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Abstract

This article addresses computational synthesis systems that attempt to find a structural description that matches a set of
initial functional requirements and design constraints with a finite sequence of production rules. It has been previously
shown by the author that it is computationally difficult to identify a sequence of production rules that can lead to a
satisficing design solution. As a result, computational synthesis, particularly with large volumes of selection informa-
tion, requires effective design search procedures. Many computational synthesis systems utilize transformational
search strategies. However, such search strategies are inefficient due to the combinatorial nature of the problem. In this
article, the problem is approached using a completely different paradigm. The new approach encodes a design search
problem as a Booleafpropositional satisfiability problem, such that from every satisfying Boolean-valued truth
assignment to the corresponding Boolean expression we efficiently can derive a solution to the original synthesis
problem (along with its finite sequence of production ruled major advantage of the proposed approach is the
possibility of utilizing recently developed powerful randomized search algorithms for solving Boolean satisfiability
problems, which considerably outperform the most widely used satisfiability algorithms. The new design-as-
satisfiability technique provides a flexible framework for stating a variety of design constraints, and also represents
properly the theory behind modern constraint-based design systems.

Keywords: Conceptual Design; Constraint Satisfaction; Design Search; Knowledge-Based Design; Satisfiability;
Synthesis

1. INTRODUCTION usually in the form of causal decompositions, production
rules, or transformational rule€Chandrasekaran, 1990;
Coyne et al, 1990; Maher, 1990; Bradley et al., 1993; Dym,
1994; Maimon & Braha, 1996; Brown, 1997; Braha & Mai-

Design synthesis may be viewed as the transformation ofon, 1998. . _
an abstract functional description for a device into a struc- Rule-basedexperi systems have been applied to assist
tural description that satisfies the functional requirementdn @ variety of engineering design tasks such as: design for
(Pahl & Beitz, 1988; Chandrasekaran, 1990; Maher, 1990YAX computer systems by DEQR1—McDermott, 1982,
Sriram, 1997; Sabin & Weigel, 1998The above character- 1993, design system for small computeid1—Brown &

istic of design synthesis as mapping function to form isChandrasekaran, lgB@onfigurati(_)n ofmicrocom_puter sys-
often mitigated by decomposing the synthesis task into &MS(COSSACK—Frayman & Mittal, 198)7 design of air
hierarchical oneBrown & Chandrasekaran, 1989; Chan- cylinders (AIR-CYL—Brown & Chandrasekaran, 1985,
drasekaran, 1990, Maher, 1998ome design synthesis sys- 1989, design of elevatorsvVT—Marcus et al., 1988;
tems have used the decomposition model by representir@Chre'ber& Birmingham, 1996design of facilities on con-

much of the knowledge about the problem declarativelyStruction sitegSightPlan—Tommelein et al., 199Hesign
of buildings(HI-RISE—Maher, 1988; CONGEN—Sriram,

1997), design of paper-feeding mechanisms of photocopi-
*Present address: Center for Innovation in Product Development, Mas-ersngIDE_MIttal .& Dym, 1986; or Koo et f’:1|., 1998
sachusetts Institute of Technology, Room E60-236, 30 Memorial Drive,design of pneumatic systen{f®NEUDES—Shin & Lee,

Cambridge, MA 02139. E-mail: Braha@mit. _ 1998, design of VLSI circuits(VEXED—Mitchell et al.,
Reprint requests to: Dan Braha, Department of Industrial Engineering

Ben-Gurion University, P.O.B. 653, Beer-Sheva 84105, Israel. E-mail:1985' and di_agnOSis and selecti(JBrown, 1998' See also
brahad@bgumail.bgu.ac.il Tong and Sriran{1991) for most of these systems.
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1.1. The design synthesis problem
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Grammatical design is another paradigm based directly Depending on the initial functional requirements and de-
on the view of design as the process of transforming arsign constraints, there may existalarge number of sequences
initial set of requirements into an explicit, complete speci-of production rules that lead to structural descriptions. Only
fication of an object that satisfies those requireméBtewn,  a miniscule number of structural descriptions in the solution
1997). A grammar is a formal generative device consistingspace constitute satisficing solutions. Thus, the task of look-
of a vocabulary of elements, a set of production rules thaing for the sequence of production rules that will transform
transform structured arrangements of the elements into netie initial functional requirements into an accepting struc-
structures, and an initial structuf€ips & Stiny, 1980.  tural description of the devic@s defined by the require-
Design using grammar involves recursively selecting transments and constraintsnay be computationally intractable.
formation rules and applying them to a candidate structureTo capture rigorously the computational complexity of a
until a final structure that satisfies design requirementglesign synthesis process with the above-mentioned charac-
emergegBrown, 1997. Shape grammars use symbols thatteristics, the Design Proce$BP) decision problem was
are based on shapes made up of points and lines, and haf@mulated in Braha and Maimda998) as follows: “Is there
been utilized to describe spatial design languages that captfinite sequence of production rules that begins with the ini-
ture architectural styléGips & Stiny, 1972. Computa- tial process state and ends with an accepting process state?”
tional issues of implementation shape grammars have bedn Braha and Maimor1998), it was shown that the DP de-
considered by some authofs.g., Chase, 1989; Krishna- cision problemis computationally difficuiite., NP-complete;
murti, 1992. Grammatical design has also been used tesee Garey & Johnson, 19#ven for restricted propositional-
describe languages for engineering design purposes. Earbased knowledge representation schemes. In particular, this
applications of grammars in engineering appeared in soligdneans that that CPU time required to solve the DP decision
modeling representatiorte.g., Fu et al., 19930ther types  problem, based on known algorithms, grows exponentially
of grammars in engineering design, which employ highewiththe “size”(roughly speaking, “size” means the total num-
levels of description include graph grammars and attributder of production rules, structural and functional attributes
grammars for mechanical devicéMullins & Rinderle,  of the problem. At this point in time, no polynomial time al-
1990, a labeled parametric shape grammar for the manugorithms exist that are capable of solving NP-complete prob-
facturing process plafBrown et al., 1994 a spatial and lems, and itis unlikely that polynomial time algorithms will
functional grammar for structural desigRenves & Baker, be developed for these problems. The above complexity re-
1987, and a bond graph grammar for mechanical systemsult concludes that design problem solving, particularly with
(Hoover & Rinderle, 1989; Ulrich & Seering, 1989; Finger its large volume of selection information, requires the aid of
& Rinderle, 1990. computationally efficient search algorithiti®., brute force

In the above transformational models of design, designs inefficient.
synthesis can be viewed as a search process that attempts td/arious control strategies have been developed for select-
find a structural description to match a set of initial func- ing the sequence of transformations in rule-based or trans-
tional requirements and design constraints with a finite seformational systems, for example, inference mechanisms
quence of operators or production rules included in the(Chandrasekaran, 1990; Coyne et al., 1990; Sriram, £997
designer’'s knowledge bod{Chandrasekaran, 1990; Ma- propose and backtrack or propose and reyisgelinga &
her, 1990; Dym, 1994; Brown, 1997; Sriram, 1997; Wiel- Schreiber, 199)7 component-directed transformatidiiréoo-
inga & Schreiber, 1997; Braha & Maimon, 1998 process ver & Rinderle, 1989 and shape annealinggchmidt &
step corresponds to the transformatftansition) from one  Cagan, 199b However, many search algorithms have be-
process state to another. A transformation, which describesome unacceptably inefficient due to the combinatorial na-
the relation between two adjacent process states, is actidure of the domaiiBrown & Chandrasekaran, 1989; Schmidt
vated by applying one of a finite set of operators. A design& Cagan, 1995; Chakrabarti & Bligh, 1996; Wielinga &
process is a series of transformations. According to thiSchreiber, 19917 Consequently, design synthesis automa-
model, the initial process state, that is, the abstract, function becomes limited; for instance, by using a restricted
tional specification of the target artifact, is known a priori. representation for design problems and solutidsisich &

The “accepting’(satisficing process state that provides the Seering, 1989; Schmidt & Cagan, 1995; Chakrabarti & Bligh,
structural description of the artifact is to be determined. At1996 or by considering a small number of possible trans-
each step, an operator transforms the given process stdi@mations at each selection poifiarown & Chandraseka-
into a different process state. The task is to find a sequenaean, 1985; Chandrasekaran, 1990; Wielinga & Schreiber,
of operatorg production rulesthat will lead to an accept- 1997). Moreover, not many prototypes demonstrated ben-
ing process state. This sequence of operators can be vieweficial applicability to real-world scenarigg.g., Mitchell

as decomposing the initial abstract specification into a conet al., 1985; Tong & Sriram, 1991; Schreiber & Birming-
crete structural description. The set of all process states thaam, 1996.

can be reached by applying production rules is called the Several methods have been suggested to manage the com-
state spaceThe states in the state space that are acceptinglexity associated with the extensive search in the space of
constitute thesolution space possible transformations: Some methods limit the represen-
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tation of design problems and solutiofidlrich & Seering,  esting class of design synthesis problems. We focus on con-
1989. These include, for example, arbitrarily choosing theceptual“preliminary”) design synthesid?ahl & Beitz, 1988;
maximum number of elements to be used in a design soludlrich & Seering, 1989; Chakrabarti & Bligh, 1996; Brown,
tion (Chakrabarti & Bligh, 199§ controlling the granular- 1998 that incorporates a set of production rules to repre-
ity of building blocks(Lee et al., 1992 focusing on serial sent the design synthesis knowledge.

machinegSchmidt & Cagan, 199%r a single input output The new approach is based on transforming the problem
system(SISO—UIrich & Seering, 1989; Chakrabarti & of reaching an acceptable solution to that of finding a sat-
Bligh, 1996, or using a few important parameters at a timeisfying assignment for an expression in Booléanoposi-
(Lee et al., 1992 Other methods presuppose routine de-tional) logic. This problem can be given to a specialized
sign tasks(Brown & Chandrasekaran, 1985, 1989; Chan-algorithm for solving Boolean satisfiability problenalso
drasekaran, 1990; Brown, 1998n routine design, an called SAT enging and from every satisfying Boolean-
extensive search in the space of possible transformations i&lued truth assignment to the corresponding Boolean ex-
avoided by limiting the number of possible decompositionspression we efficiently can derive a solution to the original
at each selection point to one or a fé®handrasekaran, design problem along with its finite sequence of production
1990. In domains where multiple decompositions are pos-+ules (see Fig. 1. The general methodology presented in
sible, and there are no easily established heuristics to helgigure 1 is further detailed in Section 3. In order to illus-
choose among them, finding the appropriate decompositiotrate the main ideas analithout loss of generalitywe as-

is computationally expensiv€Chandrasekaran, 19920n  sume in the following that the design representation scheme
this case, in most implemented transformational-based syse.g., of production rulgsis expressible in propositional
tems, humans choose from a set of alternative transformdegic (i.e., the structural and functional attributes are con-
tions presented by the design synthesis systdaher, 1990; sideredO-ary predicates We illustrate the approach to a
Brown, 1998. However, in some domains manual selec-conceptual design of automobiles. In Appendix A, the ap-
tion is no longer feasible. For example, in configuration plicability of the newdesign-as-satisfiabilityapproach to
design(which is a restricted form of design; see Wielinga & rule-based design knowledge is shown where the rule ele-
Schreiber, 1997; Brown, 1998he increased trend toward ments are first-order logic-based predicates. We illustrate
mass customization has awakened great interest in autthe approach to a conceptual design of machises Schmidt
mated synthesigSabin & Weigel, 1998 Another approach & Cagan, 199% This extension is contrasted with transfor-
for avoiding the extensive search is the use of a significanimational approaches for machine design; such as abstrac-
amount of domain-specific knowledge and special-purposéion grammars(Schmidt & Cagan, 1995 bond graph
synthesis algorithms; however, constructing and maintaingrammars(Hoover & Rinderle, 1989; Ulrich & Seering,
ing a particular application may be time consuming and1989; Finger & Rinderle, 1990 compositional synthesis
expensive(Sabin & Weigel, 1998 For example, several (Chakrabarti & Bligh, 199§ or predicate logic-based syn-
knowledge-intensive decomposition strategies are based dhesis(Kannapan & Marshek, 1990

adesign planA design plan represents a precompiled par- While the proposed approach may seem roundabout, it is
tial solution to a design godBrown & Chandrasekaran, made attractive by the recent development of powerful SAT
1985, 1989; Chandrasekaran, 1990; Sabin & Weigel, 1998 engines that are based on a stochastic local search tech-
Adesign plan is a knowledge structure that describes how aique. The approach has also proven useful in the related
particular requirement or subproblem can be solved. Thiproblem of generative planning<autz & Selman, 1996;
method assumes that there is localized knowledge for han-

dling constraint violations. It presupposes that there is a

functional architecture with a mapping of design functions

to componentgSabin & Weigel, 1998 Knowledge-directed r\
synthesis strategies have also been developed for grammat-

ical design(Brown, 1997. For example, the “component-
Design problem

directed transformation” described in Hoover and Rinderle SAT Encoding
(1989 is a synthesis strategy for mechanical devices. These

are guided by functional integration or function sharing and

incidental behavior principles, and by knowledge of the
available components of the domain.

Design Solution:
(Sequence of production
rules & states)

1.2. The design-as-satisfiability approach ,
SAT-engine
To address the combinatorial nature of rule-based or trans-
formational design synthesis problems, we present a new,
fully automated mechanism for solving a broad and inter- Fig. 1. The SAT encoding methodology for design search.
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Kautz et al., 1996; Ernst et al., 1997These randomized ciently control it, and by that provide a right solutiqaickly.
search algorithms can be used for solving nontrivial satisThe global control of a rule-based design system is either
fiability problems that are an order of magnitude largerforward (data driven or backward chaininggoal driven;
than can be solved by the most widely used satisfiabilityCoyne et al., 1990 Using forward chaining, we start from
algorithms(e.g., the Davis—Putnam procedur@he pro- the antecedent of the rifldknown facts, “if” clause to-
posed approach provides a more flexible framework forwards the consequeritthen” clause that needs to be
stating different kinds of design plan constraifgsg., de- achieved. This kind of deductive inference is useful in analy-
coupling of coupled designand also more accurately re- sis. The converse of this strategy is called backward chain-
flects the theory behind modern constraint-based desigimg, which is a kind of abduction. Synthesis, which is the
systems. task of finding a structure given a functional requirement,
The article is organized as follows. To provide a basis foris likely to be abductive rather than deducti@oyne et al.,
contrasting the new method, a design synthesis exampl&990. Here, the strategy is to begin with the consequent
that uses an inference mechanism similar to those used iithe “goal state” or the “functional requiremenkstie want
some rule-base@xper) systems is presented in Section 2. to be satisfied. The conditions for the accomplishment of
In Section 3, the newesign-as-satisfiabilitgpproach, which  the functional requirements are identified and these be-
is based on finding an appropriate SAT encoding for thecome subgoals. The search process then consists of recur-
design problem, is introduced. Conclusions are drawn irsively selecting and applying transformation rules to a
Section 4. Several extensions of the new approach are preandidate subgoal. The search process terminates whenever
sented in Appendix A. functional requirements, which correspond to known struc-
tural attributes, are identified. If incompatibilitiés.g., vi-
olated constrainjshappen in later design phases, then
2. ARULE-BASED DESIGN EXAMPLE backtracking is exercised and the inference engine gener-
In this section, we present a simple rule-based design exates another set of subgoals. To mechanize an abductive
amp|e in order to p|a|n|y illustrate the type of design prob_inference engine, itis important to generate “effective” sub-
lems considered in this article. The design example will begoals in a controlled manner as well as employing efficient
solved using a traditional rule-based design system. In Sedacktracking methods to deal with the enormous search
tion 3, the same example will be solved using the design- ~ Space of possible goals.
as-satisfiabilityapproach in order to highlight the disparity  In the following, the problem of designing an automobile
in methodologies. using a rule-based system is considered. The automobile
Rule-based design systems mainly contain domainexample is presented as a representative design domain
specific knowledgéfacts andor rules and employ a sep- Where the knowledge representation schémg., of pro-
arate inference procedure to manipulate this knowlgedge, ~ duction rulegis expressible in propositional logite., rule
Coyne et al., 1990; Huang & Brandon, 1993; Dym, 1994;elements to be O-ary predicates or propositjoms Sec-
Sriram, 1997. The main components of a rule-based de-tion 3.1, the newdesign-as-satisfiabilitppproach is illus-
sign system are(1) the knowledge base, which contains all trated using the automobile design example. In Appendix
the information associated with the domain in which theA, an example of a serial machine desigis presented
system is to operate. This information may be facts, ruleswhere the rule elements are first-order logic-based predi-
as well as rules of thumb and heuristi¢8) The working ~ cates; and itis shown how to apply ttiesign-as-satisfiability
memory (also known as context, or short-term mempory approach to this type of problems.
which contains all the information about the problem cur-
rently being solved. Its content changes dynamically and ) .
includes information that defines the parameters of the speé- 1+ Automobile design example

cific problem and information derived by the system at anyag g example, consider the problem of designing an auto-
stage of the solution proced8) The inference mechanism mopjle using a rule-based system. The automobile is a self-
(also known as the inference engine, control mechanism, Qropelled, four-wheeled, steerable vehicle for transporting
reasoning mechanismwhich controls the reasoning pro- pepple on land. All passenger cars, trucks, and buses have
cess of the system. The inference mechanism uses the knowdartain things in commor() the power plant, or engine;
edge base to modify and expand the context in order t92) the chassis, which supports the engine and wheels and
solve a specific design problem. includes the frame and the steering and brake systéns;

~ Since a problem space might be enormously large, thene power train, which transmits the power from the engine
inference engine uses heuristi¢aules of thumb’) to effi-

2Here, in any formula of the fornA — B, A is referred to as the
1Additional components such as a user interface and an explanatioantecedenandB as theconsequent

facility are required in order to facilitate the use of the rule-based expert *Asimilar problem is formulated and solved differently in Schmidt and

system. Both learning and knowledge acquisition tools are also desirabl€agan(1995, who use arabstraction grammata production systejrfor

in order to ease the development of the knowledge base. the representation and generation of function and serial form layouts.
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to the car wheels; an@) the body. Technical and opera- (f;) the maximum allowed speed is 200
tional details related to the design of the main parts of au- Km/h
tomobiles and their components are provided in Braha and (fs) The car is used for sport driving
Maimon (1998. The compiled rules below rely very heav-
ily on this domain-specific knowledge.

The various possible factgfacts appear in a (fg) the car is wused for material

(f;) the car is used for executive driving

typewriter-like font) are described belowin a par- transportation
ticular synthesis problem onlyart, and certainly not con- (fo) the car is used as taxicab
tradictory facts, are considered

Facts:

(f,) the car is used for family driving
(f,) the external conditions are good

(f3) the maximum allowed speed is 160
Km/h

(f,) the car is used for urban driving

The structural attribute&esign description properties
that specify the configuration of actual cars as well as the
functional attributes that are manifested by these structural
attributes are presented in Table 1.

A small sample of the domain-specific knowledge rele-
vant to the car design domain is expressed in terms of the
production rules presented in Appendix B. The set of rules
is held in arule memory

Table 1. Structural and functional attributes for the automobile design example

Structural Attributes

(s,) 4-wheel drive

(s,) 4-wheel steering

(s;) 6-8 cylinders

(s,) absorbent front end

(s5) air bag

(sg) air-cooled engine

(s;) air deflector

(s5) an engine that deflects down
(sq) anti-lock braking systentABS)
(s,0) automatic belts

(s,4) catalytic converter

(s,,) deep thread patterns
(s,3) disconnecting fan system
(s14) drum brakes

(s,5) electric powered

(s,6) €electronic ignition

(s,7) extra differential

(s,¢) extra strong door

(s,0) €Xtra strong roof

(s50) fog lights

(s,,) fuel injection

(s,,) high ground clearance

(S,3) high transmission ratio
(S24) horn

(s,5) hydraulic disk brakes

(s56) large pistons & cylinders
(s,;) light weight

(s,g) liquid cooling system

(s,0) low & small structure

(850) muffler

(s31) power brakes

(s5,) powerful starter

(s33) radial tire

(s34) richer mixture fuel

(s35) rigid passenger compartment
(s56) Stabilizers in the front

(s57) suspension system

(s3g) tubeless tire

(s39) Windshield defroster

(S40) Windshield washer & wiper
(847) tire with 205 width symbol
(s4,) tire with 155 width symbol
(s43) tire with 60 aspect ratio symbol
(844) tire with U speed symbol

Functional Attributes

(r,) AERODYNAMIC DESIGN

(r,) DIESEL ENGINE

(r5) CREATES MINIMAL POLLUTION

(r,) EASY PARKING

(r5) EFFICIENT ENGINE

(r,) ECONOMICAL

(r,) RELIABLE BRAKES

(r5) HEAVY CAR

(ry) HIGH POWER OUTPUT

(r,0) HIGH DRIVING SPEED

(r,,) HIGH VOLUME OF THE COMBUSTION CHAMBER
(r,,) LOW FUEL CONSUMPTION

(r,5) LOW MAINTENANCE COSTS

(r,4) MECHANICALLY DEPENDABLE and DURABLE
(r,5) OFF-HIGHWAY TIRE

(r,5) PASSABLE IN DIFFICULT TERRAIN
(r,,) RELIABLE TIRE

(r,5) SAFE CAR

(r,o) SAFE IN ACCIDENTS

(r,0) SAFE IN BAD WEATHER

(r,,) SAFE IN FLIPPING OVER

(r,,) SAFE IN HEAD-ON COLLISIONS
(r,3) SAFE IN HIGH DRIVING SPEED
(r,4) SAFE IN OFF-HIGHWAY ROAD
(r,5) SAFE IN POOR EXTERNAL CONDITIONS
(r,6) SAFE IN POOR VISIBILITY

(r,7) SAFE IN SIDE COLLISIONS

(rog) SMALL CAR

(rpg) SMALL ENGINE

(rs0) HIGH-POWERED ENGINE
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2.2. Car synthesis trace satisfied. Table 2 shows the trace of “process states” gen-
erated in the course of searching for a solution to the auto-

Assume that the designer is faced with the problem of defnobile design problem. At each step of the search, the

_signing a car desgription thatis gble to achieve the fOIIOW’consequent parts of the production ru{ésted above are
ing functional attributes as requirements: matched against the current unsatisfied functional attributes
(given in the second column of Table @nd known facts.
_ _ Since many production rules may match the current state,
The car is capable of HIGH DRIVING SPEED;o);  the preferred rule is the one that matches the first leftmost

2.
3. The car has LOW FUEL CONSUMPTIOM,,); unsatisfied functional attribut@ depth-first control strategly
4. The car is SAFHEr,g).

1. The car CREATES MINIMAL POLLUTION(r3)

The following facts are assumedl) the car is 3. A SAT ENCODING FOR DESIGN SEARCH

used for family driving (f); (2) the exter- The main objective of the forthcoming sections is to present
nal conditions are good (f); (3) the maxi- a new computational search approach for solving design
mum allowed speed is 160 Km/h  (f3); and (4)  synthesis problems thatincorporate a set of production rules
the car is used for urban driving (f4). for the design knowledge representation.

The following constraint§ are further considereda) The proposed method is to recast the design problem as a
the structural attributes “tire with 205 width symid@l,;)”  Boolean satisfiabilitypproblem, which can be solved using a

and “tire with 155 width symbols,,)” cannotbe included  SAT engine(see Fig. 1 The existence of powerful new al-
together in a design description; aii@) the structural  gorithms for solving Boolean satisfiability problems makes
attribute “the car is electric-powerdd,s)” cannotbe in-  thistechnique even more appeali@y, 1992; Levesque etal.,
cluded in a design description if the functional attribute 1992; Trick & Johnson, 1993; Selman et al., 1996, 1997
“the car has DIESEL ENGINEr,)" is satisfied. In Boolean satisfiability problems, we must find a truth
The rule-based design system needs to search througfssignment for some given set of atomic propositions that
the problem space for a pathway from the initial require-will make a given set of expressions evaluated to TRUE.
ments to some state of the car structural description sucBuch an assignment is calledsatisfyingassignment. For
that the requirementsg, 1o, I'1,, andr; are achieved, while - example, consider the following Boolean expressioran-
adhering to the compatibility constraints. junctive normal form’ which is the form used by most
In attempting to achieve the initial requirements, a back-satisfiability-testing programs:
ward chaining inference is served as the problem-solving
strategy by the rule-based design syst@uoyne et al., 1990; (p10-p, Ops) O(py Op, O-ps) Ops
Dym, 1994; Sriram, 1997 Other control issues are ad-
dressed as followd1) the inference engine identifi€dy  one satisfying assignment for it would assign TRUBpi0
matching several production rules for which theionse-  gndp, and FALSE to all other variables.
quentparts satisfy the state of the working memory. Inthis  The problem of finding a satisfying assignment for a set
case, the inference engine selects a rule from the conflictt goolean expressions is known to be NP-Compl&tarey
set to fire.(2) The order in which the subrequirements areg johnson, 1979 Hence it is unlikely that algorithms exist
processed is according to a depth-first control strateqy.,  that are guaranteed to solve it in polynomial time. How-
if the functional attributes, and r, are pending, expand.  ever, in practice there is a class of algorithms that have been
beforer,); finally, (3) if any of the above constraints is shown to solve extremely large and difficult satisfiability
violated during the seardfa fallure;. see Brown & C_han— problems in reasonable tim&u, 1992; Levesque et al,
drasekaran, 1989 dependency-directetbacktracking 1992; Selman et al., 1996, 199These algorithmse.g.,
(Brown & Chandrasekaran, 198B taken and an alterna- GSAT and Walksat; Selman et al., 1996re based on sto-
tive rule is chosen from the list of available finite choices. chastic local search methods that perform “noisy” greedy
A working memoryiolds or represents the “current” state searches, that is, where each search step usually moves from
of the process, which is in the examplecanjunctionof  the current candidate solution to the best neighboring solu-
structural and functional attributéi a functional attribute o (according to some neighborhood relatipbut can
appears in a process state, it means that it remains 10 Rgcasionally make random moves that are not locally opti-
mal. These randomized greedy algorithms were used to solve
“Constraints indiscretedomains can be expressed as compatibility empirically hard random formulas as well as encoding of

relations between attributes, stating that certain combinations are allowed

or not(Sriram, 1997.
SDependency-directed backtracking provides a way of taking into ac- ®The abduction process in a rule-based system can also be illustrated

count the information about which pieces of knowledge contribute to theusing a derivation graptCoyne et al., 1990

failure. This information is used in the decision of how far to backtrack A Boolean expression is ioonjunctive normal fornif ¢ = C, 0C, O

(see Brown & Chandrasekaran, 198Dependency-directed backtracking ...0OC,, and each of th€ s is the disjunction of one or more literals. The

is also related to “belief revision(Brown & Chandrasekaran, 1989 C;s are called thelausesof the expression in conjunctive normal form.

https://doi.org/10.1017/50890060401155022 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060401155022

Design as satisfiability

Table 2. Design search algorithm applied to the automobile design problem

391

Structural Attributest
Unsatisfied Functional

Satisfied Functional

Process Step Attributes Attributes Candidate Rules Selected Rule

1 rigandrigandr,andy; Rule 4 Rule 4 is fired to decomposg;: “the

car is SAFE”

2 rigandrgandry,andr;  ryg Rule 6 Rule 6 is fired to decomposg,: “the

car is SAFE IN ACCIDENTS”

3 ro,and r,,and r,; and  rigandrg Rule 11 Rule 11 is fired to decomposg: “the
S,pandrygandry,andrg car is SAFE IN HEAD-ON

COLLISIONS”

4 s,andssandsgandr,;, ry,andrgandr,g Rule 12 Rule 12 is fired to decomposg: “the
and r,; and s, and ry, car is SAFE IN SIDE COLLISIONS”
andr,andrg

11 s, and ss and s; and ;5 rpandry;andrggandr,;  Rule 21, rule 38 Rule 38 is used to decomppsge “the
and s;q and s;s and s, and ryg and r,; and r,; car has LOW FUEL CONSUMPTION”"
and s,g and s; and s, andr,,andr,gandr,g
and s; and s3, and s,g
and s3, and s;o and s,5
and s,; and s,; and s,
andr,,andrg

12 s,ands;and sgands;g  rp,andr,andry;andrg, — backtracking
and s, and s;s and s, and r, and r,;p and ry, The structural attributes,; (“tire with
and s,q and s; and s,  and r,, and r,, and rqq 205 width symbol} ands,, (“tire with
and s; and s;, and s, andrqg 155 width symbol) cannotbe included
and s3, and s;o and s,5 together in a design description
and s,; and s,; and s,
and rg and s;5 and s,,
andrg

13 s,andssandsgands;g  r,andry;andrggandr,  rule 21, rule 38 Rule 21 is used to decompogge “the
and s;q and sy;; and s, and r, and r,, and ry; car has LOW FUEL CONSUMPTION”
and s, and s; and s, andr,,andr;gandr,g
and s; and s;, and S,g
and sy, and s;; and s,5
and s,; and s,; and s,
andry,andrg

18 s,and s;ands;ands,;g rzandrgandr,,andr, STOP

and s,;4 and s;5 and s,
and s,q and s, and s,
and s; and s3, and s,g
and s;, and s;; and s,5
and s,, and s,; and s,,
and s, and s,; and s
and s,;and s,

and ry; and rzg and r,
and r,;o and r,, and r,,
andr,,andr,gandr g

consistent solution is obtained

Complete table may be found in Braha and Maintbf98

hard graph-coloring problentas well as other problems in

One class of problems where the strategy of encoding

Al). Such methods are incomplete—that is, they are noproblems as SAT instances has been very fruitful igen-
guaranteed to find a solution if one exists. However, inerative planningKautz & Selman, 1996; Kautz et al., 1996
practice, they are very efficiefit.

In generative planning, an initial state of a system, a set of
operators or actions for transforming the state of the sys-
tem, and a set of goal states are given. The task is to come

8There has been considerable progress in systematic solution aIngp with a sequence of operators that will transform a Sys-
rithms for SAT problems as well.
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immediately apparent that this problem is very much like 1. An initial state axiom specifying that at time 0 all
standard state-space search problems, such as the design (and only attributes characterizing the initial state
search problem. However, in state-space search, we are typ-  hold.

ically interested in discovering a final, unknowtatethat 2. Agoal state axiom that specifies that at the last time
meets a certain criteria, whereas in the planning problem  oint n, all goal attributes hold.

we are interested in pathto a known set of final states. It

is the research objective to show how methods developed ™
for transforming generative planning problems to SAT prob-
lems in artificial intelligence can be used and modified to
transform engineering design problems to SAT problems,
and to demonstrate that they can be applied to nontrivial
“real-world” design problemésuch as automobile and aero- 4. Axioms ensuring that only one action is executed at
nautics des|g)] each time point.

Axioms ensuring that if a particular action is taken at
timet, then the attributes at timtexnd at time + 1 are
related appropriately, that is, those propositions hold-
ing at statet + 1 correspond to the state obtained
when this action is executed at the state at time

After generating a set of Boolean expressions that corre-
spond to the above set of axioms, a SAT engine can be used
There are a number of methods for encoding planning probto find a satisfying truth assignment. Given such an assign-
lems as SAT and we will suggest a method by which any ofment, we can deduce the sequence of actions of the plan by
these encoding techniques can be applied to the design seas#eing which action proposition holdse. has the value
problem. However, to make the presentation of this articleTRUE) at each time point.
clearer, we will concentrate on one particular plan encod- Since rule-based design searcHihig so closely related
ing schemédoutlined in Braha & Brafman, 1998known as  to planning, it seems likely that any method of encoding
the linear encoding To describe an encoding, we have to planning problems as SAT problems could be used to en-
specify three things: the set of propositions used, the set afode rule-based design search problems into SAT prob-
expressiongor “axioms”) to be generated, and how a solu- lems. The only caveat is that one must be able to describe
tion to the original problem is obtained from the solution to the criteria a solution process state must satisfy using prop-
the encoded SAT problem. ositional logic. In a class of planning problems formulated
The idea behind the linear encoding is the following: Letusing the STRIPS representation languégikes & Nils-
n be the bound on the number of plan st8pEhe set of son, 197}, goal states are described via a conjunction of
propositions is composed of two classes, where every progproperties. Hence, we can encode them using a conjunction
osition in the first class is associated with the execution ofof propositions. Solution criteria for general design search
each actiorioperatoy at each time point, and every propo- problems will not necessarily have this property. In fact, at
sition in the second class is associated with the execution & first glance, it is not obvious that the criteria for a solution
each attribute at each time point. Intuitively, we would like state of a design problem can be formulated this way: It
to obtain a truth assignment that reflects a valid solutionyequires a state in which all attributes are structural. Fortu-
that is, one where the proposition associated with acdion nately, it is easy to see that we can recast this requirement
at time*° t has the value TRUE if actioA is the action that by stating that there will be no functional attributes in the
should be executed at timte and where the proposition final process state, that is, the final state axiom will assert
associated with the attribuieat timet has the value TRUE that all state propositions corresponding to functional
if, at the state reached afteactions are performe® holds.  attributes at the final state must be false. Finally, in many
For this to be the case, we must specify a set of axioms sucthesign problems, there are additional constraints that must
that any satisfying truth assignment for these axioms willbe satisfiede.g., a 205-width-symbol tire and a 155-width-
have the above properties. The linear encoding achievesymbol tirecannotbe included together in a design descrip-
this by including the following set of axioms: tion), and these can be ensured by adding such constraints
to the final state descriptiofassuming they are expressible
°Inthe SAT-based approach, the maximal length of a planis fixed atsolv-In prop93|t|0nal Ianguage :
ing time. If the designing Iengtﬁ is not known in advance, it is straightfor- As with the planning prOble_mS’_eaCh expression we pro-
ward to perform both linear and binary search on designing lengths, to findluce corresponds to the applications of a bounded number
the smallest for which a solution is foutilantz & Selman, 1996 For ex- of production rules. In the design search problem, we are
anple, fiheptimal designingenghis 20, e searchvouldproseec outlherestec in a inal artifact's description, which is known
20. The “minimal plan” characteristic of the SAT-based approach addresseBriori to be bounded by the size of the set of structural
one of the plan’s desirable qualities mentioned in Brown and Chandrasekaattributes. Hence, one could object to a restriction on the

ran (1989, which is to choose the shorter plan if all else is equal. . .
10Actions are performed in sequence. Heiga time-index parameter number of productlon rules usee., to the Iength of

(ranging over the numbers 1, 2, ) that is added to each action or attribute,

to indicate the state at which the action begins or the attribute holds. For &
problem bounded b, the actions are indexed by 0 throughk- 1, and the 11Again, we focus on preliminary design that incorporates a rule-based
attributes by 0 through. representation of design knowledge.

3.1. Detailed description of the methodology
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the path to the solution stateBut if the solution requires No more than one production rule is applied at each time

the application of an exponential number of production rulegoint. Hence for every &t < n and for every G= i = 38:

to be generated, it is unlikely that any method can solve it

without using exponential time. However, under reason- pi(t) — (D"P'(t)> n
> Y . . i ]

able'? restrictions on the form of the production rules, it is

easy to see that if a solution exists then there exists a solu- _

tion path that is polynomial in the number and size of the PrEconDITIONS AND EFFECT Axioms: If a production

Jj#Fi

production rules. rule is applied at timéthen the states at tint@ndt + 1 are
We now show how these ideas are applied to the autcappropriate for the rule application. This implies two things.
mobile design example presented in Section 2. First, the consequent of the rule holds at timéwhich

corresponds to the functional attribute being decomppsed

ExampLE 1. We shall use the propositian(t) [or 5(t)]  the antecedent of the rule, and the negation of the conse-
to denote that the functional attribute (or the structural quent hold at tim& + 1 (which means that the functional
attributes ) holds at the state occurring at timéThe nota-  attribute has been replaced by the attributes appearing at
tion, for exampley;(t), is intended to be interpreted as a the antecedehntAs an example of this class of axioms con-
name and not as dunction of t. We shall need one such sider rule 1 in the automobile rule-base. The antecedent
proposition for every one of the 44 structural and 30 func-containss;,s; ,S,»S,7/'15 While the consequentisg. Hence,
tional attributes at every time point€ t = n. Similarly,  for every 0=t < n we add:
p;(t) corresponds to the application of production rukg
time t. We shall need one such proposition for every one of P1(t) = rig(t) O-ryet + 1) Osy(t + 1) OsyAAt + 1)
the 38 production rules and. for every time poiln£(1 <n Oyt + 1) Oryelt + 1)
(we cannot apply a rule at time as this is the final staje

In addition, propositionsp,(t), corresponding to adummy Axioms: If the truth value of an attribute changes

“null” production rule are also included. These proposi- .
. from true to false, then one of the production rules that
tions handle the case where the number of process steps.Is

actually shorter tham. Finally, f,(0) is used to denote the includes the attribute in its consequent part must have oc-

proposition associated with the facat time 0% We shall curred. Similarly, if the truth value of an attrlpute changes
. . from false to true, then one of the production rules that
need the following axioms.

includes the attribute in its antecedent part must have oc-
curred. If those production rules don't occur, then by mo-
INtTIAL STATE AxioM. The initial state must hold at dus tolens the truth value of the attribute must continue
time 0: through an existing production rule. For example, for every
0 =t < nwe must add the following frame axiom, which
known facts says which production rules could have causgt)s truth

£.(0) O,(0) Df4(0) T,(0) O=fs(0) 0. ~fo(0) value to change:

ra(t) O-rg(t + 1) — pas(t) O pss(t) u

initial requirements

0 rr3(0) Ory0(0) Ory2(0) O rlB(OS

Similar frame axioms must appear for every other attribute.

CoMmPATIBILITY CONSTRAINT AxIoms: To illustrate the

0=r4(0) O... ~F50(0) 0=5,(0) O.... 0=554(0) m first constraint, that is, both structural attributgg ands,,
cannot beincluded together in a physically realizable de-
GoaL STATE AxioMm. A final state must hold at tima: sign, the following must hold at time:

Ary(n) O=ry(n) O... O=rae(n) n = Sa1(1) 0 =8a2() "

Constructing and Solving the Complete Encoded Boolean
SINGLE-RULE Axioms. At least one production rule is ExpressionUsing some basic useful properties of Boolean

applied at each time point. Hence for every=Q < n: connectives, the above set of axiofns. their conjunction
can be rewritterfin polynomial computation timeinto an
Po(t) Opy(t) Opy(t) ... Opss(t) ] equivalent Boolean expression gonjunctive normal

form (which is the form used by most satisfiability-testing
program$. For example, the expressiop,(t) — ry4t) O

12Here “reasonable” expresses the fact that the rules graphically corre=
spond to an acyclic directgd graph. o il el _; 1) J Sl.(t +1 Esfglt +. O Szz(tl + 10
13\e need one proposition per fact since we assume that facts do ndus(t + 1) is rewritten as the following equivalent expres-

change during the procefse., facts are determined at timg 0O sion in conjunctive normal form:
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(= p1(t) Oryg(t)) O(=pa(t) Oaret + 1)) O(=po(t) Osy(t + 1)) 3.2. The size complexity of the encoded
Boolean expression
0= pa(t) Osyo(t + 1)) D (~py(t) Dsyolt + 1) P

O(=pa(t) Orgs(t + 1)) The “size complexity” of a Boolean expression is measured
in terms of the total number of variables and literals it con-
tains. A key issue in the proposed approach is the develop-
ing all the axioms is inputted to a SAT engine. If the me_nt qf a practical _reduction of desi_gn problems_ to SAT,
engine outputs a satisfying Boolean-valued truth assign/hich is measured in terms of the size complexity of the
ment, we can extract the design solution from it by collect-€ncoded Boolean expression. In spite of th_e.fact that not all
ing the set of propositions of the fors(n) to which it ~ SAT Problems of a given size are equally difficdftexper-
assigns the value TRUE. Similarly, we can construct thdMental results showi.evesque et al., 1992; Kautz & Sel-

finite sequence of production rules that lead to this desigin@n, 1996; Selman et al., 199®at formulas containing

solution; and thus facilitate the use of the SAT-based ap@round 2,000 variables could be solved by both systematic

proach by having an explanation facility. The ovedasign- and stochastic search in a few seconds. The limits of the
as-satisfiability methodology is shown in Figure 2. The SyStematic algorithm “tableau” were reached at 2,800 vari-

correctness of the above encoding can be shown by indu@P!es and 6 hours of running tiniautz & Selman, 1996

tion on the time index: that is, the transformed Boolean 1 he Stochastic algorithm “Walksatsee Selman et al., 1996
expression is satisfiablié and only ifthere is a finite se- Was reported to solve problems containing 10,000-100,000

quence of at most production rules that begins with the variables. These stochastic search algorithms were often

initial process state and ends with an accepting process stafé/aluated for the worst possible instanges., on “hard”
From this example, it is evident that we can encode any@ndom formulagSelman et al., 1996; Cook & Mitchell,
design problem, which is expressible in propositional lan-1997]- In practice, larger problentg terms of total num-
guage or the STRIPS representation langu&ees & Nils- ber of variablesare expected to be con5|derably easier to
son, 1971; see also Appendi®,Ausing the same class of solve thar_1 suggested t_)y those worst case estimates. For
axioms: initial state axiom, goal state axiom, single rule<@mPple, inroutine design, the number of possible decom-
axioms, preconditions and effect axioms, frame axioms, an@ositions at each selection point is limited to one or a few
compatibility constraints axioms. Furthermore, we see thatBrown & Chandrasekaran, 1989, p. _112; C_h_andrasekaran,
the size of this encoding is polynomial in the size of the1990, p. 64. In terms of the frame axioms, it is translated

original problem(a more rigorous analysis is provided in INto @ small number of rules that can account for a change
Section 3.2 in the truth value of an attribute. This results in Boolean

expressions that are easily solved, although the number of
variables may be high. It therefore appears that in the case
of routine design the worst-case results may be overly pes-
simistic. In addition, in some transformational systems the
number of rules that could lead to a design solution is small
[roughly speaking, this number is related to the “depth” of

The complete encoded Boolean expressiepresent-

Axioms | | Axioms 2 [ ... | Axioms N d . .
the hierarchical decompositigBrown & Chandrasekaran,
(A=A 1989, p. 107; Schmidt & Cagan, 1995, p. 109; Chakrabarti
—(AAB)= —Av—B & Bligh, 1996, p. 318]. Again, this results in Boolean ex-
A— B= —AVB pressions that are easily solved.
The size of the encoded Boolean expression is affected
Conjunctive by the various characteristics of the original design prob-

Normal

lem. In this section, we present an analysis of the size of the
encoded Boolean expression as a function of various prop-
erties of the design problem instance; such as the number of
SAT structural and functional attributes, and the number of pro-
Engine Design duction rules. This type of analysis allows the user to select
Solution an efficient SAT engine based on the gross statistical prop-
Cotlecting erties(i.e., total number of production rules and attribgites
r FALSE TRUE — 1 of the statement of a given design problem. This kind of
5;(n) analysis is also useful when comparing different encoding

ij@ . @@ <::IDH

) ) o ) ) ) 4Statistical properties of randomly generated “hard” SAT problems
Fig. 2. Design as satisfiability: Transforming the design axioms to a Bool- (as observed by numerical simulations; see Selman et al.) 1998w that
ean expression, solving the SAT problem, and translating the satisfyingpoththe number of variables and literals affect the efficiency of the solu-
truth assignment to a design solution. tion procedure.
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techniquegother than the linear encoding scheme consid-ing the right answer quickly, and providing a flexible frame-
ered in this articlgfor the given design problem. work for stating different design constraints. The SAT
In the following analysis, it is assumed that the designencoding has also provided a new perspective on represen-
problem is expressible in propositional langudgs in the tational issues in design; thus, the approach is interesting
automobile design exampleThe linear encoding scheme from a purely representational point of view.
is critically dependent on the number of production rules
|R|, number of structural and functional attribufeg, and
process length bound Based on these design features, we
observe that the number of variables used in the encodingithough the computational efficiency has been the pri-
is*® O(n|R| + n|Al). The rate of growth of the size of the mary motivation for investigating design as satisfiability,
conjunctive normal fornexpressiori.e., number of literal  the formalization of rule-based design synthesis as satisfi-
occurrencekis captured by the Single-Rule and Frame ax-ability has a number of additional attractive properties.
ioms. Consequently, the size of the transformed expression The design-as-satisfiability technique provides a flexible
in conjunctive normal fornis O(n|R|? + n|A[[R]). framework for stating different kinds of design plan con-
To evaluate the performance of the SAT encodingstraints; for example, by stating arbitrarily “facts” about the
approach, six design problems have been examined. Thgitial and goal states of the design process, or by stating
characteristics of the underlying design probleieg., au-  arbitrary constraints in any intermediate state of the synthe-
tomobile and forklift design with 150 attributes and pro- sis process. To illustrate, consider a domain-dependent con-
duction ruleg have been published in Braka000. The  trol strategy that involvesrioritizing the order in which
results demonstrate the effectiveness of the SAT encodinghe functional requiremen(ggoms”) should be processed
approach in terms of yielding the right answer quickly  (e.g., Coyne et al., 1990For example, let us assume that
few seconds of CPU timeAlthough the computational the requirementr,) “the car creates minimal pollution”
efficiency has been the primary motivation for investigat-should be processdgkforethe goal(ry) “the car is capa-
ing design as satisfiability, the formalization of rule-basedple of high speed.” If we want to insure that the above
design synthesis as satisfiability has also been effective impriority” control strategy is applied, we simply add the
terms of providing a flexible framework for stating differ- following axioms to the SAT problem specification: for ev-
ent design constraintsee Sec. 4)2 ery 0=t < n,ry(t) = ro(0) Oryp(1) O...Ory0(t). The
approach also provides a very accurate formal model of
modern constraint-based configuration approaches that use

4.2. Discussion

4. SUMMARY AND DISCUSSION CSP(Constraint Satisfaction ProblgrrechniquegWielin-
ga & Schreiber, 1997
4.1. Summary The design-as-satisfiability approach precludes the need

It has been recognized that although the consideration il[]orperformlng astrict backward or forward chaining search

developing some rule-based synthesis systems is defini €., Coyne etal., 1930and managing constraint satisfac-

X . . n by a predefined control mechanigas incorporated by
the set of productions for representing design knowledge
e . . dome rule-based and expert systems for dé§jgin the
the difficult question for the practical use of rule-based syn-

thesis systems is how rule execution is controlibtiher, SAT-based approach, all design-specific information is sub-

1990; Brown, 1997. The computational complexity results sumed by simple uniform relationships between proposi-

presented in Braha and Maimdd998 suggest that we tions, and the inference engine has no explicit indication as
. to what stands for a goal or what stands for a rule. This
cannot hope for automatic means to search through a space

. . Mmeans that the system is not constrained to perform a strict
of designs that are guaranteed to work willthe sense of I .
. . . : . backward or forward chaining search. This allows con-
providing the right answequickly) for all inputs. In this . :
straints to propagate more freely, and thus more quickly

article, we have proposed a new alternative, fully auto-
: . . reduces the search space.

mated approach for solving design synthesis problems thal . . .
. . ) In logic and computer science, the SAT problem is well
incorporate a set of production rules for the design knowl- ; .
. : . understood and analyzed. Thus, by mapping the synthesis
edge representation. The SAT encoding method is based on . . .
the idea of producing a Boolean exbression that “re reproblem to a logic representation, one can exploit the many
P 9 P PT€, vell-known theorems on SAT that have been developed by

sents” the original problem in the sense that from EVEY esearchers in the field to address interesting issues related

satisfying truth assignment to this expression we (fi- .
) . . I to rule-based synthesis systems. Moreover, many research-
ciently) derive a solution to the original problem. By apply- L : .
ers in different areas of computer science are developing

ing the method to several design problems, the SAT encoding
approach has been found to be appealing in terms of yield-

18Some knowledge-based design systems use decomposition of large
complex problems into smaller problems, and puttirecomposing the

®We writef (n) = O(g(n)) if there are positive integersandn, such subproblems together taking into account the interactions. The issue of
that, for alln = n,, f(n) = cg(n). recomposition is, then, dealt with as a constraint satisfa¢titather, 1990.
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faster SAT engines every year, which are freely shared an8raha, D.(2000. A new approach for synthesiechnical Report, De-

A i i partment of Industrial Engineering, Ben-Gurion University.
fine-tuned(e.g., Trick & Johnson, 1993As a result, design ha, D., & Brafman, R(1998. SAT-encoding for design searcfech-

. Brfa
systems can be created that combine the best features of nical Report, Ben-Gurion University.

these SAT engines. Braha D., & Maimon, O(1998. A mathematical theory of design: Foun-
The SAT-based approach ﬁB”y automatec[rule-based dations, algorithms, and application8oston: Kluwer Academic
- . Publishers.
design systems are often ?ompUter"?‘SS'@@, Brown &  grown, K. (1997). Grammatical desigriEEE Intelligent Systems 12),
Chandrasekaran, 1989 This automation would allow de- 27-33.

; ; ; rown, D. (1998. Intelligent computer-aided desigiiechnical Report,
signers to work on many deSIQn prObIemS SImUItaneOUSIy{B Computer Science Department, Worcester Polytechnic Institute.
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e Aided Design(Gero, J., Ed, pp. 259-283. Amsterdam: North-Holland.
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; e ; Brown, K., McMahon, C.A., & Sims Williams, J.H(1994. A formal
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metric desigr(e.g., Ulrich & Seering, 1989; Chakrabarti & Wesley.
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APPENDIX A. EXTENSIONS OF
THE SAT-BASED APPROACH

In this appendix, we delineate several ways by which the
approach can be extended.

Al. Comparing various encoding schemes

A number of encoding schemes are available for carrying
out this approach, and one approdch., linear encoding

is explicitly discussed. The same idea can be applied to all
other encoding schemes.

A2. SAT encoding for predicate-based
design knowledge

In this article, it is assumed without loss of generality that
the SAT encoding technique is based on a design represen-
tation schemedof the original design problemwhich is
expressible in propositional logic. The use of propositional
logic is appropriate for modeling design knowledge such
as: ‘If the car hasOFF-HIGHWAY TIRE (r;5) and
4-wheel drive (s;) and extra differential

(s,7) and high ground clearance (s,,) and light

weight  (s,7), then the car iSPASSABLE IN DIFFI-
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CULT TERRAIN(r,¢).” However, in some design do-  Having introduced the basis of the first-order logic rep-
mains(such as machine desigiit is not sufficientto model resentation scheme, we briefly describe how the encoded
design knowledge by propositional logic alone. In such casesSAT problem is obtained from this representatforiVe
we may use first-order logic, which is capable of express-have to specify two things: the set of propositions used, and
ing in much more detail than propositional logic a wide the set of expressior{sr axioms to be generated. Letbe
range of design knowledge. the bound on the number of design process steps. In the
Inthe following, itis briefly shown how to utilize the SAT machine design domain, we will use propositions such as
encoding technique in case a first-order logic design repreR,(rack & pinion , s;,t) to mean that a rack & pinion
sentation scheme is employ&tTo illustrate, consider the instantiates assembly 1 at timieR,(s,, S, t) to mean that
domain of serial machine design, whichis the process of transssembly_1 is connected to assembly 2 at tin@ (s;, t)
forming initial specifications of machine function into a se- to mean that assembly_1 converts reciprocating rotational
rial arrangement of machine componefgsy., Schmidt & energy into continuous electrical energy at timeand
Cagan, 1995 First-order logic may be used to formalize ma- p,(rack & pinion , s;,t) to mean that a rack & pinion
chine design knowledg@ules, such as: instantiates assembly 1 between timesidt + 1. As be-
fore, in thedesign-as-satisfiabilitapproach, design is sim-
1. “If assembly_2 converts reciprocating rotational enly a set of axioms with the property thanymodel(i.e., a
ergy into continuous translational eneraiyd assem-  satisfying truth assignmenof the axioms corresponds to a
bly 3 converts continuous translational energy intovalid design solution. For the simple machine design spec-
continuous electrical energgnd assembly_2 is con- ification of transforming the function “converting recipro-
nected to assembly 3hen assembly 1° converts cating rotational energy into continuous electrical energy”
reciprocating rotational energy into continuous elec-(denoted as the predica@,) into an arrangement of ma-
trical energy”; chine components, we shall need the following initial and
B - goal state axioms, abbreviated as schemas. A schema stands
2. “If arack & pinionrepresentsassembly_1then as-
sembly_1 converts reciprocating rotational energyintofOr the set of all t.h'e formulas that can be generated by
reciprocating translational energy.” iterating the qua_mtlflers over th_e_ constants (_)f the appropri-
ate types. A universally quantified expression expands to
theconjunctionof its instantiations. For instanceQ,(s,,0)
0-0Q4(55,00 07Q4(s4,0) O... 0-Q4(s,0) is an instance
of the schema/x # s,(—=Q,(x,0)).

In order to formalize such design knowledge in a first-
order logic, we considdd) afinite set ofconstants—gear ,
coil_spring , transformer , electric motor ,

.. ,8,,S,, ...—forrepresenting machine componeets.,
transforrsnzgrs, torsional springs, and geansd machine as-
semblies:” and(2) a finite set ofpredicate names-Q,, Q,,
...—forexpressing machine ffSnctio(B.g., convertlreczip- Qu(,0) B¥x# 5,(2Qu(x,0) D¥X(~Qx(x,0) T
rocating rotational energy into reciprocating translational OVx(=S1(x,0) OVxVy(=S(x,y,0) m
energy, R, for expressing an assembling of assembly_i
connected to assembly_j, aRj for expressing the repre-
sentation of an assembly by (aoncret¢ machine com-
ponent. For example, the design rules stated above are

INITIAL STATE AXIOM:22

GOAL STATE Axiom:?3

VX(=Q1(x,n) OVX(=Qu(x,n)) O...O0VX(=Q(X,n)) m

formalized as the following rule schemas: The other axioms, which describe the production rules in
general, are specified in a similar manner as discussed in
(Q2(s2) 0Qs(s3) ORu(s2,83)) = Qu(s) Example 1. For example, the following axiom rules out the
possibility that the production rulg,(s;, s, S;) is executed
Ra(rack & pinion ,'s;) = Qu(sy) despite the fact that its preconditions are false:

Since all of the constants that appear in the definition of Pi(S1:S2,Ss,t) = (Qu(sy,t) 0= Qx(sz, t + 1) UQs(ss, t + 1)
the first rule schema ars,,s,,s;, we denote the rule as USi(sy, 83, t +1)).
P.1(S1,S,,S;). Similarly, we denote the second rule schema

- In summary, we showed how to utilize the SAT encoding
as po(rack & pinion , s)).

approach in solving design problems that are expressible in
first-order logic. The first-order logic containsfiaite col-

17As in Section 2.1, this rule is represented in propositional logic as

S1 US17 U, sy Urys — e ] ] ) ] ] ] ]
8For a more elaborate presentation of the first-order logic design rep- 2*Although we concentrate on the linear encoding technique, we note

resentation scheme see BrgRa00. that other more compact SAT encodings are possible for the first-order
1%Assembly_1 represents the arrangement of assembly_2 connected tiesign representation scheme.
assembly_3. 22Recall that the initial state is completely specified. The goal state

20y arranging the assemblies in hierarchy, we guarantee that eachnay be either fully or partially specified.
assembly is used in the design process no more than once; see Braha*That is, there will be no unmatched machine functio®s, in the
(2000. final process state.
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lection of nonlogical symbols, predicates without variablesTHEN: The car is SAFEand the external condi-

(such predicates are callggound atomyg and production
rules without quantifierdi.e., without V,3). Indeed, we

can view the abovéfinite”) first-order logic as an applied

propositional logic, by letting thground atom®f the first-

order language play the role of propositional variables. From HEN: The car is SAFEand the maximum allowed

this point of view, the encoded set of axiorftg SAT en-
coding can be interpreted as ampression in propositional
logic, using a truth assignment for its ground atoms

A3. Embedding domain-specific
search control knowledge

399
tions are  not good [
RULE 3.
IF: The car is SAFE IN HIGH DRIVING SPEED
speed is 200 Km/h |
RULE 4.

IF: The car iIsSSAFE IN ACCIDENTS

THEN: The car isSSAFE and the car is used for
family driving and the external con-
ditions are good and the maximum
allowed speed is 160 Km/h [

In Example 1, we showed how to encode structural con-

straints such as: “structural attributssands, cannotbe

included together in a physically realizable design.” OtherlF:
domain-specific constraints may be considered as well. For
example, according to SUA990, in an acceptable design,

the structural attributes and the functional attributes are reFHEN: The car is SAFE
lated in such a way that a specified structural attribute can
be adjusted to satisfy its corresponding functional attribute

without affecting other “conflicting” functional attribute$.

This principle can be implemented in the SAT-based encodlF:

ing as follows. Assume that the functional attributes
(“safety in flipping over) andr,, (“high driving speed)
are conflictingwith respect tothe structural attributes,-

(“light weight”). We shall need “local decoupling” axioms,
which say that if structural attribute is part of a design

solution, then either functional attributg, or r,, (but not

both) is decomposed at any time point. That is, for every

t;, t, = nwe add:

S7(N) = =rp4(ty) O=ryp(tn).

APPENDIX B. ASAMPLE OF RULES FOR
THE AUTOMOBILE EXAMPLE

RULE 1.

IF: The car has OFF-HIGHWAY TIREnNnd 4-wheel
drive and extra differentialand high ground clear-
anceand light weight

THEN: The car is PASSABLE IN DIFFICULT TERRAIN

]
RULE 2.
IF: The car is SAFE IN POOR EXTERNAL
CONDITIONS

24This principle is termed in Sufl990 as the “independence axiom.”
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RULE 5.

The caris SAFE IN POOR VISIBILITYand SAFE
IN BAD WEATHER and SAFE IN OFF-
HIGHWAY ROAD

IN POOR EXTERNAL
CONDITIONS ]

RULE 6.

The car is SAFE IN HEAD-ON COLLISION@Nnd
SAFE IN SIDE COLLISIONSand SAFE IN FLIP-
PING OVERand has automatic belts

THEN: The car is SAFE IN ACCIDENTS [
RULE 11
IF: The car has absorbent front eaidd air bagand an

engine that deflects down
THEN: The car is SAFE IN HEAD-ON COLLISIONSa

RULE 12

IF: The car has extra strong door
THEN: The car is SAFE IN SIDE COLLISIONS [ ]

RULE 21

IF: The car has AERODYNAMIC DESIGNnd EF-
FICIENT ENGINEand DIESEL ENGINEand dis-
connecting fan systemnd light weight

THEN: The car has LOW FUEL CONSUMPTION =

RULE 22.

IF: The car has tubeless tiesd radial tire
THEN: The car has RELIABLE TIRE ]

RuULE 38

IF: The car has AERODYNAMIC DESIGNind EF-
FICIENT ENGINEand DIESEL ENGINEand dis-
connecting fan systerand tire with 155 width
symboland tire with 60 aspect ratio symbol

THEN: The car has LOW FUEL CONSUMPTION =
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