studied.

Firstly, independent behaviour of all the three configurations
is analysed to solve a particular task. Secondly, an
integrated analysis of all these manipulator systems is
presented to solve different tasks.

The major goal of this paper is to design, develop and
analyse control algorithms for fixed base, free-floating and
free-flying space manipulator systems to deal with the same
task but in different environments. Further, the aim is to
compare the relative performances of the three different
manipulator configurations, with particular emphasis on
space manipulation tasks.

To achieve the desired goal set for this paper, the dynamic
model of multi-arm cooperative manipulators are discussed
briefly in Section 2. Then, Section 3 presents the representa-
tion issues specific to multi-arm manipulator systems
mounted on a single platform and handling a common
object. In Section 4, the issues related to the internal forces
are discussed. Then, Section 5 deals with the development
of control algorithms for fixed base, free-floating and free-
flying manipulator systems. Section 6 presents the test
problems and the experimental set-up for the numerical
simulation of the control algorithms. The simulation results
for fixed-base, free-floating and free-flying manipulator
systems are presented in Section 7. Finally, in Section 8, the
paper is summarised.

2. DYNAMIC MODEL OF THE MULTI-ARM
MANIPULATOR SYSTEMS

2.1. Notations and kinematics
The spatial operator algebra (SOA) framework30–33 has been
used to represent the dynamics model of the multi-arm
unconstrained manipulator system. The general model of a
multi-arm co-ordinating space manipulator system with m-
robots handling a common object, which are then mounted
on a completely free base, is shown in Figure 1. Each robot
consists of n rigid bodies known as links. Each adjacent link
is connected by means of a joint with multiple degrees of
freedom. For a space manipulator system, the base is mobile
with complete motion freedom, where the attitude can rotate

Fig. 1. A multi-arm co-ordinating space robotic system.

Co-operating systems272

https://doi.org/10.1017/S0263574703005599 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005599


about three axes as well as translate along spatial x, y and z
axes, can be modelled as a six degree of freedom joint.

Without loss of generality, we have assumed that only one
external spatial force fb is applied to the moving platform of
the system. In the absence of any external force, the
momentum of the whole system can be treated as a constant.
In space operation, often to conserve energy, the spacecraft
thruster is closed once the robotic system acquires the
required position. This type of system is called free-
floating.34 On the other hand, in the case of a free-flying
manipulator system, both the spacecraft and manipulators
are controlled simultaneously. Now, for the free-flying
robotic systems, the spacecraft thruster force required to
control its position and attitude can be equivalently
modelled as an external force acting on the platform. Hence,
in the case of a free-floating space robotic system, this
external force can be assumed to be zero.

A space manipulator system possesses base-invariance
symmetry,35 which states that any of its constituent rigid
bodies (links or spacecraft) can be chosen as a base body or
prime body (PB).36 Saha36 has shown that the end-effector
serving as a PB results in computationally efficient
kinematic equations if the end-effector motion is the only
concern, otherwise it is essential to choose the moving
platform or the spacecraft as the PB. Thus, in this paper, the
spacecraft is chosen as the PB. Further, in this paper, both
manipulator joint motion variables (relative translation or
rotation) and spacecraft motion variables constitute the
generalized co-ordinate vector. The co-ordinate frames
associated with all the variables are shown in Figure 1.

The transformation matrix for the multi-arm manipulator
system can be given by37

X=diag(X1X2 . . . Xm)��6nm� 6nm

where Xk��6n� 6n for k�(1, . . . m) are lower triangular
matrices whose elements consist of transformation matrices

i
i�1 Xj��6� 6.

The end-effector spatial velocity expressed in the end-
effector frame can be represented as

Ve =BXbVb +BX�q̇=JbVb +Jqq̇ (1)

where Jb��6m� 6 is the base Jacobian, Jb��6m� dm is the
link Jacobian and B=diag(B1B2 . . . Bm)��6m� 6nm, Bj =
[0 . . . 0 n+1

nXj]��6� 6n, V=[VT
1VT

2 . . . VT
m]T��6nm, Xb =[bX

T
1

bX
T
2 . . . bX

T
m]T��6nm� 6, modal matrix �=diag(�1�2 . . .

�m)��6nm� dm, and q̇=[q̇T
1q̇T

2 . . . q̇T
m]T��dm. Hence, Jb =BXb

and Jq =BX�. Here, the subscripts b and q stand for base
and link joints, respectively.

2.2. Base dynamics
From Figure 1, the external base force fb��6 acting on the
CM of the base can be represented by

fb =MbV̇b +bb +XT
b(Dfe +MqV̇+b) (2)

where Mb��6� 6 is the base inertial matrix, V̇b��6 is the

base acceleration, and bb =
d

dt
(Mb)Vb��6 is the base bias

force.

Now, the base acceleration from Equation (2) can be
expressed as

V̇b =M� l
b {fb �bb �XT

b(Dfc +MqV̇+b)} (3)

2.3. Equations of motion
Now, by using equations described above, the inverse
dynamics equation is given as

T̂�JTfc =Mq̈+C (4)

where M is the generalised inertia tensor, J is the
generalised Jacobian matrix, C is the coriolis and centrifu-
gal force vector, and T̂ is the vector consisting of the
external base force fb and joint torque vector T.

2.4. Object dynamics
An object is assumed to be held rigidly by m manipulators.
The FBD of the object is shown in Figure 2. Then, the net
generalised force at the centre of mass of the object, due to
all the end-effector forces acting on it, can be represented
as21,38

fo =WTfe (5)

where WT =[n+1
n+2X

T
1

n+1
n+2X

T
2 . . . n+1

n+2X
T
m]��6� 6m, with (n+2)th

and (n+l)th joint representing object centre of mass and
end-effector contact point with the object, respectively;
fo =[�T

o fT
o ]T��6, with fo��3 and �o��3 the force and

moment vectors at the object centre of mass. The positive
definite matrix W is known as the grip matrix or grasp
matrix, which is non-singular.

Now, the transformation matrix n+1
n+2X

T
j = n+2

n+1Xj transforms
the contact force of the jth manipulator to its equivalent at
the centre of mass of the object. This can be defined as

n+2
n+1Xj =� E3

�j(qj)

03

E3
� (6)

where E3 and 03 are 3� 3 identity and zero matrices,
respectively, and

�j(qj)=

0

� n+2
n+1pj,z

n+2
n+1pj,y

n+2
n+1pj,z

0

� n+2
n+1pj,x

� n+2
n+1pj,y

n+2
n+1pj,x

0

(7)

where, n+2
n+1pj is the vector from the jth end-effector to the

centre of mass (CM) of the object and is represented in the
base frame.

Fig. 2. Free body diagram of the object held by m manipulators.
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The force balance equation for this object from its FBD in
Figure 2, can be represented as

fo =MoV̇o +bo (8)

where Mo��6� 6 is the object inertia matrix and bo =
d

dt
(Mo)

Vo��6 is the bias force on the object required to produce
zero object acceleration.

Now combining Equations (5) and (8), the dynamic
equation for the object can be obtained as

MoV̇o +bo =WTfe (9)

3. POSITION AND ORIENTATION
REPRESENTATIONS

3.1. Base
The base position and orientation vector xb��6 with respect
to an inertially fixed reference frame �w, can be expressed
as

xb =[�T
b rT

b]T (10)

where �b =[�b 	b 
b]
T��3 is the Euler 3-2-1 angle repre-

sentation for the orientation of the base, with �b, 	b, and 
b

being the rotations around x-, y- and z-axes, respectively.
Now, the spatial base velocity Vb can be represented as39

Vb =TBẋb (11)

where TB =diag(Tb E3)��6� 6, such that the base angular
velocity �b =TB�̇b��3.

Here, the base acceleration V̇b can be obtained by
differentiating Equation (11) so that

V̇b =TBẍb + ṪBẋb (12)

3.2. Object
The spatial velocity of the object can be expressed as

Vo =TOẋo (13)

where TO =diag(To E3), such that the angular velocity of the
object �o =To�̇o, xo =[rT

o �T
o ]T.

Now, the object acceleration can be obtained from the
time derivative of Equation (13):

V̇o =TOẍo + ṪOẋo (14)

3.3. Object and end-effector relationship
It was emphasised in Section 2.4 that the grasp matrix W
consists of the transformation matrices between the end-
effector space (�e) and the object space (�o). Now, for the
formulation of the W matrix, consider a planar rigid body
(object) tightly held by two manipulators as shown in
Figure 3. Here, the phase angle due to the rotation about the
z-axis is 
o. From Figure 3, let the magnitude of the length
of the distance between the origin of the end-effector frame
and the CM of the object be le for both the manipulators.
Then, the vector oep1 describing the position of the CM of the
object with respect to the end-effector of the first manip-
ulator can be represented as

o
ep1 =[� le cos(
o)� le sin(
o)0]T (15)

Similarly, for the second manipulator it can be expressed
as

o
ep2 =[le cos(
o) le sin(
o)0]T (16)

Now, the WT matrix can be represented as

WT =[n+2
n+1X1

n+2
n+1X2]=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 le sin(
o) 1 0 0
0 0 � le cos(
o) 0 1 0

� le sin(
o) le cos(
o) 0 0 0 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 � le sin(
o) 1 0 0
0 0 le cos(
o) 0 1 0

le sin(
o) le cos(
o) 0 0 0 1

(17)

The end-effector velocity vector presented in Equation (1) is
described in the end-effector frame. But, this can be
represented in the base frame as

Ve =RbBXbVb +RbBX�q̇

= J̄bVb + J̄qq̇ (18)

where Rb =diag( b
n+1 R1

b
n+1 R1 . . . b

n+1 Rm
b

n+1 Rm)��6m� 6m with
b

n+1Rj��3 as the rotation matrix of the end-effector frame of
the jth manipulator with respect to the base frame.

4. INTERNAL FORCE REPRESENTATION
The total end-effector force fe is calculated from Equation
(4), and can now be decomposed into a motion-inducing
part or motive force fm

e , and an internal force component f i
e.

This can be represented as:

fe = fm
e + f i

e (19)

Now, the force fo acting on the CM of the object represented
in the frame �o can be expressed from Equation (5) as

fo =WT(fm
e + f i

e)=WTfm
e (20)

where WTf i
e =0, due to the fact that all the internal forces

now will cancel each other and their net effect in the
common frame �o is zero.

Fig. 3. A planar rigid body manipulated by two end-effectors.
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Then, from Equation (20) the motion-inducing force fm
e

can be represented as

fm
e =(WT)#fo

=(WT)#WTfe (21)

where (WT)# is the pseudo-inverse of the matrix WT.
Now, the internal force fi

e can be represented as

f i
e = (E6m � (WT)#WT)fe (22)

where E6m��6m� 6m is an identity matrix.
Now, From Equation (22), it can be observed that the

internal forces are the projections of the end-effector forces
into the null-space of WT, i.e. WTf i

e =0.
Walker et al.40 showed that the weighting matrix WT

should be chosen judiciously so that the motion-inducing
and internal force components are completely separate from
each other. A unit-weighting matrix that is normally used
for pseudo-inverse calculations of a given matrix does not
yield a so-called no-squeeze solution.40 Walker et al.40

suggested a weighting matrix such that the pseudo-inversion
of WT can be expressed as

E3 0
��1 E3 W�T

1

(WT)# =
1

m

·

·

·

·
=

1

m

·
·
·

E3 0 W�T
m

��m E3

(23)

The pseudo-inverse solution in Equation (23) is known as a
no-squeeze solution and thus results in zero internal forces
and moments. Then, the use of Equation (23) in Equations
(21) and (22) results in the pure motion-inducing and pure
internal components of the external forces acting on the
object by the end-effectors.

5. DEVELOPMENT OF CONTROL ALGORITHMS
In co-operating manipulator systems, the end-effectors are
subject to external forces due to the interaction with the
environment (object). Thus, it is necessary to include the
effects of the end-effector forces in the inverse dynamics
control algorithms.

The block diagram representation of the inverse dynamics
control method for co-operating manipulators is shown in
Figure 4. The controller accepts the values of all the desired
and actual object and/or base position and orientation
related information along with the end-effector forces to
calculate the resolved acceleration vector a. Then, the block
representing the inverse dynamics control law provides the
necessary torques to be applied to the active joints and/or
base.

5.1. Multi-arm fixed-base manipulator systems
The inverse dynamics equation of a multi-arm, fixed-base
manipulator system for non-null contact force is given by

T�JTfe =Mq̈+C (24)

Now, the inverse dynamics control law for this system can
be expressed as

q̈=u�M�1JTfe (25)

where u is the resolved acceleration in terms of the joint
variable. In Equation (25), the factor M�1JTfe serves as the
nonlinear coupling term due to the presence of the end-
effector force vector fe. Then, the linearity and the
decoupling of the inverse dynamics controllers can be
maintained by the following selection of the control
torque:

T=Mu+C+JTfe (26)

where the control input u can be expressed as

u= J̄#
q(a� ˙̄Jqq̇) (27)

and the resolved acceleration a can be chosen such that the
end-effectors will track the desired trajectories perfectly.

Now, the use of Equation (26) exactly compensates the
contact force fe, thereby making the end-effector infinitely
stiff with respect to the object. However, the co-operating
control of the multiple manipulators holding a common
object requires internal forces to keep hold of the object.
Hence, in this work, the internal forces are not compen-
sated. Thus, the control torques are chosen as

T=Mu+C+JT(fe � f i
e)

=Mu+C+JTfm
e (28)

Fig. 4. Block diagram of inverse dynamics control scheme for co-operating manipulator systems.
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where u and the resolved acceleration a are chosen in terms
of the joint variables.

For the convenience of the control of the position and
orientation of the object centre of mass (CM), it is required
to represent Equations (24) to (27) directly in terms of the
object variables. This representation is shown in the
following Lemma 1.

Lemma 1: The equations of motion for a co-operating,
fixed-base, rigid-link, multi-arm manipulator system can be
described as

T=Mopẍo +Cop +JTfe (29)

where

Mop =MJ̄#
pWTO, (30)

and

Cop =MJ̄#
q�d

dt 
(WTO)� ˙̄JqJ̄

#
qWTO�ẋo +C (31)

Proof: Now, the Equations (13) and (18) yield

Ve = J̄qq̇=WTOẋo (32)

The time derivative of Equation (32) gives

q̈= J̄#
q�WTOẍo +

d

dt 
(WTO)ẋo � ˙̄JqJ̄

#
qWTOẋo� (33)

Then, substituting Equation (33) into Equation (24), gives

T=Mopẍo +Cop +JTfe

where the terms Mop and Cop are defined by Equations (30)
and (31).

Now, the proposed control law to control the object
motion can be given by

u= J̄#
qWTO{ẍod +Kd(ẋod � ẋo)+Kp(xod �xo)}

+ J̄#
q�d

dt 
(WTO)� ˙̄JqJ̄

#
qWTO�ẋo (34)

where Kp and Kd are proportional and derivative feedback
gain matrices, respectively.

4.2. Multi-arm free-floating manipulator systems
The equations of motion of a co-ordinating, rigid-link,
multi-arm, free-floating space manipulator system can be
represented from Equations (1) and (4) as

T=Mq̈+C+JTfe (35)

V̇e = J̄bV̇b + ˙̄JbVb + J̄qq̈+ ˙̄Jqq̇ (36)

These equations are obtained by substituting fb =0. Here, the
base velocity is represented in the base frame. in Equation
(11), the base velocity Vb in terms of ẋb is represented in the
frame �w. Thus, the base velocity in Equation (36) in �w

frame can be represented as

Vb =R�1
w TBẋb (37)

where Rw =diag(w
b R w

b R)��6� 6 with w
b R��3� 3 denoting the

rotation of the base frame �b with respect to �w.
Then, the base acceleration can be obtained by differ-

entiating Equation (37) with respect to time:

V̇b =
d

dt 
(R�1

w TBẋb)=R�1
w TBẍb +(Ṙ�1

w TB +R�1
w ṪB)ẋb (38)

Hence, the end-effector velocity Ve can be represented from
Equation (l) by

Ve = J̄bR
�1
w TBẋb + ˙̄Jqq̇ (39)

Using the principle of virtual work from classical mechanics
that establishes the duality between forces and velocities,
the end-effector velocity can be expressed as

Ve =WV0 (40)

where V0��6 is the velocity of the CM of the object. Then,
the end-effector acceleration V̇e in Equation (36) can be
rewritten as

V̇e = J̄bR
�1
w TBẍb + J̄b(Ṙ

�1
w TB +R�1

w ṪB)ẋb

+ ˙̄JbR
�1
w TBẋb + J̄qq̈+ ˙̄Jqq̇ (41)

Moreover, to control the end-effector motion, Equation (35)
must be expressed in terms of the end-effector motion
variables. This can be described by the following results.

Lemma 2: The equations of motion suitable for the end-
effector motion control of the co-operating, rigid-link,
multi-arm, free-floating space manipulator system can be
represented as

T=Mopẍo +Cop +JTfe (42)

where

Mop =M(J̄q � J̄bM
�1
b XT

bMxX�)�1WTO (43)

Mx =Mq(E+XbM
�1
b XT

bMq)
�1 (44)

Cop =Mop(WTO)�1[{ ˙̄JqJ̄
#
qJ̄b � ˙̄Jb + J̄bM

�1
b XT

bMx

(Ẋb � Ẋ�J̄#
qJ̄b}� R�1

w TBẋb +(J̄bM
�1
b XT

bMxẊ�

� ˙̄Jq)J̄
#
qWTOẋo + J̄bJ�(bb +XT

bb)]+C (45)

J�=M�1
b (E6 �XT

bMxXbM
�1
b ) (46)

Proof: The proof of this lemma can be achieved as follows.
Now, Equations (1), (13) and (40) yields

Ve = ˙̄JbVb + J̄qq̇=WTOẋo (47)

The time derivative of Equation (47) gives

J̄bV̇b + ˙̄JbVb + ˙̄Jqq̇+ J̄qq̈=WTOẍo +
d

dt 
(WTO)ẋo (48)

Then, using Equations (3), (12), (35), (36) and (48), the
following expressions can be obtained

T=Mq̈+C+JTfe

where Mop and Cop are defined as in Equations (43) to (46).
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Now, to control the object motion, the control law can be
given as

u=(J̄q � J̄bM
�1
b XT

bMxX�)�1WTO

� [{ẍod +Kd(ẋod � ẋo)+Kp(xod �xo)}+(WTO)�1

� [{ ˙̄JqJ̄
#
qJ̄b � J̄+ J̄bM

�1
b XT

bMx(Ẋb � Ẋ�J̄#
qJ̄b}R�1

w TBẋb

+(J̄bM
�1
b XT

bMxẊ�� ˙̄Jq
˙̄J)J̄ WTOẋo + J̄bJ�(bb +XT

bb)]

(49)

4.3. Multi-arm free-flying manipulator systems
The equations of motion of a co-operating, rigid-link, multi-
arm, free-flying space manipulator system can be
represented from Equation (4) as

T̂=Mq̈+C+JTfe (50)

and the expression for V̇e is as given in Equation (36). Then,
Equation (50) can be expressed in the following form:

LTf =Mq̈+C+JTfe (51)

where Tf = [TT fb
T]T, L=[E6 C�] and C�=��TXT(M�1

q +
XbM

�1
b XT

b)�1XbM
�1
b .

The following results describe a suitable form of the
equation of motion as given in Equation (51) in terms of the
object and base (spacecraft) control variables.

Lemma 3: The equations of motion for a co-operating,
rigid-link, multi-arm, free-flying space manipulator system
can be described as

LTf =Mopẍob +Cop +JTfe (52)

where

Mop =MJ̄#
qTOB, (53)

Cop =MJ̄#
q(ṪOB � ˙̄JqJ̄

#
qTOB)ẋob +C, (54)

TOB =[WTO � J̄bR
�1
w TB], (55)

and the symbols L and Tf are described after Equation
(51).

Proof: Here, Equation (47) can produce

Ve = J̄bR
�1
w TBẋb + J̄qq̇=WTOẋo (56)

Now, Equation (56) can be represented as

TOBẋob = J̄qq̇ (57)

where TOB =[WTO � J̄bR
�1
w TB], and ẋob =[ẋT

o ẋT
b]T

The time derivative of Equation (57) gives rise to

J̄qq̈=TOBẍob + ṪOBẋob � ˙̄Jqq̇ (58)

where ẍob =[ẍT
o ẍT

b]T.
Now, use of Equations (57) and (58) yields

q̈= J̄#
q[TOBẍob +(ṪOB � ˙̄JqJ̄

#
qTOB)ẋob] (59)

Then, substituting Equation (59) into Equation (56), gives

LTf =Mopẍob +Cop +JTfe

where the terms L, Mop and Cop are defined by Equations
(53) to (55).

Now, the proposed control law to control simultaneously
the object and spacecraft is given by

u= J̄#
qTOB{ẍob,d +Kd(ẋob,d � ẋob)+Kp(xob,d �xob)}

+ J̄#
q(ṪOB � ˙̄JqJ̄

#
qTOB)ẋob (60)

6. SIMULATION STUDIES

6.1. Simulation environment
A two-arm manipulator system with three-links per manip-
ulator holding an object has been shown in Figure 5. All the
joints are assumed to be one-degree-of freedom rotational
joints with rigid links.

Two manipulators are mounted on a free-base with a base
frame �b defined at the centre of mass (CM) ‘B’ of the free
base. All the links are assumed to be of equal length
k+1

klj =1.0 m. j�{1, 2} and k�{1, . . . , 3}. The mass and
inertia of each link are kmj =1 Kg and kIj =0.33 Kg�m2,
j�{1, 2} and k�{1, . . . , 3}, respectively. It is assumed
that both the manipulators are mounted on the base such that
their distances from the CM of the base ‘B’ are equal. Here,

Fig. 5. Two-arm three-link co-operating manipulator system.
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this distance 1
blj =1.5 m, j�{1, 2}. The mass of the base

mb =200 Kg, and its inertia Ib =40 Kg�m2. The mass of the
object mo =2 Kg, and inertia Io =0.5 Kg�m2. Initially, the
object centre-of-mass was at (0.0, –1.7320508, 0.0) metres.
Corresponding to the object position, the joint angles of
manipulator 1 and 2 were (–1.0471976, –1.0471976,
–1.0471976) radians and (–2.0943951, 1.0471976,
1.0471976) radians, respectively. The initial object orienta-
tion about the z-axis of the base frame �b was zero radians.
Also, the orientations of the base frame �b with respect to
the world reference frame �w of all the axes were zero
radians. For a fixed-base manipulator system, �b and �w

were chosen to be coincident with each other. The sampling
time for all the simulations described in this research were
fixed at 0.001 sec. The diagonal elements of the controller
gain matrices Kp and Kd were set to 16 and 10, respectively,
for all the simulation work.

6.2. Design of test problems
Here, two clearly distinct types of time-varying trajectories
have been considered for testing the efficacy of the
developed inverse dynamics controllers. The first example is
a common circle problem, where both the end-effectors
were assigned the task of tracking circles in space while
tracking a time-varying desired orientation trajectory. The
second example considered here is a modified form of
trajectories defined in Egeland-Sagli.41 Here, the modifica-
tion includes a time-varying orientation trajectory in
addition to the time-varying end-effector position vectors.
This modified test case is called here the augmented
Egeland-Sagli test case.

Test Problem 1: Circle Tracking Problem


=r1 sin(� t)

px =d+r cos(� t)

py =�h+r sin(� t)

where r is the radius of the circle with centre at the co-
ordinate point (d, h), r1 is the amplitude of the orientation
variation, �=k�, with k as a constant, 
 is the end-effector
orientation about the z-axis, and px and py are the x- and y-
positions of the end-effector. Here, the parameters of the
circle were taken as r=0.2 m, r1 =0.1 m, (d, h)=(0.0, –1.5)
and k=1.

Test Problem 2: Augmented Egeland-Sagli Problem
This test case consists of position trajectories with a simple
ramp, and a combination of ramp and sinusoidal compo-
nents:


=��� r sin(� t)

px =k1 +k2t

py =

h1 +k3 sin(� t); 0<t≤2s

h1 +k3 sin(� t); 2s<t≤4s

h2 +k3 sin(� t); 4s<t≤6s

where hi’s and ki’s are constants, and other parameters bear
the same meaning as in the circle problem. In this case, the
parameter values taken for the simulation study are:

r=0.2 m, k=2, k1 =0.5, h1 =–1.7320508, k2 =0.1, k3 =0.05,
h2 =–1.5320508.

7. RESULTS AND DISCUSSION

7.1. Fixed-base two-arm co-operating manipulator system
The performance of a two-arm co-operating manipulator
system rigidly holding an object that tracks a circular
contour in space is shown in Figures 6 to 9. Figure 6 shows
the position and orientation tracking performance of the
object. These results show that the object tracks the desired
trajectories perfectly. The circular contour tracking in the
x-y co-ordinate plane is shown in Figure 7. The actual
trajectory represented by the dashed lines tracks the desired
circular contour represented by the solid line in spite of
starting at a completely faraway location. The input torques
are shown in Figures 8(a) and (b). It can be observed from
these figures that the second manipulator requires larger
torques than the first manipulator. Figures 9(a) and (b) show
the internal forces created during the tracking process.

Fig. 6. Position and orientation tracking (Circle Problem). The
dashed lines indicate desired and the solid lines indicate actual.

Fig. 7. Motion of the payload in Cartesian space for the fixed-base
configuration.
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These figures clearly show that the internal forces cancel
each other at every instant of time.

Now, the tracking performances of the object on the
augmented Egeland-Sagli trajectories are shown in Fig-
ures 10 to 12. Figure 10(a) illustrates the position and
orientation tracking performance of the object. A clear
picture of the y-position tracking is shown in Figure 10(b).
These figures show the good tracking performance of the
controller. The torque profiles are shown in Figures 11(a)
and (b). It can be observed from the torque profiles that
relatively large initial torques are needed, which only vary
within a small range after about 0.2 sec. Here, the torque
requirements after 0.2 sec for both the manipulators remains
almost the same. The internal forces used during the
tracking control operation are shown in Figures 12(a) and
(b) for the first and second end-effectors, respectively. It is
clear from these figures that the internal forces cancel each
other at every instant of time.

7.2. Free-floating two-arm co-operating manipulator
system
Interestingly enough, all the performance characteristics for
the free-floating system exactly matched those for the fixed-
base manipulator system on both the circular and the
augmented Egeland-Sagli problem. Hence, those figures are
not repeated here. Essentially, this shows that, in free-
floating, co-operating space manipulator systems, the
tracking control does not need any extra energy to perform
exactly the same job compared to the fixed-base co-
operating manipulator systems. The forces of interaction
between the manipulators and the base are shown in Figure
13. For the augmented Egeland-Sagli problem, the base
interaction forces at the base are shown in Figure 14. It is
evident from Figures 13 and 14 that the magnitude of the
base interaction forces in the case of tracking augmented
Egeland-Sagli trajectories is more than that for the circle-
tracking problem. ‘

Fig. 8. Torque profiles for the fixed-base configuration for the circle problem.

Fig. 9. Internal forces at the end-effector frames for a fixed-base configuration (Circle Problem).
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Fig. 10. Response of object position and orientation for a fixed-base configuration (Egeland-Sagli Problem). The dashed lines indicate
desired and the solid lines indicate actual.

Fig. 11. Torque profiles for the fixed-base configuration for the Egeland-Sagli problem.

Fig. 12. Internal forces at the end-effector frames for a fixed-base configuration (Egeland-Sagli Problem).
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7.3. Free-flying two-arm co-operating manipulator system
For the free-flying, co-operating manipulator system hold-
ing an object rigidly whose CM needs to follow desired
trajectories, the tracking performance is shown in Figures
15 to 18. The position and orientation tracking perform-
ances shown in Figure 15 are the same as in the fixed-base
or free-floating system. All the internal forces experienced
at the end-effector one are shown in Figure 16. The
magnitudes of the internal forces are reasonable. However,
the torque requirements shown in Figure 17 and the end-
effector forces shown in Figure 18 exhibit excessively
higher values. Further, with the progress of time, the
magnitudes of the forces and torques increase steadily.
Thus, it can be concluded that free-flying systems are not
suitable for tracking repeated trajectories. Similar observa-
tions are also made for tracking augmented Egeland-Sagli
trajectories.

High end-effector forces are needed mostly for maintain-
ing the grip over the object while tracking a desired

trajectory in a co-operative manipulator system. These high
end-effector forces in turn demand high active joint torques.
Further, high frequency oscillations of all the torque and
force profiles occurred due to the interaction between the
base and the manipulators when counteracted by thruster
force to maintain the initial base position. Thus, it is very
clear from these studies that the free-flying mode of
operation should never be used for co-operating manipula-
tion in space.

8. CONCLUSIONS
In this paper, the tracking control of fixed-base, free-
floating, and free-flying co-operating manipulator systems
have been presented. In co-operating manipulator systems,
closed kinematic chains are formed and, to deal with this
situation, the inverse dynamics control algorithms with
motive force compensation have been developed for all the
three configurations. The performance of the control

Fig. 13. Base interaction forces in the free-floating configuration
with circle problem.

Fig. 14. Base interaction forces in the free-floating configuration
with Egeland-Sagli problem.

Fig. 15. Position and orientation tracking (Circle Problem). The
dashed lines indicate desired and the solid lines indicate actual.

Fig. 16. Internal forces at the end-effector frames for a free-flying
configuration (Circle Problem). At End-effector 1.
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algorithms has been tested for tracking control with the
circle and augmented Egeland-Sagli problems.

It has been shown that free-floating space manipulator
systems behave in exactly the same manner as that of the
fixed-base co-operating manipulator system. The space-
free-floating configuration for tracking control required no
extra energy to perform the same task as compared to its
fixed-base counterpart. Further, it has been shown that, for
all space manipulation in the postcapture phase, the free-
floating mode is highly advantageous compared to the
free-flying configurations. Hence, it has been suggested that
the free-floating manipulators should be used for co-
operating tasks in space manipulation instead of free-flying
manipulators.
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