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A detailed numerical investigation of thermocapillary effects during the melting of
phase-change materials in microgravity is presented. The phase-change transition is
analysed for the high-Prandtl-number material n-octadecane, which is enclosed in a
two-dimensional rectangular container subjected to isothermal conditions along the lateral
walls. The progression of the solid/liquid front during the melting leaves a free surface,
where the thermocapillary effect acts driving convection in the liquid phase. The nature
of the flow found during the melting depends on the container aspect ratio, Γ , and on
the Marangoni number, Ma. For large Γ , this flow initially adopts a steady return flow
structure characterised by a single large vortex, which splits into a series of smaller
vortices to create a steady multicellular structure (SMC) with increasing Ma. At larger
values of Ma, this SMC undergoes a transition to oscillatory flow through the appearance
of a hydrothermal travelling wave (HTW), characterised by the creation of travelling
vortices near the cold boundary. For small Γ , the thermocapillary flow at small to
moderate Ma is characterised by an SMC that develops initially within a thin layer
near the free surface. At larger times, the SMC evolves into a large-scale steady vortical
structure. With increasing applied Ma, a complex oscillatory mode is observed. This state,
referred to as an oscillatory standing wave (OSW), is characterised by the pulsation of the
vortical structure. Finally, for an intermediate Γ both HTW and OSW modes can be found
depending on Ma.

Key words: Marangoni convection, pattern formation, solidification/melting

1. Introduction

Phase-change materials (PCMs) are of interest in thermal management for their ability
to store and release large amounts of energy near the phase transition temperature TM.
PCMs with a suitable value of TM and a large heat of fusion can be effective in either
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active or passive thermal control systems and are used in a wide range of applications,
including air conditioning, electronics, manufacturing, food storage, construction and the
clean energy industry.

Space missions are a particularly interesting area for PCM applications because
significant (undesired) temperature variations can result from the cycles of radiation
exposure experienced by orbiting spacecraft or the waste heat generated by onboard
systems. There is a long history of PCM use in space missions going back to the Apollo
15 Lunar Rover Vehicle, Skylab SL-1 and the Venera 8–10 missions of the Soviet Union
(Lane & Shamsundar 1983; Creel 2007). Future initiatives are also expected to benefit
from the capability of PCMs to provide simple, passive and efficient thermal control. The
ESA Moon Village programme, for example, will likely require managing the extreme
temperature differences between the lunar day and night (Williams et al. 2017).

Among the range of possible materials with appropriate operating temperatures for
space applications, organic PCMs like alkanes are attractive due to their stability. Their
effectiveness can be limited, however, by low thermal conductivity and the resulting lag in
response time. One strategy for reducing the response time of the PCM device is to modify
the effective thermal conductivity through the addition of more-conductive material
(Cabeza et al. 2002; Ettouney et al. 2004; Agyenim, Eames & Smyth 2009; Fernandes
et al. 2012; Atal et al. 2016). However, with the exception of the (so-called) nano-enhanced
phase-change materials (NePCMs) that use dispersed nanoparticles (Hosseinizadeh,
Rabienataj Darzi & Tan 2012; Dhaidan et al. 2013), this approach tends to increase
the associated mass and/or volume budget, which is a crucial consideration in space
applications.

Even without changing conductivity, the existence of convective flows in the liquid
phase can significantly enhance the performance of PCMs. In microgravity, where
buoyancy-driven convection cannot be exploited (Gau & Viskanta 1986; Roy & Sengupta
1990; Wang, Amiri & Vafai 1999; Khodadadi & Zhang 2001; Shokouhmand & Kamkari
2013; Dhaidan & Khodadadi 2015), the thermocapillary effect has been proposed as
a simple alternative to improve heat transfer properties, since, if the design includes
a free surface, the temperature gradient inherent to the operation of the PCM will
induce variations in surface tension that will generate convective flow. Furthermore,
the presence of this PCM–gas boundary indirectly alleviates the problem of disruptive
pressure changes (and related bubbles/voids) associated with the thermal expansion of
the material during its melting/solidification; the gas naturally accommodates the change
in volume.

Regarding the design of PCM devices for space applications, a wide variety of simple
geometries have been used, adapted to the shape of the system to be controlled (e.g. an
electronic component) so as to maximise the contact area. However, to the best of our
knowledge, none of these solutions have included a free surface and, therefore, there is
no usual design solution. On ground, the selected configuration is constrained by the
fact that the liquid–air interface should be gravitationally stable so that the system can
operate over repeated melting/solidification cycles. The absence of (strong) gravity in
space represents an advantage, since the position of the free surface is less limited by
its stability. This allows for selecting other designs (geometries) that maximise the area of
the thermocapillary interface in the PCM device, as occurs in liquid bridges.

During the last few decades, thermocapillary-driven flows have attracted the interest of
the scientific community in the context of many important technological processes, such
as crystal growth (Brice 1986), combustion (Sirignano & Glassman 1970) and welding
(Samanta 1987; Mills et al. 1998), and in other areas like the migration of bubbles
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(Subramanian 1992) or the spreading of drops (Erhard & Davis 1991). During crystal
growth, it is now generally understood that fluid flows can interact with the solidification
front, resulting in complex dynamics that critically affect crystal quality. Such analyses
have focused, for simplicity, on either cylindrical (i.e. liquid bridges or annular domains)
or rectangular geometry, which is the case of interest here.

In rectangular containers, which presume the two-dimensional behaviour typical of
large-Prandtl-number (Pr) liquids (Smith & Davis 1983), the streamwise aspect ratio Γ is
the key parameter selecting the character of the flow. For large cavities (Γ � 1), the basic
steady flow is the return flow solution, obtained by Sen & Davis (1982) using asymptotic
techniques in the limit of Γ −1 → 0. The validity of this solution was later checked against
numerical simulations in large but finite containers by Strani, Piva & Graziani (1983), who
also explored the case of deeper containers.

Motivated by the seminal experiments of Schwabe & Scharmann (1979) and Chub &
Wuest (1979) that observed oscillatory thermocapillary flows for the first time, Smith &
Davis (1983) analysed the stability of the return flow solution using linear theory. They
demonstrated the existence of oscillatory oblique (i.e. three-dimensional) hydrothermal
waves propagating from the cold side of the cavity, and investigated their properties
with varying Pr. For liquids of large Pr, these hydrothermal waves were shown to
be (nearly) two-dimensional and supported by vertical gradients in the liquid domain
(Smith 1986).

In the opposite case of Γ ∼ O(1), the flow is generally dominated by a single vortex
(Zebib, Homsy & Meiburg 1985; Carpenter & Homsy 1990). The numerical work of
Peltier & Biringen (1993) was the first to show oscillatory behaviour in a rectangular
two-dimensional domain with Γ � 2.3 for a moderate Pr of 6.8. From their results, one
can conclude that the lateral heated boundaries have a strong stabilising effect on the onset
of two-dimensional oscillations.

Much research has continued to be done on thermocapillary flows since these pioneering
investigations (see e.g. Shevtsova, Nepomnyashchy & Legros 2003; Kuhlmann &
Albensoeder 2008; and references therein). However, only a handful of theoretical studies
(that the authors are aware of) have considered the coupling between thermocapillary flows
and the dynamic boundary conditions due to the advancing (moving) solid/liquid front
during melting or solidification in microgravity. In this work, we aim to extend the previous
knowledge by investigating this problem numerically for the melting of a PCM material in
weightless conditions. A systematic study is conducted in rectangular containers without
considering the contribution of natural convection. Attention is focused on the effect of
applied temperatures and container geometry, which are typified by the Marangoni number
and aspect ratio.

In this work, the thermocapillary flows that appear in the liquid phase during melting
are considered from the perspectives of pattern formation and fluid mechanics. This
paper shares with the work of Strani et al. (1983) and Peltier & Biringen (1993) an
emphasis on the qualitative analysis of the flow, including the numerical determination
of the critical onset for oscillatory convection, but with the increased complexity of
a time-dependent geometry, inherent to the dynamic nature of any solid/liquid phase
change. In the large-aspect-ratio limit, the recent work of Lappa (2018) on the formation of
hydrothermal waves in a large container during the solidification of succilonitrile (SCN)
is one of the most relevant points of comparison.

Although not directly focused on pattern formation aspects of thermocapillary flows,
the recent numerical work of Madruga & Mendoza (2017a,b) is relevant and was the
first to suggest the positive effect of thermocapillary convection on heat transport during
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the melting of PCMs in microgravity. These predictions were recently confirmed by the
parabolic flight experiments of Ezquerro et al. (2019) and Ezquerro et al. (2020), which
for the first time observed the melting of n-octadecane in rectangular containers under
the presence of a free surface. Salgado Sánchez et al. (2020b) then complemented these
results by experimentally and numerically examining the effect of the container aspect
ratio for Γ = 1–1.66, i.e. near the Γ ∼ O(1) limit. The present work extends these results
to Γ � 1, further tracing the transition at intermediate aspect ratios. As noted above,
only a handful of theoretical studies (see e.g. Humphries & Griggs 1977; Giangi et al.
2002; Swanson & Birur 2003; Xiaohong et al. 2012; and references therein) considered
the influence of thermocapillary flows on phase changes and, to the best of our knowledge,
none of them have looked at this complex problem from a pattern formation perspective;
the associated effect on heat transport has been recently analysed in Salgado Sánchez et al.
(2020a).

This paper is structured as follows. In § 2, the modelling of the phase-change process
is summarised. We use an enthalpy–porosity based formulation of the Navier–Stokes
equations to solve the phase-change dynamics. The convergence of the numerical solutions
is discussed in § 2.1. In §§ 3 and 4, the different thermocapillary flow regimes observed
during the phase change are analysed for selected values in the limiting cases of large- and
small-aspect-ratio containers, respectively. These regimes are then summarised with a Ma
versus Γ instability diagram in § 5, including a brief description of the transition region
for intermediate Γ . Final conclusions are offered in § 6.

2. Mathematical formulation

The solid–liquid phase transition of a (two-dimensional) rectangular PCM volume is
considered under weightless conditions. The phase change is driven by the application of
constant temperatures on opposite lateral walls, and it occurs in the presence of an air
layer in contact with the PCM along its upper boundary. The progressive melting of the
solid phase leaves a liquid–air interface that is not isothermal and supports a variation
in surface tension. This surface tension gradient is the driving force for thermocapillary
convection in the liquid phase, which modifies the liquid dynamics as well as the heat
transport rate during the phase-change transition. A sketch of the set-up for the numerical
model is illustrated in figure 1, including the prescribed boundary conditions (written in
dimensionless variables).

We use the following characteristic values to rescale length, time and temperature,

⎛
⎝ x

t
T − TM

⎞
⎠ →

⎛
⎝ x̂L

τ(L2/α)

Θ(TH − TM)

⎞
⎠ , (2.1)

and the physical properties of the liquid phase for density, viscosity, heat capacity at
constant pressure and thermal conductivity,

⎛
⎜⎜⎜⎝

ρ

μ

cp

k

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

ρ̂ρL

μ̂μL

ĉpcpL

k̂kL

⎞
⎟⎟⎟⎠ , (2.2)
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ŷ

FIGURE 1. Sketch of the two-dimensional set-up for the numerical model: a fixed 1 × Γ −1

rectangular volume of high-Prandtl-number PCM (Pr = 52.53) is subjected to a controlled
solid–liquid phase transition by applying constant (dimensionless) temperatures Θ = 0 and
Θ = 1 on opposite lateral walls. The phase change occurs in the presence of an air layer
along the upper boundary of the PCM, where the progressive melting of the solid creates a
liquid–air interface. It is the Marangoni force associated with the temperature variation along
this thermocapillary interface that drives thermocapillary flows in the liquid phase, modifying
the phase-change dynamics. The remaining boundary conditions are as indicated: adiabatic for
the temperature field, and no-slip for the velocity field.

where L is the length of the container, TH the applied temperature along the heated wall,
TM the melting temperature and α = kL/(ρLcpL) the liquid thermal diffusivity. Since the
interior dimensions of the container are L × H (length × height), the horizontal dimension
after rescaling is unity while the container height is the inverse of its aspect ratio Γ =
L/H.

The dimensionless Navier–Stokes equations for laminar and incompressible flow
(Landau & Lifshitz 1987) describe the conservation of momentum and mass in the liquid
phase,

ρ̂

(
∂u
∂τ

+ (u · ∇)u
)

= −∇p + Pr μ̂Δu, (2.3a)

∇ · u = 0, (2.3b)

where u and p are the (dimensionless) velocity and pressure fields, and the Prandtl number
is

Pr = μL

ρLα
. (2.4)

During the solid–liquid transition, the absorbed latent heat depends on the fraction
of melted PCM through the product f ρcL, where cL is the heat of fusion. Energy and
momentum are coupled through this liquid fraction f , which can be expressed as a field
depending on temperature. We model this dependence using the following step function
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(smoothed for numerical stability):

f (T) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, T − TM < −δT/2,

1
2

+ T − TM

2δT
+ 1

2π
sin

(
(T − TM)

δT
π

)
, |T − TM| ≤ δT/2,

1, T − TM > δT/2,

(2.5)

which changes from 0 to 1 (symmetrically) near TM. The small temperature δT
characterises the interval where solid and liquid phases may coexist, the so-called mushy
region (Egolf & Manz 1994). With the selection of n-octadecane for the PCM, as in recent
microgravity experiments (Ezquerro et al. 2019, 2020; Salgado Sánchez et al. 2020b), the
values of δT reported in the literature (see e.g. Ho & Gaoe 2009; Velez, Khayet & Ortiz
2015) range from 1 K to 4 K, depending on the experimental technique and the purity of
the sample. We anticipate the choice of δT = 1 K, consistent with Salgado Sánchez et al.
(2020b).

The conservation of thermal energy includes the contributions of both sensible and
latent heats,

ρ̂ĉp

(
∂Θ

∂τ
+ u · ∇Θ

)
= k̂ΔΘ − Ste−1ρ̂

(
∂f
∂τ

+ u · ∇f
)

, (2.6)

where Ste refers to the Stefan number,

Ste = cpL(TH − TM)

cL
. (2.7)

The system is considered to be continuous, with properties that depend on the local
temperature and have appropriate limits for the solid and liquid phases. All physical
properties of the PCM are expressed using the liquid fraction f as follows (subscripts
L and S denote liquid and solid, respectively):

ρ̂ = ρ̃ + (1 − ρ̃)f , (2.8a)

μ̂ = μ̃ + (1 − μ̃)f , (2.8b)

ĉp = c̃p + (1 − c̃p)f , (2.8c)

k̂ = k̃ + (1 − k̃)f , (2.8d)

where

ρ̃ = ρS

ρL
, μ̃ = μS

μL
, c̃p = cpS

cpL
, k̃ = kS

kL
. (2.9a–d)

The parameter μS is taken as a virtual solid viscosity with a value several orders of
magnitude greater than μL (Voller, Cross & Markatos 1987). This value is selected from
a convergence test of the numerical simulations and is required to be such that the solid
velocity effectively vanishes; see § 2.1 for details.
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The thermocapillary effects along the free surface are considered in the linear
approximation, with the interfacial tension depending on temperature as

σ

σ0
= 1 − Ca Θ, (2.10)

where σ is the surface tension measured with respect to a reference value σ0 at TM, and Ca
is the capillary number,

Ca = |γ |(TH − TM)

σ0
, (2.11)

characterising the variation of surface tension with temperature through the
thermocapillary coefficient γ = ∂σ/∂T . This temperature dependence provides the
driving force for thermocapillary convection by pulling the liquid along the surface from
regions of lower to higher surface tension. Along the solid PCM–gas interface, where
Θ ≤ 0, we set γ = 0 (Ca = 0).

When a temperature gradient along the free surface generates thermocapillary
convection, there is a balance between pressure, viscous stresses and surface tension. For
simplicity, we assume a perfectly flat interface so that the only dependence on surface
tension is through γ . The balance therefore becomes

∇nut = −Ma ∇tΘ, (2.12)

where the subscripts n and t refer to the normal and tangential components, and Ma stands
for the Marangoni number,

Ma = |γ |L(TH − TM)

μLα
, (2.13)

which characterises the relative importance for heat transport of the thermocapillary effect
compared with thermal diffusion.

The complete set of boundary conditions for the temperature and velocity fields is as
follows.

(a) At the (left and right) lateral walls x̂ = 0, 1, isothermal and no-slip conditions are
applied:

Θ = 1, 0, u = 0. (2.14a,b)

(b) At the bottom wall ŷ = 0, adiabatic and no-slip conditions are applied:

∇nΘ = 0, u = 0. (2.15a,b)

(c) At the free surface ŷ = Γ −1, the balance between viscous and thermocapillary
stresses (2.12) is assumed together with adiabatic and slip velocity conditions:

∇nut = −Ma ∇tΘ, ∇nΘ = 0, un = 0. (2.16a–c)

These boundary conditions are indicated in figure 1.
We solve the dynamics of the phase change for the organic paraffin n-octadecane, whose

physical properties are listed in table 1. This choice fixes the following non-dimensional
parameters:

Pr = 52.53, ρ̃ = 1.11, k̃ = 2.42, c̃p = 0.88. (2.17a–d)

Taking a similar approach as in Peltier & Biringen (1993), Ma and Ste are varied
simultaneously through the selection of the applied temperature TH , while Γ is
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908 A20-8 P. Salgado Sánchez and others

Melting temperature, TM 28 ◦C
Liquid density, ρL 780 kg m−3

Solid density, ρS 865 kg m−3

Specific latent heat, cL 243.5 kJ kg−1

Liquid specific heat capacity, cpL 2196 J kg−1 K−1

Solid specific heat capacity, cpS 1934 J kg−1 K−1

Liquid conductivity, kL 0.148 W m−1 K−1

Solid conductivity, kS 0.358 W m−1 K−1

Dynamic viscosity, μL 3.541 × 10−3 Pa s
Thermocapillary coefficient, γ −8.44 × 10−5 N m−1 K−1

TABLE 1. Physical properties of n-octadecane paraffin, reproduced from Alawadhi (2008),
Dhaidan et al. (2013) and Lide (2004).

Ma Ste Γ Pr ρ̃ k̃ c̃p

6207–248 298 0.009–0.361 1.5–22.8 52.53 1.11 2.42 0.88

TABLE 2. Non-dimensional parameters explored, corresponding to TH − TM = ΔT ∈
[1, 40] K, H ∈ [0.9875, 15] mm and the selection of n-octadecane.

independently varied through the container height H. Recall that, for simplicity, the cold
side is maintained at Θ = 0 (TC = TM). The range of dimensionless parameters explored
is summarised in table 2.

Experimental (Montanero, Ferrero & Shevtsova 2008) and numerical (Shevtsova et al.
2008) analyses of liquid bridges have reported that the free surface deformation caused by
thermocapillary flows is proportional to Ca. For the present work on n-octadecane, which
has a surface tension at 30 ◦C of approximately σ0 � 27.54 mN m−1 (Camp 1977), the
capillary number always satisfies Ca ≤ 0.12 and the free surface deformation is expected
to be of the order of micrometres (Montanero et al. 2008). We have used TH − TM = ΔT ≤
40 K and the thermocapillary coefficient reported in table 1 for the previous calculation.

Furthermore, previous analytical treatments in rectangular cavities (Sen & Davis 1982;
Strani et al. 1983) have found a negligible effect of the interface deformation on the
qualitative aspects of the flow structure, which is the focus of the present paper. The main
error associated with the consideration of a fixed rectangular domain is likely related to
the different volumes occupied by the solid and liquid phases. However, the recent work of
Salgado Sánchez et al. (2020b) demonstrated good agreement between experiments and
analogous simulations using a fixed rectangular volume, which provides support for this
simplifying assumption.

Finally, the assumption of two-dimensional dynamics is supported by the high Prandtl
number of the PCM selected, for which thermocapillary flows were shown to be
essentially two-dimensional (Smith & Davis 1983; Peltier & Biringen 1993; Kuhlmann &
Albensoeder 2008), while the use of perfectly adiabatic boundaries is taken for consistency
with previous analyses (see e.g. Sen & Davis 1982).

We use COMSOL Multiphysics to solve the governing equations (2.3)–(2.8) with the
set of boundary conditions (2.14a,b)–(2.16a–c) in dimensional variables using the finite
element method. The initial condition for the (dimensional) temperature field is 25 ◦C
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Mesh Max. size Mesh Simulation τmelt,% Deviation
number (×L/67.5) DoF time (–) (%)

a1 1 3316 2 h 10 min (0.0517, 0.1560) (−4.71, 4.10)
a2 2/3 6865 3 h 8 min (0.0526, 0.1485) (−3.14, −0.91)
a3 1/2 11 703 4 h 4 min (0.0543, 0.1499) —

b1 2 3716 8 h 36 min (0.1519, 0.7919) (−10.82, −5.93)
b2 1 13 021 16 h 28 min (0.1647, 0.8430) (−3.30, 0.12)
b3 2/3 28 258 30 h 36 min (0.1703, 0.8419) —

TABLE 3. Results of the mesh convergence test for numerical simulations in (a)
large-aspect-ratio Γ = 12 and (b) small-aspect-ratio Γ = 2.25 containers, both at Ma =
124 170. The selected meshes a2 and b2 are highlighted in bold, with deviations in the melting
time τmelt for 50 % and 100 % liquid fractions, calculated with respect to meshes a3 and b3.

(< TM) at which the PCM is in a solid state and thus u = 0. This introduces a mismatch
with respect to the applied boundary conditions for this field, which can be approached
numerically by using an inconsistent initialisation technique that relies on a backward
Euler method for one step. We note that this initial temperature is selected well below
TM − δT/2 to account for the complete heat of fusion during the phase change. The
subsequent time evolution is effected with a backward differentiation formulae (BDF)
scheme together with streamline (Harari & Hughes 1992) and crosswind (Codina 1993)
stabilisation techniques to avoid spurious numerical oscillations.

Additional details of the numerical method, including the criteria used for selecting the
maximum mesh size and the numerical parameter μS, are discussed hereafter.

2.1. Convergence of the numerical solutions
Since the main objective of the present work is to analyse the effect of thermocapillary
convection during the PCM melting, it is natural to use the melting time at which the
liquid fraction is 100 % as an indicative value for testing numerical convergence.

The convergence of the numerical simulations is examined for three different
mesh choices in table 3. The applied Marangoni number is fixed at Ma = 124 170,
corresponding to Ste = 0.180 and ΔT = TH − TM = 20 K. Convergence is tested for two
aspect ratios, (a) Γ = 12 and (b) Γ = 2.25, corresponding to H = 1.875 and 10 mm,
which are representative of the dynamics in the large- and small-aspect-ratio limits. (These
values are selected to test convergence in the oscillatory regime; see §§ 3.2 and 4.2 for
further details.) Meshes are compared and characterised by the maximum element size (as
a fraction of the container length L), degrees of freedom (DoF), simulation cost (in time),
melting time to achieve 50 % and 100 % liquid fractions τmelt, and deviations with respect
to the finest mesh used.

The associated time evolutions of the liquid area for each mesh are illustrated in figure 2.
In both cases, meshes a2 and b2 (highlighted by bold symbols in table 3 and by blue curves
in figure 2) are found to offer a good compromise between reduced computational cost
and numerical accuracy. The level of numerical error for the final melting time with these
choices is shown to be below 1 %, which is acceptable given the remaining uncertainties
in comparison with experiments (not considered in this work). Note that these results
are consistent with the recent work of Salgado Sánchez et al. (2020b), where numerical
simulations were validated against experiments after selecting a similar mesh size.
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FIGURE 2. Mesh convergence test for the evolution of the liquid fraction L. Simulations are
performed with Ma = 124 170 in (a) Γ = 12 and (b) Γ = 2.25 containers to test convergence
in the large- and small-aspect-ratio limits, respectively. Selected meshes are plotted in blue and
highlighted in bold in the tables.

Virtual solid viscosity, μS
(Pa s)

τmelt,%
(–)

Deviation
(%)

101 0.8519 1.05
103 0.8430 —
105 0.8350 −0.95

TABLE 4. Results of the convergence test for the virtual solid viscosity μS. The mesh used is
b2 (Γ = 2.25) and the deviation in the total melting time τmelt is calculated with respect to the
selected value μS = 103 Pa s.

Using the previously selected meshes, the sensitivity of numerical simulations to
variations in the virtual solid viscosity μS is analysed. Table 4 contains the results for
Γ = 2.25 and three different virtual solid viscosities μS = 10, 103, 105 Pa s. We select
μS = 103 Pa s since deviations remain of the order of 1 % and change very little compared
with the large steps (by two orders of magnitude) taken in μS. This value was also selected
in Salgado Sánchez et al. (2020b).

In the remainder of this paper, we use μS = 103 Pa s and δT = 1 K, together with
a maximum mesh size of (2/3)S if Γ ≥ 4.5, and S if Γ < 4.5, where S = L/67.5.
The time steps are set to values between Δt ∈ [0.0005, 0.01] s depending on the
applied Ma, and can be automatically reduced for numerical stability according to the
Courant–Friedrichs–Lewy (CFL) convergence condition.

In the following sections, numerical results are presented in dimensionless variables,
accompanied by the associated dimensional values (given between brackets) to ease the
physical interpretation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.852


Thermocapillary flows during phase change in microgravity 908 A20-11

τ = 0.0171 (100 s)

τ = 0.3414 (2000 s)

τ = 2.5601 (15 000 s)

τ = 5.9736 (35 000 s)

0

1

Θ

(a)

(b)

(c)

(d)

FIGURE 3. Snapshots (times indicated) showing the evolution of the PCM melting for Γ = 12
(H = 1.875 mm, L = 22.5 mm) and a (small) applied Ma = 9311 (Ste = 0.014, ΔT = 1.5 K).
The colour map shows the temperature field with flow streamlines (black solid lines)
superimposed. The solid volume is melted completely by τmelt = 5.8704 (34 395 s). During the
process, the thermocapillary flow in the liquid phase (coloured) exhibits a steady return flow
(SRF) structure, characterised by a single large vortex that extends along the length of the cell.

3. Thermocapillary flows during the phase change in large-aspect-ratio containers

The phase-change process is analysed first in large-aspect-ratio containers. Qualitatively
similar results are obtained for Γ � 7. We select Γ = 12 as a representative case to
illustrate the different dynamics that can occur during the phase transition depending on
the applied Ma. The associated thermocapillary flow can be either steady or oscillatory,
which is discussed in detail in the following sections.

3.1. Steady flow regime: steady return flow and steady multicellular structures
In figure 3, four snapshots show the time evolution of the PCM melting process for Γ = 12
(H = 1.875 mm, L = 22.5 mm) and a (small) applied Ma = 9311 (Ste = 0.014, ΔT =
TH − TM = 1.5 K). The colour map shows the temperature field between Θ = 0 (T = TM,
dark blue) and Θ = 1 (T = TM + 1.5 K, dark red), with flow streamlines (black solid
lines) superimposed.

At early times, the phase change is essentially driven by thermal diffusion. As shown
at τ = 0.0171, the isotherms are aligned vertically along the container except in a small
region near the free surface. In this region, thermocapillary forces generate a small vortex
(not included in the snapshot) that (locally) accelerates the phase change and causes the
solid/liquid front to progress faster. As time passes and the solid/liquid front advances,
this vortex progressively grows in size until it spans the container height. By τ = 0.3414,
the vortex is fully extended vertically and so is its effect on the solid/liquid front and the
temperature field.

The progressive melting of the solid changes the effective aspect ratio experienced by
the liquid phase. The initial vortex stretches as the solid/liquid front penetrates the cell

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.852


908 A20-12 P. Salgado Sánchez and others

but maintains the features of the steady return flow (SRF) structure, which is typical of
thermocapillary-driven dynamics in large-aspect-ratio containers subjected to small Ma
(Sen & Davis 1982). The slow evolution of the solid/liquid front continues until τmelt =
5.8704 (34 395 s), when the solid is completely melted.

Upon comparing the final SRF structure once the melting process is completed (see
the snapshot at τ = 5.9736) to the analytical solution obtained by Sen & Davis (1982) or
Strani et al. (1983), where the streamlines are more similar on the left and right sides, we
may conclude that the temperature dependence of viscosity defined by (2.8b) effectively
damps fluid motion in the mushy region near the cold side. This leads to the visible
asymmetry (with respect to left–right reflection through the midline). Since δT is fixed,
the relative extension of this mushy region, where the fluid velocity vanishes, increases
with decreasing applied temperature difference.

The unicellular SRF structure exists over a certain interval of Ma. As soon as the applied
Ma surpasses a critical value, this single vortex state loses stability to a (so-called) steady
multicellular structure (SMC), which is characterised by a series of small steady vortices
– aligned at ŷ � (2/3)Γ −1 – that spread outwards from the hot boundary. The intensity of
these vortices decays (exponentially) inwards (Shevtsova et al. 2003).

In figure 4, seven snapshots show the time evolution of the PCM subjected to a higher
(moderate) Ma = 77 593 (Ste = 0.113, ΔT = 12.5 K), in the same container of aspect
ratio Γ = 12 (H = 1.875 mm, L = 22.5 mm). The colour map shows the temperature
field between Θ = 0 (T = TM, dark blue) and Θ = 1 (T = TM + 12.5 K, dark red), with
the flow streamlines (black solid lines) superimposed.

As in the case of Ma = 9311, the phase change is essentially driven by thermal diffusion
at the beginning. Compared with figure 3, the applied Ma is roughly one order of
magnitude greater, resulting in a stronger thermocapillary effect. In fact, the initial vortex
near the free surface substantially accelerates the progression of the solid/liquid front and
rapidly splits into two smaller vortices. Again, as the melting progresses, the effective
aspect ratio of the liquid phase increases and new vortices appear in the flow. Note that,
although the vortical structure evolves until it occupies the complete domain at the end of
melting, individual vortices reach a steady location prior to that.

The final flow configuration is similar to that described by Shevtsova et al. (2003) at
small to moderate Ma, where thermocapillary-buoyant convection was analysed in a large
container with Γ = 24.7. These authors explained the transition from SRF to SMC in
terms of the influence of the hot endwall, where a stationary wave decaying exponentially
towards the centre of the container was generated. We note that Shevtsova et al. (2003)
did not analyse the case of zero gravity but used strictly positive values of the dynamic
Bond number, defined as Bodyn = (ρLgβH2)/|γ |, where g is the vertical gravitational
acceleration and β is the liquid compressibility. Their results, however, suggested that
this flow structure would persist in the limit g → 0 (Bodyn → 0).

For this applied Ma, the solid volume is melted completely by τmelt = 0.2859 (1675 s),
which is one order of magnitude faster than the time observed in figure 3. The shape of the
solid/liquid front, on the other hand, is more inclined than in figure 3, which is consistent
with the results of Lappa (2018), where this inclination was shown to depend on Ma, with
more inclined solidification fronts observed with increasing thermocapillary effects.

Despite the fact that the phase-change process is dynamic, with the solid/liquid front
evolving along with the associated thermocapillary flow in the liquid, we refer to the above
solutions as steady flow structures. This is justified by the different time scales involved.
The steady modes are nearly constant over time scales sufficiently short compared with
that of the solid/liquid front evolution. As will be described below, the oscillatory modes
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FIGURE 4. Snapshots (times indicated) showing the evolution of the PCM melting for Γ = 12
(H = 1.875 mm, L = 22.5 mm) and a (moderate) applied Ma = 77 593 (Ste = 0.113, ΔT =
12.5 K). The colour map shows the temperature field with flow streamlines (black solid lines)
superimposed. The solid volume is melted completely by τmelt = 0.2859 (1675 s). During this
process, the thermocapillary flow in the liquid phase (coloured) shows a steady multicellular
structure (SMC), which involves a series of small vortices – aligned at ŷ � (2/3)Γ −1 – that
spread outwards from the hot boundary. Their intensity decays (exponentially) towards the centre
of the container.

have a period much shorter than the time for complete melting (also referred to as melting
time, τmelt), i.e. the required time to melt the solid phase completely. This separation of
time scales allows us to consider that the phase change is quasi-steady, with the oscillatory
thermocapillary flow insensitive to the change in position of the solid/liquid front over one
oscillation period.

This quasi-steady character is reflected in the time series of the temperature field
at different measurement locations along the cell. In figure 5, the dimensionless
temperature Θ measured by three probes placed at the horizontal positions x̂ =
Γ −1 (black), 1/2 (dark grey) and 1 − Γ −1 (light grey, labelled in the panels) along
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FIGURE 5. Dimensionless temperature Θ measured at selected points. The probes are
distributed along the length of the PCM at horizontal positions x̂ = Γ −1 (black), 1/2 (dark
grey) and 1 − Γ −1 (light grey, labelled in the panels) with the same vertical height ŷ �
(2/3)Γ −1. The applied Marangoni numbers are (a) Ma = 9311 (ΔT = 1.5 K, as in figure 3), and
(b) Ma = 77 593 (ΔT = 12.5 K, as in figure 4), where SRF and SMC solutions are found in the
liquid phase, respectively. The dimensionless time for the melting completion τmelt is indicated
by vertical lines.

the PCM length and ŷ = (2/3)Γ −1 are shown. The applied Marangoni numbers are
(a) Ma = 9311 (ΔT = 1.5 K, as in figure 3) and (b) Ma = 77 593 (ΔT = 12.5 K,
as in figure 4). The associated dimensionless times for the completion of melting τmelt
are indicated by vertical lines in both panels.

In addition to revealing the steady or oscillatory nature of the thermocapillary flow,
the temperature profiles provide information about the evolution of the solid/liquid front
at ŷ = (2/3)Γ −1, which can be inferred from the times at which the local temperature
crosses Θ = 0, i.e. when the solid/liquid front passes this point. The time τmelt can be
determined from the approach to a final steady state, as seen most clearly in figure 5(b).

To summarise, the steady thermocapillary flow regime observed during the solid–liquid
transition depends on Ma. At low Ma, the features are those of the SRF, with a large
vortex stretching from the hot to the cold boundary. With increasing Ma, this large vortex
undergoes a transition to an SMC consisting of various vortices aligned at ŷ � (2/3)Γ −1,
with intensity decaying exponentially with distance from the hot wall (Shevtsova et al.
2003). The number of vortices depends on Ma and Γ . Compared with the work of Bergeon
et al. (1998) in a fix rectangular geometry, where the selection of the number of vortices
near the onset of the SMC mode was shown to depend only on Γ , the effective aspect ratio
of the liquid phase here evolves during the melting process, which couples the effects of
Ma and Γ during this transient evolution. Further increase of the applied Ma induces a
transition to an oscillatory mode, as explained below.

3.2. Oscillatory flow regime: the hydrothermal travelling wave
In figure 6, the evolution of the PCM phase change in a Γ = 12 container subjected to a
(large) Ma = 186 224 (Ste = 0.271, ΔT = 30 K) is illustrated through selected snapshots.
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FIGURE 6. Snapshots (times indicated) showing the evolution of the PCM melting for Γ = 12
(H = 1.875 mm, L = 22.5 mm) and a (large) applied Ma = 186 224 (Ste = 0.271, ΔT = 30 K).
The colour map shows the temperature field with flow streamlines (black solid lines) and the
Θ = 0.5 isotherm (white line) superimposed. The solid volume is melted completely by τmelt =
0.0870 (510 s). During the process, the thermocapillary flow in the liquid phase (coloured) shows
the hydrothermal travelling wave (HTW) oscillatory mode, characterised by the cyclic creation
of vortices at the cold boundary Θ = 0 (i.e. at the solid/liquid interface or the cold wall) that
travel towards the hot wall. The intensity of the travelling vortices decays progressively as they
penetrate inwards. In the vicinity of the hot boundary, the travelling velocity decreases and the
flow structure remains essentially standing.

The colour map shows the temperature field between Θ = 0 (T = TM, dark blue) and Θ =
1 (T = TM + 30 K, dark red), with flow streamlines (black solid lines) and the Θ = 0.5
isotherm (white line) superimposed.

At the very beginning of the phase-change process, heat transport is dominated
by thermal diffusion. As soon as the solid/liquid front separates enough from the
hot boundary, the thermocapillary effect drives convection near the free surface,
as in figure 4. In this case, however, the local melting near the surface is fast
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enough that two different regions can already be distinguished in the liquid at τ =
0.0034: a thermocapillary-dominated region in the vicinity of the free surface, and
a conductive-dominated region near the bottom wall. Despite the shorter time, the
streamlines already indicate a flow structure of similar nature to that of the SMC discussed
above, with three vortices spanning the liquid domain.

As time passes, the thin thermocapillary layer grows thicker until it spans the complete
cell height, while the solid/liquid front advances through the cell, as shown at τ = 0.0171.
From this time onwards, the solid/liquid interface maintains a similar overall shape,
with approximately the same inclination (greater than that observed with smaller Ma),
until reaching the cold endwall. During this transient, the existing SMC flow develops
an increasing number of vortices, whose location along the container length is often
nearly steady. At some instant, however, this underlying structure begins to oscillate,
producing a hydrothermal travelling wave (HTW). With this applied Ma, the solid volume
is completely melted by τmelt = 0.0870 (510 s).

The HTW is characterised by the cyclic creation of vortices at the cold boundary where
Θ = 0 (i.e. at the solid/liquid interface or the cold wall) that travel towards the hot wall.
The intensity of the travelling motion decays as they move inwards. In the vicinity of the
hot boundary, the flow structure is essentially standing. Part of this can be seen in the
last three snapshots of figure 6 at τ = 0.0341, 0.0683, 0.1024. The instability mechanism
responsible for generating HTWs in high-Pr liquids was discussed by Smith (1986),
and shown to involve a (cyclic) energy transfer from the base flow to the temperature
disturbance, and vice versa; hot perturbations at the interface are cooled by an upflow from
underneath and, conversely, cold perturbations are warmed by an associated downflow.

In order to understand the different features of the HTW mode, temperature profiles
are measured at selected locations along the cell length at ŷ = (2/3)Γ −1 as illustrated in
figure 7. In figure 7(a), temperature profiles are shown at three points x̂ = Γ −1 (black), 1/2
(dark grey) and 1 − Γ −1 (light grey, labelled in the figure). By comparing with figure 5,
the oscillatory nature of the thermocapillary flow is evident. Furthermore, two relevant
times, indicated by vertical lines, can be inferred: the appearance of the HTW mode at
τosc, revealed by the signal oscillation; and the completion of melting at τmelt, revealed by
the approach to a final HTW oscillatory mode solution.

By themselves, the temperature signals of figure 7(a) do not demonstrate the travelling
nature of the HTW mode. To show this, we calculate the temperature deviation Θ̂ = Θ −
〈Θ〉 with respect to the temporal average 〈Θ〉 at x̂ = 1/2 (solid line) and two equidistant
points x̂ ± Δx̂,Δx̂ � 0.04 (dashed and dashed-dotted), shown in figure 7(b). The shifted
times at which the maxima of the curves occur demonstrate that these waves travel from
the cold to the hot side of the container. At the same time, the fact that the peaks are not
exactly at the same value shows that they are not purely travelling but include some degree
of time-independent spatial modulation as well (i.e. a standing or pulsating component).

A more detailed look at the HTW mode is provided by figure 8(a–f ), which shows
six snapshots (approximately) equally distributed in time over one oscillation period
of the temperature deviation field Θ̂ (left) and associated flow streamlines (right). The
temperature deviation shows the motion of (cold and hot) perturbations from the cold side
and how they vanish as they approach the hot boundary. The streamlines, on the other
hand, reveal not only the motion of the vortices from the cold side, but also a certain
degree of pulsating motion of the velocity field near the hot side, where the oscillatory
mode becomes more of a standing wave. The wavenumber is estimated to be kH � 2,
consistent with the work of Smith & Davis (1983), which predicted kH → 2.47 in the
limit of Pr → ∞. The simulations here capture the essentially two-dimensional behaviour
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FIGURE 7. Time evolutions of the dimensionless temperature Θ at Ma = 186 224 (Ste = 0.271,
ΔT = 30 K, as in figure 6), where the oscillatory HTW is found. (a) Temperatures Θ at three
selected sounding points distributed along the cell length x̂ = Γ −1 (black), 1/2 (dark grey) and
1 − Γ −1 (light grey, labelled in the figure) at fixed vertical position ŷ = (2/3)Γ −1. Two relevant
times are indicated by vertical lines: appearance of the HTW τosc, and melting completion τmelt.
(b) Temperature deviation Θ̂ = Θ − 〈Θ〉 with respect to the average 〈Θ〉 at x̂ = 1/2 (solid
line) and 1/2 ± Δx̂, Δx̂ � 0.04 (dashed and dashed-dotted), showing the travelling nature of
the oscillatory HTW mode.

of the HTW instability anticipated by these authors, who predicted a (small) propagation
angle of 7.9◦ in the high-Pr limit.

The evolution of the temperature field Θ̂ along ŷ = (2/3)Γ −1 (indicated in 8 f by the
solid horizontal line) is shown in figure 8(g) over many oscillation periods. The travelling
nature of the wave is clear. Furthermore, its mean velocity can be estimated by the slope
of the maxima (or minima) in the space–time plot. A slight change in the slope of these
maximal (or minimal) curves can be discerned from x̂ = 1 (cold wall) to 0 (hot wall) as
the travelling wave becomes increasingly more like a standing wave near the hot side.

It is informative to look at the characteristic frequency of the HTW obtained from a
fast Fourier transform (FFT). In figure 9, (normalised) spectrograms calculated from the
temperature deviation Θ̂ at (x̂, ŷ) = (1/2, (2/3)Γ −1) are shown for three different applied
Marangoni numbers: (a) Ma = 108 630, (b) 124 149 and (c) 186 224, corresponding to
Ste = 0.158, 0.180 and 0.271 and ΔT = 17.5, 20 and 30 K, respectively.

In general, the spectral content of the HTW mode increases with the applied Ma. At
(moderate) Ma (9a), there is a single dominant spectral peak at the natural frequency of
the oscillation, Ω = f (L2/α) � 1.17 × 103 ( f � 0.2 Hz, with units restored). Increasing
the applied Ma does not substantially modify this frequency but does lead to more
harmonic content in the signal. At Ma = 124 149 (9b), the frequencies Ω � 1.17 × 103

and 2.34 × 103 ( f � 0.2, 0.4 Hz) are both relevant, while in 9(c) at Ma = 186 224, the
third harmonic is significant as well. It can be expected that, for high enough Ma, chaotic
thermocapillary flow can be found with a much broader spectral response. Here, the
distinction mentioned above between the time scales of the melting process and the
oscillatory modes is evident. At Ma = 186 224, for example, the (dimensional) oscillation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.852


908 A20-18 P. Salgado Sánchez and others

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7

−0.2

0.2

Θ̂

τ

0

0.2

0.4

0.6

0.8

1.0

x̂

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(×102)

FIGURE 8. The HTW found at Ma = 186 224 (Ste = 0.271, ΔT = 30 K). (a–f ) Temperature
deviation Θ̂ (left panels) and flow streamlines (right panels) at equally spaced times over
(approximately) one oscillation period; the time increment between panels is Δτ � 1.7 × 10−4

(1 s). (g) Time evolution of temperature deviation Θ̂ at the horizontal line ŷ = (2/3)Γ −1

(indicated in panel ( f )) for several oscillation periods. The colour map scale given in (g) is
preserved between panels.

period is of the order of 5 s, while it takes 510 s to observe the complete solid–liquid phase
transition, showing a ratio of roughly 0.01.

The formation and propagation of HTWs during solidification in large containers
were recently analysed by Lappa (2018). The solidification was controlled by prescribing
temperature ramps at the cold side of the container and the evolution of the oscillatory
mode was traced during the process. Spectral analysis revealed the presence of a transition
from the initial single-frequency HTW solution to a three-frequency mode with: (i) a
first frequency similar to that of the initial HTW, (ii) a second frequency related to the
temperature ramping, and (iii) a third frequency that was the difference of the other
two. Our results have a simpler spectral profile since constant temperatures are applied
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FIGURE 9. Spectrogram of the temperature deviation Θ̂ = Θ − 〈Θ〉 (〈Θ〉 is the time average)
measured at (x̂, ŷ) = (1/2, (2/3)Γ −1) for increasing Marangoni numbers in the HTW regime:
(a) Ma = 108 630, (b) 124 149 and (c) 186 224. These values correspond to Ste = 0.158, 0.180
and 0.271 and ΔT = 17.5, 20 and 30 K. Frequencies are non-dimensionalised with the thermal
diffusion time scale (L2/α).

at the boundaries. The spectra observed here, with the basic frequency of oscillation and
higher harmonics, are more similar to the results of Shevtsova et al. (2003).

Finally, we plot the spectrogram (calculated at the completion of the phase change)
against the applied Ma in figure 10(a). The increase in spectral content with applied Ma is
apparent, while at lower values of Ma, there is no oscillatory behaviour at all. The vertical
lines in 10(a), labelled as ‘a’, ‘b’ and ‘c’, refer to the Ma values of figure 9.

3.3. Onset of oscillatory convection
From the previous discussion, it is clear that there is a critical Marangoni number Macr for
the appearance of the HTW mode. However, in contrast to thermocapillary flow in a pure
liquid phase, where the supercritical nature of the instability allows an accurate estimate
of the threshold from the variation of the oscillation amplitude (see e.g. Preisser, Schwabe
& Scharmann 1983), the gradual change of liquid volume due to the phase-change process
complicates this approach.

Generally, temperature measurements are as shown in figure 7, with long transient times
needed to reach a quasi-steady amplitude affected primarily by the slower evolution of
the solid/liquid front during melting. To get around this problem, we propose to use the
thermocapillary contribution of the HTW mode CHTW , defined as the total time that the
oscillatory motion exists relative to the total melting time, which usually simplifies to

CHTW =
(

1 − τosc

τmelt

)
× 100 (in %). (3.1)

In figure 10(b), the calculated CHTW values are plotted against the associated Ma. The
markers denoting simulations are colour-coded according to whether the flow regime is
steady (black) or that of the HTW mode (red). A fit of these values (dashed line) provides
an estimate of the critical Ma (in green, also marked in 10(a) by a vertical green line) for
the HTW mode. For Γ = 12, it is found to be

Macr = 97 660, (3.2)

corresponding to Stecr = 0.133 and a critical temperature difference ΔTcr = 15.73 K.
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FIGURE 10. (a) Successive spectrograms of the temperature deviation Θ̂ measured at (x̂, ŷ) =
(1/2, (2/3)Γ −1) at the completion of melting over a wide range of Ma ∈ [62 075, 248 298]
(ΔT ∈ [10, 40] K). The black vertical lines indicate the Ma of associated spectrograms shown in
figure 9. (b) Contribution of the oscillatory HTW mode to the phase change CHTW (i.e. percentage
of the total melting time with HTW) over the same range of Ma. Simulations are denoted by
markers, which are colour-coded according to whether the thermocapillary flow is steady (black)
or that of the HTW mode (red). The fit (dashed line) for these discrete measurements provides
an estimate of the critical Ma (green marker) for the HTW mode, which is Macr = 97 660,
corresponding to a Stecr = 0.133 and ΔTcr = 15.73 K. This threshold is labelled and indicated
by the green vertical line in panel (a).

4. Thermocapillary flows during the phase change in small-aspect-ratio containers

The phase change is now analysed in small-aspect-ratio containers. Again, qualitatively
similar results are obtained for Γ � 4. We select Γ = 2.25 as a representative case to
illustrate the different dynamics that can occur during the phase transition depending on
the applied Ma. As for large-aspect-ratio containers, the associated thermocapillary flow
can be either steady or oscillatory, with each treated in separate sections below.

4.1. Steady flow regime: from small-scale SMC states to large-scale steady vortical
structures

In figure 11, four snapshots show the time evolution of the PCM phase change for Γ =
2.25 (H = 10 mm, L = 22.5 mm) and a (moderate) applied Ma = 62 075 (Ste = 0.090,
ΔT = 10 K). The colour map shows the temperature field between Θ = 0 (T = TM, dark
blue) and Θ = 1 (T = TM + 10 K, dark red), with flow streamlines (black solid lines)
superimposed.

At the early times of the phase change, heat transport is dominated by thermal
diffusion. As soon as the solid/liquid front separates enough from the hot boundary,
the thermocapillary effect drives convection in an initially thin region (compared with
H) near the free surface. The melting process is locally enhanced, which accelerates the
progression of the solid/liquid front near the liquid–air boundary, as shown at τ = 0.1195.
The effective aspect ratio within this layer is generally larger than Γ , and thus a flow
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τ = 1.0241 (6000 s) τ = 1.6214 (9500 s)
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FIGURE 11. Snapshots (times indicated) showing the evolution of the PCM melting for
Γ = 2.25 (H = 10 mm, L = 22.5 mm) and a (moderate) applied Ma = 62 075 (Ste = 0.090,
ΔT = 10 K). The colour map shows the temperature field with flow streamlines (black solid
lines) superimposed. The solid volume is melted completely by τmelt = 1.5677 (9185 s). During
the process, the thermocapillary flow in the liquid phase (coloured) exhibits a transition from a
small-scale SMC to a large-scale steady vortical structure (SVS). As the phase change progresses,
an initial series of vortices along the thin liquid layer near the free surface (where the effective
local aspect ratio is large) transforms into an SVS flow with one strong vortex near the hot side
and a weaker one near the cold side. The horizontal line at τ = 0.1195 indicates the selected cut
ŷ = (9/10)Γ −1 used for the temperature profiles shown in figure 12.

structure reminiscent of a small-scale SMC is observed within the layer; this solution is
typical of larger-aspect-ratio containers (see § 3, for details). The streamlines included
at τ = 0.3415 illustrate this structure, which is characterised by a series of vortices that
spread from the hot to the cold boundary. During this time, the cold boundary is essentially
determined by the advancing solid/liquid front. The liquid near the bottom wall, on the
other hand, indicates a phase change driven mainly by thermal diffusion. This is evident
from the local temperature field, which shows (vertical) isotherms parallel to the lateral
endwalls.

As this layer evolves, the solid/liquid front reaches the cold lateral boundary and the
liquid phase depth near this boundary increases with time. This means that the effective
aspect ratio for the thermocapillary flow slowly decreases and the vortices move towards
the cold endwall. At some point, the smaller vortex near this boundary is absorbed by its
neighbour, which reduces the number of vortices by one. This process is repeated until
a final configuration of two vortices is reached, as shown at τ = 1.0241. The vortical
structure selected in the final configuration depends on the cell aspect ratio (Bergeon et al.
1998); the limiting case of one single vortex would be observed for reduced aspect ratios
(Zebib et al. 1985; Carpenter & Homsy 1990).

At the completion of melting, which occurs by τ = 1.5677 (9185 s), the flow contains
two vortices of different intensity, similar to the structure discussed by Peltier & Biringen
(1993), with the main vortex biased towards the hot wall, consistent as well with
Carpenter & Homsy (1990). For this applied Ma, the flow remains steady and temperature
oscillations are not observed. This is demonstrated in figure 12, where the time evolution of
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FIGURE 12. Evolution of the temperature profile at ŷ = (9/10)Γ −1 for the complete
solid–liquid transition illustrated in figure 11. The colour map shows the temperature field and
demonstrates the steady nature of the vortical structure over the complete melting process.

the temperature profile along the ŷ = (9/10)Γ −1 line (marked by a solid line at τ = 0.1195
in figure 11) is shown.

Not only is the steady nature of the melting process clear from the temperature field,
but the quasi-steady evolution of the flow structure is also evident. The initial vortex that
is (nearly) centred along this line progressively occupies the left half of the cell, while the
smaller vortices that form along with the SMC slowly disappear near the cold boundary
and are absorbed by their neighbours. In short, the thermocapillary flow evolves from a
small-scale (compared with container dimensions) SMC to a large-scale steady vortical
structure (SVS).

Finally, as for Γ � 1, the steady nature of this thermocapillary flow becomes unstable
at a certain Ma, where it gives way to an oscillatory mode. The features of this mode are
presented and analysed below.

4.2. Oscillatory flow regime: the oscillatory standing wave
In figure 13, snapshots at selected times show the evolution of the phase change for
Γ = 2.25 (H = 10 mm, L = 22.5 mm) and a (large) applied Ma = 186 224 (Ste = 0.271,
ΔT = 30 K). The colour map shows the temperature field between Θ = 0 (T = TM, dark
blue) and Θ = 1 (T = TM + 30 K, dark red), with flow streamlines (black solid lines)
superimposed.

The progression of the phase change is fairly similar to that of § 4.1, with the total
time of the melting reduced as expected for an applied Ma that is three times larger.
The flow in the liquid initially shows two regions: the thermocapillary-dominated region
near the free surface, and the thermal diffusion-dominated region near the bottom wall.
As the applied Ma is increased, the localised SMC contains four vortices (see the
temperature field and streamlines at τ = 0.0512), one more than the three vortices shown
at τ = 0.3414 in figure 11 for a similar solid/liquid interface location. As time passes,
however, the associated thermocapillary flow does not have the simple structure of two
asymmetric vortices but a more complex evolving flow structure, as illustrated at τ =
0.3414, 0.4694, 0.5632.
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τ = 0.0512 (300 s) τ = 0.1195 (700 s)

τ = 0.3414 (2000 s)

τ = 0.4694 (2750 s) τ = 0.5632 (3300 s)
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τ = 0.1707 (1000 s)

FIGURE 13. Snapshots (times indicated) showing the evolution of the PCM melting for
Γ = 2.25 (H = 10 mm, L = 22.5 mm) and a (large) applied Ma = 186 224 (Ste = 0.271,
ΔT = 30 K). The colour map shows the temperature field with flow streamlines (black solid
lines) superimposed. The solid is melted completely by τmelt = 0.5461 (3200 s). During the
process, the thermocapillary flow in the liquid phase (coloured) is that of an oscillatory standing
wave (OSW) mode, characterised by a periodic pulsation where the intensity of the two principal
vortices cycles back and forth.

To confirm the oscillatory (more generally, unsteady) nature of the flow, the temperature
field (upper row) and the associated spectrograms (lower row) at different points of the
container are shown in figure 14. For consistency with § 3, these measurement points
are chosen along the line ŷ = (2/3)Γ −1 at three different locations: (a) x̂ = 1/8 (black),
(b) 1/2 (dark grey) and (c) 7/8 (light grey, labelled in the panels). Two important times are
indicated by solid vertical lines: the appearance of the oscillatory standing wave (OSW) at
τosc and τmelt.

Aside from the oscillatory behaviour, which is evident in these profiles, there is a
significant difference compared with the results at large aspect ratios that can be seen
in the associated spectrograms. For Γ = 12, the spectrograms of figure 9 show a single
dominant frequency for the HTW mode that is nearly independent of the applied Ma
or the evolution of the solid/liquid front; this is consistent with the idea that it is the
(nearly constant) cold boundary region that is selecting the HTW frequency. For the
OSW mode in small-aspect-ratio containers, in contrast, there is a notable variation of
the principal frequency over time and in space. This mode has more complicated spectral
behaviour due to the interaction of the different regions near the free surface and near
the bottom of the container and the progressive loss of vortices from the underlying SMC
type of structure. The dominant (dimensionless) frequency changes substantially during
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FIGURE 14. Evolution of the dimensionless temperature Θ for Ma = 186 224 (ΔT = 30 K, as
in figure 13), where the OSW is found. In the upper row, temperatures are shown at (a) x̂ = 1/8
(black), (b) 1/2 (dark grey) and (c) 7/8 (light grey), labelled in the panels, with the fixed vertical
position ŷ = (2/3)Γ −1. Two relevant times are indicated by vertical solid lines: appearance of
the OSW τosc, and end of melting τmelt, while dashed lines mark the selected times for the
oscillation periods shown in figure 15 (labelled between rows). The lower row shows associated
spectrograms for the temperature deviation Θ̂ = Θ − 〈Θ〉.

the melting process, from Ω � 2.34 × 103 ( f � 0.4 Hz) at the appearance of oscillatory
motion to Ω � 0.41 × 103 ( f � 0.07 Hz) when melting finishes. We note again that the
time scale of the oscillatory flow, which ranges between 2 and 14 s, is substantially smaller
compared with the melting time of 3200 s.

The spectral content of the temperature signals varies significantly along the length of
the container too. When melting completes, the oscillations are relatively weak near the
hot side, with stronger oscillations concentrated near the cold side. In fact, compared with
figure 9(c), where the same Ma = 186 224 was applied, the spectral content of the signal
is much richer here, with the dominant frequency of the OSW mode roughly half that of
the HTW mode. They are clearly distinct instabilities.

This complex scenario can be better understood by focusing on selected oscillation
periods throughout the melting process. In figure 15, equally distributed snapshots are
shown during one period of oscillation centred at the times (a) τ = 0.0512 (300 s),
(b) 0.1195 (700 s) and (c) 0.5632 (3300 s). The corresponding oscillation frequencies
(periods are labelled in the panels) are Ω � 2.34 × 103, 1.93 × 103 and 0.41 × 103 ( f �
0.4, 0.33, 0.07 Hz), respectively.
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τ = 0.0512, T  = 4.27 × 10−4

τ = 0.1195, T  = 5.17 × 10−4

τ = 0.5632, T  = 24.38 × 10−4

τ τ + (1/7)T τ + (2/7)T τ + (3/7)T

τ + (4/7)T τ + (5/7)T τ + (6/7)T τ + T
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FIGURE 15. Details of the OSW mode during the phase change in a container of Γ = 2.25
subjected to Ma = 186 224 (Ste = 0.271, ΔT = 30 K). Temperature fields are shown at selected
times (equally spaced) over an oscillation period at (a) τ = 0.0512 (300 s), (b) 0.1195 (700 s)
and (c) 0.5632 (3300 s). Streamlines are superimposed in the final set of snapshots.

At τ = 0.0512, the oscillatory mode features five pulsating vortices that spread along
the thin liquid layer near the interface. The progressive melting reduces the number of
oscillating vortices in the structure and the associated frequency decreases gradually. At
τ = 0.1195, the mode is characterised by the pulsation of three vortices, whose effect on
the solid/liquid front is evident in its curvature.

As time passes, this three-vortex structure is reduced to two asymmetric pulsating
vortices. At this point, the cycle involves the generation of a counter-flow near the
free surface, which is indicated by the appearance in the streamlines of a new vortex.
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The oscillatory motion observed at the completion of melting is analogous to the
oscillatory mode described by Peltier & Biringen (1993).

The instability mechanism can be described following Peltier & Biringen (1993). The
clockwise sense of rotation of the largest vortex allows a cool stream of liquid to be
siphoned away from the cold boundary (either the solid/liquid front or the endwall) along
the bottom of the container. Near the hot wall, this stream is redirected upwards, creating a
cool tongue that interacts with the thermocapillary surface. The cool tongue creates a large
thermal gradient near the hot wall that causes the primary convection cell to compress
towards this boundary and strengthen (see first and second panels of figure 15c). In turn,
the shear forces from this primary vortex near its cold side weaken, and a secondary vortex
with the same sense of rotation appears. Between these, an additional tertiary vortex with
the opposite sense of rotation appears, supported by the shear between the primary and
secondary cells and the weak local temperature gradient of the interface (in an adverse
sense with respect to the rotation of this cell; see third panel of figure 15c).

The primary and secondary vortices strengthen up to a certain point (fourth panel
of figure 15c), where two different mechanisms come into play to recover the initial
single cell structure. First, in the absence of sufficient reinforcement of liquid from the
cold wall, the cool tongue near the hot wall warms up and its effect on the surface
diminishes; this retraction of the cool finger can be seen between the third and fifth panels
in figure 15(c). Secondly, the increased strength of the primary vortex draws hot liquid
from the hot wall. The secondary vortex, on the other hand, draws cold fluid from the
cold boundary and ejects it upwards towards the thermocapillary surface (see the fourth
snapshot in figure 15c). The surface is thus cooled locally, which reduces the driving force
that maintains the secondary cell. Through this process, the secondary cell brings about
its own extinction, which favours the expansion of the primary vortex and a return to the
original state.

This oscillation relies on the interaction between the sensitivity of the surface to the
cooling effect provided by the cold tongue and the extent to which the cool stream that is
expelled from the cold boundary can influence the cold tongue. It thus makes sense that the
oscillation period increases as the driving force (via the cold tongue) is effectively reduced
with increasing vortex size, which explains the general observation in the spectrograms of
decreasing frequencies during the phase change.

One may also expect that this oscillation can disappear during the melting process if
the (nearly) horizontal solid/liquid front near the cold side moves down far enough in
the cell; in other words, when the primary vortex is large enough for its influence on the
thermocapillary surface to diminish. We posit that this transition from OSW to SVS was
observed in the container of Γ = 1.5 (H = 15 mm) in the present simulations, with further
details given below.

4.3. Onset of oscillatory convection
Again, it is clear from these results that there is a Macr for the appearance of the OSW
mode. As in § 3.3, we locate this transition by using the thermocapillary contribution of
the OSW mode COSW , defined as the total time that the oscillatory motion exists relative to
the total melting time, which usually simplifies to

COSW =
(

1 − τosc

τmelt

)
× 100 (in %). (4.1)
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FIGURE 16. Contribution of the OSW mode to the phase change COSW (i.e. percentage of the
total melting time) for a wide range of Ma ∈ [31 038, 248 298] (ΔT ∈ [5, 40] K). Simulations
are denoted by markers, which are colour-coded according to whether the thermocapillary
flow is steady (black) or that of the OSW mode (blue). The fit (dashed line) for these
measurements provides an estimate of the critical Ma (green marker) for the OSW mode, which
is Macr = 68 852, corresponding to Stecr = 0.100 and ΔTcr = 11.09 K.

In figure 16, COSW is plotted against Ma. Simulations are colour-coded according to
whether the flow is steady (black) or that of the OSW mode (blue). The fit (dashed line)
to these measured values provides an estimate of the critical value (in green) for the OSW
mode. For Γ = 2.25, it is found to be

Macr = 68 852, (4.2)

corresponding to Stecr = 0.100 and a critical temperature difference of ΔTcr = 11.09 K.
Thus, not only does the evolution of the thermocapillary flow depend on the aspect ratio,

but the onset values are different. We now discuss the combined effect of Ma and Γ .

5. Overview of the thermocapillary flow regimes during the PCM phase change

The analyses of §§ 3 and 4 have examined the different thermocapillary flows that are
observed in the liquid phase of a PCM with a free surface during its melting process in
microgravity.

In large-aspect-ratio containers, the thermocapillary flow at small Ma is initially
characterised by a large vortex that spans the liquid domain, with the typical SRF structure
(Sen & Davis 1982; Strani et al. 1983). Increasing Ma destabilises this large vortex to a
series of vortices appearing in an SMC. By increasing Ma even more, this SMC undergoes
a transition to a periodic HTW, which is characterised by the cyclic creation of vortices
near the cold side that travel inwards to the hot side. The time at which this HTW
mode first appears during the phase change depends on the applied Ma. During the time
these travelling waves exist, they affect heat transport and contribute to the phase-change
process. By calculating their contribution to the phase change, one can estimate the
critical Ma.
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In small-aspect-ratio containers, on the other hand, the thermocapillary flow at small to
moderate Ma is initially characterised by the transition from a small-scale SMC, located
in a thin layer near the free surface where the local aspect ratio is larger than Γ , to a
large-scale SVS. Upon increasing Ma, a complex oscillatory mode appears, characterised
by the pulsation of the underlying vortical structure. In fact, as this structure evolves during
the phase change by reducing the number of its vortices, the frequency of the oscillation
also decreases. We refer to this mode as OSW, which is qualitatively different than the
HTW. Again, the associated critical Ma can be estimated by plotting the percentage of
time that it exists relative to the total melting time.

To complete these analyses, sets of simulations were performed over a wide range of Ma
∈ (6000, 248 298] (ΔT ∈ (1, 40] K) in rectangular cells of ten different Γ , covering the
interval Γ ∈ [1.5, 22.8], which includes small, intermediate and large values. Figure 17
summarises the different thermocapillary flow regimes observed during the phase change
in terms of (a) Ma and Γ and (b) ΔT and H (for a fixed L = 22.5 mm). The simulation
results are colour-coded according to whether the observed flow was steady (black), an
HTW mode (red) or an OSW mode (blue). The critical boundary for oscillatory flow is
marked by a solid green line.

Figure 17 illustrates the distinction between large- and small-aspect-ratio containers
already discussed, and suggests how the thermocapillary flow during the phase change
changes between them. In the transition regime, simulations were performed with a
rectangular cell of Γ = 5.29 (H = 4.25 mm, L = 22.5 mm). At low Ma, the flow was
steady and a small-scale SMC appears. Upon increasing Ma, this vortical structure
becomes unstable to the HTW mode. During the phase change, HTWs usually appear for
a limited duration during the melting and disappear again so that the final thermocapillary
flow is an SVS. At certain Ma, the evolution of the flow becomes completely steady, with
the initial small-scale SMC developing directly into a large-scale SVS. This steady regime,
however, persists only over a small range of Ma and becomes unstable to the OSW mode
at larger values.

An explanation for this transition regime can be taken from the work of
Peltier & Biringen (1993), where thermocapillary flows were analysed in rectangular
two-dimensional domains with aspect ratios between 2.3 and 3.8 for a Pr = 7.78 fluid.
Figure 3 of that reference is especially relevant, where the instability map in terms of
Γ and Ma is presented. Regions showing a double-valued critical onset (zero amplitude
curves) are obtained so that, for fixed Γ , transitions from steady to oscillatory and back to
steady solutions are observed with increasing Ma (or vice versa).

In the present work, since the melting front constitutes a moving boundary for the liquid
phase, this transition can be understood as a change in effective aspect ratio of the liquid.
We note that, regardless of Γ , the initial effective aspect ratio tends to zero. In large
containers, this effective aspect ratio rapidly takes a large value, and thus the preferred
flow is the HTW mode. In small-aspect-ratio containers, the effective ratio is more limited
and takes a maximum value where we consistently observe the selection of SMC states,
then later decreases towards Γ .

For intermediate containers, the effective ratio evolves in a more complex manner,
potentially exhibiting various maxima and minima during the process. One may imagine
that the instantaneous value of the effective aspect ratio selects the preferred oscillatory
mode (either OSW or HTW), with the stability of the system changing as it passes a
critical value. This picture is consistent with the results obtained for Γ = 5.29. At low Ma,
the relative evolution between the conductive-dominated and thermocapillary-dominated
regions of the domain selects the SMC first. This steady structure is later destabilised to
the HTW mode, which persists within a finite range of Ma. For increasing values, a last
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FIGURE 17. Overview of the type of thermocapillary flow observed during the PCM phase
change as a function of (a) Ma and Γ , and (b) ΔT (in K) and H (in mm); recall that L = 22.5 mm.
Distinct modes are marked in different colours: steady flow (black), HTW (red) and OSW (blue).
The critical boundary for oscillatory flow is marked by a solid green line. Note the logarithmic
scale used in the vertical axis of panel (a).

transition from an SVS to an OSW mode is observed, again as the effective aspect ratio
transitions across the corresponding critical values.

In the smallest aspect ratio considered, Γ = 1.5, the thermocapillary flow also
undergoes two transitions from steady to oscillatory, and from oscillatory back to steady.
This was anticipated in § 4.2 when discussing the sensitivity of the OSW mode to the
influence of the cold tongue on the thermocapillary surface, and can be explained in a
similar way. In this case, the effective aspect ratio crosses the same (OSW) instability
boundary twice.

Finally, it is worth clarifying that we have referred to any phase-change transition as
‘oscillatory’ if it involved oscillatory flows at any lapse during melting. This is also
behind the term ‘oscillatory mode contribution’ to the phase change and is consistent
with the overall enhancement of thermocapillary convection on heat transport that was
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demonstrated by the works of Ezquerro et al. (2019, 2020) and Salgado Sánchez et al.
(2020b), and which is apparent in the present results.

6. Conclusions

A detailed numerical investigation of thermocapillary flows during the melting of
phase-change materials in microgravity is presented.

The phase-change transition is modelled using an enthalpy–porosity based
formulation of the Navier–Stokes equations (Voller et al. 1987), and analysed for the
high-Prandtl-number organic paraffin n-octadecane (Pr = 52.53) due to its relevance
to recent microgravity experiments (Ezquerro et al. 2019, 2020; Salgado Sánchez
et al. 2020b). The PCM is enclosed in a rectangular (two-dimensional) container
with isothermal conditions along the left and right lateral walls. The progressive
evolution of the solid/liquid front during the melting process leaves a free surface along
which a temperature variation exists. The associated gradient of surface tension drives
thermocapillary convection in the liquid phase. In this paper, the different thermocapillary
flows found during the melting process are analysed, following the usual division
according to aspect ratio.

In large-Γ containers, analysed in § 3, the thermocapillary flow at small Ma is initially
characterised by a large vortex that spans the liquid domain, with the classical features of
a steady return flow (SRF). Increasing Ma destabilises this large vortex, which is replaced
by a series of vortices in a steady multicellular structure (SMC). By further increasing Ma,
this SMC state undergoes a transition to a hydrothermal travelling wave (HTW), which is
characterised by the periodic creation of vortices near the cold side that travel inwards
to the hot side. The appearance of this HTW mode during the phase change depends
on the applied Ma, and these travelling waves exist during a certain portion of the total
melting time, during which they contribute to the phase-change process. By calculating
this contribution, one can estimate the critical Ma for the appearance of the HTW mode.

In small-aspect-ratio containers, analysed in § 4, the thermocapillary flow at small to
moderate Ma is initially characterised by the transition from a small-scale SMC state,
which develops in a thin layer near the free surface where the local aspect ratio is larger
than Γ , to a large-scale steady vortical structure (SVS). By increasing Ma, a complex
oscillatory mode appears, which is characterised by the pulsation of the underlying vortical
structure. As this structure evolves during the phase change by reducing the number of its
vortices, the natural frequency of the oscillation also decreases. We refer to this state as an
oscillatory standing wave (OSW) mode due to its clear qualitative differences with respect
to the HTW. Again, plotting the associated oscillatory contribution provides an estimate
of the critical Ma for the OSW mode.

Finally, in § 5, results are summarised in terms of Ma and Γ , delineating the different
thermocapillary flow regimes observed during the phase-change process, and establishing
the stability boundaries for the HTW and OSW modes. The transition regime separating
them is also analysed, with the choice of Γ � 5.3. At low Ma, the flow is steady, with
the appearance of a small-scale SMC. With increasing Ma, this vortical structure becomes
unstable to the HTW mode. During the phase change, HTW modes typically appear for
a limited portion of the melting time and disappear again prior to the emergence of the
final thermocapillary flow state, which is again an SVS mode. At a certain Ma, the phase
change becomes fully (quasi-)steady with the initial small-scale SMC developing directly
into a large-scale SVS state. This behaviour occurs only over a small range of Ma and
becomes unstable to the OSW mode at larger values.
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Several aspects of the results described here suggest themselves for further investigation,
an effort that will be undertaken separately. First, further simulations will be performed
to investigate the transition region in more detail and accurately locate the instability
boundaries, and to determine if a suitable definition of the effective (transient) aspect ratio
for the liquid phase during the melting process can be used to understand them. On the
experimental side, we are currently developing a ground-based set-up that will allow us to
make systematic measurements of the phase-change process in different organic paraffins,
including n-octadecane, under the presence of a controlled thermocapillary interface.
It is expected that these experiments will confirm some of the behaviour found in the
simulations presented here and allow for a refinement of the model. An extension of the
numerical model to three dimensions is also planned. Finally, these investigations would
most benefit from a comparison with (future) microgravity experiments covering the entire
PCM melting cycle. Such experiments could confirm the existence of the thermocapillary
flows described here and, in particular, investigate the transition between HTW and OSW
modes.
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