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Abstract. A nilspace system is a generalization of a nilsystem, consisting of a compact
nilspace X equipped with a group of nilspace translations acting on X. Nilspace systems
appear in different guises in several recent works and this motivates the study of these
systems per se as well as their relation to more classical types of systems. In this paper
we study morphisms of nilspace systems, i.e., nilspace morphisms with the additional
property of being consistent with the actions of the given translations. A nilspace morphism
does not necessarily have this property, but one of our main results shows that it factors
through some other morphism which does have the property. As an application we obtain
a strengthening of the inverse limit theorem for compact nilspaces, valid for nilspace
systems. This is used in work of the first- and third-named authors to generalize the
celebrated structure theorem of Host and Kra on characteristic factors.
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1. Introduction
Nilsystems are important examples of measure-preserving systems and their study has a
long history in ergodic theory, beginning with works including [1, 6, 14, 16]. This study
gained strong motivation especially through the essential role of nilsystems in the structural
theory of measure-preserving systems and the analysis of multiple ergodic averages, topics
that have kept growing with vibrant progress to the present day. We refer to the book [12]
for a thorough treatment of these rich topics and for a broad bibliography.
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In recent works stemming from the connections between ergodic theory and arithmetic
combinatorics, objects known as compact nilspaces are found to be useful generalizations
of nilmanifolds. Similarly to how nilsystems are constructed using nilmanifolds, one can
define generalizations of nilsystems using compact nilspaces, thus obtaining measure-
preserving systems that we call nilspace systems. These systems emerge as natural objects
to consider when trying to extend the structural theory of measure-preserving systems or
that of topological dynamical systems, beyond works such as that of Host and Kra [11],
Ziegler [17] or Host, Kra and Maass [13] and especially when seeking extensions valid for
nilpotent group actions; see [5, 7].

The theory of nilspaces is growing into a subject of intrinsic interest. In addition to the
original preprint [2], there are now several references that detail the basics of this theory;
see [3, 4, 8, 9]. To state the definition of a nilspace system below, we use the notions
of a compact nilspace X and of the translation group 2(X), which can be recalled from
[4, Definition 1.0.2] and [3, Definition 3.2.27], respectively. Recall also that, on a compact
nilspace, translations are supposed to be homeomorphisms; see [4, §2.9].

Definition 1.1. A nilspace system is a triple (X, H, φ), where X is a compact nilspace, H
is a topological group and φ : H →2(X) is a continuous group homomorphism. We say
that (X, H, φ) is a k-step nilspace system if X is a k-step nilspace.

Nilspace systems are indeed generalizations of nilsystems: given a nilmanifold G/0
and a map T : G/0→ G/0, x0 7→ hx0 for some h ∈ G, it is seen from the definitions
that T is a translation on X, where X is the nilspace obtained by endowing G/0 with the
cube structure induced by the Host–Kra cubes Cn(G•) relative to any given filtration G•
on G (see [3, Definition 2.2.3 and Proposition 2.3.1]). A nilspace system can be viewed as
a measure-preserving system by equipping the compact nilspace with its Haar probability
measure, which is invariant under any translation; see [2] and [4, Proposition 2.2.5 and
Corollary 2.2.7]. The term nilsystem can also be used more generally, when instead
of a single map T we have an action of a group H (usually supposed to be countable
and discrete) on G/0 via a homomorphism ϕ : H → G, an action defined by (h, x0) 7→
ϕ(h)x0.

It is natural to seek expressions for nilspace systems in terms of nilsystems, so as to
reduce questions involving the former systems to questions involving the better-known
latter systems. One of the central results in nilspace theory is the inverse limit theorem
[2, Theorem 4]; in particular, this result characterizes a general class of compact nilspaces
(those with connected structure groups) as inverse limits of nilmanifolds. This motivates
the problem of expressing nilspace systems as inverse limits of nilsystems. Similar
problems are treated by Gutman, Manners and Varjú in [10] from the different viewpoint
of applications in topological dynamics, concerning the regionally proximal relations.
Further motivation comes from the use of nilspace systems in [5] to extend the structure
theorem of Host and Kra [11, Theorem 10.1] to nilpotent group actions.

To obtain such expressions of nilspace systems in terms of nilsystems, it is suitable
first to focus on certain more fundamental questions concerning nilspace systems in
themselves, and especially on how translations on a compact nilspace X can interact
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with continuous† morphisms from X to another compact nilspace. As we show in this
paper, once these questions are solved, the sought expressions for nilspace systems can be
obtained swiftly.

One fundamental question of the above kind asks whether a given nilspace morphism
satisfies the following property relative to a given translation.

Definition 1.2. Let X, Y be nilspaces, let ψ : X→ Y be a morphism and let α be a
translation in 2(X). We say that ψ is α-consistent if for every x, y ∈ X we have
(ψ(x)= ψ(y))⇒ (ψ ◦ α(x)= ψ ◦ α(y)). Given a set of translations H ⊂2(X), we say
that ψ is H-consistent if ψ is α-consistent for each α ∈ H .

The question of whether a morphism is α-consistent is particularly relevant for the
special class of morphisms termed fiber-surjective morphisms. Introduced in [2] (see also
[4, Definition 3.3.7]), these morphisms play an important role in nilspace theory. The
term fibration was introduced in [8, Definition 7.1] for a notion which is equivalent to
that of a fiber-surjective morphism as far as nilspaces are concerned, and which gives
a useful alternative definition; we shall use the two terms interchangeably. We recall
these notions in Definition 1.3 below. This definition uses the characteristic factors
Xn = Fn(X) of a nilspace X and the associated canonical projections πn : X→ Xn (see [3,
Definition 3.2.3]). When we need to emphasize on which nilspace X the map πn is being
considered, we denote this map by πn,X. We also use the notation [[n]] for the discrete
n-cube {0, 1}n , and Cn(X) for the set of n-cubes on X. Finally, let us recall the notion of
an n-corner on X, that is, a map c′ : [[n]] \ {1n

} → X (where 1n
= (1, . . . , 1)) such that the

restriction of c′ to any (n − 1)-face of [[n]] not containing 1n is an (n − 1)-cube (see [3,
Definition 1.2.1]). We denote the set of n-corners on X by Corn(X).

Definition 1.3. Let X, Y be nilspaces. A morphism ψ : X→ Y is said to be fiber-
surjective, or a fibration, if for every n ≥ 0 it maps πn-fibers to πn-fibers, that is, for every
fiber π−1

n,X(x), x ∈ Xn , we have ψ(π−1
n,X(x))= π

−1
n,Y(y) for some y ∈ Yn . Equivalently, ψ

is a fibration if for every n-corner c′ on X and every completion c′′ ∈ Cn(Y) of the n-corner
ψ ◦ c′, there is c ∈ Cn(X) completing c′ such that ψ ◦ c= c′′.

Remark 1.4. A fibration is always a surjective map, since for every k-step nilspace Y the
fiber of π0 is the whole of Y (note that Y0 is a singleton).

The equivalence stated in Definition 1.3 follows from the properties of the equivalence
relations ∼n associated with the quotient maps πn (see [3, Definition 3.2.3]).

The following simple result illustrates the relevance of α-consistency for fibrations.

LEMMA 1.5. Let X, Y be compact nilspaces, let ψ : X→ Y be a fibration and let α ∈
2(X). If ψ is α-consistent, then we can define β ∈2(Y) by setting β(y)= ψ(α(x)) for
any x ∈ ψ−1(y). Moreover, if for every translation α ∈2(X) such that ψ is α-consistent,
we denote by ψ̂(α) the corresponding translation β ∈2(Y) thus defined, then, whenever
ψ is {α1, α2}-consistent, we have that ψ is α1α2-consistent and ψ̂(α1α2)= ψ̂(α1) ψ̂(α2).

† In this paper every morphism between compact nilspaces is automatically supposed to be a continuous map
and from now on we usually do not specify this continuity explicitly.
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In particular, if S is a subset of 2(X) such that ψ is S-consistent, and H = 〈S〉 is
the subgroup of 2(X) generated by S, then ψ is also H -consistent, the map ψ̂ is a
homomorphism H →2(Y), and ψ̂ is an (H, ψ̂(H))-equivariant map, i.e., for all α ∈ H ,
x ∈ X we have ψ(α(x))= ψ̂(α)(ψ(x)). We leave the proof of Lemma 1.5 to §4.

To what extent can α-consistency be guaranteed for a given fibration and a given
translation α? If Z, Z′ are compact abelian groups equipped with their standard nilspace
structure (see [3, §2.1]), and ψ : Z→ Z′ is a fibration between these nilspaces, then ψ
is a surjective affine homomorphism (by [3, Lemma 3.3.8] say) and must then clearly
be α-consistent for every α ∈2(Z) (since α must be of the form α(z)= z + t for some
fixed t ∈ Z). However, this automatic translation consistency does not hold for fibrations
between more general nilspaces; we illustrate this with Example 2.1 in the next section.

While translation consistency can fail, we prove a result that can be viewed as the next
best thing, namely Theorem 1.6 below. Indeed, this result tells us that by performing
a relatively simple refinement of the fibration’s target nilspace, one can always obtain a
factorization of the fibration in which the first applied map has the desired consistency.
The simplicity of the refinement consists in that, if the original target nilspace is of finite
rank, then the new refined nilspace is also of finite rank. Recall that a compact nilspace
has finite rank if each of its structure groups is a Lie group (see [4, Definition 2.5.1]).
These nilspaces form a more manageable class among general compact nilspaces, playing
a role in the theory similar to the role of compact abelian Lie groups in relation to general
compact abelian groups (see, for instance, the inverse limit theorem [4, Theorem 2.7.3]).

THEOREM 1.6. Let X, Y′ be compact k-step nilspaces, with Y′ of finite rank, let ψ ′ : X→
Y′ be a fibration and let H ⊂2(X) be finite. Then there are a compact finite-rank nilspace
Y, an H-consistent fibrationψ : X→Y, and a fibration p : Y→ Y′, such thatψ ′ = p ◦ ψ .

This theorem is our main result in §4. It relies on the following more fundamental result
concerning morphisms between compact nilspaces, proved in §3.

THEOREM 1.7. Let X, Y be compact nilspaces, with Y of finite rank, and let m : X→ Y
be a morphism. Then there exist a compact finite-rank nilspace Q, a fibration ψ : X→ Q,
and a morphism ψ ′ : Q→ Y, such that m = ψ ′ ◦ ψ .

Recall that a strict inverse system of compact nilspaces Xi , i ∈ N, is a system of
fibrations (ψi, j : X j → Xi )i, j∈N,i≤ j such thatψi,i = id for all i ∈ N andψi, j ◦ ψ j,k = ψi,k

for all i ≤ j ≤ k (see [4, Definition 2.7.1]).
In §5, we apply our results to give a swift proof of the following stronger version of the

inverse limit theorem for compact nilspaces.

THEOREM 1.8. Let X be a compact nilspace and let H be a finite subset of 2(X).
Then there is a strict inverse system (ψi, j : X j → Xi )i, j∈N,i≤ j of compact finite-rank
nilspaces Xi such that X= lim

←−
Xi and such that the limit maps ψi : X→ Xi are all 〈H〉-

consistent.

As a special case, we obtain that for every ergodic nilspace system, if its corresponding
group H is a finitely generated subgroup of 2(X), then the nilspace system is an inverse
limit of nilsystems; see Theorem 5.1. Thus, we also provide a different proof of a result
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from [10]; see Remark 5.4. Theorem 5.1 is used in [5] to extend the structure theorem of
Host and Kra to finitely generated nilpotent group actions; see [5, Theorem 5.12].

2. Some motivating examples
We begin with a simple example showing that a fibration on a compact nilspace X need
not be α-consistent for every α ∈2(X).

Example 2.1. Recall the definition of the degree-k nilspace structure Dk(Z) on an abelian
group Z in terms of the Gray-code alternating sum σk ; see [3, Definition 2.2.30]. Let
X be the product nilspace D1(Z2)×D2(Z2) (where by Z2 we denote the two-element
group Z/2Z) and let Y be the nilspace D2(Z2). Thus, X, Y are two-step compact finite-
rank nilspaces (actually finite and with the discrete topology). Let ψ denote the second
coordinate projection X→ Y, (a, b) 7→ b. Using the third sentence in Definition 1.3, it is
easily checked that ψ is a fibration.

Let α : X→ X be the map (a, b) 7→ (a + 1, b + a). We claim that α ∈2(X). To see
this, by [3, Definition 3.2.27 and Lemma 3.2.13] it suffices to check that for every 3-cube
c ∈ C3(X) and any 2-face F ⊂ [[3]], defining αF (c) : [[3]] → X by αF (c)(v)= α(c(v))
for v ∈ F and c(v) otherwise, we have αF (c) ∈ C3(X). Let c′ := αF (c). By definition
of the product nilspace structure, we have c′ ∈ C3(X) if and only if the coordinate
projections p1 : X→D1(Z2) and p2 : X→D2(Z2) satisfy pi ◦ c′ ∈ C3(Di (Z2)) for i =
1, 2. By the definitions of D1(Z2) and D2(Z2), we therefore have c′ ∈ C3(X) if and
only if the Gray-code alternating sum σ3(p2 ◦ c′) is 0 and for every 2-face map φ :

[[2]] → [[3]] we have σ2(p1 ◦ c′ ◦ φ)= 0. Now, from the definition of α, we deduce
that c′ = c+ c′′, where c′′(v)= (1, p1 ◦ c(v)) if v ∈ F and c′′(v)= (0, 0) otherwise. We
then have σ3(p2 ◦ c′)= σ3(p2 ◦ c)+ σ3(p2 ◦ c′′)= 0 and also σ2(p1 ◦ c′ ◦ φ)= σ2(p1 ◦

c ◦ φ)+ σ2(p1 ◦ c′′ ◦ φ)= 0. This proves our claim. Note also that α is a minimal map.
Now observe that ψ is not α-consistent. Indeed, for example, (1, 0), (0, 0) ∈ X satisfy

ψ(1, 0)= ψ(0, 0)= 0, but ψ ◦ α(1, 0)= 1 6= 0= ψ ◦ α(0, 0).

One may try to avoid such examples by assuming that the fibration ψ has additional
properties. For instance, noting that if ψ is injective then trivially it is α-consistent,
one may hope that if ψ is ‘sufficiently close’ to being injective then it should also be
α-consistent. A way to capture closeness to injectivity could be to assume that every
preimage ψ−1(y), y ∈ Y is a set of diameter† at most some small fixed δ > 0 for some
fixed metric on X. However, one can elaborate on Example 2.1 to produce translations α
such that even morphisms arbitrarily close to being injective in this sense can fail to be
α-consistent. Let us outline such a construction.

Example 2.2. Let X0 be the nilspace D1(Z2)×D2(Z2) from Example 2.1. Let X be the
compact nilspace consisting of the power XN

0 with the product compact nilspace structure.
Let α0 ∈2(X0) be the translation (a, b) 7→ (a + 1, b + a) from Example 2.1. Let α
denote the translation on X defined by applying α0 to each coordinate of x = (xi )i∈N ∈ X,
i.e., α(x)= (α0(xi ))i∈N. We can metrize X with d(x, y)=

∑
i∈N 2−i d0(xi , yi ) for d0

the discrete metric on X0. Consider now the following sequence of fibrations: for

† For a metric space (X, d) and B ⊂ X, we define the diameter of B by diam(B) := supx,y∈B d(x, y).
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each i ∈ N, let Yi denote the product nilspace Xi
0 ×D2(Z2) and let ψi : X→ Yi , x 7→

(x1, . . . , xi , ψ(xi+1)), where ψ is the projection to the second coordinate on X0 as in
Example 2.1. We then have the following facts (we leave the proofs to the reader):
(i) for every i ∈ N, the map ψi is a (continuous) fibration;
(ii) we have supy∈Yi

diam(ψ−1
i (y))= 2−i

→ 0 as i→∞;
(iii) and yet, for every i , letting 0 be the element of X with all components equal to

(0, 0) and x the element with x j = (0, 0) for j 6= i + 1 and xi+1 = (1, 0), we have
ψi (x)= ψi (0) and ψi ◦ α(x) 6= ψi ◦ α(0), so ψi is not α-consistent.

Thus, Example 2.2 shows that for k > 1 there can be a translation on a k-step nilspace X
and fibrations ψ : X→ Y that are arbitrarily close to being injective and yet still fail to be
α-consistent. As we explain in the following, if we are willing to refine a fibrationψ : X→
Y by considering how ψ factors through nilspaces finer than Y, then the α-consistency can
be ensured for some such factor.

3. Finite-rank-valued morphisms factor through fibrations
In this section we prove Theorem 1.7, which we recall here for convenience. This is used in
§4 to show that a fibration into a finite-rank nilspace always factors through some fibration
consistent with a prescribed translation (Theorem 1.6).

THEOREM 1.7. Let X, Y be compact nilspaces, with Y of finite rank, and let m : X→ Y
be a morphism. Then there exist a compact finite-rank nilspace Q, a fibration ψ : X→ Q,
and a morphism ψ ′ : Q→ Y, such that m = ψ ′ ◦ ψ .

Our proof of this theorem can be summarized simply as follows: we take the inverse
limit expression X= lim

←−
Xi given by [2, Theorem 4] (see also [4, Theorem 2.7.3]) and we

show that, for some i sufficiently large, the map m factors through the limit map ψi : X→
Xi , so that we can set ψ = ψi . The proof uses some lemmas, which we detail as follows.

Firstly, we have the following topological lemma.

LEMMA 3.1. Let T, T1, T2, . . . be compact metric spaces and let (ψi : T → Ti )i∈N be a
sequence of surjective continuous maps with the following properties.
(i) For all i ≤ j and x, y ∈ T with ψ j (x)= ψ j (y), we have ψi (x)= ψi (y).
(ii) For every x 6= y, there exists i such that ψi (x) 6= ψi (y).
Let (M, d) be a metric space and let f : T → M be continuous. Then for every ε > 0
there exists i such that for every x ∈ Ti we have diam( f (ψ−1

i (x)))≤ ε.

The assumptions (i) and (ii) in this lemma are satisfied in particular when T is the
topological inverse limit of the spaces Ti .

Proof. Suppose for a contradiction that for some ε > 0, for all i ∈ N there exist xi , yi ∈ T
such that ψi (xi )= ψi (yi ) and d( f (xi ), f (yi ))≥ ε. Since T is compact, we can assume
(passing to subsequences if necessary) that there exist x, y ∈ T with xi → x and yi → y
as i→∞. By continuity of f and d , we have d( f (x), f (y))≥ ε, so in particular x 6= y.
By (ii), this implies that ψk(x) 6= ψk(y) for some k. However, by assumption, ψ j (x j )=

ψ j (y j ) for every j and, if j > k, then by (i) we therefore have ψk(x j )= ψk(y j ). Letting
j→∞, by continuity of ψk we deduce that ψk(x)= ψk(y), which is a contradiction. �
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Secondly, we have the following algebraic result, which is a basic fact about nilspaces.

LEMMA 3.2. Let X, Y be k-step nilspaces and let ψ : X→ Y be a fibration. Then for
every y ∈ Y, the preimage ψ−1(y) is a sub-nilspace of X.

Proof. Of the three nilspace axioms (see [3, Definition 1.2.1]), the composition and
ergodicity axioms are clearly satisfied. The corner-completion axiom follows readily from
the third sentence in Definition 1.3 (using that for all n the constant map [[n]] → {y} is a
cube). �

We now move on to the main element in the proof of Theorem 1.7, which is a lemma
that extends the following result from [2] (see also [4, Corollary 2.9.8]).

LEMMA 3.3. [2, Corollary 3.2] For every compact finite-rank abelian group Z′ and j ∈ N,
there exists ε > 0 such that the following holds. For every compact k-step nilspace X and
continuous morphism m : X→D j (Z′), if diam(m(X))≤ ε, then m is constant.

The extension in question is the following.

LEMMA 3.4. For every compact finite-rank k-step nilspace Y, there exists δ > 0 such that
the following holds. For every compact k-step nilspace X and continuous morphism m :
X→ Y, if diam(m(X))≤ δ, then m is constant.

For i ≤ j , we denote by πi, j : Y j → Yi the projection between the two factors of Y
(thus πi = πi,k if Y is k-step). Our proof of Lemma 3.4 uses the following result.

PROPOSITION 3.5. Let Y be a compact finite-rank k-step nilspace with a fixed metric
dY, and for each i ∈ [k] let Zi be the i th structure group of Y with a fixed metric dZi .
Then there is a collection of compact nilspace isomorphisms ψi,y : π

−1
i−1,i (y)→Di (Zi )

for i ∈ [k], y ∈ Yi−1, such that the following holds: for every ε > 0 there exists δ > 0
such that for all a, b ∈ Y with πi−1(a)= πi−1(b)= y, if dY(a, b) < δ, then dZi (ψi,y ◦

πi (a), ψi,y ◦ πi (b)) < ε.

Proof of Lemma 3.4 assuming Proposition 3.5. For each i ∈ [k], let εi be the number
ε(Zi , i) > 0 given by Lemma 3.3. Let 0< ε <mini∈[k] εi and apply Proposition 3.5 to
obtain the corresponding δ > 0 and functionsψi,y . We prove by induction on i ∈ [0, k] that
πi ◦ m is constant. The case i = 0 is trivial, since Y0 is the one-point space. We assume
that πi−1 ◦ m is constant and thus πi−1 ◦ m(X)= y ∈ Yi−1. By Proposition 3.5, we have
diam(ψi,y ◦ πi ◦ m(X)) < ε < ε(Zi , i). This together with the fact that ψi,y ◦ πi ◦ m is a
morphism X→Di (Zi ) implies, by Lemma 3.3, that this map is constant. Hence, πi ◦ m
is constant, since ψi,y is injective. �

Proof of Proposition 3.5. We first prove the case i = k. By [9, Proposition A.1], there
exists δk > 0 such that if x ∈ Y and z ∈ Zk satisfy dY(x, x + z) < δk , then dZk (0, z) < ε.
Now for each fiber π−1

k−1(y), y ∈ Yk−1, fix any point y′ in this fiber and define ψk,y :

π−1
k−1(y)→ Zk by ψk,y(y′ + z) := z (recalling from [3, Theorem 3.2.19] that each point

in this fiber is of the form y′ + z for a unique z ∈ Zk). Note that, since dZk is translation
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invariant, if a, b are points in such a fiber π−1
k−1(y) with dY(a, b) < δk and a = y′ + z1,

b = y′ + z2, then dZk (ψk,y(a), ψk,y(b))= dZk (z1, z2)= dZk (0, z2 − z1)≤ ε.
For i ≤ k − 1, we argue similarly with Yi instead of Y and with the same fixed ε > 0.

Thus, we obtain a function ψi,y for each y ∈ Yi−1, and some δ′i > 0 given by applying
[9, Proposition A.1], with the property that for every a, b ∈ Yi in the same fiber of
πi−1,i , if dYi (a, b)≤ δ′i , then dZi (ψi,y(a), ψi,y(b))≤ ε. Moreover, since πi : Y→ Yi is
a continuous function between compact metric spaces, it is uniformly continuous and so
there exists δi > 0 such that if dY(a, b) < δi , then dYi (πi (a), πi (b)) < δ′i .

Finally, we let δ =min1≤i≤k δi and the result follows. �

We can now prove the main result of this section.

Proof of Theorem 1.7. Let ε be the number δ given by Lemma 3.4 applied to Y. Let
X= lim
←−

Xi be an inverse limit decomposition given by [2, Theorem 4] (see also [4,
Theorem 2.7.3]); thus, Xi is a compact finite-rank nilspace and ψi : X→ Xi is a fibration
for each i . Applying Lemma 3.1 with T = X, Ti = Xi and ε, we obtain i0 such that
diam(m(ψ−1

i0
(x))) < ε for all x ∈ Xi0 . We claim that we can set Q := Xi0 and ψ := ψi0 .

To prove this, we show that there exists a morphism ψ ′ : Q→ Y such that m = ψ ′ ◦ ψ .
First note that setting ψ ′(x) := m(ψ−1(x)) gives a well-defined map ψ ′ : Q→ Y, because
m(ψ−1(x)) is a singleton for every x ∈ Q. Indeed, ψ−1(x) is a sub-nilspace of X, by
Lemma 3.2, and m restricted to this fiber is a morphism with image of diameter less than ε,
so by Lemma 3.4 this morphism is constant, so ψ ′ is indeed well defined. Moreover, ψ ′ is
a morphism, since, by [3, Lemma 3.3.9], for every c ∈ Cn(Q) there exists c′ ∈ Cn(X) such
that c= ψ ◦ c′, so ψ ′ ◦ c= m ◦ c′ ∈ Cn(Y). Finally, ψ ′ is continuous, for if U is a closed
subset of Y, then, since m−1(U )= ψ−1(ψ ′−1(U )) and ψ is surjective (see Remark 1.4)
and is closed [15, p 171, Exercise 6], we have ψ ′−1(U )= ψ(m−1(U )), a closed subset
of Q. �

4. Finite-rank-valued fibrations factor through translation-consistent fibrations
In this section our main goal is to prove Theorem 1.6, which we recall here.

THEOREM 1.6. Let X, Y′ be compact k-step nilspaces, with Y′ of finite rank, let ψ ′ : X→
Y′ be a fibration and let H ⊂2(X) be finite. Then there are a compact finite-rank nilspace
Y, an H-consistent fibrationψ : X→Y, and a fibration p : Y→ Y′, such thatψ ′ = p ◦ ψ .

Let us begin by proving Lemma 1.5 from the introduction, which we recall here as well.

LEMMA 1.5. Let X, Y be compact nilspaces, let ψ : X→ Y be a fibration and let α ∈
2(X). If ψ is α-consistent, then we can define β ∈2(Y) by setting β(y)= ψ(α(x)) for
any x ∈ ψ−1(y). Moreover, if for every translation α ∈2(X) such that ψ is α-consistent,
we denote by ψ̂(α) the corresponding translation β ∈2(Y) thus defined, then, whenever
ψ is {α1, α2}-consistent, we have that ψ is α1α2-consistent and ψ̂(α1α2)= ψ̂(α1) ψ̂(α2).

Given a map g : X→ X, a map c : [[n]] → X and a set F ⊂ [[n]], we denote by gF (c) the
map [[n]] → X defined by gF (c)(v)= g(c(v)) if v ∈ F and gF (c)(v)= c(v) otherwise.
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Proof. The α-consistency implies clearly that β is a well-defined map.
To see that β is a translation, we check that [3, Definition 3.2.27] holds: let c ∈ Cn(Y)

and F be any face of codimension 1 in the cube [[n]] and note that by fiber-surjectivity (see
[3, Lemma 3.3.9]) there is c′ ∈ Cn(X) such that ψ ◦ c′ = c. Hence, βF (c)= ψ ◦ (αF (c′)).
This equality implies that βF (c) ∈ Cn(Y), since ψ is a morphism and αF (c′) ∈ Cn(X).

Moreover, the translation β is continuous, for if C ⊂ Y is closed, then β−1(C)=
ψ((ψ ◦ α)−1(C)) is closed, since ψ ◦ α is continuous and ψ is a closed surjective map
by [15, p 171] and Remark 1.4.

The last sentence of the lemma is straightforward to check. �

We now turn to the proof of Theorem 1.6. Our strategy is to obtain this as a
consequence of Theorem 1.7. We use the following notation. Given maps ψi : X→
Yi , i ∈ [n], we denote by 1(ψ1, . . . , ψn) their diagonal product X→ Y1 × · · · × Yn ,
defined by 1(ψ1, . . . , ψn)(x)= (ψ1(x), . . . , ψn(x)), and we denote by ψ1 × · · · × ψn

their product Xn
→ Y1 × · · · × Yn , (x1, . . . , xn) 7→ (ψ1(x1), . . . , ψn(xn)).

A first fact that follows from Theorem 1.7, and which we use for further results in this
section, is the following ‘common-refinement’ lemma.

LEMMA 4.1. Let X, Q1, Q2, . . . , Qd be compact nilspaces, with Qi of finite rank for
each i ∈ [d], and let mi : X→ Qi be a fibration for each i . Then there are a compact
finite-rank nilspace Q and fibrations m : X→ Q, m′i : Q→ Qi such that mi = m′i ◦ m for
each i ∈ [d].

The lemma yields the following commutative diagram.

Proof. Let m′ =1(m1, . . . , md) and note that this map is a continuous morphism from X
to the product nilspace Q1 × · · · × Qd . Applying Theorem 1.7 to m′, we obtain a compact
finite-rank nilspace Q, a fibration m : X→ Q and a morphism φ : Q→ Q1 × · · · × Qd

such that m′ = φ ◦ m. We then set m′i = pi ◦ φ for i ∈ [d], where pi : Q1 × · · · × Qd →

Qi are the coordinate projections, which are fibrations. We claim that, since mi = m′i ◦ m
and both mi and m are fiber-surjective, each m′i is also fiber-surjective. To see this,
fix any fiber F ′ = π−1

n,Q(x
′) and note that since m is fiber-surjective there exists a fiber

F = π−1
n,X(x) such that m(F)= F ′. Thus, m′i (F

′)= mi (F) and, since mi is fiber-
surjective, we have that m′i (F

′) is a πn,Qi -fiber, as claimed. �

For two maps ψi : X→ Yi , i = 1, 2, defined on all of X (but with Y1, Y2 possibly
different spaces), we write ψ1 . ψ2 if the partition generated by the latter map refines
the partition generated by the former, i.e., if the partitions Pi := {ψ

−1
i (y) : y ∈ ψi (X)},

i = 1, 2, satisfy that every set in P1 is a union of some sets in P2. We write ψ1 ≈ ψ2 to
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mean that ψ1 . ψ2 and ψ2 . ψ1 both hold. If X, Y are k-step nilspaces and ψ : X→ Y is
a morphism, then for each i ∈ [k] there is a morphism πi (X)→ πi (Y), which we denote by
(ψ)(i), such that (ψ)(i) ◦ πiX = πi,Y ◦ ψ ; see [3, Definition 3.3.1 and Proposition 3.3.2].
It is seen straight from the definitions that if ψ is a fibration, then so is (ψ)(i) for each i .

Our proof of Theorem 1.6 works by induction on the step k. A key ingredient in the
induction is Lemma 4.3 below. That lemma in turn relies on the fiber-product construction
in the category of compact nilspaces, which we detail as follows.

LEMMA 4.2. Let X(1), X(2), X(3) be compact nilspaces and let ψ1 : X(1)→ X(3), ψ2 :

X(2)→ X(3) be fibrations. Then the fiber product X(1) ×X(3) X(2) := {(x1, x2) ∈ X(1) ×
X(2) : ψ1(x1)= ψ2(x2)} is a compact sub-nilspace of the product nilspace† X(1) × X(2).

Proof. Let Q = X(1) ×X(3) X(2). We have to check that, if for each n ≥ 0 we let Cn(Q)
consist of the Q-valued cubes in Cn(X(1) × X(2)), then these cube sets Cn(Q) satisfy
the nilspace axioms. The composition and ergodicity axioms are easily verified. Let us
check the corner-completion axiom. Let 1(c′1, c′2) ∈ Corn(Q), which implies that c′1 ∈
Corn(X(1)) and c′2 ∈ Corn(X(2)). Let c2 ∈ Cn(X(2)) be a completion of c′2. By definition of
Q, we have ψ1 ◦ c′1(v)= ψ2 ◦ c2(v) for all v 6= 1n . Therefore, ψ2 ◦ c2 is a completion of
the corner ψ1 ◦ c′1, so, since ψ1 is a fibration, there exists c1 ∈ Cn(X1) that completes c′1
such that ψ1 ◦ c1 = ψ2 ◦ c2. Hence 1(c1, c2) completes 1(c′1, c′2). �

LEMMA 4.3. Let X be a k-step compact nilspace, let ψ1 : X→ Y be a fibration, let ψ2 :

X→W be a fibration that factors through πk−1,X, let ψ3 :W → Yk−1 be a fibration such
that πk−1,Y ◦ ψ1 = ψ3 ◦ ψ2 and let ψ :=1(ψ1, ψ2). Then ψ is a fibration X→ Y×Yk−1

W . Moreover, (ψ)(k−1) ≈ (ψ2)(k−1) and, if W and Y are of finite rank, then so is ψ(X).

The following diagram illustrates the assumptions.

Proof. Let Q denote the fiber-product nilspace Y×Yk−1 W for the fibrations πk−1,Y, ψ3.
We claim that ψ(X)= Q. The inclusion ψ(X)⊆ Q is clear, since πk−1,Y ◦ ψ1 = ψ3 ◦ ψ2.
For the opposite inclusion, let (a, b) ∈ Q and x ∈ X be any element with ψ2(x)= b
(such an x exists by the surjectivity of the fibration ψ2). Letting Zk(X) denote the
kth structure group of X, for every z ∈ Zk(X) we have ψ2(x + z)= ψ2(x), since ψ2

factors through πk−1,X. Now πk−1(a)= ψ3(b)= ψ3(ψ2(x))= πk−1(ψ1(x)). Thus, there
exists z′ ∈ Zk(Y) such that a = ψ1(x)+ z′ = ψ1(x + z) for some z ∈ Zk(X), where the
last equality follows from the fiber-surjectivity of ψ1. Hence, ψ(x + z)= (a, b) and the
inclusion follows.

† The definition of a product nilspace may be recalled from [3, Definition 3.1.2].
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Note that from the definitions it is clear that ψ is a morphism X→ Q. We now prove
that ψ is a fibration. Let c′ ∈ Corn(X) and let c̃ ∈ Cn(Q) be a completion of ψ ◦ c′;
thus, c̃=1(c1, c2) for c1 ∈ Cn(Y), c2 ∈ Cn(W ) completing ψ1 ◦ c′, ψ2 ◦ c′, respectively,
and satisfying ψ3 ◦ c2 = πk−1,Y ◦ c1. Since ψ2 is a fibration, we can complete c′ to c3 ∈

Cn(X) with ψ2 ◦ c3 = c2. Now πk−1,Y ◦ ψ1 ◦ c3 = ψ3 ◦ ψ2 ◦ c3 = ψ3 ◦ c2 = πk−1,Y ◦ c1,
so ψ1 ◦ c3 and c1 are in the same πk−1,Y-fiber, so there is c′′ ∈ Cn(Dk(Zk(Y))) such that
ψ1 ◦ c3 + c′′ = c1. Since ψ1 is a fibration, its kth structure morphism† Zk(X)→ Zk(Y) is
surjective, whence there is c4 ∈ Cn(Dk(Zk(X))) such thatψ1 ◦ (c3 + c4)= ψ1 ◦ c3 + c′′ =
c1 and, since ψ2 factors through πk−1,X, we still have ψ2 ◦ (c3 + c4)= c2, so c3 + c4

completes c′, as required.
To prove the remaining claims in the lemma, it is useful first to give a more precise

description of Q in terms of Y and W . We first show that Qk−1 is isomorphic to W as a
compact nilspace. The isomorphism is given by the map ϕ :W → Qk−1 defined by ϕ(b)=
πk−1,Q(a, b) for any a ∈ Y such that πk−1(a)= ψ3(b). This is well defined because, if
a, a′ ∈ Y satisfy πk−1(a)= πk−1(a′), then a′ = a + z for some z ∈ Zk(Y) and then from
basic properties of the relation ∼k−1 (see [3, Lemma 3.2.4 and Remark 3.2.12]) it follows
that πk−1,Q(a, b)= πk−1,Q(a + z, b). The map ϕ is injective, because if ϕ(b)= ϕ(b′),
then the definition of ∼k−1 on Q and the fact that W is (k − 1)-step imply that b = b′. By
definition of ϕ and the fact that πk−1,Q is surjective, we also have that ϕ is surjective. Let
us now check that ϕ and ϕ−1 are both morphisms. To see that ϕ is a morphism, note that
if c ∈ Cn(W ), then ψ3 ◦ c ∈ Cn(Yk−1) and there exists c′ ∈ Cn(Y) such that πk−1 ◦ c′ =
ψ3 ◦ c, whence ϕ ◦ c= πk−1,Q ◦ (1(c′, c)) ∈ Cn(Qk−1). That ϕ−1 is a morphism follows
from the definitions of ϕ and Q and the fact that πk−1,Q is a fibration. Let us show that
ϕ−1 is continuous. Let p : Q→W be the projection (a, b) 7→ b, which is continuous and
satisfies ϕ−1

◦ πk−1,Q = p. Then, for any open set U ⊂ Qk−1, we have π−1
k−1,Q(ϕ(U ))=

p−1(U ) and, since πk−1,Q is surjective, we have ϕ(U )= πk−1,Q(p−1(U )). Since p is
continuous and πk−1,Q is open (see [4, Remark 2.1.7]), we have that ϕ(U ) is open and
the continuity of ϕ−1 follows. We thus have a continuous bijection ϕ−1 between compact
metric spaces, so ϕ is a homeomorphism. Having shown that Qk−1 is isomorphic to W ,
let us now complete the description of Q by describing Zk(Q). We claim that Zk(Q) is
isomorphic as a compact abelian group to Zk(Y). To see this, it suffices to show that for
any fiber F of ∼k−1 on Q, as a compact sub-nilspace of Q this fiber is isomorphic to
Dk(Zk(Y)) (the isomorphism of the structure groups then follows from known theory; see
for instance the end of the proof of [4, Proposition 2.1.9]). Fix (a0, b0) ∈ F and note that
by definition of ∼k−1 on Q we have that every (a, b) ∈ F is (a0 + z, b0) for some unique
z ∈ Zk(Y). Let τ : F→ Zk(Y) be the map sending (a, b) to this unique z. Using that Q
is a sub-nilspace of Y×W , it is checked in a straightforward way that τ is a compact
nilspace isomorphism F→Dk(Zk(Y)) (τ is clearly a bijection and the cube-preserving
properties can be checked using [3, (2.9)]).

We can now prove the last claims in the lemma. From the definition of the isomorphism
ϕ above and the assumption that πk−1,Y ◦ ψ1 = ψ3 ◦ ψ2, it follows that (ψ)(k−1) ◦

πk−1,X = ϕ ◦ ψ2 and from this it is easily deduced that (ψ)(k−1) ≈ (ψ2)(k−1). Finally,

† The notion of the structure morphisms of a nilspace morphism may be recalled from [3, Definition 3.3.1].
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by the above description of Q it is clear that if W and Y are of finite rank, then all the
structure groups of Q are Lie groups, so Q is also of finite rank. �

For a map f : A→ B, we write a ∼ f a′ if f (a)= f (a′). Our proof of Theorem 1.6
uses the next fact.

LEMMA 4.4. Let ψ : X→ Y and R : X→ Y′ be fibrations with ψ . R, let φk be the kth
structure morphism of ψ and let ϕ =1

(
ψ, (R)(k−1) ◦ πk−1,X

)
. If x ∼ϕ y, then x ∼R y +

z for some z ∈ ker(φk).

Proof. If x ∼ϕ y, then ψ(x)= ψ(y) and R(x)∼k−1 R(y) (since (R)(k−1) ◦ πk−1,X =

πk−1,Y′ ◦ R). Then, since R is a fibration, there exists z ∈ Zk(X) such that R(x)=
R(y + z). Since ψ . R, we deduce that ψ(x)= ψ(y + z)= ψ(x)+ φk(z). Hence,
z ∈ ker(φk). �

Proof of Theorem 1.6. We argue by induction on k. The result is trivial for k = 0. Let
k > 0 and assume that the result holds for k − 1.

By Lemma 4.1, there are a finite-rank nilspace Q′, fibrations q ′ : X→ Q′, m′ : Q′→ Y′

and m′α : Q
′
→ Y′ for each α ∈ H with ψ ′ = m′ ◦ q ′ and ψ ′ ◦ α = m′α ◦ q ′ for each α.

Note that x ∼q ′ x ′ implies that x ∼ψ ′◦α x ′ for each α. Let H ′ = {(α)(k−1) : α ∈ H}.
Let q2 : Xk−1→W be an H ′-consistent fibration on Xk−1 obtained by applying the
inductive hypothesis to (q ′)(k−1) : Xk−1→ Q′k−1 (in particular, q2 & (q ′)(k−1)) and let
p :W → Q′k−1 be the fibration such that p ◦ q2 = (q ′)(k−1). Let ψ3 denote the map
(m′)(k−1) ◦ p :W → Y′k−1 (thus, in this inductive application of Theorem 1.6, the objects
ψ, Y from the conclusion of the theorem are denoted here by q2, W , respectively).
Let ψ2 := q2 ◦ πk−1,X. Note that for each α, since q2 is (α)(k−1)-consistent and πk−1,X

is α-consistent, we have that ψ2 is α-consistent. The following diagram illustrates the
situation.

We now claim that ψ :=1(ψ ′, ψ2) satisfies the required conclusion. We know that ψ is
a fibration, by Lemma 4.3 applied with ψ1 = ψ

′ and ψ2, ψ3 defined above. We also know
by that lemma that, since W and Y′ are of finite rank, so is ψ(X).

Let us check that ψ is H -consistent. Fix any α ∈ H and suppose that x ∼ψ y. We
have to show that α(x)∼ψ α(y). Firstly we claim that α(x)∼ψ ′ α(y). To see this, note
that since (q ′)(k−1) . q2, we have 1(ψ ′, (q ′)(k−1) ◦ πk−1,X).1(ψ ′, q2 ◦ πk−1,X)= ψ

and then by Lemma 4.4 applied to ψ ′ and R = q ′ it follows that q ′(x)= q ′(y + z) for
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some z ∈ ker(φk) (where φk is the kth structure morphism of ψ ′). Applying m′α to
both sides of the last equality, we deduce that ψ ′(α(x))= ψ ′(α(y + z)). We now use
basic properties of k-step nilspaces, namely that translations commute with the action
of Zk [3, Lemma 3.2.37], and the equivariance property involving φk given by [3,
Proposition 3.3.2 and Definition 3.3.1(ii)], to deduce that ψ ′(α(y + z))= ψ ′(α(y)+ z)=
ψ ′(α(y))+ φk(z)= ψ ′(α(y)), so α(x)∼ψ ′ α(y), as claimed. Then the α-consistency of
ψ2 (seen above) implies that α(x)∼1(ψ ′,ψ2) α(y), so ψ is α-consistent. Since this holds
for all α ∈ H , the result follows. �

5. An inverse limit theorem for nilspace systems
As recalled in the introduction, one of the main results in nilspace theory is the inverse
limit theorem, which states that every compact nilspace is an inverse limit of compact
finite-rank nilspaces. In this section we prove the following stronger version of this result.

THEOREM 1.8. Let X be a compact nilspace and let H be a finite subset of 2(X).
Then there is a strict inverse system (ψi, j : X j → Xi )i, j∈N,i≤ j of compact finite-rank
nilspaces Xi such that X= lim

←−
Xi and such that the limit maps ψi : X→ Xi are all 〈H〉-

consistent.

Proof. Recall that by the inverse limit theorem [4, Theorem 2.7.3], there is a strict inverse
system {ψ ′i, j : X

′

j → X′i } such that X= lim
←−

X′i . We use the following inductive argument
to upgrade this inverse system gradually. Starting with the limit map ψ ′1 : X→ X′1, we use
Theorem 1.6 to obtain a finite-rank nilspace X1, an H -consistent fibration ψ1 : X→ X1

and a fibration q1 : X1→ X′1 with ψ ′1 = q1 ◦ ψ1. Suppose now that we have upgraded
the system up to i ; thus, we have H -consistent fibrations ψ j : X→ X j , fibrations q j :

X j → X′j , j ∈ [i], and also fibrations ψ j,k : Xk→ X j for 1≤ j ≤ k ≤ i . Then we apply
Lemma 4.1 to ψi and ψ ′i+1 to obtain a fibration ψ ′′i+1 : X→ X′′i+1 through which ψi and
ψ ′i+1 both factor. Then we apply Theorem 1.6 to ψ ′′i+1 to refine it to an H -consistent
fibration ψi+1 : X→ Xi+1. Continuing in this way, the result follows. �

The following diagram illustrates the inductive step.

Recall that a measure-preserving action of a countable discrete group G on a probability
space (�,A, µ) is ergodic if for all A ∈A, (for all g ∈ G, µ((g · A)1A)= 0)⇒ µ(A) ∈
{0, 1}.

We obtain the following consequence of Theorem 1.8.
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THEOREM 5.1. Let X be a k-step compact nilspace and let H be a finitely generated
subgroup of 2(X) acting ergodically on X (relative to the Haar probability measure on
X). Then the nilspace system (X, µ, H) is an inverse limit of k-step nilsystems.

This follows immediately by combining Theorem 1.8 with the following basic lemma.

LEMMA 5.2. Let Y be a k-step compact finite-rank nilspace and let H be a finitely
generated subgroup of 2(Y) acting ergodically on Y. Then the k-step nilpotent Lie group
〈2(Y)0, H〉 acts transitively on Y.

Remark 5.3. Note that no assumption on Y is made other than that it is of finite rank
and hence no additional assumption on X is needed in Theorem 5.1. In Lemma 5.2, the
ergodicity of the action of H indeed suffices to deduce the claimed transitivity, but to show
this we use a deep result, namely the transitivity of the action of the identity component
2(Y)0 on each connected component of Y, established in [2, Corollary 3.3].

Proof. By [2, Corollary 3.3] (see also [4, Corollary 2.9.12]), if there is only one component
in Y then we are done. Suppose, then, that there are at least two components. It
suffices to prove the claim that for every two components C, C ′ ⊂ Y there is g ∈ H
such that µ(g(C) ∩ C ′) > 0. Indeed, if this holds, then for any y, y′ ∈ Y there are
g′ ∈ H , and some x in the component C(y) containing y, such that g′ · x ∈ C(y′). Then,
by the transitivity of 2(Y)0 on C(y), C(y′), there are β, β ′ ∈2(Y)0 with β(y)= x
and β ′ · g′ · x = y′, so the element g = β ′g′β satisfies g · y = y′ and the transitivity of
〈2(Y)0, H〉 follows.

To prove the claim, note first that since the compact nilspace Y has finite rank, it is
a finite-dimensional manifold (see [4, Lemma 2.5.3]) and is therefore locally connected,
so each of its connected components is an open set [15, Theorem 25.3]. Since the Haar
measure µ on Y is strictly positive [4, Proposition 2.2.11], every component has positive
measure. Let C, C ′ be any two such components and suppose for a contradiction that for
every g ∈ H we have µ(g(C) ∩ C ′)= 0. Then the H -invariant set

⋃
g∈H g · C is disjoint

from C ′ up to a µ-null set, so it is an H -invariant set of measure strictly between 0 and 1,
contradicting the ergodicity of H . �

Remark 5.4. As mentioned in the introduction, the results in this section are related
to a result of Gutman, Manners and Varjú, namely the version of [10, Theorem 1.29]
for nilspace systems mentioned in their paper after their Theorem 1.29. We obtain
Theorem 5.1 as a swift consequence of the fundamental factorization results for morphisms
from previous sections and this makes our proof markedly different from the arguments
in [10]. Moreover, Theorem 5.1 is a special case of Theorem 1.8, which is a direct
generalization of the inverse limit theorem [2, Theorem 4], and which concerns arbitrary
(not just ergodic) finitely generated nilspace systems, whereas [10, Theorem 1.29]
concerns minimal group actions. Thus, the results in this section and [10, Theorem 1.29]
are complementary.
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