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This paper valuates generation assets within deregulated electricity markets+A new
framework for modeling electricity markets with a Markov chain model is pro-
posed+ The Markov chain model captures the fundamental economic forces under-
lying the electricity markets such as demand on electricity and supplied online
generation capacity+ Based on this new model, a real option analysis is adopted to
valuate generation assets+ The Markov chain model is combined with a binomial
tree to approximate the stochastic movement of prices on both electric energy and
ancillary services, which are driven by the market forces+ A detailed example is
presented+ This method is shown to provide optimal operation policies and market
values of generation assets+ This method also provides means to analyze the impacts
of demand growth patterns, competition strategies of competitors, and other key
economic forces+

1. INTRODUCTION

The deregulation of the electric power industry around the world has raised many
new challenges for all stakeholders+The Generation Company ~GENCO!was granted
operation flexibilities such as self-unit-commitment and self-dispatch when the obli-
gation to meet electricity load was relieved after deregulation+ New analytical tools
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for the operation and evaluation of generation assets are in great need+ Traditional
Discount Cash Flow ~DCF! methods such as Net Present Value ~NPV! used in the
electric power industry before deregulation ignore the inherent flexibilities in oper-
ating generation assets, which renders them incomplete and undervaluated gener-
ation assets+

This paper proposes a new framework for modeling electricity markets with
the Markov chain model+ Real option analysis is combined with the Markov chain
model to valuate generation assets within deregulated electricity markets+ This arti-
cle is organized into six sections+ Section 2 reviews past research on applying finan-
cial option and real option to valuate generation assets+ Section 3 analyzes electricity
market structure and architecture+ Section 4 models electricity markets as a Markov
chain model and formulates the valuation of generation assets as a GENCO
decision-making problem+ Section 5 illustrates the application of the Markov chain
model with an example+ The optimal operation policies and values of generation
assets are given+ Section 6 concludes with a discussion on the strength and practical
issues of the models used in this paper+

2. REVIEW OF PAST RESEARCH

Financial option theory has been deployed to model generation assets as call options
on a spark spread @3,8# + A spark spread is defined as the difference between the
price of electricity and the cost of fuel burned to generate electricity, as shown in
Eq+ ~1!:

Spark spread � Price of electricity � Heat rate � Price of fuel,

Heat rate � MMBTU0MWh,

Payoff of a call option on spark spread if exercised

� max~0,Spark spread!+

(1)

The financial exchange option modeling approach explicitly accounts for the
flexibility in operating generation assets and provides more insight on the operation
and valuation of generation assets than the traditional NPV approach+ However, the
exchange option approach is incomplete, as it ignores physical generation unit oper-
ating constraints that affect the value and optimal operating policies+ The absence
of physical characteristics of generation units leads to the overvaluation of gener-
ation assets+ The value given by the financial option is for generation assets with
infinite speed and flexibility in operation and is mathematically bound to be non-
negative by Eq+ ~1!+ It is in fact an upper limit for the values of generation assets
with physical constraints+

Physical constraints of generation assets, such as startup time, shutdown time,
minimum on time, minimum downtime, ramp-up rate, and ramp-down rate, must
be included in valuing generation assets+ Startup and shutdown times define how
long it takes a generator to start up or shut down+ This means that the decision to
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exercise a spark spread call option must be made before the prices on electricity and
fuel are observed+Minimum on-time and downtime constraints require a generator
to remain on or off once it has been started up or shut down for a period of time+
This means that spark spread options are not always available and losses are pos-
sible+ The ramp-up rate constraints limit the increase of a generator’s output,whereas
the ramp-down rate limits the capability of a generator to decrease its output; both
mean that a spark option is not always available for the full generation capacity+
The extent of the physical constraint impact on valuation of generation assets is not
fully understood at this time+ This is especially true of ramp-up and ramp-down
constraints+ Deng @2# stated that startup cost, ramp-up time, and output-dependent
heat rate have less impact on relatively efficient power plants like gas-fired power
plants and thus could be ignored+ Tseng and Barz @14# investigated the ramp con-
straint of power plants and concluded that ramp constraints have an impact on ther-
mal power plants by reducing fuel economy, energy conversion efficiency, and
available generation capacity+ The ramp limitations also constrain what can be sold
to reserve markets+

Real options analysis applies financial option pricing theory to the analysis of
option opportunities in real assets and takes into account features of real assets @4# +
Real option analysis provides GENCOs with a new methodology to fully value the
operating flexibilities, which can be inherent in the nature of generation assets or in
market trading+ Real option analysis has been applied to value generation assets
@2,7,13,14# , where physical constraints of generation assets are included and dif-
ferent stochastic processes have been proposed to model the movement of prices on
electricity within electricity markets+

The movements of price on electricity are modeled as stochastic processes+
These are often assumed to be geometric Brownian motions ~GBMs!, as shown in
Eq+ ~2!:

dY~t !

Y~t !
� µ dt � s dW~t !, (2)

where Y~t ! is the price on electricity at time t, µ is the drift rate of price on elec-
tricity, s is the volatility of price on electricity, and dW~t ! is the increment of a
Brownian motion+

Modeling improvements aiming to capture features of electricity price move-
ment have been proposed and investigated, which include mean-reversion, jumps,
regime-switching, and time-varying volatilities, among others @1,9,15# + Economet-
ric approaches are deployed to estimate the parameters of such stochastic processes
using historical data+Although an econometric approach captures some features of
markets, it is incomplete because the market structure and architecture of electricity
markets and the underlying economic forces are ignored+ Such an approach assumes
electricity price movement to be autonomous and provides no means to analyze
underlying economic forces+

GENERATION ASSETS AND MARKOV CHAINS 129

https://doi.org/10.1017/S0269964806060086 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964806060086


Although physical operating constraints of generation assets have been included
in recent research to define the options owned by GENCO, the impacts of physical
constraints on electricity price movements are ignored+ The movement of demand
on electricity is also omitted+

3. MARKET STRUCTURE AND ARCHITECTURE
OF ELECTRICITY MARKETS

Market structure refers to the properties closely tied to the ownership and technol-
ogy and market architecture defines a set of submarkets and the linkages between
them @12# + Deregulation of the electric power industry breaks the vertically inte-
grated utilities into horizontally independent entities such as Generation Company
~GENCO!, Transmission Company ~TRANSCO!,Distribution Company ~DISCO!,
Electricity Service Company ~ESCO!, and Electricity Management Company
~EMCO! shown in Figure 1+

The independent entities are the buyers and sellers of both electric energy and
ancillary services+ They discover the time- and space-varying values of electric
energy and ancillary services through electricity markets @10# + The technology of
generation, transmission, storage, and consumption of electricity contributes to the
time- and space-varying values of electricity+ Location Marginal Price ~LMP!
addresses the space-varying nature of prices on electricity, demonstrating a nonlin-
ear dependency between the prices of electricity at different locations transported
by a limited capacity transmission network+ The nonstorable nature of electricity
inhibits temporal arbitrage based on storage and eliminates the temporal bond
enforced by such arbitrages+ However, the physical generation unit constraints do
link the online generation capability of one hour to a previous hour+Although short-

Figure 1. Market structure of electricity markets+
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term demand on electricity is inelastic, it demonstrates some dynamic patterns+ Due
to these physical constraints, electricity is heterogeneous between different loca-
tions and time intervals+ This leads to segments of electricity markets+ A spatially
segmented regional electricity market is also temporally segmented into base-load,
intermediate-load, and peak-load submarkets, as shown in Figure 2+ Those submar-
kets have different market players+

For the base-load electricity market, the key suppliers are base-load generators
that share similar technology to achieve efficiency of generating electricity+ The
transmission network is also less utilized during base-load periods; thus, the base-
load electricity market is geographically more spanned+ Peak-load generators also
share similar technology to achieve fast speed+ The transmission network is more
utilized during peak-load periods; thus, the peak-load electricity market experi-
ences more congestion+

Demand on electricity is composed of industry, commercial, and residential
customers+ Base demand is dependent on population size and macroeconomic vari-

Figure 2. Segmentation of electricity markets+
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ables+ Peak demand is due to commercial and residential customers+ It is tightly
correlated with weather+ The difference in the supply and demand forces in base-
load and peak-load electricity markets suggest different market structures+ This, in
turn, leads to different market behaviors and models+

Market structure defines market players and their competition positions and
market architecture defines how market players interact with each other and how
electricity and information are exchanged and shared on electricity markets+ The
market architecture must be consistent with the market structure in which it is embed-
ded, which may inhibit the proper function of some designs+ Sheblé @11# defines the
electricity market set to include forward and spot markets in the short term and
future and planning markets in the mid-term and long term+ A swap market is also
deployed to facilitate the exchange of different contracts and risk sharing among all
market players @11# + The linkages between submarkets may be implicit price rela-
tionships caused by arbitrage or explicit rules linking activities in one market to
activities in another+

The submarkets could be categorized according to different criteria such as
commodities traded, contracts traded, trading mechanism, and authority of the cen-
tral ISO+ The main commodities traded include electric energy and ancillary ser-
vices+ Physical generation unit constraints enforce implicit linkage between electric
energy markets and ancillary services markets+

There are four major kinds of contract traded on most electricity markets: spot,
forward, future, and options+ Forward contracts are normally traded for physical
delivery and allow the scheduling of both generation facilities and transmission
networks operation+ Typically, a forward is traded at least 1 day prior to the oper-
ating day and includes 24 hourly markets for the operating day+ Spot contracts,
real-time markets, are used to allow rescheduling and correcting for forecast errors+
Future contracts are more often used as hedging instruments, and delivery is also
possible+ There are also options trading on all of the various contracts+ The linkages
between trading different contracts are implicit and come from the portfolio opti-
mization of market players and from the physical or financial linkage of these mar-
kets+ These contracts provide a GENCO with more operating flexibility such as
contract selection in addition to the inherent physical operating flexibility such as
unit commitment and self-dispatch+ Figure 3 illustrates the simplified market archi-
tecture of electricity markets used in this paper+

One of the most important linkages between the submarkets is time, which
binds the base-load market, intermediate-load market, and peak-load market+ The
dynamics of both supply and demand will be modeled in the next section with a
Markov chain model+

4. MARKOV CHAIN MODEL OF ELECTRICITY MARKETS

The simultaneous supply and consumption of electricity renders it heterogeneous
among different time intervals+ The nonstorable nature of electricity renders only
online generation capacities as call options on a “spark spread+” The self-unit-
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commitment and dispatch of generation units lead to a Markov process for supply
of online generation capacity+ The aggregated online generation capacity at the next
time interval only depends on the current level of online generation capacity and
the decisions of GENCOs since the last time period+ Demand randomness on elec-
tricity also can be approximated as a Markov process+ A Markov chain model for
electricity markets is shown in Figure 4+

In Figure 4, an electricity market is defined using three states: punch-in, har-
vesting, and ripping-off+ Each state has a definition for the relationship between
supplied online generation capacity and demand, as defined in Eqs+ ~3! and ~4!+

ap~n! � Capacity of all n units,

MC � Production cost of the marginal unit, (3)

ap~n � 1! � Capacity except the marginal unit+

Figure 3. Market architecture of electricity markets+

Figure 4. Markov chain model for electricity markets+

GENERATION ASSETS AND MARKOV CHAINS 133

https://doi.org/10.1017/S0269964806060086 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964806060086


The market state is defined as

Punch-in, if Demand � Cap~n � 1! and Price � MC,

Harvesting, if Cap~n! � Demand � Cap~n � 1!, Price � MC, (4)

Ripping, if Demand � Cap~n! and Price � PriceCap+

The initial system states S0, states’ transition matrix A, and distributions of prices B
for each state are defined in Eq+ ~5!:

State transition probability matrix: A

A � aij � P @qt�1 � Sj 6qt � Si # , 1 � i, j � N

Observed price distribution B for each state, 1 � j � N,

Discrete distribution: B

B : bj � $~Price, Probability, + + + ,Price, Probability!%,

Normal distribution with different means and variances

B : bj � Normal ~Meanj ,Varj !,

Initial system state S0

(5)

It is also possible to incorporate more structure into the Markov chain model
framework+ In Figure 5 demand on electric energy is assumed to evolve autono-
mously according to a Markov chain+ The demand on ancillary services is assumed

Figure 5. Markov chain model for electricity markets with supply and demand
states+
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to be dependent on energy demand+ The online generation capacity is modeled to be
dependent on the previous supply level and energy demand+ The prices on electric
energy and ancillary service are determined simultaneously by supplied online gen-
eration capacities and demand level+

The Markov chain model can be estimated from historical data using the Baum–
Welch or EM algorithm @16# + Once the Markov chain models are known, a Markov
lattice is constructed for the price movement, as shown in Figure 6+ The Markov
states transition matrix A defines the evolvement of markets states, and electricity
price at each state is defined by price distributions B and approximated with the
binomial tree+ Markov lattices have been shown to be easier to construct and con-
verge faster than multiple-period multinomial trees @5# +

The valuation of generation assets is formulated as a Markov decision process,
which is identified as a real option analysis approach+ The solution not only pro-
vides the value of generation assets but also the optimal operating policy @6# + An
operating policy is a mapping from system state space to feasible action sets+ The
physical constraints of a generation unit determine the feasible action sets+ The cost
for changing operating status of a generation unit, such as startup and shutdown
costs, is modeled as an immediate cost+ The payoff for each state can be modeled as
a portfolio of call options+ The Markov decision process can be solved using linear
programming or iterative algorithms @6# + The inclusion of risk is modeled by intro-
ducing a risk-free discount rate with risk-neutral probabilities+ The risk-neutral prob-
abilities do not necessarily equal the true physical probabilities, but are modified to
allow a single risk-free discount rate to be used throughout the decision process+

Further improvement could be achieved by modeling electricity markets with
multiple Markov chain models+ Each approximates a segmented electricity market
including base-load, intermediate-load, and peak-load markets+ Multiple Markov

Figure 6. Markov chain model with real option values+
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chain models are linked together by the system states+ The ending states of a Mar-
kov chain are the initial states of the next Markov chain+

5. NUMERICAL EXAMPLE

A thermal generation unit is valued using a Markov chain model in the following
example+ The physical constraints for the given generation unit is shown in Table 1+
The demand on electricity and supplied online generation capacity are modeled to
have three states: low, intermediate, and high+ The transition of demand on elec-
tricity is modeled to follow a Markov chain defined in Table 2+ The transition of
supplied online generation capacity is assumed to be dependent on the previous
level of demand and capacity supply+ The interdependency is modeled following
the Markov chain defined in Table 3+ Only one Markov chain is utilized for the
whole time span for simplicity+ More Markov chains and system states could be
used to increase the accuracy at the cost of computational burden+ The prices on
electric energy and ancillary services are assumed to follow Normal distribu-
tions, as shown in Table 4+ Prices in Table 4 are normalized according to the daily
price pattern shown in Table 5+ Equation ~6! provides mathematical definitions for
Tables 2– 4+ All data are generated by market simulations+

Table 2:
Probability~Demandt�1 � Statei 6Demandt � Statej !;

Table 3:
Probability~Supplyt�1 � Statei 6Supplyt � Statej � Demandt � Statek !;

Table 4:
Mean of price at time t if Supplyt � Statej � Demandt � Statek ,

Variance of price at time t if Supplyt � Statej � Demandt � Statek ,

(6)

where i, j, k � 1, + + + ,N, N is the number of states+

Table 1. Physical Characteristics of Generation Unit

Minimum up time, Ton 1 h
Minimum downtime, Toff 1 h
Startup time, Tup 1 h
Shutdown time, Tdown 1 h
Ramp rate, Ramp 100 MW0h
Minimum output level, Qmin 100 MW
Maximum output level, Qmax 400 MW
Heat rate: H~ p!, P in MW

approximated by piecewise linear functions later
78 � 7+97P � 0+00482P 2

MMbtu0MWh
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Table 2. Demand Transition Probability Matrix

Demand Low at T � 1 Mid at T � 1 High at T � 1

Low at T 0+9229 0+0771 0+0000
Mid at T 0+0199 0+9634 0+0168
High at T 0+0000 0+1085 0+8915

Table 3. Supply Transition Probability Matrix

Supply Low
at T � 1

Supply Mid
at T � 1

Supply High
at T � 1

Low supply at T
Demand low at T 0+9585 0+0315 0+0100
Demand mid at T 0+9434 0+0466 0+0100
Demand high at T 0+0000 1+0000 0+0000

Mid supply at T
Demand low at T 0+2097 0+7803 0+0100
Demand mid at T 0+1531 0+8369 0+0100
Demand high at T 0+5898 0+4002 0+0100

High supply at T
Demand low at T 0+0000 0+9900 0+0100
Demand mid at T 0+0000 0+9900 0+0100
Demand high at T 0+0000 0+9900 0+0100

Table 4. Electric Energy Prices

Supply Low Supply Mid Supply High

Mean of price
Demand low 0+8794 1+0344 1+3702
Demand mid 1+0027 0+9054 0+9188
Demand high 1+1951 1+2513 1+3896

Variance of price
Demand low 0+0341 0+0616 0+0100
Demand mid 0+0342 0+0815 0+0100
Demand high 0+0680 0+0863 0+0275
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The optimal operating policy of the investigated generation unit defines the
optimal action for each state+ Past researchers searched for a “spark spread” thresh-
old+A generation unit is turned on when the expected “spark spread” is greater than
the threshold+ This example shows that the self-unit-commitment decision should
not only depend on price levels but more importantly on the current market states
of demand and supplied online generation capacity+ Table 6 defines the optimal
generation unit operating policy for the specified electricity market+ It is shown that
a generation unit should not be turned on when the demand and supply is in bal-
ance, even if a relative high price is observed+ The reason is that a relative high
price could occur due to randomness in market forces but not demand and supply
forces+

Table 5. Daily Pattern of Price on Electric Energy

Time ~h! 1 2 3 4 5 6 7 8
Price ~$0MWh! 15 15 15 15 17 19 21 23
Time ~h! 9 10 11 12 13 14 15 16
Price ~$0MWh! 25 27 30 34 40 50 40 34
Time ~h! 17 18 19 20 21 22 23 24
Price ~$0MWh! 30 27 25 23 21 19 17 15

Table 6. Optimal Self-Unit-Commitment Policy

Demand Low Demand Mid Demand High

Supply low
Price 31+87 36+35 44+81
Decision Turn on Turn on Turn on
Price 29+77 33+94 39+11
Decision Turn off Turn off Turn off

Supply mid
Price 38+54 34+41 47+78
Decision Turn on Turn on Turn on
Price 34+07 29+23 40+21
Decision Turn off Turn off Turn off

Supply high
Price 48+48 32+51 49+94
Decision Turn on Turn on Turn on
Price 47+52 31+87 47+27
Decision Turn off Turn off Turn off
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Within Table 6, it is observed that the investigated generation unit should only be
turned on when demand is high and the market is not in balance+ A decision based
on both underlying economic forces and observed prices provide more value to
GENCOs+

For a one-week valuation, Tables 7 and 8 give the value of a thermal generation
unit with an initial state as off at 1 am+ The focus is on the comparison of the impacts
of changes on demand and supply and changes on the competition strategies of
market players+ The changes of demand and supply are based on economic forces
such as demand composition, fuel prices, and new generation technologies+ These
changes are defined by the demand and supply transition probabilities matrix A+
Competition strategy changes are defined by the distributions of prices B for each
market state+ Different distributions result in different volatilities and payoffs at
each market state+ All values are normalized to facilitate comparison+

This example also addresses implementation+ The minimum on and minimum
off time constraints of a unit specifies that the state depends not only on its current
unit state, on0off, but also the unit state history+ Such constraints must be carefully
modeled to satisfy Markovian properties+ When the state definition includes the
complete unit state history, then the Markov chain model is appropriate+ For exam-
ple, the shutdown time can be used to define the system state combined with the
output level, as shown in Figure 7+

6. CONCLUSION

Markov chain modeling of electricity markets provides the capability to include
market structure and architecture+ It explicitly distinguishes the underlying eco-
nomic forces as well as the randomness of markets+ The identification of changes in
demand, supply, and competition strategies provides more insight on the operation
and valuation of generation assets+

Table 7. Generation Unit Values with Different Volatility on Electricity Prices

Half Variance Benchmark Double Variance

Generation unit value 0+9647 1+000 1+1434

Table 8. Generation Unit Values with Different Demand
and Supply Transition Probability

More Volatile Demand Benchmark More Volatile Supply

Generation unit value 1+2532 1+000 1+1826
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As a fundamental approach, the Markov chain model provides the capability to
forecast and mitigates the dependency on historical data, as the demand and supply
forces mechanism is more stable and can be predicted from other information+

As demonstrated in this paper, this modeling enables the dynamic real-time
valuation of assets as new information on market state is received and better under-
standing of the markets and updated model parameters are available+
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