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Abstract

This article addresses computational synthesis systems that attempt to find a structural description that matches a set of
initial functional requirements and design constraints with a finite sequence of production rules. It has been previously
shown by the author that it is computationally difficult to identify a sequence of production rules that can lead to a
satisficing design solution. As a result, computational synthesis, particularly with large volumes of selection informa-
tion, requires effective design search procedures. Many computational synthesis systems utilize transformational
search strategies. However, such search strategies are inefficient due to the combinatorial nature of the problem. In this
article, the problem is approached using a completely different paradigm. The new approach encodes a design search
problem as a Boolean~propositional! satisfiability problem, such that from every satisfying Boolean-valued truth
assignment to the corresponding Boolean expression we efficiently can derive a solution to the original synthesis
problem ~along with its finite sequence of production rules!. A major advantage of the proposed approach is the
possibility of utilizing recently developed powerful randomized search algorithms for solving Boolean satisfiability
problems, which considerably outperform the most widely used satisfiability algorithms. The new design-as-
satisfiability technique provides a flexible framework for stating a variety of design constraints, and also represents
properly the theory behind modern constraint-based design systems.

Keywords: Conceptual Design; Constraint Satisfaction; Design Search; Knowledge-Based Design; Satisfiability;
Synthesis

1. INTRODUCTION

1.1. The design synthesis problem

Design synthesis may be viewed as the transformation of
an abstract functional description for a device into a struc-
tural description that satisfies the functional requirements
~Pahl & Beitz, 1988; Chandrasekaran, 1990; Maher, 1990;
Sriram, 1997; Sabin & Weigel, 1998!. The above character-
istic of design synthesis as mapping function to form is
often mitigated by decomposing the synthesis task into a
hierarchical one~Brown & Chandrasekaran, 1989; Chan-
drasekaran, 1990, Maher, 1990!. Some design synthesis sys-
tems have used the decomposition model by representing
much of the knowledge about the problem declaratively,

usually in the form of causal decompositions, production
rules, or transformational rules~Chandrasekaran, 1990;
Coyne et al, 1990; Maher, 1990; Bradley et al., 1993; Dym,
1994; Maimon & Braha, 1996; Brown, 1997; Braha & Mai-
mon, 1998!.

Rule-based~expert! systems have been applied to assist
in a variety of engineering design tasks such as: design for
VAX computer systems by DEC~R1—McDermott, 1982,
1993!, design system for small computers~M1—Brown &
Chandrasekaran, 1989!, configuration of microcomputer sys-
tems~COSSACK—Frayman & Mittal, 1987!, design of air
cylinders ~AIR-CYL—Brown & Chandrasekaran, 1985,
1989!, design of elevators~VT—Marcus et al., 1988;
Schreiber & Birmingham, 1996!, design of facilities on con-
struction sites~SightPlan—Tommelein et al., 1991!, design
of buildings~HI-RISE—Maher, 1988; CONGEN—Sriram,
1997!, design of paper-feeding mechanisms of photocopi-
ers ~PRIDE—Mittal & Dym, 1986; or Koo et al., 1998!,
design of pneumatic systems~PNEUDES—Shin & Lee,
1998!, design of VLSI circuits~VEXED—Mitchell et al.,
1985!, and diagnosis and selection~Brown, 1998!. See also
Tong and Sriram~1991! for most of these systems.
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Grammatical design is another paradigm based directly
on the view of design as the process of transforming an
initial set of requirements into an explicit, complete speci-
fication of an object that satisfies those requirements~Brown,
1997!. A grammar is a formal generative device consisting
of a vocabulary of elements, a set of production rules that
transform structured arrangements of the elements into new
structures, and an initial structure~Gips & Stiny, 1980!.
Design using grammar involves recursively selecting trans-
formation rules and applying them to a candidate structure,
until a final structure that satisfies design requirements
emerges~Brown, 1997!. Shape grammars use symbols that
are based on shapes made up of points and lines, and have
been utilized to describe spatial design languages that cap-
ture architectural style~Gips & Stiny, 1972!. Computa-
tional issues of implementation shape grammars have been
considered by some authors~e.g., Chase, 1989; Krishna-
murti, 1992!. Grammatical design has also been used to
describe languages for engineering design purposes. Early
applications of grammars in engineering appeared in solid
modeling representations~e.g., Fu et al., 1993!. Other types
of grammars in engineering design, which employ higher
levels of description include graph grammars and attribute
grammars for mechanical devices~Mullins & Rinderle,
1990!, a labeled parametric shape grammar for the manu-
facturing process plan~Brown et al., 1994!, a spatial and
functional grammar for structural design~Fenves & Baker,
1987!, and a bond graph grammar for mechanical systems
~Hoover & Rinderle, 1989; Ulrich & Seering, 1989; Finger
& Rinderle, 1990!.

In the above transformational models of design, design
synthesis can be viewed as a search process that attempts to
find a structural description to match a set of initial func-
tional requirements and design constraints with a finite se-
quence of operators or production rules included in the
designer’s knowledge body~Chandrasekaran, 1990; Ma-
her, 1990; Dym, 1994; Brown, 1997; Sriram, 1997; Wiel-
inga & Schreiber, 1997; Braha & Maimon, 1998!. A process
step corresponds to the transformation~transition! from one
process state to another. A transformation, which describes
the relation between two adjacent process states, is acti-
vated by applying one of a finite set of operators. A design
process is a series of transformations. According to this
model, the initial process state, that is, the abstract, func-
tional specification of the target artifact, is known a priori.
The “accepting”~satisficing! process state that provides the
structural description of the artifact is to be determined. At
each step, an operator transforms the given process state
into a different process state. The task is to find a sequence
of operators~production rules! that will lead to an accept-
ing process state. This sequence of operators can be viewed
as decomposing the initial abstract specification into a con-
crete structural description. The set of all process states that
can be reached by applying production rules is called the
state space. The states in the state space that are accepting
constitute thesolution space.

Depending on the initial functional requirements and de-
sign constraints, there may exist a large number of sequences
of production rules that lead to structural descriptions. Only
a miniscule number of structural descriptions in the solution
space constitute satisficing solutions. Thus, the task of look-
ing for the sequence of production rules that will transform
the initial functional requirements into an accepting struc-
tural description of the device~as defined by the require-
ments and constraints! may be computationally intractable.
To capture rigorously the computational complexity of a
design synthesis process with the above-mentioned charac-
teristics, the Design Process~DP! decision problem was
formulated in Braha and Maimon~1998! as follows: “Is there
a finite sequence of production rules that begins with the ini-
tial process state and ends with an accepting process state?”
In Braha and Maimon~1998!, it was shown that the DP de-
cisionproblem iscomputationallydifficult~i.e.,NP-complete;
see Garey & Johnson, 1979! even for restricted propositional-
based knowledge representation schemes. In particular, this
means that that CPU time required to solve the DP decision
problem, based on known algorithms, grows exponentially
with the “size”~roughly speaking, “size” means the total num-
ber of production rules, structural and functional attributes!
of the problem. At this point in time, no polynomial time al-
gorithms exist that are capable of solving NP-complete prob-
lems, and it is unlikely that polynomial time algorithms will
be developed for these problems. The above complexity re-
sult concludes that design problem solving, particularly with
its large volume of selection information, requires the aid of
computationally efficient search algorithms~i.e., brute force
is inefficient!.

Various control strategies have been developed for select-
ing the sequence of transformations in rule-based or trans-
formational systems, for example, inference mechanisms
~Chandrasekaran, 1990; Coyne et al., 1990; Sriram, 1997!;
propose and backtrack or propose and revise~Wielinga &
Schreiber, 1997!; component-directed transformations~Hoo-
ver & Rinderle, 1989!; and shape annealing~Schmidt &
Cagan, 1995!. However, many search algorithms have be-
come unacceptably inefficient due to the combinatorial na-
ture of the domain~Brown & Chandrasekaran, 1989; Schmidt
& Cagan, 1995; Chakrabarti & Bligh, 1996; Wielinga &
Schreiber, 1997!. Consequently, design synthesis automa-
tion becomes limited; for instance, by using a restricted
representation for design problems and solutions~Ulrich &
Seering, 1989; Schmidt & Cagan, 1995; Chakrabarti & Bligh,
1996! or by considering a small number of possible trans-
formations at each selection point~Brown & Chandraseka-
ran, 1985; Chandrasekaran, 1990; Wielinga & Schreiber,
1997!. Moreover, not many prototypes demonstrated ben-
eficial applicability to real-world scenarios~e.g., Mitchell
et al., 1985; Tong & Sriram, 1991; Schreiber & Birming-
ham, 1996!.

Several methods have been suggested to manage the com-
plexity associated with the extensive search in the space of
possible transformations: Some methods limit the represen-
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tation of design problems and solutions~Ulrich & Seering,
1989!. These include, for example, arbitrarily choosing the
maximum number of elements to be used in a design solu-
tion ~Chakrabarti & Bligh, 1996!, controlling the granular-
ity of building blocks~Lee et al., 1992!, focusing on serial
machines~Schmidt & Cagan, 1995! or a single input output
system~SISO—Ulrich & Seering, 1989; Chakrabarti &
Bligh, 1996!, or using a few important parameters at a time
~Lee et al., 1992!. Other methods presuppose routine de-
sign tasks~Brown & Chandrasekaran, 1985, 1989; Chan-
drasekaran, 1990; Brown, 1998!. In routine design, an
extensive search in the space of possible transformations is
avoided by limiting the number of possible decompositions
at each selection point to one or a few~Chandrasekaran,
1990!. In domains where multiple decompositions are pos-
sible, and there are no easily established heuristics to help
choose among them, finding the appropriate decomposition
is computationally expensive~Chandrasekaran, 1990!. In
this case, in most implemented transformational-based sys-
tems, humans choose from a set of alternative transforma-
tions presented by the design synthesis system~Maher, 1990;
Brown, 1998!. However, in some domains manual selec-
tion is no longer feasible. For example, in configuration
design~which is a restricted form of design; see Wielinga &
Schreiber, 1997; Brown, 1998! the increased trend toward
mass customization has awakened great interest in auto-
mated synthesis~Sabin & Weigel, 1998!. Another approach
for avoiding the extensive search is the use of a significant
amount of domain-specific knowledge and special-purpose
synthesis algorithms; however, constructing and maintain-
ing a particular application may be time consuming and
expensive~Sabin & Weigel, 1998!. For example, several
knowledge-intensive decomposition strategies are based on
a design plan. A design plan represents a precompiled par-
tial solution to a design goal~Brown & Chandrasekaran,
1985, 1989; Chandrasekaran, 1990; Sabin & Weigel, 1998!.
A design plan is a knowledge structure that describes how a
particular requirement or subproblem can be solved. This
method assumes that there is localized knowledge for han-
dling constraint violations. It presupposes that there is a
functional architecture with a mapping of design functions
to components~Sabin & Weigel, 1998!. Knowledge-directed
synthesis strategies have also been developed for grammat-
ical design~Brown, 1997!. For example, the “component-
directed transformation” described in Hoover and Rinderle
~1989! is a synthesis strategy for mechanical devices. These
are guided by functional integration or function sharing and
incidental behavior principles, and by knowledge of the
available components of the domain.

1.2. The design-as-satisfiability approach

To address the combinatorial nature of rule-based or trans-
formational design synthesis problems, we present a new,
fully automated mechanism for solving a broad and inter-

esting class of design synthesis problems. We focus on con-
ceptual~“preliminary”! design synthesis~Pahl & Beitz, 1988;
Ulrich & Seering, 1989; Chakrabarti & Bligh, 1996; Brown,
1998! that incorporates a set of production rules to repre-
sent the design synthesis knowledge.

The new approach is based on transforming the problem
of reaching an acceptable solution to that of finding a sat-
isfying assignment for an expression in Boolean~proposi-
tional! logic. This problem can be given to a specialized
algorithm for solving Boolean satisfiability problems~also
called SAT engine!, and from every satisfying Boolean-
valued truth assignment to the corresponding Boolean ex-
pression we efficiently can derive a solution to the original
design problem along with its finite sequence of production
rules ~see Fig. 1!. The general methodology presented in
Figure 1 is further detailed in Section 3. In order to illus-
trate the main ideas andwithout loss of generality, we as-
sume in the following that the design representation scheme
~e.g., of production rules! is expressible in propositional
logic ~i.e., the structural and functional attributes are con-
sidered0-ary predicates!. We illustrate the approach to a
conceptual design of automobiles. In Appendix A, the ap-
plicability of the newdesign-as-satisfiabilityapproach to
rule-based design knowledge is shown where the rule ele-
ments are first-order logic-based predicates. We illustrate
the approach to a conceptual design of machines~see Schmidt
& Cagan, 1995!. This extension is contrasted with transfor-
mational approaches for machine design; such as abstrac-
tion grammars~Schmidt & Cagan, 1995!, bond graph
grammars~Hoover & Rinderle, 1989; Ulrich & Seering,
1989; Finger & Rinderle, 1990!, compositional synthesis
~Chakrabarti & Bligh, 1996!, or predicate logic-based syn-
thesis~Kannapan & Marshek, 1990!.

While the proposed approach may seem roundabout, it is
made attractive by the recent development of powerful SAT
engines that are based on a stochastic local search tech-
nique. The approach has also proven useful in the related
problem of generative planning~Kautz & Selman, 1996;

Fig. 1. The SAT encoding methodology for design search.
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Kautz et al., 1996; Ernst et al., 1997!. These randomized
search algorithms can be used for solving nontrivial satis-
fiability problems that are an order of magnitude larger
than can be solved by the most widely used satisfiability
algorithms~e.g., the Davis–Putnam procedure!. The pro-
posed approach provides a more flexible framework for
stating different kinds of design plan constraints~e.g., de-
coupling of coupled design!, and also more accurately re-
flects the theory behind modern constraint-based design
systems.

The article is organized as follows. To provide a basis for
contrasting the new method, a design synthesis example
that uses an inference mechanism similar to those used in
some rule-based~expert! systems is presented in Section 2.
In Section 3, the newdesign-as-satisfiabilityapproach, which
is based on finding an appropriate SAT encoding for the
design problem, is introduced. Conclusions are drawn in
Section 4. Several extensions of the new approach are pre-
sented in Appendix A.

2. A RULE-BASED DESIGN EXAMPLE

In this section, we present a simple rule-based design ex-
ample in order to plainly illustrate the type of design prob-
lems considered in this article. The design example will be
solved using a traditional rule-based design system. In Sec-
tion 3, the same example will be solved using the newdesign-
as-satisfiabilityapproach in order to highlight the disparity
in methodologies.

Rule-based design systems mainly contain domain-
specific knowledge~facts and0or rules! and employ a sep-
arate inference procedure to manipulate this knowledge~e.g.,
Coyne et al., 1990; Huang & Brandon, 1993; Dym, 1994;
Sriram, 1997!. The main components of a rule-based de-
sign system are:~1! the knowledge base, which contains all
the information associated with the domain in which the
system is to operate. This information may be facts, rules,
as well as rules of thumb and heuristics.~2! The working
memory ~also known as context, or short-term memory!,
which contains all the information about the problem cur-
rently being solved. Its content changes dynamically and
includes information that defines the parameters of the spe-
cific problem and information derived by the system at any
stage of the solution process.~3! The inference mechanism
~also known as the inference engine, control mechanism, or
reasoning mechanism!, which controls the reasoning pro-
cess of the system. The inference mechanism uses the knowl-
edge base to modify and expand the context in order to
solve a specific design problem.1

Since a problem space might be enormously large, the
inference engine uses heuristics~“rules of thumb”! to effi-

ciently control it, and by that provide a right solutionquickly.
The global control of a rule-based design system is either
forward ~data driven! or backward chaining~goal driven;
Coyne et al., 1990!. Using forward chaining, we start from
the antecedent of the rule2 ~known facts, “if” clause! to-
wards the consequent~“then” clause! that needs to be
achieved. This kind of deductive inference is useful in analy-
sis. The converse of this strategy is called backward chain-
ing, which is a kind of abduction. Synthesis, which is the
task of finding a structure given a functional requirement,
is likely to be abductive rather than deductive~Coyne et al.,
1990!. Here, the strategy is to begin with the consequent
~the “goal state” or the “functional requirements”! we want
to be satisfied. The conditions for the accomplishment of
the functional requirements are identified and these be-
come subgoals. The search process then consists of recur-
sively selecting and applying transformation rules to a
candidate subgoal. The search process terminates whenever
functional requirements, which correspond to known struc-
tural attributes, are identified. If incompatibilities~e.g., vi-
olated constraints! happen in later design phases, then
backtracking is exercised and the inference engine gener-
ates another set of subgoals. To mechanize an abductive
inference engine, it is important to generate “effective” sub-
goals in a controlled manner as well as employing efficient
backtracking methods to deal with the enormous search
space of possible goals.

In the following, the problem of designing an automobile
using a rule-based system is considered. The automobile
example is presented as a representative design domain
where the knowledge representation scheme~e.g., of pro-
duction rules! is expressible in propositional logic~i.e., rule
elements to be 0-ary predicates or propositions!. In Sec-
tion 3.1, the newdesign-as-satisfiabilityapproach is illus-
trated using the automobile design example. In Appendix
A, an example of a serial machine design3 is presented
where the rule elements are first-order logic-based predi-
cates; and it is shown how to apply thedesign-as-satisfiability
approach to this type of problems.

2.1. Automobile design example

As an example, consider the problem of designing an auto-
mobile using a rule-based system. The automobile is a self-
propelled, four-wheeled, steerable vehicle for transporting
people on land. All passenger cars, trucks, and buses have
certain things in common:~1! the power plant, or engine;
~2! the chassis, which supports the engine and wheels and
includes the frame and the steering and brake systems;~3!
the power train, which transmits the power from the engine

1Additional components such as a user interface and an explanation
facility are required in order to facilitate the use of the rule-based expert
system. Both learning and knowledge acquisition tools are also desirable
in order to ease the development of the knowledge base.

2Here, in any formula of the formA r B, A is referred to as the
antecedentandB as theconsequent.

3A similar problem is formulated and solved differently in Schmidt and
Cagan~1995!, who use anabstraction grammar~a production system! for
the representation and generation of function and serial form layouts.
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to the car wheels; and~4! the body. Technical and opera-
tional details related to the design of the main parts of au-
tomobiles and their components are provided in Braha and
Maimon ~1998!. The compiled rules below rely very heav-
ily on this domain-specific knowledge.

The various possible facts~facts appear in a
typewriter-like font! are described below~in a par-
ticular synthesis problem onlypart, and certainly not con-
tradictory facts, are considered!.

Facts:

~ f1! the car is used for family driving

~ f2! the external conditions are good

~ f3! the maximum allowed speed is 160
Km/h

~ f4! the car is used for urban driving

~ f5! the maximum allowed speed is 200
Km/h

~ f6! The car is used for sport driving

~ f7! the car is used for executive driving

~ f8! the car is used for material
transportation

~ f9! the car is used as taxicab

The structural attributes~design description properties!
that specify the configuration of actual cars as well as the
functional attributes that are manifested by these structural
attributes are presented in Table 1.

A small sample of the domain-specific knowledge rele-
vant to the car design domain is expressed in terms of the
production rules presented in Appendix B. The set of rules
is held in arule memory.

Table 1. Structural and functional attributes for the automobile design example

Structural Attributes
~s1! 4-wheel drive ~s23! high transmission ratio
~s2! 4-wheel steering ~s24! horn
~s3! 6–8 cylinders ~s25! hydraulic disk brakes
~s4! absorbent front end ~s26! large pistons & cylinders
~s5! air bag ~s27! light weight
~s6! air-cooled engine ~s28! liquid cooling system
~s7! air deflector ~s29! low & small structure
~s8! an engine that deflects down ~s30! muffler
~s9! anti-lock braking system~ABS! ~s31! power brakes
~s10! automatic belts ~s32! powerful starter
~s11! catalytic converter ~s33! radial tire
~s12! deep thread patterns ~s34! richer mixture fuel
~s13! disconnecting fan system ~s35! rigid passenger compartment
~s14! drum brakes ~s36! stabilizers in the front
~s15! electric powered ~s37! suspension system
~s16! electronic ignition ~s38! tubeless tire
~s17! extra differential ~s39! windshield defroster
~s18! extra strong door ~s40! windshield washer & wiper
~s19! extra strong roof ~s41! tire with 205 width symbol
~s20! fog lights ~s42! tire with 155 width symbol
~s21! fuel injection ~s43! tire with 60 aspect ratio symbol
~s22! high ground clearance ~s44! tire with U speed symbol

Functional Attributes
~r1! AERODYNAMIC DESIGN ~r16! PASSABLE IN DIFFICULT TERRAIN
~r2! DIESEL ENGINE ~r17! RELIABLE TIRE
~r3! CREATES MINIMAL POLLUTION ~r18! SAFE CAR
~r4! EASY PARKING ~r19! SAFE IN ACCIDENTS
~r5! EFFICIENT ENGINE ~r20! SAFE IN BAD WEATHER
~r6! ECONOMICAL ~r21! SAFE IN FLIPPING OVER
~r7! RELIABLE BRAKES ~r22! SAFE IN HEAD-ON COLLISIONS
~r8! HEAVY CAR ~r23! SAFE IN HIGH DRIVING SPEED
~r9! HIGH POWER OUTPUT ~r24! SAFE IN OFF-HIGHWAY ROAD
~r10! HIGH DRIVING SPEED ~r25! SAFE IN POOR EXTERNAL CONDITIONS
~r11! HIGH VOLUME OF THE COMBUSTION CHAMBER ~r26! SAFE IN POOR VISIBILITY
~r12! LOW FUEL CONSUMPTION ~r27! SAFE IN SIDE COLLISIONS
~r13! LOW MAINTENANCE COSTS ~r28! SMALL CAR
~r14! MECHANICALLY DEPENDABLE and DURABLE ~r29! SMALL ENGINE
~r15! OFF-HIGHWAY TIRE ~r30! HIGH-POWERED ENGINE
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2.2. Car synthesis trace

Assume that the designer is faced with the problem of de-
signing a car description that is able to achieve the follow-
ing functional attributes as requirements:

1. The car CREATES MINIMAL POLLUTION~r3!

2. The car is capable of HIGH DRIVING SPEED~r10!;

3. The car has LOW FUEL CONSUMPTION~r12!;

4. The car is SAFE~r18!.

The following facts are assumed:~1! the car is
used for family driving ~ f1!; ~2! the exter-
nal conditions are good ~ f2!; ~3! the maxi-
mum allowed speed is 160 Km/h ~ f3!; and ~4!
the car is used for urban driving ~ f4!.

The following constraints4 are further considered:~1!
the structural attributes “tire with 205 width symbol~s41!”
and “tire with 155 width symbol~s42!” cannotbe included
together in a design description; and~2! the structural
attribute “the car is electric-powered~s15!” cannotbe in-
cluded in a design description if the functional attribute
“the car has DIESEL ENGINE~r2!” is satisfied.

The rule-based design system needs to search through
the problem space for a pathway from the initial require-
ments to some state of the car structural description such
that the requirementsr18, r10, r12, andr3 are achieved, while
adhering to the compatibility constraints.

In attempting to achieve the initial requirements, a back-
ward chaining inference is served as the problem-solving
strategy by the rule-based design system~Coyne et al., 1990;
Dym, 1994; Sriram, 1997!. Other control issues are ad-
dressed as follows:~1! the inference engine identifies~by
matching! several production rules for which theirconse-
quentparts satisfy the state of the working memory. In this
case, the inference engine selects a rule from the conflict
set to fire.~2! The order in which the subrequirements are
processed is according to a depth-first control strategy~e.g.,
if the functional attributesr1 and r2 are pending, expandr1

before r2!; finally, ~3! if any of the above constraints is
violated during the search~a “failure;” see Brown & Chan-
drasekaran, 1989!, dependency-directedbacktracking5

~Brown & Chandrasekaran, 1989! is taken and an alterna-
tive rule is chosen from the list of available finite choices.

A working memoryholds or represents the “current” state
of the process, which is in the example aconjunctionof
structural and functional attributes~if a functional attribute
appears in a process state, it means that it remains to be

satisfied!. Table 26 shows the trace of “process states” gen-
erated in the course of searching for a solution to the auto-
mobile design problem. At each step of the search, the
consequent parts of the production rules~listed above! are
matched against the current unsatisfied functional attributes
~given in the second column of Table 2! and known facts.
Since many production rules may match the current state,
the preferred rule is the one that matches the first leftmost
unsatisfied functional attribute~a depth-first control strategy!.

3. A SAT ENCODING FOR DESIGN SEARCH

The main objective of the forthcoming sections is to present
a new computational search approach for solving design
synthesis problems that incorporate a set of production rules
for the design knowledge representation.

The proposed method is to recast the design problem as a
Boolean satisfiabilityproblem, which can be solved using a
SAT engine~see Fig. 1!. The existence of powerful new al-
gorithms for solving Boolean satisfiability problems makes
this techniqueevenmoreappealing~Gu,1992;Levesqueetal.,
1992; Trick & Johnson, 1993; Selman et al., 1996, 1997!.

In Boolean satisfiability problems, we must find a truth
assignment for some given set of atomic propositions that
will make a given set of expressions evaluated to TRUE.
Such an assignment is called asatisfyingassignment. For
example, consider the following Boolean expression incon-
junctive normal form,7 which is the form used by most
satisfiability-testing programs:

~ p1 ∨ ¬p2 ∨ p3! ∧ ~ p1 ∨ p2 ∨ ¬p4! ∧ p2

One satisfying assignment for it would assign TRUE top1

andp2 and FALSE to all other variables.
The problem of finding a satisfying assignment for a set

of Boolean expressions is known to be NP-Complete~Garey
& Johnson, 1979!. Hence it is unlikely that algorithms exist
that are guaranteed to solve it in polynomial time. How-
ever, in practice there is a class of algorithms that have been
shown to solve extremely large and difficult satisfiability
problems in reasonable time~Gu, 1992; Levesque et al,
1992; Selman et al., 1996, 1997!. These algorithms~e.g.,
GSAT and Walksat; Selman et al., 1996!, are based on sto-
chastic local search methods that perform “noisy” greedy
searches, that is, where each search step usually moves from
the current candidate solution to the best neighboring solu-
tion ~according to some neighborhood relation!, but can
occasionally make random moves that are not locally opti-
mal. These randomized greedy algorithms were used to solve
empirically hard random formulas as well as encoding of4Constraints indiscretedomains can be expressed as compatibility

relations between attributes, stating that certain combinations are allowed
or not ~Sriram, 1997!.

5Dependency-directed backtracking provides a way of taking into ac-
count the information about which pieces of knowledge contribute to the
failure. This information is used in the decision of how far to backtrack
~see Brown & Chandrasekaran, 1989!. Dependency-directed backtracking
is also related to “belief revision”~Brown & Chandrasekaran, 1989!.

6The abduction process in a rule-based system can also be illustrated
using a derivation graph~Coyne et al., 1990!.

7A Boolean expression is inconjunctive normal formif f 5 C1 ∧ C2 ∧
. . . ∧ Cm, and each of theCj s is the disjunction of one or more literals. The
Cj s are called theclausesof the expression in conjunctive normal form.
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hard graph-coloring problems~as well as other problems in
AI !. Such methods are incomplete—that is, they are not
guaranteed to find a solution if one exists. However, in
practice, they are very efficient.8

One class of problems where the strategy of encoding
problems as SAT instances has been very fruitful is ingen-
erative planning~Kautz & Selman, 1996; Kautz et al., 1996!.
In generative planning, an initial state of a system, a set of
operators or actions for transforming the state of the sys-
tem, and a set of goal states are given. The task is to come
up with a sequence of operators that will transform a sys-
tem from the initial state to any one of the goal states. It is

8There has been considerable progress in systematic solution algo-
rithms for SAT problems as well.

Table 2. Design search algorithm applied to the automobile design problema

Process Step

Structural Attributes1
Unsatisfied Functional

Attributes
Satisfied Functional

Attributes Candidate Rules Selected Rule

1 r18 and r10 and r12 and 3 B Rule 4 Rule 4 is fired to decomposer18: “the
car is SAFE”

2 r19 and r10 and r12 and r3 r18 Rule 6 Rule 6 is fired to decomposer19: “the
car is SAFE IN ACCIDENTS”

3 r22 and r27 and r21 and
s10 and r10 and r12 and r3

r19 and r18 Rule 11 Rule 11 is fired to decomposer22: “the
car is SAFE IN HEAD-ON
COLLISIONS”

4 s4 and s5 and s8 and r27

and r21 and s10 and r10

and r12 and r3

r22 and r19 and r18 Rule 12 Rule 12 is fired to decomposer27: “the
car is SAFE IN SIDE COLLISIONS”

•
•
•

11 s4 and s5 and s8 and 18

and s19 and s35 and s10

and s29 and s7 and s26

and s3 and s32 and s28

and s34 and s30 and s23

and s41 and s43 and s44

and r12 and r3

r2 and r11 and r30 and r1

and r10 and r21 and r27

and r22 and r19 and r18

Rule 21, rule 38 Rule 38 is used to decomposer12: “the
car has LOW FUEL CONSUMPTION”

12 s4 and s5 and s8 and s18

and s19 and s35 and s10

and s29 and s7 and s26

and s3 and s32 and s28

and s34 and s30 and s23

and s41 and s43 and s44

and r5 and s13 and s42

and r3

r12 and r2 and r11 and r30

and r1 and r10 and r21

and r27 and r22 and r19

and r18

— backtracking
The structural attributess41 ~“tire with
205 width symbol”! ands42 ~“tire with
155 width symbol”! cannotbe included
together in a design description

13 s4 and s5 and s8 and s18

and s19 and s35 and s10

and s29 and s7 and s26

and s3 and s32 and s28

and s34 and s30 and s23

and s41 and s43 and s44

and r12 and r3

r2 and r11 and r30 and r1

and r10 and r21 and r27

and r22 and r19 and r18

rule 21, rule 38 Rule 21 is used to decomposer12: “the
car has LOW FUEL CONSUMPTION”

•
•
•

18 s4 and s5 and s8 and s18

and s19 and s35 and s10

and s29 and s7 and s26

and s3 and s32 and s28

and s34 and s30 and s23

and s41 and s43 and s44

and s16 and s21 and s13

and s27 and s11

r3 and r5 and r12 and r2

and r11 and r30 and r1

and r10 and r21 and r27

and r22 and r19 and r18

STOP
consistent solution is obtained

Complete table may be found in Braha and Maimon~1998!
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immediately apparent that this problem is very much like
standard state-space search problems, such as the design
search problem. However, in state-space search, we are typ-
ically interested in discovering a final, unknownstatethat
meets a certain criteria, whereas in the planning problem
we are interested in apath to a known set of final states. It
is the research objective to show how methods developed
for transforming generative planning problems to SAT prob-
lems in artificial intelligence can be used and modified to
transform engineering design problems to SAT problems,
and to demonstrate that they can be applied to nontrivial
“real-world” design problems~such as automobile and aero-
nautics design!.

3.1. Detailed description of the methodology

There are a number of methods for encoding planning prob-
lems as SAT and we will suggest a method by which any of
these encoding techniques can be applied to the design search
problem. However, to make the presentation of this article
clearer, we will concentrate on one particular plan encod-
ing scheme~outlined in Braha & Brafman, 1998!, known as
the linear encoding. To describe an encoding, we have to
specify three things: the set of propositions used, the set of
expressions~or “axioms”! to be generated, and how a solu-
tion to the original problem is obtained from the solution to
the encoded SAT problem.

The idea behind the linear encoding is the following: Let
n be the bound on the number of plan steps.9 The set of
propositions is composed of two classes, where every prop-
osition in the first class is associated with the execution of
each action~operator! at each time point, and every propo-
sition in the second class is associated with the execution of
each attribute at each time point. Intuitively, we would like
to obtain a truth assignment that reflects a valid solution,
that is, one where the proposition associated with actionA
at time10 t has the value TRUE if actionA is the action that
should be executed at timet, and where the proposition
associated with the attributeP at timet has the value TRUE
if, at the state reached aftert actions are performed,P holds.
For this to be the case, we must specify a set of axioms such
that any satisfying truth assignment for these axioms will
have the above properties. The linear encoding achieves
this by including the following set of axioms:

1. An initial state axiom specifying that at time 0 all
~and only! attributes characterizing the initial state
hold.

2. A goal state axiom that specifies that at the last time
point, n, all goal attributes hold.

3. Axioms ensuring that if a particular action is taken at
time t, then the attributes at timet and at timet 1 1 are
related appropriately, that is, those propositions hold-
ing at statet 1 1 correspond to the state obtained
when this action is executed at the state at timet.

4. Axioms ensuring that only one action is executed at
each time point.

After generating a set of Boolean expressions that corre-
spond to the above set of axioms, a SAT engine can be used
to find a satisfying truth assignment. Given such an assign-
ment, we can deduce the sequence of actions of the plan by
seeing which action proposition holds~i.e. has the value
TRUE! at each time point.

Since rule-based design searching11 is so closely related
to planning, it seems likely that any method of encoding
planning problems as SAT problems could be used to en-
code rule-based design search problems into SAT prob-
lems. The only caveat is that one must be able to describe
the criteria a solution process state must satisfy using prop-
ositional logic. In a class of planning problems formulated
using the STRIPS representation language~Fikes & Nils-
son, 1971!, goal states are described via a conjunction of
properties. Hence, we can encode them using a conjunction
of propositions. Solution criteria for general design search
problems will not necessarily have this property. In fact, at
a first glance, it is not obvious that the criteria for a solution
state of a design problem can be formulated this way: It
requires a state in which all attributes are structural. Fortu-
nately, it is easy to see that we can recast this requirement
by stating that there will be no functional attributes in the
final process state, that is, the final state axiom will assert
that all state propositions corresponding to functional
attributes at the final state must be false. Finally, in many
design problems, there are additional constraints that must
be satisfied~e.g., a 205-width-symbol tire and a 155-width-
symbol tirecannotbe included together in a design descrip-
tion!, and these can be ensured by adding such constraints
to the final state description~assuming they are expressible
in propositional language!.

As with the planning problems, each expression we pro-
duce corresponds to the applications of a bounded number
of production rules. In the design search problem, we are
interested in a final artifact’s description, which is knowna
priori to be bounded by the size of the set of structural
attributes. Hence, one could object to a restriction on the
number of production rules used~i.e., to the length of

9In the SAT-based approach, the maximal length of a plan is fixed at solv-
ing time. If the designing length is not known in advance, it is straightfor-
ward to perform both linear and binary search on designing lengths, to find
the smallest for which a solution is found~Kantz & Selman, 1996!. For ex-
ample, if theoptimaldesigning length is20, thesearchwouldproceed through
designing of length 2, 4, 8, 16, 32~plan found!, 24~plan found!, and finally
20. The “minimal plan” characteristic of the SAT-based approach addresses
one of the plan’s desirable qualities mentioned in Brown and Chandraseka-
ran~1989!, which is to choose the shorter plan if all else is equal.

10Actions are performed in sequence. Heret is a time-index parameter
~ranging over the numbers 1, 2, . . .! that is added to each action or attribute,
to indicate the state at which the action begins or the attribute holds. For a
problem bounded byn, the actions are indexed by 0 throughn21, and the
attributes by 0 throughn.

11Again, we focus on preliminary design that incorporates a rule-based
representation of design knowledge.
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the path to the solution state!. But if the solution requires
the application of an exponential number of production rules
to be generated, it is unlikely that any method can solve it
without using exponential time. However, under reason-
able12 restrictions on the form of the production rules, it is
easy to see that if a solution exists then there exists a solu-
tion path that is polynomial in the number and size of the
production rules.

We now show how these ideas are applied to the auto-
mobile design example presented in Section 2.

Example 1. We shall use the propositionri ~t ! @or si ~t !#
to denote that the functional attributeri ~or the structural
attributesi ! holds at the state occurring at timet. The nota-
tion, for example,ri ~t !, is intended to be interpreted as a
name and not as afunction of t. We shall need one such
proposition for every one of the 44 structural and 30 func-
tional attributes at every time point 0# t # n. Similarly,
pi ~t ! corresponds to the application of production rulei at
time t. We shall need one such proposition for every one of
the 38 production rules and for every time point 0# t , n
~we cannot apply a rule at timen, as this is the final state!.
In addition, propositions,p0~t !, corresponding to a dummy
“null” production rule are also included. These proposi-
tions handle the case where the number of process steps is
actually shorter thann. Finally, fi ~0! is used to denote the
proposition associated with the factfi at time 0.13 We shall
need the following axioms.

Initial State Axiom. The initial state must hold at
time 0:

known facts

AssssssssssDssssssssssG
f1~0! ∧ f2~0! ∧ f3~0! ∧ f4~0! ∧ ¬f5~0! ∧ . . . ¬f9~0!

∧

initial requirements

AsssssssssssDssssssssssssG
r3~0! ∧ r10~0! ∧ r12~0! ∧ r18~0!

∧ ¬r4~0! ∧ . . . ¬r30~0! ∧ ¬s1~0! ∧ . . . ∧ ¬s44~0! n

Goal State Axiom. A final state must hold at timen:

¬r1~n! ∧ ¬r2~n! ∧ . . . ∧ ¬r30~n! n

Single-Rule Axioms. At least one production rule is
applied at each time point. Hence for every 0# t , n:

p0~t ! ∨ p1~t ! ∨ p2~t ! . . . ∨ p38~t ! n

No more than one production rule is applied at each time
point. Hence for every 0# t , n and for every 0# i # 38:

pi ~t ! r S∧
jÞi

¬pj~t!D n

Preconditions and Effect Axioms: If a production
rule is applied at timet then the states at timet andt 1 1 are
appropriate for the rule application. This implies two things.
First, the consequent of the rule holds at timet ~which
corresponds to the functional attribute being decomposed!;
the antecedent of the rule, and the negation of the conse-
quent hold at timet 1 1 ~which means that the functional
attribute has been replaced by the attributes appearing at
the antecedent!. As an example of this class of axioms con-
sider rule 1 in the automobile rule-base. The antecedent
containss1,s17,s22,s27,r15, while the consequent isr16. Hence,
for every 0# t , n we add:

p1~t! r r16~t! ∧ ¬r16~t 1 1! ∧ s1~t 1 1! ∧ s17~t 1 1!

∧ s22~t 1 1! ∧ r15~t 1 1! n

Frame Axioms: If the truth value of an attribute changes
from true to false, then one of the production rules that
includes the attribute in its consequent part must have oc-
curred. Similarly, if the truth value of an attribute changes
from false to true, then one of the production rules that
includes the attribute in its antecedent part must have oc-
curred. If those production rules don’t occur, then by mo-
dus tolens the truth value of the attribute must continue
through an existing production rule. For example, for every
0 # t , n we must add the following frame axiom, which
says which production rules could have causedr3~t!s truth
value to change:

r3~t! ∧ ¬r3~t 1 1! r p35~t! ∨ p36~t! n

Similar frame axioms must appear for every other attribute.

Compatibility Constraint Axioms: To illustrate the
first constraint, that is, both structural attributess41 ands42

cannot beincluded together in a physically realizable de-
sign, the following must hold at timen:

¬s41~n! ∨ ¬s42~n! n

Constructing and Solving the Complete Encoded Boolean
Expression. Using some basic useful properties of Boolean
connectives, the above set of axioms~i.e. their conjunction!
can be rewritten~in polynomial computation time! into an
equivalent Boolean expression inconjunctive normal
form ~which is the form used by most satisfiability-testing
programs!. For example, the expression,p1~t! r r16~t! ∧
¬r16~t 1 1! ∧ s1~t 1 1! ∧ s17~t 1 1! ∧ s22~t 1 1! ∧
r15~t 1 1! is rewritten as the following equivalent expres-
sion in conjunctive normal form:

12Here “reasonable” expresses the fact that the rules graphically corre-
spond to an acyclic directed graph.

13We need one proposition per fact since we assume that facts do not
change during the process~i.e., facts are determined at time 0!.
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~¬p1~t! ∨ r16~t!! ∧ ~¬p1~t! ∨ ¬r16~t 1 1!! ∧ ~¬p1~t! ∨ s1~t 1 1!!

∧ ~¬p1~t! ∨ s17~t 1 1!! ∧ ~¬p1~t! ∨ s22~t 1 1!!

∧ ~¬p1~t! ∨ r15~t 1 1!!

The complete encoded Boolean expression,represent-
ing all the axioms, is inputted to a SAT engine. If the
engine outputs a satisfying Boolean-valued truth assign-
ment, we can extract the design solution from it by collect-
ing the set of propositions of the formsi ~n! to which it
assigns the value TRUE. Similarly, we can construct the
finite sequence of production rules that lead to this design
solution; and thus facilitate the use of the SAT-based ap-
proach by having an explanation facility. The overalldesign-
as-satisfiabilitymethodology is shown in Figure 2. The
correctness of the above encoding can be shown by induc-
tion on the time indext: that is, the transformed Boolean
expression is satisfiableif and only if there is a finite se-
quence of at mostn production rules that begins with the
initial process state and ends with an accepting process state.

From this example, it is evident that we can encode any
design problem, which is expressible in propositional lan-
guage or the STRIPS representation language~Fikes & Nils-
son, 1971; see also Appendix A!, using the same class of
axioms: initial state axiom, goal state axiom, single rule
axioms, preconditions and effect axioms, frame axioms, and
compatibility constraints axioms. Furthermore, we see that
the size of this encoding is polynomial in the size of the
original problem~a more rigorous analysis is provided in
Section 3.2!.

3.2. The size complexity of the encoded
Boolean expression

The “size complexity” of a Boolean expression is measured
in terms of the total number of variables and literals it con-
tains. A key issue in the proposed approach is the develop-
ment of a practical reduction of design problems to SAT,
which is measured in terms of the size complexity of the
encoded Boolean expression. In spite of the fact that not all
SAT problems of a given size are equally difficult,14 exper-
imental results show~Levesque et al., 1992; Kautz & Sel-
man, 1996; Selman et al., 1996! that formulas containing
around 2,000 variables could be solved by both systematic
and stochastic search in a few seconds. The limits of the
systematic algorithm “tableau” were reached at 2,800 vari-
ables and 6 hours of running time~Kautz & Selman, 1996!.
The stochastic algorithm “Walksat”~see Selman et al., 1996!
was reported to solve problems containing 10,000–100,000
variables. These stochastic search algorithms were often
evaluated for the worst possible instances@i.e., on “hard”
random formulas~Selman et al., 1996; Cook & Mitchell,
1997!# . In practice, larger problems~in terms of total num-
ber of variables! are expected to be considerably easier to
solve than suggested by those worst case estimates. For
example, in routine design, the number of possible decom-
positions at each selection point is limited to one or a few
~Brown & Chandrasekaran, 1989, p. 112; Chandrasekaran,
1990, p. 64!. In terms of the frame axioms, it is translated
into a small number of rules that can account for a change
in the truth value of an attribute. This results in Boolean
expressions that are easily solved, although the number of
variables may be high. It therefore appears that in the case
of routine design the worst-case results may be overly pes-
simistic. In addition, in some transformational systems the
number of rules that could lead to a design solution is small
@roughly speaking, this number is related to the “depth” of
the hierarchical decomposition~Brown & Chandrasekaran,
1989, p. 107; Schmidt & Cagan, 1995, p. 109; Chakrabarti
& Bligh, 1996, p. 318!# . Again, this results in Boolean ex-
pressions that are easily solved.

The size of the encoded Boolean expression is affected
by the various characteristics of the original design prob-
lem. In this section, we present an analysis of the size of the
encoded Boolean expression as a function of various prop-
erties of the design problem instance; such as the number of
structural and functional attributes, and the number of pro-
duction rules. This type of analysis allows the user to select
an efficient SAT engine based on the gross statistical prop-
erties~i.e., total number of production rules and attributes!
of the statement of a given design problem. This kind of
analysis is also useful when comparing different encoding

14Statistical properties of randomly generated “hard” SAT problems
~as observed by numerical simulations; see Selman et al., 1996!, show that
both the number of variables and literals affect the efficiency of the solu-
tion procedure.

   

         

Fig. 2. Design as satisfiability: Transforming the design axioms to a Bool-
ean expression, solving the SAT problem, and translating the satisfying
truth assignment to a design solution.
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techniques~other than the linear encoding scheme consid-
ered in this article! for the given design problem.

In the following analysis, it is assumed that the design
problem is expressible in propositional language~as in the
automobile design example!. The linear encoding scheme
is critically dependent on the number of production rules
6R6, number of structural and functional attributes6A6, and
process length boundn. Based on these design features, we
observe that the number of variables used in the encoding
is15 O~n6R61 n6A6!. The rate of growth of the size of the
conjunctive normal formexpression~i.e., number of literal
occurrences! is captured by the Single-Rule and Frame ax-
ioms. Consequently, the size of the transformed expression
in conjunctive normal formis O~n6R62 1 n6A6 6R6!.

To evaluate the performance of the SAT encoding
approach, six design problems have been examined. The
characteristics of the underlying design problems~e.g., au-
tomobile and forklift design with 150 attributes and pro-
duction rules! have been published in Braha~2000!. The
results demonstrate the effectiveness of the SAT encoding
approach in terms of yielding the right answer quickly~a
few seconds of CPU time!. Although the computational
efficiency has been the primary motivation for investigat-
ing design as satisfiability, the formalization of rule-based
design synthesis as satisfiability has also been effective in
terms of providing a flexible framework for stating differ-
ent design constraints~see Sec. 4.2!.

4. SUMMARY AND DISCUSSION

4.1. Summary

It has been recognized that although the consideration in
developing some rule-based synthesis systems is defining
the set of productions for representing design knowledge,
the difficult question for the practical use of rule-based syn-
thesis systems is how rule execution is controlled~Maher,
1990; Brown, 1997!. The computational complexity results
presented in Braha and Maimon~1998! suggest that we
cannot hope for automatic means to search through a space
of designs that are guaranteed to work well~in the sense of
providing the right answerquickly! for all inputs. In this
article, we have proposed a new alternative, fully auto-
mated approach for solving design synthesis problems that
incorporate a set of production rules for the design knowl-
edge representation. The SAT encoding method is based on
the idea of producing a Boolean expression that “repre-
sents” the original problem in the sense that from every
satisfying truth assignment to this expression we can~effi-
ciently! derive a solution to the original problem. By apply-
ing the method to several design problems, the SAT encoding
approach has been found to be appealing in terms of yield-

ing the right answer quickly, and providing a flexible frame-
work for stating different design constraints. The SAT
encoding has also provided a new perspective on represen-
tational issues in design; thus, the approach is interesting
from a purely representational point of view.

4.2. Discussion

Although the computational efficiency has been the pri-
mary motivation for investigating design as satisfiability,
the formalization of rule-based design synthesis as satisfi-
ability has a number of additional attractive properties.

The design-as-satisfiability technique provides a flexible
framework for stating different kinds of design plan con-
straints; for example, by stating arbitrarily “facts” about the
initial and goal states of the design process, or by stating
arbitrary constraints in any intermediate state of the synthe-
sis process. To illustrate, consider a domain-dependent con-
trol strategy that involvesprioritizing the order in which
the functional requirements~“goals”! should be processed
~e.g., Coyne et al., 1990!. For example, let us assume that
the requirement~r3! “the car creates minimal pollution”
should be processedbeforethe goal~r10! “the car is capa-
ble of high speed.” If we want to insure that the above
“priority” control strategy is applied, we simply add the
following axioms to the SAT problem specification: for ev-
ery 0# t , n, r3~t ! r r10~0! ∧ r10~1! ∧ . . . ∧ r10~t !. The
approach also provides a very accurate formal model of
modern constraint-based configuration approaches that use
CSP~Constraint Satisfaction Problem! techniques~Wielin-
ga & Schreiber, 1997!.

The design-as-satisfiability approach precludes the need
for performing a strict backward or forward chaining search
~e.g., Coyne et al., 1990!, and managing constraint satisfac-
tion by a predefined control mechanism~as incorporated by
some rule-based and expert systems for design16!. In the
SAT-based approach, all design-specific information is sub-
sumed by simple uniform relationships between proposi-
tions, and the inference engine has no explicit indication as
to what stands for a goal or what stands for a rule. This
means that the system is not constrained to perform a strict
backward or forward chaining search. This allows con-
straints to propagate more freely, and thus more quickly
reduces the search space.

In logic and computer science, the SAT problem is well
understood and analyzed. Thus, by mapping the synthesis
problem to a logic representation, one can exploit the many
well-known theorems on SAT that have been developed by
researchers in the field to address interesting issues related
to rule-based synthesis systems. Moreover, many research-
ers in different areas of computer science are developing

15We write f ~n! 5 O~g~n!! if there are positive integersc andn0 such
that, for alln $ n0, f ~n! # cg~n!.

16Some knowledge-based design systems use decomposition of large
complex problems into smaller problems, and putting~recomposing! the
subproblems together taking into account the interactions. The issue of
recomposition is, then, dealt with as a constraint satisfaction~Maher, 1990!.

Design as satisfiability 395

https://doi.org/10.1017/S0890060401155022 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401155022


faster SAT engines every year, which are freely shared and
fine-tuned~e.g., Trick & Johnson, 1993!. As a result, design
systems can be created that combine the best features of
these SAT engines.

The SAT-based approach isfully automated@rule-based
design systems are often computer-assisted~e.g., Brown &
Chandrasekaran, 1989!# . This automation would allow de-
signers to work on many design problems simultaneously.
Rather than progressing along a single search direction,
designers could conveniently handle many alternatives with-
out undue efforts. However, it is important to note that the
SAT-based approach is not suggested as a monolithic archi-
tecture for design synthesis. A more useful architectural
approach is to supportspecificsynthesis tasks by means of
computational shells—such as the SAT-based method—
which help solve a portion of the design synthesis problem
in a computationally efficientway. Furthermore, a SAT-
based search engine can flexibly be plugged in various
transformational-based synthesis systems.

The SAT encoding method has several weaknesses. The
approach proposed in this article is most appropriate for
problems where the optimum solutions~as in parametric
design! will not be sought and satisfying solutions will fully
be accepted. That is, instead of requiring an optimal design—
which maximizes or minimizes an objective function of a
number of requirements—we examine conceptual or prepara-
metric design~e.g., Ulrich & Seering, 1989; Chakrabarti &
Bligh, 1996! where designers accept a “good” or “satisfac-
tory” solution. This is a strictly binary case for which prop-
ositional logic can be exploited. However, since propositional
logic does not allow for variables, the proposed approach is
~currently! limited when parameter values need to be set.
Moreover, if the parameter values are taken from an un-
bounded domain or infinite domain, propositions cannot be
fashioned.

In the future, we plan to perform extensive computa-
tional experiments for testing the performance of the SAT-
based method on knowledge intensive designs—with respect
to several algorithms for solving propositional satisfiability
problems and various SAT encoding schemes~including
analyzing the size of specific encoding schemes!. We also
plan to compare the new method with the currently avail-
able search engines~such as the inference mechanism pre-
sented in Sect. 2.2!. Finally, since we are interested in
reducing the number of variables and clauses as much as
possible, we may consider several ways by which the Bool-
ean expression can be simplified~e.g., by safely eliminat-
ing some of the axioms relating rules to their preconditions
and effects!.
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APPENDIX A. EXTENSIONS OF
THE SAT-BASED APPROACH

In this appendix, we delineate several ways by which the
approach can be extended.

A1. Comparing various encoding schemes

A number of encoding schemes are available for carrying
out this approach, and one approach~i.e., linear encoding!
is explicitly discussed. The same idea can be applied to all
other encoding schemes.

A2. SAT encoding for predicate-based
design knowledge

In this article, it is assumed without loss of generality that
the SAT encoding technique is based on a design represen-
tation scheme~of the original design problem!, which is
expressible in propositional logic. The use of propositional
logic is appropriate for modeling design knowledge such
as: “If the car hasOFF-HIGHWAY TIRE ~r15! and
4-wheel drive ~s1! and extra differential
~s17! and high ground clearance ~s22! and light
weight ~s27!, then the car isPASSABLE IN DIFFI-
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CULT TERRAIN ~r16!.17 However, in some design do-
mains~such as machine design!, it is not sufficient to model
design knowledge by propositional logic alone. In such cases,
we may use first-order logic, which is capable of express-
ing in much more detail than propositional logic a wide
range of design knowledge.

In the following, it is briefly shown how to utilize the SAT
encoding technique in case a first-order logic design repre-
sentation scheme is employed.18 To illustrate, consider the
domain of serial machine design, which is the process of trans-
forming initial specifications of machine function into a se-
rial arrangement of machine components~e.g., Schmidt &
Cagan, 1995!. First-order logic may be used to formalize ma-
chine design knowledge~rules!, such as:

1. “If assembly_2 converts reciprocating rotational en-
ergy into continuous translational energyand assem-
bly_3 converts continuous translational energy into
continuous electrical energyand assembly_2 is con-
nected to assembly_3,then assembly_119 converts
reciprocating rotational energy into continuous elec-
trical energy”;

2. “If a rack & pinionrepresentsassembly_1,then as-
sembly_1 converts reciprocating rotational energy into
reciprocating translational energy.”

In order to formalize such design knowledge in a first-
order logic, we consider~1! afiniteset ofconstants—gear ,
coil_spring , transformer , electric motor ,
. . . ,s1,s2, . . .—forrepresentingmachinecomponents~e.g.,
transformers, torsional springs, and gears! and machine as-
semblies;20 and~2! a finite set ofpredicate names—Q1, Q2,
. . .—for expressing machine functions~e.g., convert recip-
rocating rotational energy into reciprocating translational
energy!, R1 for expressing an assembling of assembly_i
connected to assembly_j, andR2 for expressing the repre-
sentation of an assembly by a~concrete! machine com-
ponent. For example, the design rules stated above are
formalized as the following rule schemas:

~Q2~s2! ∧ Q3~s3! ∧ R1~s2,s3!! r Q1~s1!

R2~rack & pinion , s1! r Q4~s1!

Since all of the constants that appear in the definition of
the first rule schema ares1,s2,s3, we denote the rule as
p1~s1,s2,s3!. Similarly, we denote the second rule schema
as p2~rack & pinion , s1!.

Having introduced the basis of the first-order logic rep-
resentation scheme, we briefly describe how the encoded
SAT problem is obtained from this representation.21 We
have to specify two things: the set of propositions used, and
the set of expressions~or axioms! to be generated. Letn be
the bound on the number of design process steps. In the
machine design domain, we will use propositions such as
R2~rack & pinion , s1, t ! to mean that a rack & pinion
instantiates assembly_1 at timet; R1~s1,s2, t ! to mean that
assembly_1 is connected to assembly_2 at timet; Q1~s1, t !
to mean that assembly_1 converts reciprocating rotational
energy into continuous electrical energy at timet; and
p2~rack & pinion , s1, t ! to mean that a rack & pinion
instantiates assembly_1 between timest and t 1 1. As be-
fore, in thedesign-as-satisfiabilityapproach, design is sim-
ply a set of axioms with the property thatanymodel~i.e., a
satisfying truth assignment! of the axioms corresponds to a
valid design solution. For the simple machine design spec-
ification of transforming the function “converting recipro-
cating rotational energy into continuous electrical energy”
~denoted as the predicateQ1! into an arrangement of ma-
chine components, we shall need the following initial and
goal state axioms, abbreviated as schemas. A schema stands
for the set of all the formulas that can be generated by
iterating the quantifiers over the constants of the appropri-
ate types. A universally quantified expression expands to
theconjunctionof its instantiations. For instance,¬Q1~s2,0!
∧ ¬Q1~s3,0! ∧ ¬Q1~s4,0! ∧ . . . ∧ ¬Q1~sk,0! is an instance
of the schema;x Þ s1~¬Q1~x,0!!.

Initial State Axiom:22

Q1~s1,0! ∧ ;x Þ s1~¬Q1~x,0!! ∧ ;x~¬Q2~x,0!! ∧ . . .

∧ ;x~¬S1~x,0!! ∧ ;x;y~¬S2~x, y,0!! n

Goal State Axiom:23

;x~¬Q1~x, n!! ∧ ;x~¬Q2~x, n!! ∧ . . . ∧ ;x~¬Qk~x, n!! n

The other axioms, which describe the production rules in
general, are specified in a similar manner as discussed in
Example 1. For example, the following axiom rules out the
possibility that the production rulep1~s1,s2,s3! is executed
despite the fact that its preconditions are false:

p1~s1,s2,s3, t ! r ~Q1~s1, t ! ∧ ¬Q2~s2, t 1 1! ∧ Q3~s3, t 1 1!

∧ S1~s2,s3, t 1 1!!.

In summary, we showed how to utilize the SAT encoding
approach in solving design problems that are expressible in
first-order logic. The first-order logic contains afinite col-

17As in Section 2.1, this rule is represented in propositional logic as
s1 ∧ s17 ∧ s22 ∧ s27 ∧ r15 r r16.

18For a more elaborate presentation of the first-order logic design rep-
resentation scheme see Braha~2000!.

19Assembly_1 represents the arrangement of assembly_2 connected to
assembly_3.

20By arranging the assemblies in hierarchy, we guarantee that each
assembly is used in the design process no more than once; see Braha
~2000!.

21Although we concentrate on the linear encoding technique, we note
that other more compact SAT encodings are possible for the first-order
design representation scheme.

22Recall that the initial state is completely specified. The goal state
may be either fully or partially specified.

23That is, there will be no unmatched machine functions,Qs, in the
final process state.
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lection of nonlogical symbols, predicates without variables
~such predicates are calledground atoms!, and production
rules without quantifiers~i.e., without ;,'!. Indeed, we
can view the above~“finite” ! first-order logic as an applied
propositional logic, by letting theground atomsof the first-
order language play the role of propositional variables. From
this point of view, the encoded set of axioms~or SAT en-
coding! can be interpreted as anexpression in propositional
logic, using a truth assignment for its ground atoms.

A3. Embedding domain-specific
search control knowledge

In Example 1, we showed how to encode structural con-
straints such as: “structural attributess1 ands2 cannotbe
included together in a physically realizable design.” Other
domain-specific constraints may be considered as well. For
example, according to Suh~1990!, in an acceptable design,
the structural attributes and the functional attributes are re-
lated in such a way that a specified structural attribute can
be adjusted to satisfy its corresponding functional attribute
without affecting other “conflicting” functional attributes.24

This principle can be implemented in the SAT-based encod-
ing as follows. Assume that the functional attributesr21

~“safety in flipping over”! and r10 ~“high driving speed”!
are conflictingwith respect tothe structural attributes27

~“light weight”!. We shall need “local decoupling” axioms,
which say that if structural attribute is part of a design
solution, then either functional attributer21 or r10 ~but not
both! is decomposed at any time point. That is, for every
t1, t2 # n we add:

s27~n! r ¬r21~t1! ∧ ¬r10~t2!.

APPENDIX B. A SAMPLE OF RULES FOR
THE AUTOMOBILE EXAMPLE

Rule 1.

IF: The car has OFF-HIGHWAY TIREand 4-wheel
driveand extra differentialand high ground clear-
anceand light weight

THEN: The car is PASSABLE IN DIFFICULT TERRAIN
n

Rule 2.

IF: The car is SAFE IN POOR EXTERNAL
CONDITIONS

THEN: The car is SAFEand the external condi-
tions are not good n

Rule 3.

IF: The car is SAFE IN HIGH DRIVING SPEED
THEN: The car is SAFEand the maximum allowed

speed is 200 Km/h n

Rule 4.

IF: The car isSAFE IN ACCIDENTS
THEN: The car isSAFE and the car is used for

family driving and the external con-
ditions are good and the maximum
allowed speed is 160 Km/h n

Rule 5.

IF: The car is SAFE IN POOR VISIBILITYand SAFE
IN BAD WEATHER and SAFE IN OFF-
HIGHWAY ROAD

THEN: The car is SAFE IN POOR EXTERNAL
CONDITIONS n

Rule 6.

IF: The car is SAFE IN HEAD-ON COLLISIONSand
SAFE IN SIDE COLLISIONSand SAFE IN FLIP-
PING OVERand has automatic belts

THEN: The car is SAFE IN ACCIDENTS n

Rule 11.

IF: The car has absorbent front endand air bagand an
engine that deflects down

THEN: The car is SAFE IN HEAD-ON COLLISIONSn

Rule 12.

IF: The car has extra strong door
THEN: The car is SAFE IN SIDE COLLISIONS n

Rule 21.

IF: The car has AERODYNAMIC DESIGNand EF-
FICIENT ENGINEand DIESEL ENGINEand dis-
connecting fan systemand light weight

THEN: The car has LOW FUEL CONSUMPTION n

Rule 22.

IF: The car has tubeless tireand radial tire
THEN: The car has RELIABLE TIRE n

Rule 38.

IF: The car has AERODYNAMIC DESIGNand EF-
FICIENT ENGINEand DIESEL ENGINEand dis-
connecting fan systemand tire with 155 width
symboland tire with 60 aspect ratio symbol

THEN: The car has LOW FUEL CONSUMPTION n24This principle is termed in Suh~1990! as the “independence axiom.”
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