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Abstract. We consider suspension flows built over interval exchange transformations with
the help of roof functions having an asymmetric logarithmic singularity. We prove that
such flows are strongly mixing for a full measure set of interval exchange transformations.

1. Introduction
1.1. Motivation and main references. Hamiltonian systems with multi-valued
Hamiltonian functions on two-dimensional tori give rise to area-preserving flows which
can be decomposed into a finite number of components filled with periodic trajectories and
one ergodic component (see [1]). The flow on this ergodic component is isomorphic to a
suspension flow built over a rotation of the circle with the help of a roof function which
has asymmetric logarithmic singularities (see also §1.2 for precise definitions).

The question about the mixing of such flows, first mentioned in the same paper [1],
was answered by Sinai and Khanin in [23], where it was proved that, under a
generic Diophantine condition on the rotation angle, suspension flows with asymmetric
singularities over a rotation are strongly mixing (see also [11]). The Diophantine condition
of [23] was weakened by Kochergin in a series of works [16–19].

Mixing in these flows is produced by different deceleration rates near the singular
points. Neighboring points on a Poincaré transversal have different return times and this
causes a phenomenon sometimes called stretching of the Birkhoff sums (the idea of how
this stretching leads to mixing is explained in §1.3.3). A similar stretching of Birkhoff
sums was also used by Fayad in [5] to construct mixing reparametrization of flows on T3.

Mixing does not arise in suspension flows over rotations in the case of bounded variation
roof functions [12]. The presence of a symmetric logarithmic singularity is also not
enough, as was shown by Kochergin in [14]. Lemańczyk [20] proved the absence of mixing
if the Fourier coefficients of the roof function are of order O(1/|n|) and showed with
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Fra̧czek that these flows are disjoint in the sense of Furstenberg from all mixing flows [6].
This condition is essentially sharp, see [15].

Consider, instead of T2, a compact orientable surface Mg of higher genus (g ≥ 2).
A closed Morse 1-form ω generates a Hamiltonian flow determined by the multi-valued
Hamiltonian H locally defined by dH = ω. The corresponding area-preserving flow
on Mg can be decomposed into components filled by periodic orbits and components on
which the flow is metrically isomorphic to a suspension flow over an interval exchange
transformation (IET) (see, e.g., [27]). IETs are piecewise orientation-preserving isometries
of an interval which appear naturally as first return maps of such flows on a transversal,
as rotations do in the case of T2.

It was proved by Katok in [8] that suspension flows over IETs under roof functions
of bounded variation do not mix and (see [7]) are disjoint from mixing flows. On the
other hand, Kochergin (see [13]) proves mixing for a class of roof functions over
IETs which includes power-like singularities, which arise when the fixed points on the
corresponding surface flow are degenerate. The presence of non-degenerate fixed points
give rise to logarithmic singularities. Fra̧czek and Lemańczyk prove in [7] that in the
case of symmetric logarithmic singularities and typical IETs of two or three intervals the
suspension flows are also disjoint from mixing flows.

In this paper we consider suspension flows over IETs of an arbitrary number of intervals
with roof functions having a single asymmetric logarithmic singularity. We prove that for
typical IETs such flows are strongly mixing. The case of several asymmetric singularities
will be treated in another paper.

As mentioned above, the main mechanism of mixing is the stretching of Birkhoff sums.
The proof of stretching in our case uses the Rauzy–Veech renormalization algorithm for
IETs (see §2). The condition on the IET which guarantees mixing is typical in view of a
recent result in [2].

1.2. Definitions and main result

1.2.1. IETs. Let I (0) = [0, 1) and let T : I (0) → I (0) be an IET of d subintervals,
i.e. a piecewise orientation-preserving isometry of I (0) defined in the following way.
Assign a permutation π ∈ Sd and a partition of I (0) into d subintervals, I (0)

1 , I
(0)
2 , . . . , I

(0)
d ,

defined by a lengths vector λ = (λ1, λ2, . . . , λd), λi > 0,
∑d

i=1 λi = 1, such that

λi = |I (0)
i |. Then T permutes the subintervals according to π so that under the action

the transformation I
(0)
i becomes the π(i)th interval, i.e. the order of the subintervals after

applying T is I
(0)

π−1(1)
, I

(0)

π−1(2)
, . . . , I

(0)

π−1(d)
. More precisely

I
(0)
j �

[j−1∑
i=1

λi,

j∑
i=1

λi

)
, j = 1, . . . , d,

T (x) = x −
j−1∑
i=1

λi +
j−1∑
i=1

λπ−1i for x ∈ I
(0)
j , j = 1, . . . , d.

We shall often use the notation T = (λ, π).
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1.2.2. Suspension flows. Let f ∈L1(I (0), dx) be a strictly positive function f ≥
mf > 0 and assume

∫
I (0) f (x) dx = 1. Further assumptions on f will be formulated

in §1.2.3. The phase space Xf of the suspension flow is defined as

Xf � {(x, y) | x ∈ I (0), 0 ≤ y < f (x)}
and can be depicted as the set of points below the graph of the roof function f .
We introduce the normalized measure µ which is the restriction to Xf of the Lebesgue
measure dx dy.

The suspension flow built over T with the help of the roof function f is a one-parameter
group {ϕt}t∈R of µ-measure-preserving transformations of Xf whose action is generated
by the following two relations:{

ϕt(x, y) = (x, y + t) if 0 ≤ y + t < f (x),

ϕf (x)(x, 0) = (T x, 0).
(1)

Under the action of the flow, a point of (x, y) ∈ Xf moves with unit velocity along the
vertical line up to the point (x, f (x)) and then jumps instantly to the point (T (x), 0),
according to the base transformation. Afterwards it continues its motion along the vertical
line until the next jump and so on (see, e.g., [4]).

Let S0(f, T )(x) � 0. We will denote by

Sr(f, T )(x) = Sr(f )(x) �
r−1∑
i=0

f (T i(x)), x ∈ I (0), r ∈ N+,

the rth non-renormalized Birkhoff sum of f along the trajectory of x under T .
The dependence on T is omitted when there is no ambiguity.

Let t > 0. Given x ∈ I (0) denote by r(x, t) the integer uniquely defined by

r(x, t) � max{r ∈ N | Sr(f )(x) ≤ t}, (2)

which describes the number of discrete iterations of the IET that the point (x, 0) undergoes
before time t . According to this notation the flow ϕt defined by (1) acts as

ϕt(x, 0) = (T r(x,t)(x), t − Sr(x,t)(f )(x)). (3)

For t < 0, the action of the flow is defined as the inverse map.

1.2.3. Single asymmetric logarithmic singularity. Assume that f ∈ C2((0, 1)) and
there exist two positive constants C+ > 0, C− > 0, such that

lim
x→0+

f ′′(x)

1/x2 = C+, lim
x→1−

f ′′(x)

(1/(1 − x))2 = C−. (4)

It is easy to see that (4) implies that

lim
x→0+

f (x)

|log x| = C+, lim
x→1−

f (x)

|log (1 − x)| = C−. (5)

Hence we say in this case that f has a logarithmic singularity at the origin. The singularity
is said to be asymmetric if C+ �= C−.
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1.2.4. Mixing. Recall that a flow {ϕt }t∈R preserving the measure µ is said to be mixing
if, for each pair of measurable sets A,B, one has

lim
t→∞ µ(ϕt (A) ∩ B) = µ(A)µ(B). (6)

1.2.5. Main result. The main result of this paper is the following.

THEOREM 1.1. The suspension flow {ϕt}t∈R built over a typical IET T with the help of a
roof function f having a single asymmetric logarithmic singularity at the origin is mixing.

The notion of typical IET is understood from the measure theoretical point of view.
More precisely, for every irreducible π , Theorem 1.1 holds for almost every length vector
λ ∈ �d−1 with respect to the Lebesgue measure on the simplex �d−1.

1.3. A criterion for mixing

1.3.1. Partial partitions and rectangles. By a partial partition η of I (0) into intervals
we mean a collection of disjoint intervals I = [a, b). We do not require that the union
of these intervals is the whole I (0). All of the partitions in this paper will be partial
partitions into a finite number of intervals. Denote by Leb the Lebesgue measure on
the Borel subsets of I (0). By using the notation Leb(η) we mean the total measure of
a partition η, i.e. Leb(η) �

∑
I∈η Leb(I). The mesh of the partition η is given by

mesh(η) � supI∈η Leb(I). We will consider one-parameter families of partial partitions
η(t), t ∈ R.

We call a rectangle of base b(R) ⊂ I (0) and height h = h(R) < mf the set R of points
(x, y) such that 0 ≤ y ≤ h and x ∈ b(R). Rectangles and their shifts ϕt(R) generate the
Borel σ -algebra of (Xf ,µ).

1.3.2. Mixing criterion. In order to demonstrate mixing it is sufficient to verify the
following criterion, similar to that used in [5, 13].

LEMMA 1.1. (Mixing criterion) If, given any rectangle R, any ε > 0 and any δ > 0, one
can find t0 > 0 such that for each t ≥ t0 one can define a partial partition η(t) of I (0) into
intervals such that

Leb(η(t)) > 1 − δ, mesh(η(t)) ≤ δ (7)

and for each I ∈ η(t)

Leb(I ∩ ϕ−t (R)) ≥ (1 − ε) Leb(I)µ(R), (8)

then the flow {ϕt }t∈R is mixing.

Proof. Mixing means that for any two measurable sets A and B and any ε > 0,
for sufficiently large positive t ,

µ(A ∩ ϕ−t (B)) > (1 − ε)µ(A)µ(B), (9)
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and by applying (9) to AC and B one obtains

µ(A ∩ ϕ−t (B)) < (1 + ε)µ(B)µ(A) + εµ(B)

and therefore (6). For t < 0, it is sufficient to exchange the roles of A and B and use
µ-invariance of ϕt . Moreover, it is sufficient to verify (9) for A and B rectangles, since any
measurable set can be approximated by a finite union of rectangles and their shifts under
the flow.

Let b(A) be the base of a rectangle A. For each δ > 0 and t ≥ t0, there exists a finite
number of intervals I

(t)
k ∈ η(t), k = 0, . . . ,K(t), such that Leb

(
b(A)�

⋃K(t)
k=0 I

(t)
k

) ≤ 3δ.
Here � denotes the symmetric difference of sets. To see this, consider all intervals of η(t)

which intersect b(A) and use (7). Let

A′ �
⋃

0≤y≤h(A)

(K(t+y)⋃
ky=0

I
(t+y)
ky

× {y}
)
.

Choosing δ ≤ (ε/3) Leb(b(A))µ(B), by the Fubini theorem, µ(A�A′) ≤ εµ(A)µ(B).
Noting the inequality y ≤ h(A) < mf , we have, for each slice of A′,(K(t+y)⋃

ky=0

I
(t+y)
ky

× {y}
)

∩ ϕ−t (B) = ϕy

((K(t+y)⋃
ky=0

I
(t+y)
ky

× {0}
)

∩ ϕ−t−y(B)

)
.

Moreover, ϕy preserves Leb on each slice and therefore one can assume that the
hypothesis (8) in which we set B = R holds for all slices. Thus, combining these estimates
and again applying the Fubini theorem, we obtain, for t ≥ t0,

µ(A ∩ ϕ−t (B)) ≥ µ(A′ ∩ ϕ−t (B)) − 3δh(A)

≥
∫ h(A)

0
(1 − ε) Leb

(K(t+y)⋃
ky=0

I
(t+y)
ky

)
µ(B) dy − εµ(A)µ(B)

≥ (1 − 3ε)µ(A)µ(B),

hence proving the lemma. �

1.3.3. Intuitive explanation of the mixing mechanism. Consider a sufficiently small
segment I = [a, b] ⊂ I (0) and let us consider its image under the flow, ϕt(I), for very
large t . We claim that ϕt(I) will consist of many almost vertical curves, as shown in
Figure 1(a).

Assume as a simple example that f has only a one-sided logarithmic singularity at
the origin and is monotonically decreasing, as in Figure 1(b). Notice first that until
t < mf , ϕt (I ) is still a horizontal segment, while as t = f (x0) for some x0 ∈ I ,
ϕt(I) splits into two curves: one is a still a horizontal segment, while the other curve
will project over T ([x0, b]) and be a translation of the graph of −f |[x0,b], as can be seen
by (3); see Figure 1(b). More generally, from (3), each of the curves in which ϕt(I) will
split is a graph of a translation of the Birkhoff sum Sr(f ) restricted over a small interval of
the form T r([xi, xi+1)), where [xi, xi+1) ⊂ I . Noticing that f ′ < 0 and the integral of f ′
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T
(a)

T T

T

(b)

FIGURE 1. The evolution of I ⊂ I (0) under ϕt : (a) ϕt (I ) for large t; (b) a simple model of the initial evolution.

is divergent, one can prove in this simple model that the slopes of these curves, which are
given by −Sr(f

′), are growing to infinity, i.e. they are becoming almost vertical. Hence the
increasingly large delay between different points causes ϕt(I) to split into many curves,
which are distributed over the orbit of T n(I). Using the unique ergodicity of T on the base
and the fact that each strip can be approximated by a straight line, one can show that the
fraction of x ∈ I such that ϕt(x) ∩ R �= ∅ is proportional to µ(R).

When the singularity is asymmetric the same phenomenon occurs and one can show that
delays accumulated from visits on one side are stronger than the delays accumulated from
the opposite side, causing Sr(f

′)(x) to diverge as if it were in the presence of a one-sided
singularity for most of the points.

1.3.4. Outline of the proof of Theorem 1.1. In order to prove mixing for the suspension
flow, we use the criterion in Lemma 1.1. Given a rectangle R and ε, δ > 0, our goal
is to construct, for any sufficiently large t , a partial partition η(t) of I (0) into intervals
which satisfy (7) and (8). Each of the intervals of these partitions under the flow exhibits
the behavior as explained in the previous paragraph. The construction of the partition
is carried out in several steps, explained in §4. In order to obtain the final estimate (8),
in §4.2, the key step is to obtain a good estimate of the rate of growth of the first two
derivatives of Sr (f ). Such estimates, presented in §3, are based on some property of
the renormalization cocycle for IETs first introduced by Rauzy [22], and developed by
Veech [24] and Zorich [26]. The definition and some properties of this cocycle are recalled
in §2.

2. Renormalization algorithms for IETs
Rauzy [22], Veech [24] and Zorich [26] developed a renormalization algorithm for IETs
which is a multi-dimensional generalization of the continued fraction algorithm.
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In the following, let T = (λ, π) be an IET. We assume that π is irreducible,
i.e. if the subset {1, 2, . . . , i} is π-invariant, then i = d , since this is a necessary condition
for minimality. We also assume that T satisfies the infinite distinct orbit condition (IDOC)
introduced by Keane in [9]. We say that T has the IDOC if, denoting by β0 = 0 and βj �∑j

i=1 λi for j = 1, . . . , d the discontinuities of T , the orbits O(βj ) � {T n(βj ) | n ∈ N},
1 ≤ j ≤ d − 1, are infinite and disjoint, i.e. O(βj ) ∩ O(βi) = ∅ for any i �= j . As it was
shown by Keane in [9], the IDOC implies minimality.

2.1. Rauzy–Veech and Zorich algorithms and cocycles. Starting with T = T (0), the
Rauzy–Veech algorithm produces a sequence of IET T (r) which are induced maps of T

onto a sequence of nested subintervals I (r) ⊂ I . It is easy to see that in general the induced
first return map of T on a subinterval I ′ ⊂ I is again an IET, of at most d + 2 intervals.
One Rauzy step is defined so that T (1) is an exchange of exactly the same number d of
subintervals.

2.1.1. One step of the Rauzy–Veech algorithm. At the first step, compare the lengths of
Id and Iπ−1(d), i.e. of the last subintervals before and after the transformation. It follows
from the IDOC that λd �= λπ−1d . Hence there can be two cases.

(a) λd < λπ−1d . In this case we consider the new interval I (1) � [0, 1 − λd).
Define T (1) to be the induced map, i.e. the first return map of T (0) onto I (1).
It is important that it is again an IET of the same number d of exchanged intervals.

(b) λd > λπ−1d . In this case we consider the new interval I (1) � [0, 1 − λπ−1d) and, as
before, define T (1) to be the induced map on I (1). Also in this case T (1) is again an
IET of d intervals.

Since T (1) is again an exchange of d intervals, we can write T (1) = (λ(1), π(1)), defining
in this way a new lengths vector and a new permutation. One can explicitly write the
expressions for two combinatorial operators a and b on Sd , where Sd is the space of
permutations of d elements, such that π(1) = aπ or bπ , respectively. Explicitly,

aπ(j) =


π(j), j ≤ π−1(d),

π(d), j = π−1(d) + 1,

π(j − 1), otherwise,

bπ(j) =


π(j), j ≤ π(d),

π(j) + 1, π(d) < π(j) < d,

π(d) + 1, π(j) = d.

We introduce the following matrices to describe the new lengths. We denote by Id the
identity d × d matrix and by Ei,j the matrix whose only non-zero entry is (Ei,j )ij = 1.
Let us introduce the auxiliary permutation τs ∈ Sd , τs = (12 . . . ss + 2 . . . ds + 1)

if 1 ≤ s < d − 1 and τd−1 = Id, which rotates cyclically all elements after the sth
element. Denote by P(τs) the matrix associated to the permutation, i.e. P(τs)ij = δiτs(i).
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The two Rauzy–Veech elementary matrices associated to (λ, π) are defined by{
A(π, a) = (Id + Eπ−1(d),d) · P(τπ−1(d)),

A(π, b) = Id + Ed,π−1(d).
(10)

The induced IET T (1) is then given by

(λ(1), π(1)) �
{

(A−1(π, a) · λ, a(π)), λd < λπ−1(d),

(A−1(π, b) · λ, b(π)), λd > λπ−1(d).
(11)

Note that both A(π, a) and A(π, b) belong to SL(d, Z) and have non-negative entries.
Define inductively T (r) = (λ(r), π(r)) to be the induced map of T (r−1) on I (r). It can

be seen that the IDOC assures that the algorithm is well defined at each step, i.e. that
λ

(r−1)
d �= λ

(r−1)

(π(r−1))−1(d)
for any r ∈ N.

2.1.2. Renormalized Rauzy–Veech map. The Rauzy class of π , denoted by R(π) ⊂ Sd ,
is the set of all permutations obtained iterating the operators a and b starting from π .
Using the norm |λ| = ∑d

i=1 λi , assume that the initial lengths belong to the simplex �d−1

of vectors λ ∈ Rd+ such that |λ| = 1. Let us denote by �(R) = �d−1 × R(π) the space
of IETs on the unit interval corresponding to a given Rauzy class R.

Consider the map on �(R) which associates to T the induced IET after one step of the
algorithm including the following renormalization:

R((λ(0), π(0))) �
(

λ(1)

|λ(1)| , π
(1)

)
.

Let us call it the Rauzy–Veech map. Veech proved that R admits an invariant measure µV ,
absolutely continuous with respect to the Lebesgue measure, which is infinite. The main
result proved by Veech in [25] is that the map R is conservative. As a consequence, Veech
proves that, given any irreducible π ∈ Sd , for almost every λ ∈ �d−1, the IET T = (λ, π)

is uniquely ergodic.

2.1.3. Zorich acceleration. Take an IET T and consider its Rauzy–Veech orbit
{RnT }n∈N. In a typical situation one can find an integer zo = zo(T ) > 0 so that
T ,RT , . . . ,Rz0−1(T ) all correspond to the same case (a) or (b) while Rzo (T ) corresponds
to the other. Grouping together these z0 steps of Rauzy induction, we obtain a new
transformation Z on the space of IET, where the letter Z is chosen in honor of A.
Zorich who introduced this map in [26]. Zorich showed in [26] that Z has an absolutely
continuous finite invariant measure. We will denote the Zorich invariant measure by µZ .

2.1.4. Rauzy–Veech lengths cocycle. As was explained above, to each T one can
associate an elementary matrix A(T ) in SL(d, Z) defining A(T ) � A(π, a) or A(T ) �
A(π, b), respectively. Let Ar = Ar(T ) � A(RrT ). Then for each r we can associate to T

the product
A(r) � A0 · · · · · Ar−1.

https://doi.org/10.1017/S0143385706000836 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385706000836


Mixing of asymmetric logarithmic suspension flows over IETs 999

We can easily see that the map A−1 : �(R) → SL(d, Z) is a cocycle over R, which we
call the Rauzy–Veech lengths cocycle. Iterating the lengths relation in (11) we obtain the
formula for the lengths vector of T (r):

λ(r) = (A(r))−1λ. (12)

Let us also introduce the following notation which is useful when considering more
general products of Rauzy–Veech cocycle matrices from m to n, m < n:

A(m,n) � Am · Am+1 · · · · · An−2 · An−1.

2.1.5. Hilbert metric and projective contractions. Consider on the simplex �d−1 ⊂ Rd+
the Hilbert distance dH, defined as follows:

dH(λ, λ′) � log
maxi=1,...,d λi/λ

′
i

mini=1,...,d λi/λ
′
i

. (13)

We denote the diameter with respect to dH of a projective subset � ⊂ �d−1 by

diamH(�) � sup
λ,λ′∈�

dH(λ, λ′). (14)

Note that if its closure � ⊂ �d−1, then diamH(�) is finite.
Let us write A ≥ 0 if A has non-negative entries and A > 0 if A has strictly positive

entries. Recall that to each A ∈ SL(d, Z), A ≥ 0, one can associate a projective
transformation Ã : �d−1 → �d−1 given by

Ãλ = Aλ

|Aλ| .

When A ≥ 0, dH(Ãλ, Ãλ′) ≤ dH(λ, λ′). Furthermore, if A > 0, then we obtain a
contraction. More precisely, A > 0 is equivalent to the closure Ã(�d−1) being contained
in �d−1; hence defining

D(A) � diamH(Ã(�d−1)), (15)

we have D(A) < ∞. Then

dH(Ãλ, Ãλ′) ≤ (1 − e−D(A)) dH(λ, λ′). (16)

2.1.6. Paths on Rauzy classes. Rauzy classes can be visualized in terms of directed
labeled graphs, the Rauzy graphs. Vertices are in one-to-one correspondence with
permutations of R(π); arrows connect permutations obtained from one vertex to the other
by applying a or b and are labeled according to the type a or b, respectively. Each vertex
is the starting point and the ending point of exactly two arrows, one of each type. We will
denote by γ (π ′, a) (γ (π ′, b)) the arrow of type a (type b) coming out from the vertex π ′.

A path γ = (γ1, . . . , γr ) is a sequence of compatible arrows on the Rauzy
graph, i.e. the starting vertex of γi+1 is the ending vertex of γi, i = 1, . . . , r − 1.
Given a path γ , we can associate to it a matrix

A(γ ) � A(γ1) · · · · · A(γr),
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where A(γi) = A(πi, a) if γi = γ (πi, a) and A(πi, b) if γi = γ (πi, b). Associate to γ

also the subsimplex
�(γ ) � {Ã(γ )λ | λ ∈ �d−1} ⊂ �d−1. (17)

Using induction, one can easily verify the following.

Remark 2.1. If T = (λ, π) and λ ∈ �(γ ) where γ = (γ1, . . . , γr) is a path starting at π ,
γi = γ (πi, ci), ci ∈ {a, b}, the sequence of types and permutations obtained in the first r

steps of the Rauzy–Veech induction is determined by γ , i.e. Ai(T ) = A(γi) and π(i) = πi .

2.1.7. The natural extension. The natural extension R̂ of the map R was introduced
by Veech [25] and admits a geometric interpretation in terms of the space of zippered
rectangles. We use the simpler choice of coordinates for zippered rectangles, adopted
by [2, 3, 21].

Consider the following polyhedral cones �π ⊂ Rd , where π ∈ R:

�π �
{
τ = (τ1, . . . , τd ) ∈ Rd

∣∣∣∣ k∑
i=1

τi > 0,

k∑
i=1

τπ−1i < 0, k = 1, . . . , d − 1

}
,

which is non-empty since if τi � π(i) − i, then τ ∈ �π .
The real-valued function Area(·) associates to (λ, π, τ ) ∈ �d−1 × {π} × �π ,

Area(λ, π, τ ) �
d∑

k=1

λk

(k−1∑
i=1

τi −
π(k)−1∑

i=1

τπ−1i

)
.

Area(·) has a geometric interpretation as the area of the zippered rectangle associated to
the data (λ, π, τ ) (see, e.g., [21]).

Consider the following space as a domain of the natural extension:

ϒ̂
(1)
R � {(λ, π, τ ) | (λ, π) ∈ �(R), τ ∈ �π, Area((λ, π, τ )) = 1}.

The map R̂ : ϒ̂
(1)
R → ϒ̂

(1)
R is defined as follows (more precisely R̂ is defined on triples

(λ, π, τ ) such that (λ, π) belong to the domain of R):

R̂((λ(0), π(0), τ (0))) = (R(λ, π), |λ(1)|τ (1)) =
(

λ(1)

|λ(1)| , π
(1), |λ(1)|τ (1)

)
,

where (λ(1), π(1)) is defined in (11) and, analogously,

τ (1) �
{

A−1(π, a) · τ , λd < λπ−1(d),

A−1(π, b) · τ , λd > λπ−1(d).

The map R̂ preserves an invariant measure m̂ which is the restriction to ϒ̂
(1)
R of the

Lebesgue measure. Denote by p the projection

p : ϒ̂
(1)
R → �(R), p(λ, π, τ ) = (λ, π).

The measure pm̂ is absolutely continuous with respect to Lebesgue on �(R) and it is
exactly the R-invariant measure µV constructed by Veech.
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If γ is a path on R, starting at π , denote

�(γ ) � {A(γ )−1τ | τ ∈ �π } ⊂ Rd .

If γ is an arrow starting at π and ending at π ′, then R̂ maps

(�(γ ) × {π} × �π) ∩ ϒ̂
(1)
R

R̂−→ (�d−1 × {π ′} × �(γ )) ∩ ϒ̂
(1)
R .

As λ determines the future induction steps (see Remark 2.1), similarly τ determines the
past steps. More precisely, let (λ(−i), π(−i), τ (−i)) � R̂−i (λ, π, τ ), for i ∈ N.

Remark 2.2. If π ′ is the ending vertex of γ = (γ1, . . . , γr) where γi = γ (πi, ci),
ci ∈ {a, b}, and τ ∈ �(γ ), the sequence of types and permutations obtained in the past r

steps of R̂ is determined by γ , i.e. A(λ(−i), π(−i)) = A(γr−i+1) and π(−i) = πr−i+1 for
i = 1, . . . , r .

2.2. Towers construction and heights vectors. The initial interval exchange T can be
seen as a suspension over each of the induced T (r) obtained at the rth step of the Rauzy–
Veech algorithm. In this subsection we define the towers which allow one to retrieve T

from T (r) and A(r).

Note that the entries of A(r) have a dynamical meaning in terms of return times.
Namely, denote by I

(r)
j , 1 ≤ j ≤ d , the subintervals of T (r).

Remark 2.3. The entry A
(r)
ij is equal to the number of visits of the orbit of any point

x ∈ I
(r)
j to the interval I

(0)
i of the original partition before its first return in I (r).

Therefore, the norm h
(r)
j of the j th column of A(r), i.e. h

(r)
j �

∑d
i=1 A

(r)
ij , gives the

return time of any x ∈ I
(r)
j to I (r).

2.2.1. The towers. Define

Z
(r)
j �

h
(r)
j −1⋃
l=0

T lI
(r)
j . (18)

When T is ergodic,
⋃d

j=1 Z
(r)
j is a non-trivial T -invariant set, and therefore the sets Z

(r)
j ,

1 ≤ j ≤ d , give a partition of the whole I . Each Z
(r)
j can be visualized as a tower

over I
(r)
j ⊂ I (r), of height h

(r)
j (see Figure 2). A floor of the tower, denoted by Z

(r)
j,l , is

defined by Z
(r)
j,l � T lI

(r)
j , l = 0, . . . , h

(r)
j − 1. The original T is an integral map over I (r);

under the action of T every floor Z
(r)
j,l , excluding the top floor (l �= h

(r)
j ), moves one step

up, while T Z
(r)

j,h
(r)
j −1

= T (r)I
(r)
j .

Let φs be the partition of I (0) into floors of step s, i.e. whose elements are Z
(s)
j,l with

1 ≤ j ≤ d and 0 ≤ l < h
(s)
j . Partitions φs ′ with s′ > s are refinements of φs .
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3

1 2 3 4

142

4 3 2 1

1 2 3 4

a

T ′ = (λ′, (4132))

T = (λ, (4321))

(a)

1 2 3 4

4 1 3 2

1 2 3 4

4 3 2 1

b

T ′ = (λ′, (2431))

T = (λ, (4321))

(b)

FIGURE 2. Stacking for T = (λ, (4321)): (a) λd < λ
π−1(d)

; (b) λd > λ
π−1(d)

.

2.2.2. Heights cocycle. Let h(0) be the column vector e � (1, . . . , 1)T ∈ Zd and h(n)

the column vector whose components are the heights (h
(1)
1 , . . . , h

(1)
d )T of the towers after

the first step of the Rauzy–Veech algorithm. If we write h(1) = Rh(0), where R = R(T )

is a matrix in SL(d, Z), it is easy to see that R(T ) = A(π, a)T or R(T ) = A(π, b)T,
depending on whether the Rauzy step is of type a or b.

Hence, comparing with (12), the cocycle that determines how the vectors of the heights
transform is given by the inverse transpose of the Rauzy–Veech cocycle. More precisely,
if h(r) is the vector of the heights after r iterations of the algorithm, then

h(r) = (A(r))Te, h(s+r) = (A(r)(RsT ))Th(s). (19)

2.2.3. Algorithm action on towers. The Rauzy–Veech algorithm can be visualized as
acting on the towers, in terms of stacking towers. One step corresponds to cutting the
last tower before the permutation, i.e. Z

(r)
d , and stacking it over Z

(r)

π−1d
. In the case a,

when λ
(r)
d < λ

(r)

π−1d
, Z

(r)
d is completely cut and stacked above Z

(r)

π−1d
, at its right end (see

Figure 2(a)). In the case b, λ
(r)
d > λ

(r)

π−1d
, only the right portion of Z

(r)
d of width λ

(r)

π−1d

is cut and stacked completely above Z
(r)

π−1d
(see Figure 2(b)). It is clear from the stacking

description of the algorithm that each tower Z
(r)
j0

consists of pieces of towers Z
(s)
j .

2.2.4. Towers partitions. Define also the following system of measurable partitions
ξs = ξs(Z

(r)
j0

) of the tower Z
(r)
j0

in terms of the subtowers Z
(s)
i , 0 ≤ s ≤ r . The elements of

the partition are complete blocks of floors of Z
(r)
j0

which are all contained inside the same
tower Z

(s)
j : namely, for each floor Z

(r)
j0,l

which is contained in I (s), construct an element
Z ∈ ξs in the following way. If Z

(r)
j0,l

⊂ I
(s)
j ,

Z �
h

(s)
j −1⋃
i=0

T iZ
(r)
j0,l

. (20)
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The set of all such Z gives a partition ξs of Z
(r)
j0

. Clearly for each Z ∈ ξs there is a unique

j such that Z ⊂ Z
(s)
j . Partitions ξs ′ , s′ < s, are refinements of ξs .

The entries of A(m,n) have the following meaning for the partition ξm(Z
(n)
j ). For m <

n,A
(m,n)
ij gives the number of visits of x ∈ I

(n)
j to I

(m)
i under the action of T (m) before the

first return to I (n). Hence

A
(m,n)
ij = #{Z ∈ ξm(Z

(n)
j ) | Z ⊂ Z

(m)
i }. (21)

3. Growth of Birkhoff sums of derivatives.
Let us now introduce two auxiliary functions u, v defined on I (0):

u(x) � 1

x
, v(x) � 1

1 − x
.

PROPOSITION 3.1. Assume T is uniquely ergodic. There exists a sequence αr such that
αr → 0 as r → ∞ and for all x distinct from singularities of Sr(f ),

Sr(f
′)(x) = (−C+ + α+

r )Sr (u)(x) + (C− + α−
r )Sr (v)(x),

where |α±
r | ≤ αr .

Proof. See Theorem 3.1 in [16]. The same proof applies also for uniquely ergodic IETs. �

In §3.2 we prove estimates on the growth of the Birkhoff sums for u and v for a typical
IET and then we use them in §3.3 to derive some information about the growth of Sr(f

′)
and Sr(f

′′). It is sufficient to obtain estimates from u, since estimates from v can be
easily derived from the following observation. Let I(x) = 1 − x be the reflection on
the interval I (0). Since v(x) = u(Ix), v · T n = u · (I · T · I−1)n · I. Let us denote
T I � I · T · I−1. Hence the Birkhoff sums for v with respect to T and those for u with
respect to T I are related by

Sr(v, T )(x) = Sr(u, T I)(1 − x). (22)

Note that if T = ((λ1, λ2, . . . , λn), π), then T I = ((λn, λn−1, . . . , λ1), π
I) where

πI � (n n − 1 . . . 2 1) · π · (n n − 1 . . . 2 1). Hence the map T �→ T I

from �d−1 × R(π) → �d−1 × R(πI) preserves the Lebesgue measure.

3.1. A Diophantine-type condition for IETs. In this section we define the set of full
measure of IETs for which we prove Theorem 1.1. Proposition 3.2 shows that for typical T

one can find a subsequence {nl}l∈N of induction times such that the corresponding IETs
{Rnl T }l∈N in the Rauzy orbit {RnT }n∈N enjoy some properties (listed in Proposition 3.2
below), which we call balance; moreover, it gives a control over their frequencies. In the
following sections we will use these balanced induction times in order to estimate the
growth of Sr(u).

Balanced times are related to occurrences of some positive matrices in the
renormalization cocycle. For interval exchanges, conditions on the frequencies of the
occurrence of such matrices play an analogous role to Diophantine conditions for rotations.
Different types of estimates in this spirit appear in the works of [2, 3, 10, 21]. Full measure
of the condition that we use is derived from [2].
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3.1.1. Existence of balanced return times.

PROPOSITION 3.2. Let 1 < τ < 2. For each irreducible π ∈ Sd and for Lebesgue almost
every λ ∈ �d−1, there exists a subsequence {nl}l∈N of induction times, ν > 1, κ > 1,
0 < D < ∞ and l ∈ N, such that the following hold for all l ∈ N:
(1) ν-balance of lengths

1

ν
≤ λ

(nl)
i

λ
(nl)
j

≤ ν, for all 1 ≤ i, j ≤ d; (23)

(2) κ-balance of heights

1

κ
≤ h

(nl)
i

h
(nl )
j

≤ κ, for all 1 ≤ i, j ≤ d; (24)

(3) positivity
A(nl,nl+l ) > 0, and † D(A(nl ,nl+l )) ≤ D; (25)

(4) integrability

lim
l→+∞

‖A(nl ,nl+1)‖
lτ

= 0. (26)

A return time which satisfies properties (1) and (2) will be called a balanced return
time. A balanced return time occurs when the lengths and the heights of the induction
towers are approximately of the same size. Property (3) gives some uniform distribution
of subintervals of time nl+l inside the subintervals of the previous balanced time nl .
Property (4) is the Diophantine condition which guarantees some control of the frequencies
of occurrence of balanced times. It will be deduced from the power integrability of a certain
induced cocycle, proved in [2].

We remark that (26) implies for d = 2 to the Diophantine condition used for rotations
in [23], i.e. kl = o(lτ ), where {kl}l∈N are the entries of the continued fraction and the
exponent τ satisfies the same assumption 1 < τ < 2.

In our proof of mixing we need the condition τ < 2 (see §3.2.2). It would be interesting
to know whether mixing also holds for flows over IETs which satisfy properties (1)–(4) in
Proposition 3.2 for τ > 2.

Definition 3.1. Let M+ = M+(�d−1 × R(π)) be the set of IETs in �d−1 × R(π) such
that Proposition 3.2 holds and M− = M−(�d−1 ×R(π)) is the set of T ∈ �d−1 ×R(π)

such that T I ∈ M+(�d−1 × R(πI)). Denote M = M+ ∩ M−.

The IETs in M are those for which we prove mixing of the suspension flows having
one asymmetric logarithmic singularity.

Remark 3.1. The set M has full measure. Indeed,M+ has full measure by Proposition 3.2
and also M− has full measure since, as already remarked, T �→ T I preserves the
Lebesgue measure.

Remark 3.2. The IETs in M are uniquely ergodic, as follows from property (3) in
Proposition 3.2 with the help of techniques used by Veech in [24, 25].

† Recall that D(A) was defined in (15).
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3.1.2. Proof of Proposition 3.2. If Y ⊂ ϒ̂
(1)
R , let AY denote the induced cocycle of the

Rauzy–Veech lengths cocycle associated to first returns to Y under R̂, i.e. for (λ, π, τ ) ∈ Y ,

AY ((λ, π, τ )) � A(rY )((λ, π)), where rY � min{r ∈ N+ | R̂r (λ, π, τ ) ∈ Y }.
The following result is proved in [2].

THEOREM 3.1. (Avila, Gouëzel, Yoccoz [2]) For every δ > 0 there exists a finite union

Ẑ(1) �
( n⋃

i=1

�(γ
si
) × {πi} × �(γ

ei
)

)
∩ ϒ̂

(1)
R ,

where πi is both the initial permutation of the path γ
si

and the final permutation of the path
γ

ei
and where A(γ

si
) > 0 and A(γ

ei
) > 0 for all i = 1, . . . , n, such that∫

Ẑ(1)

‖A
Ẑ(1)‖1−δ dm̂ < ∞. (27)

Theorem 3.1 is a reformulation of Theorem 4.10 in [2]. The original statement claims
the integrability of e(1−δ)r

Ẑ(1) , where r
Ẑ(1) is the first return time of (λ, π, τ ) ∈ Ẑ(1) under

the Veech flow, which is given by

r
Ẑ(1)((λ, π, τ )) � −log|A−1

Ẑ(1)
λ| = log |A

Ẑ(1)λ
′|,

where (λ′, π ′) = Rr
Ẑ(1) (λ, π). The second equality follows by taking norms of A

Ẑ(1)λ
′ =

λ/|A−1
Ẑ(1)

λ|. Since λ′ belongs to the compact set
⋃n

i=1 �(γ
si
),

log |A
Ẑ(1)λ

′| ≥ log
(

min
i

λ′
i‖AẐ(1)‖

)
≥ const + log ‖A

Ẑ(1)‖.

Hence (27) follows from the integrability of e(1−δ)r
Ẑ(1) . Positivity of A(γ

si
) and A(γ

ei
)

is clear from the proof of Theorem 4.10, in which γ
si

and γ
ei

are chosen minimal and
(2d − 3)-complete and hence positive by Lemma 3.3.

We recall that Bufetov, by different techniques, obtained in [3] a result analogous to (27)
for some δ < 1. We need the result of [2] for δ < 1/2, since it assures that Proposition 3.2
holds under the condition τ < 2.

Proof of Proposition 3.2. Given 1 < τ < 2, let δ � 1 − τ−1 > 0. Let Ẑ(1) be the
corresponding set given by Theorem 3.1. Let l be the maximum length of the paths γ

si
and γ

ei
for i = 1, . . . , n.

Given (λ, π), choose any τ ∈ �π . Let {nl}l ∈ N be the subsequence of visits of the R̂
orbit of (λ, π, τ ) to Ẑ(1) given by

n0 � min{n ∈ N+ | n ≥ l, R̂n(λ, π, τ ) ∈ Ẑ(1)}, (28)

nl+1 � min{n ∈ N+ | n > nl, R̂n(λ, π, τ ) ∈ Ẑ(1)}, l ∈ N+. (29)

Notice that (28) is independent of τ , since as soon as n is greater than the maximum length
l of the paths γ

ei
, visits to Ẑ(1) are determined by λ only (see Remarks 2.1 and 2.2). Let us

show that properties (1), (2) (balance) and (3) (positivity) of Proposition 3.2 automatically
hold for (λ, π) and the sequence {nl}l∈N.
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Since by definition R̂nl (λ, π, τ ) ∈ �(γ
sj

) × {πj } × �(γ
sj

) for some j , in particular

λ(nl )/|λ(nl )| ∈ �(γ
sj

). By positivity of the A(γ
si
) > 0, the union

⋃
i �(γ

si
) is

compact and hence (see §2.1.5) contained in a ball for the Hilbert metric dH, centered
at (1/d, . . . , 1/d), of some radius rs > 0. Hence,

dH

(
λ(nl)

|λ(nl)| ,
(

1

d
, . . . ,

1

d

))
≤ rs or equivalently

maxi λ
(nl )
i

mini λ
(nl )
i

≤ ers ,

which, setting ν � ers > 1, is ν-balance of lengths.
Similarly, from τ (nl) ∈ �(γ

ej
) we obtain by Remark 2.2 that λ(nl) = A(γ

ej
)−1λ(nl−L),

where L is the length of γ
ej

. Since the heights transform according to (19), h(nl) =
A(γ

ej
)Th(nl−L). Arguing as above, by compactness, the union

⋃
i Ã(γ

ei
)T�d−1 is

contained in a ball centered at (1/d, . . . , 1/d) of some radius re > 0 and this gives κ � ere

balance of the heights.
For property (3), since l is the maximum length of the paths γ

si
and nl+l ≥ nl + l, by

Remark 2.1 we have A(nl,nl+l ) = A(γ
sj

)A for some A ≥ 0. Hence A(nl,nl+l ) > 0 and

D(A(nl,nl+l )) ≤ D(A(γ
sj

)) ≤ 2rs .

Let us show first that property (4) holds for typical (λ, π, τ ) ∈ Ẑ(1). Note that
A(nl,nl+1)(λ, π, τ ) = A

Ẑ(1)(R̂nl (λ, π, τ )). For each εk � 1/k, by R̂ invariance of m̂,

m̂{(λ, π, τ ) ∈ Ẑ(1) | ‖A(nl ,nl+1)(λ, π, τ )‖ ≥ εkl
τ }

= m̂{(λ, π, τ ) ∈ Ẑ(1) | ‖A
Ẑ(1)(λ, π, τ )‖τ−1

ε−τ−1

k ≥ l}.
Since we chose τ−1 = 1 − δ, the integrability condition (27) implies that∑

l m̂{‖A
Ẑ(1)‖τ−1

ε−τ−1

k ≥ l} < ∞ for each εk . Hence, it follows by a Borel–Cantelli

type of argument that there exists a subset Ẑ′ ⊂ Ẑ(1) with m̂(Ẑ′) = m̂(Ẑ(1)) such that for
(λ, π, τ ) ∈ Ẑ′ the sequence nl satisfies (26).

Consider the projection pẐ′ ⊂ �(R). By independence of the definition of {nl}
on τ , for each (λ, π) ∈ pẐ′ we have (26). Moreover, pẐ′ has pm̂-full measure in
pẐ(1) = ⋃

i �(γ
si
) × {πi} and, in particular, positive pm̂ = µV -measure and hence

also µZ -positive measure.
To conclude, let M+ be the set of T ∈ �(R) such that there exists n, for which

RnT ∈ pẐ′. Clearly, if T ∈ M+, all the properties are satisfied by the sequence
nl � ñl +n, where ñl is the sequence associated to RnT . To see that M+ has full measure,
it is enough to use the ergodicity of Z and the fact that µZ(pẐ′) > 0, remarking that Z
orbits are subsets of R orbits. The formulation in Proposition 3.2 follows by absolute
continuity of µZ with respect to Lebesgue. �

3.1.3. Some consequences of balance. We will also frequently use the following simple
lemmas. Recall that A > 0 means that A has strictly positive entries.

LEMMA 3.1. Let Ai > 0, Ai ∈ SL(d, Z) for i = 0, . . . , n. If λ = A0 · λ′, then∑
j λj > d

∑
j λ′

j .
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If h = A0 · h′, then minj hj > d minj h′
j . In particular, if h = A1 · · · An e, then

minj hj ≥ dn.

Proof. All the properties follow easily from Aij ≥ 1. �

For convenience, let us denote λ(nl) �
∑

j λ
(nl)
j and h(nl) � maxj h

(nl )
j .

COROLLARY 3.1. For each L ∈ N, log(h(nLl )) ≥ L log d . In particular,

lim
l→+∞

1

log h(nl)
= 0. (30)

Proof. For the first property, apply Lemma 3.1 to h(nLl) = A(nLl)
T
e and note that A(nLl)

T

is the product of at least L positive matrices by property (3) of Proposition 3.2 (see (25))
of the sequence {nl}l∈N. It follows that log h(nl) ≥ [l/l] log d , where [·] denotes the integer
part, and hence we obtain (30). �

LEMMA 3.2. If nl has ν-balanced lengths (23) and κ-balanced heights (24), then, for
each j = 0, . . . , d ,

1

κλ(nl)
≤ h

(nl)
j ≤ κ

λ(nl )
, (31)

1

dκνh(nl)
≤ λ

(nl )
j ≤ κ

h(nl)
. (32)

Hence, if nl is a balanced time, λ(nl ) ≈ 1/h(nl ) up to constants.

Proof. Since by (12) and (19) we have
∑

i h
(nl)
i λ

(nl )
i = 1, we obtain mini h

(nl )
i λ(nl ) ≤ 1

and maxi h
(nl)
i λ(nl ) ≥ 1. In conjunction with balanced heights (24), this gives

1

κλ(nl )
≤ 1

κ
max

i
h

(nl )
i ≤ h

(nl)
j ≤ κ min

i
h

(nl)
i ≤ κ

λ(nl)
.

To show (32), let i be such that h
(nl)
i λ

(nl )
i = maxj h

(nl )
j λ

(nl )
j ≥ 1/d . Also, for each j ,

h
(nl)
j λ

(nl )
j < 1. Furthermore, when the lengths balance (23),

1

κνdh
(nl)

≤ 1

νdh
(nl)
i

≤ λ
(nl )
i

ν
≤ λ

(nl )
j ≤ 1

h
(nl)
j

≤ κ

h
(nl )

. �

LEMMA 3.3. For each fixed L ∈ N,

lim
l→+∞

log ‖A(nl,nl+L)‖
log h(nl)

= lim
l→+∞

log ‖A(nl−L,nl )‖
log h(nl)

= 0. (33)

Proof. By Corollary 3.1, log h(nl) ≥ [l/l] log d . Hence

lim
l→+∞

log ‖A(nl ,nl+L)‖
log h(nl)

≤ lim
l→+∞

∑l+L−1
i=l log ‖A(ni,ni+1)‖

(l/l − 1) log d
. (34)

Using the property (26), each of the L terms in the sum on the right-hand side can be
bounded for l � 1 by τ log i ≤ τ log(l+L−1) and hence the first limit is zero. The second
limit is analogous. �
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3.2. Growth of Birkhoff sums of u. Assume in this section that the roof function is
u(x) = 1/x.

3.2.1. Growth of Birkhoff sums along a balanced tower. In order to understand the
asymptotic growth of Sr(u)(x), we first consider Sr(u)(x) when x ∈ I

(n)
j is a point in

the base of the tower Z
(n)
j , r = h

(n)
j is exactly the height of the same tower and n is one of

the balanced return times constructed in §3.2. This preliminary estimate is used in §3.2.2
as a building block to obtain an estimate for any r and most of the other points x.

PROPOSITION 3.3. Assume T ∈ M+. Let nl0 be a balanced return time given by

Proposition 3.2. Let x0 ∈ I
(nl0 )

j0
be a point belonging to the base of the tower Z

(nl0 )

j0

and let r0 = h
(nl0 )

j0
be the corresponding tower height. Given ε > 0, there exists l(ε) such

that, for l0 ≥ l(ε),

(1 − ε)h
(nl0 )

j0
ln(h(nl0 )) ≤ Sr0(u)(x0) − 1

x0
≤ (1 + ε)h

(nl0 )

j0
ln(h(nl0 )). (35)

A Birkhoff sum of the form Sr0(u)(x0) where x0 and r0 satisfy the hypotheses of
Proposition 3.3 will be referred as the Birkhoff sum along a tower. The proposition shows
that each sum along a tower gives a contribution of order r0 log(r0), plus the contribution of
the closest point to the singularity, x0, which could be arbitrary large and will be estimated
separately when using these sums as building blocks in §3.2.2.

Proof of Proposition 3.3. Consider the inducing intervals I (nl) = [0, λ(nl )) where {nl}l∈N
is the sequence of balanced induction times constructed in §3.1. Given any ε > 0, let D

and l be given by Proposition 3.2. Choose L1 ∈ N such that

(1 − e−D)L1−1D < ε. (36)

We remark that diam(Ã(nl)�d−1) < ∞ by (25). Choose also L2 ∈ N such that 1/dL2 < ε.
Assume l0 ≥ l(1 + L1 + L2). For convenience, introduce the notation

l−1 � l0 − L1l, l−2 � l−1 − L2l = l0 − (L1 + L2)l. (37)

The past induction times nl−1 and nl−2 will play the following role in the proof: nl−1 is such
that the elements of the orbit {T r(x0)}0≤r<r0 are uniformly distributed inside the elements
of the partition ξnl−1

; nl−2 is such that the main contribution to Sr0(u)(x0) comes from

visits to [λ(nl−2 )
, 1).

We denote the points along the T -orbit of x0 by xi = T i(x0), 0 ≤ i < r0. Since the
original interval can be partitioned as

I (0) = I (nl0 ) ∪ I
(nl−2 )\I (nl0 ) ∪ [λ(nl−2 )

, 1),

and xi /∈ I (nl0 ), for 1 ≤ i < r0 because r0 is by definition the first return time of x0 to I (nl0 ),
the Birkhoff sums can be decomposed as follows:

Sr0(u)(x0) =
r0−1∑
i=0

1

xi

= 1

x0
+

∑
xi∈I

(nl−2
)\I (nl0

)

1

xi

+
∑

xi∈[λ(nl−2
)
,1)

1

xi

. (38)
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We will refer to the first term on the right-hand side of (38) as the singular error, to
the sum which appears as the second term on the right-hand side as the gap error,
while the sum which appears as the last term determines the main contribution.

3.2.1.1. Uniform ergodic convergence. Recall that A
(nl−1 ,nl0 )

ij gives the number of visits

of x ∈ I
(nl0 )

j to I
(nl−1 )

i before the time h
(nl0 )

j of first return to I (nl0 ).

LEMMA 3.4. (Uniform distribution) For each 1 ≤ i, j ≤ d ,

e−2ελ
(nl−1 )

i ≤ A
(nl−1 ,nl0 )

ij

h
(nl0 )

j

≤ e2ελ
(nl−1 )

i . (39)

Proof. Consider the sets ˜
A

(nl−1 ,n)
�d−1 ⊂ �d−1, for n > nl−1 , which form a nested

sequence of compact sets. By the transformation formula (12) for lengths vectors λ
(nl−1 ) =

A
(nl−1 ,n)

λ(n), the normalized vector

λ
(nl−1 )

λ
(nl−1 )

∈
⋂

n>nl−1

˜
A

(nl−1 ,n)
�d−1.

When n = nl0 , since l0 = l−1 + L1l, applying L1 times property (3) (positivity) in
Proposition 3.2 through the contraction property (16), we obtain

diamH(
˜

A
(nl−1 ,nl0 )

�d−1) ≤ (1 − e−D)L1−1D ≤ ε, (40)

where the last inequality follows by the choice (36) of L1.
Denote by ej the unit vector (ej )i = δij (δ is the Kronecker symbol). Since both the

vectors ˜
A

(nl−1 ,nl0 )
ej and λ

(nl−1 )
/λ

(nl−1 ) belong to the closure of ˜
A

(nl−1 ,nl0 )
�d−1, it follows

by (40), using compactness, that

dH

(
λ

(nl−1 )

λ
(nl−1 )

,
˜

A
(nl−1 ,nl0 )

ej

)
= log

maxi=1,...,d A
(nl−1 ,nl0 )

ij /λ
(nl−1 )

i

mini=1,...,d A
(nl−1 ,nl0 )

ij /λ
(nl−1 )

i

≤ ε,

where we also used the invariance of the distance expression by multiplication of the
arguments by a scalar. Equivalently, for each 1 ≤ i, k ≤ d ,

e−ε(A
(nl−1 ,nl0 )

kj λ
(nl−1 )

i ) ≤ A
(nl−1 ,nl0 )

ij λ
(nl−1 )

k ≤ eε(A
(nl−1 ,nl0 )

kj λ
(nl−1 )

i ) (41)

and summing over k we get

e−ε ≤ A
(nl−1 ,nl0 )

ij λ
(nl−1 )∑

k A
(nl−1 ,nl0 )

kj λ
(nl−1 )

i

≤ eε. (42)

If we multiply (41) by h
(nl−1 )

i and then also sum over i, using
∑

i h
(nl−1 )

i λ
(nl−1 )

i = 1 and

h(nl0 ) = A
(nl−1 ,nl0 )T

h
(nl−1 ),

e−ε ≤ h
(nl0 )

j λ
(nl−1 )∑

k A
(nl−1 ,nl0 )

kj

≤ eε. (43)

The combination of (42) and (43) gives (39). �
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3.2.1.2. Estimate of the main contribution. The following lemma shows that the main
contribution in (38) determines the order of the Birkhoff sum in Proposition 3.3.

LEMMA 3.5. (Main contribution) For each ε > 0, if l0 > lm(ε),

e−2ε(1 − ε)2h
(nl0 )

j0
log h(nl0 ) ≤

∑
xi∈[λ(nl−2

)
,1)

1

xi

≤ e2ε(1 + ε)2h
(nl0 )

j0
log h(nl0 ). (44)

Proof. Consider the partition φnl−1
, introduced in §2.2.1, restricted to [λ(nl−2 )

, 1), which
is measurable with respect to φnl−1

. Recall that the elements Fα ∈ φnl−1
are floors

Fα = T k(I
(nl−1 )

jα
) for some 1 ≤ jα ≤ d and 0 ≤ k < h

(nl−1 )

jα
. In particular,

Leb(Fα) = λ
(nl−1 )

jα
. For each Fα choose, by the mean value theorem, a point x̄α such

that
1

x̄α

� 1

λ
(nl−1 )

jα

∫
Fα

1

s
ds. (45)

LEMMA 3.6. If xi ∈ Fα and Fα ⊂ [λ(nl−2 )
, 1),

1 − ε ≤ 1/xi

1/x̄α

≤ 1 + ε.

Proof. Let Fα = [a, b); then a ≤ xi, x̄α < b. Since by assumption b − a ≤ λ
(nl−1 ) and

a ≥ λ
(nl−2 ),

x̄α

xi

≤ b

a
= a + (b − a)

a
≤ 1 + λ

(nl−1 )

λ
(nl−2 )

,

x̄α

xi

≥ a

b
= b − (b − a)

b
≥ 1 − λ

(nl−1 )

λ
(nl−2 )

.

Let us show that λ
(nl−1 )

/λ
(nl−2 )

< ε. Since l−1 = l−2 + L2l,

λ
(nl−2 ) =

L2−1∏
i=0

A
(nl−2+il ,nl−2+(i+1)l)λ

(nl−1 )

and each of the matrices in the product has positive entries by property (3) in
Proposition 3.2. Hence by iterated application of Lemma 3.1 and by the choice of L2,
we obtain λ

(nl−1 )
/λ

(nl−2 )
< 1/dL2 < ε. �

Rearranging the main contribution in (38) by floors, i.e.∑
xi∈[λ(nl−2

)
,1)

1

xi

=
∑

Fα∈φnl−1
,

Fα⊂[λ(nl−2
)
,1)

∑
xi∈Fα

1

xi

,

and applying Lemma 3.6, we obtain∑
Fα⊂[λ(nl−2

)
,1)

∑
xi∈Fα

1 − ε

x̄α

≤
∑

Fα⊂[λ(nl−2
)
,1)

∑
xi∈Fα

1

xi

≤
∑

Fα⊂[λ(nl−2
)
,1)

∑
xi∈Fα

1 + ε

x̄α

. (46)
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Now consider ∑
xi∈Fα

1

x̄α

= #{xi ∈ Fα} 1

x̄α

. (47)

Recall that x0 ∈ I
(nl0 )

j0
; if Fα = T k(I

(nl−1 )

jα
) is a floor of the jαth tower Z

(nl−1 )

jα
,

#{xi ∈ Fα} = #{xi ∈ I
(nl−1 )

jα
} = A

(nl−1 ,nl0 )

jαj0
. (48)

In (48) we used the dynamical meaning of A
(nl−1 ,nl0 )

jαj0
together with the fact that Z

(nl0 )

j0

is decomposed into a whole number of elements of ξnl−1
corresponding to towers of

the previous step nl−1 ; hence visits to a floor T kI
(nl−1 )

jα
of the tower are in one-to-one

correspondence with visits to its base I
(nl−1 )

jα
.

From Lemma 3.4 and (48),

e−2ελ
(nl−1 )

jα
h

(nl0 )

j0
≤ #{xi ∈ Fα} ≤ e2ελ

(nl−1 )

jα
h

(nl0 )

j0
. (49)

Using this bound and recalling the definition (45) of xα , we obtain

e−2εh
(nl0 )

j0

∫
Fα

1

s
ds ≤ #{xi ∈ Fα} 1

x̄α

≤ e2εh
(nl0 )

j0

∫
Fα

1

s
ds.

Summing it over Fα ⊂ [λ(nl−2 )
, 1) and using∑

Fα⊂[λ(nl−2
)
,1)

∫
Fα

1

s
ds =

∫
[λ(nl−2

)
,1)

1

s
ds = log

1

λ
(nl−2 )

,

we get by (46)

e−2ε(1 − ε)h
(nl0 )

j0
log

1

λ
(nl−2 )

≤
∑

Fα⊂[λ(nl−2
)
,1)

∑
xi∈Fα

1

xi

≤ e2ε(1 + ε)h
(nl0 )

j0
log

1

λ
(nl−2 )

. (50)

In order to obtain the estimate (44) of Lemma 3.5 from (50) it is sufficient to compare
1/λ

(nl−2 ) with h(nl0 ). Since λ
(nl−2 )

> λ(nl0 ) ≥ 1/(κh(nl0 )) by κ-balance of heights
(see Lemma 3.2), we obtain

log(1/λ
(nl−2 )

) ≤ log(h(nl0 ))(1 + log κ/log(h(nl0 )))

and, if l0 ≥ lm for some lm(ε) > 0, the upper estimate in (44) by Corollary 3.1.

For the lower bound, adding and subtracting h
(nl0 )

j0
log h(nl0 ),

h
(nl0 )

j0
log

1

λ
(nl−2 )

= h
(nl0 )

j0
log h(nl0 )

(
1 − log(h(nl0 )λ

(nl−2 )
)

log h(nl0 )

)
. (51)

In order to estimate the very last term in (51), notice that, again by Lemma 3.2 and balance,
λ

(nl−2 ) ≤ κ/h
(nl−2 ). Hence, using the fact that h(nl0 )/h

(nl−2 ) ≤ ‖A(nl−2 ,nl0 )‖,

log(h(nl0 )λ
(nl−2 )

)

log h(nl0 )
≤ log κ + log ‖A(nl−2 ,nt0 )‖

log h(nl0 )
. (52)

Enlarging lm if necessary, the right-hand side is less than ε for l0 ≥ lm by Lemma 3.3
(recall that the difference l0 − l−2 = (L1 + L2)l is fixed) and Corollary 3.1.

Combining (52) and (51) to estimate the left-hand side of (50) from below, we obtain
the lower estimate that completes the proof of the lemma. �
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3.2.1.3. Estimate of the gap error.

LEMMA 3.7. (Gap error) For each ε, if l0 > lg(ε),

0 ≤
∑

xi∈I
(nl−2

)\I (nl0
)

1

xi

≤ ε(h
(nl0 )

j0
log h(nl0 )). (53)

Proof. The bound below is trivial since 1/xi > 0. Since we are considering 0 ≤ i <

r0 = h
(nl0 )

j0
, it follows from the tower construction (see §2.2.1) that the points xi = T ix0 of

the orbit of x0 ∈ I
(nl0 )

j0
belong to different floors of the tower Z

(nl0 )

j0
and that their minimum

distance is bounded from below by

min
0≤i,j<r0

|xi − xj | ≥ λ
(nl0 )

j0
≥ 1

dκνh
(nl0 )

j0

,

where in the last inequality we used the fact that nl0 is balanced and Lemma 3.2.
Noting also that x0 is the closest point to the singularity, it follows that if we rearrange

the xi in increasing order and relabel them x̃i (x̃i < x̃i+1), we have

x̃i ≥ x0 + i

dκνh
(nl0 )

j0

, i = 0, . . . , r0 − 1.

Since the roof function 1/x is monotonically decreasing, the gap error can be bounded
from above by ∑

xi∈I
(nl−2

)\I (nl0
)

1

xi

≤
K∑

k=1

1

x0 + k/dκνh
(nl0 )

j0

, (54)

where K = #{xi ∈ I
(nl−2 )\I (nl0 )} and k ≥ 1 since x0 ∈ I (nl0 ).

The following lemma is proved by Kochergin in [16] as Lemma 5.1.

LEMMA 3.8. Let h > 0 and x > 0.

K∑
k=1

1

x + kh
= 1

h
log

(
t0 + K

t0 + 1

)
+ 1

h
RK(t0),

where t0 = x/h and 0 < RK(t0) < 1/(t0 + 1).

Applying Lemma 3.8 to (54) and using the fact that log((t0 +K)/(t0 +1)) is decreasing
in t0, so it reaches its maximum log K at t0 = 0,∑

xi∈I
(nl−2

)\I (nl0
)

1

xi

≤ dκνh
(nl0 )

j0
(log K + 1). (55)

The cardinality K of points xi ∈ I
(nl−2 )\I (nl0 ) can be bounded by Remark 2.3 in terms of

the cocycle matrices by

K ≤
d∑

j=1

A
(nl−2 ,nl0 )

jj0
≤ ‖A(nl−2 ,nl0 )‖. (56)
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Hence, applying (55) and (56) we obtain∑
xi∈I

(nl−2
)\I (nl0

) 1/xi

h
(nl0 )

j0
log h(nl0 )

≤ dκν
log K + 1

log h(nl0 )
≤ dκν

log ‖A(nl0−(L1+L2)l ,nl0 )‖ + 1

log h(nl0 )
. (57)

The right-hand side can be made smaller than ε by again using Lemma 3.3 and
Corollary 3.1 as long as l0 ≥ lg for some lg(ε) ∈ N. �

Recalling the decomposition (38) of the Birkhoff sums, the estimates of the main
contribution and of the gap error in Lemma 3.5 and Lemma 3.7 combine together, for
l0 ≥ l(ε) � max{lm, lg}, to yield the estimate in Proposition 3.3. �

3.2.2. Growth of Birkhoff sums for other points. In this section we obtain an estimate
for Sr(u)(x) using the estimate found in §3.2.1 as a fundamental block, i.e. decomposing
Sr(u)(x) into pieces which correspond to Birkhoff sums along a tower. It turns out
that singular errors from points in the bottom floors of the towers (see the terminology
introduced just after (38)) could prevent us from obtaining an estimate of order r log r .
In order to obtain this type of asymptotic behaviour, it is necessary to throw away a set of
initial points x which has an arbitrarily small measure. The integrability condition (26) of
the sequence of balanced times is used in its full strength only in this part.

3.2.2.1. Preliminary notation. Let {nl}l∈N be the sequence of balanced times in
Proposition 3.2. Assume h(nl) ≤ r < h(nl+1). Define the sequence {σl}l∈N used in the
proof of Proposition 3.4 as a threshold to determine whether r is closer to h(nl) or to h(nl+1).
Let τ ′ be such that τ/2 < τ ′ < 1, where τ is the Diophantine exponent in (26) given by
Proposition 3.2 and τ ′ is well defined since τ < 2. Let

σl = σl(T ) �
(

log ‖A(nl,nl+1)‖
log h(nl)

)τ ′

,
τ

2
< τ ′ < 1. (58)

Clearly σl depends on the IET T we start with, since the sequence {nl}l∈N does.

LEMMA 3.9. The sequence {σl}l∈N satisfies the following properties:
(1) liml→+∞ σl = 0;
(2) liml→+∞(log‖A(nl,nl+1)‖/log h(nl))(1/σl) = 0;
(3) liml→+∞ σl log h(nl) = +∞;
(4) liml→+∞ σ 2

l h(nl+1)λ(nl ) = 0.

Proof. Both (1) and (2) follow from Lemma 3.3. To show (3), note that log ‖A(nl ,nl+1)‖ ≥
log d ≥ 1, so σl log h(nl) ≥ (log h(nl))1−τ ′

and apply Corollary 3.1. For (4), using in order
balance (see Lemma 3.2), the transformation relation for heights, the definition of σl , the
Diophantine property (26) in Proposition 3.2 and Corollary 3.1, we obtain

σ 2
l h(nl+1)λ(nl ) ≤ σ 2

l κ
h(nl+1)

h(nl )
≤ σ 2

l κ‖A(nl,nl+1)‖.
Hence, substituting for σl the explicit expression in (58),

lim
l→+∞

κ(log ‖A(nl,nl+1)‖)2τ ′‖A(nl,nl+1)‖
(log h(nl))2τ ′ ≤ lim

l→+∞ const
(log l)2τ ′

o(lτ )

l2τ ′ = 0,

where the last limit is zero since 2τ ′ > τ . �
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x T ix T rx

O(x, r)

Z1 Z2 Z3 Z4

Z
(m)
j

(a)

x

O(x, r)

Z2Z1

Z
(m)
j

T ix T rx

(b)

FIGURE 3. Or (x) ≺ Z
(m)
j (a) Or (x) ≺ Z1 ∧ · · · ∧ Z4, (b) Z1 ∧ Z2 ≺ Or (x).

Definition 3.2. Let �+
l = �+

l (T ) be the following set, where [·] denotes the fractional
part:

�+
l (T ) �

[σlh
(nl+1)]⋃
i=0

T −i [0, σlλ
(nl)]. (59)

Note that, by property (4) of Lemma 3.9,

Leb(�+
l ) ≤ (σlh

(nl+1))(σlλ
(nl ))

l→+∞−−−−→ 0. (60)

PROPOSITION 3.4. (Growth of Birkhoff sums for general points) Let T ∈ M+. For any
ε > 0 there exists lo > 0 such that for l ≥ lo, whenever r ∈ N and x ∈ I (0) satisfy

h(nl) ≤ r < h(nl+1) and x /∈ �+
l (T ), (61)

we have

(1 − ε)r log r ≤ Sr(u)(x) ≤ (1 + ε)r log r + κ + 1

xm

, (62)

where xm � min0≤i<r T ix and κ is given by Proposition 3.2.

By adding a small measure set to the excluded set �+
l of initial points, as in §4, one

can also take into account the term κ/xm and obtain the asymptotic behaviour r log r

for Sr (u)(x).
The following notation is used in the proof of Proposition 3.4.

3.2.2.2. Notation for approximation by towers. Denote by Or (x) the orbit segment {T ix,
0 ≤ i < r}. Consider a tower Z

(m)
j . In what follows, we write

Or (x) ≺ Z
(m)
j if and only if ∃k | 0 ≤ k ≤ h

(m)
j − r, T ix ∈ T k+iI

(m)
j , 0 ≤ i < r.

When Or (x) ≺ Z
(m)
j , each point of Or (x) is contained in a different floor of Z

(m)
j and T

acts on the orbit points T ix (0 ≤ i < r −1) by shifting them to the next floor (see Figure 3,
where the tower Z

(m)
j is drawn horizontally).

Assume Or (x) ≺ Z
(m)
j . We write Or (x) ≺ Z1 ∧ Z2 ∧ · · · ∧ ZN , where Zi ∈ ξn(Z

(m)
j ),

n ≤ m (see §2.2.4) for i = 1, . . . , N , if Or (x) ⊂ ⋃N
i=1 Zi , Or (x)∩Zi �= ∅ for 1 ≤ i ≤ N

and moreover Zi are consecutive partition elements of ξn(Z
(m)
j ), i.e. if hi denotes the height
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Zl+1
0

Zl
0 Zl

1 Zl
i

Zl−L
0

Zl−L
al−L+1Zl−L

i

yl−L
i yl−L

al−L+1

yl
0 yl

1 yl
i yl

al yl
al+1

yl+1
0

yl+1
1

Or(x)

Zl+1
al+1+1

yl+1
al+1+1

Zl
al Zl

al+1

yl−L
0

FIGURE 4. Approximation of Or (x) by elements of ξnl+1 , ξnl
and ξnl−L

.

of Zi , noting that Zi ∩ I (n) is the base of Zi , we have T hiZi ∩ I (n) = Zi+1 ∩ I (n) for
i = 1, . . . , N − 1 (see, e.g., Figure 3(a)).

On the other hand, we write Z1 ∧ Z2 ∧ · · · ∧ ZN ≺ Or (x), where Zi ∈ ξn(Z
(m)
j ),

n < m, if #{Zi ∩ Or (x)} = hi for all i = 1 . . . , N , i.e. there is exactly one point of Or (x)

in each floor of each Zi and moreover Zi are, as above, consecutive partition elements
(see Figure 3(b)).

Proof of Proposition 3.4. It is always possible to assume that Or (x) ≺ Z � Z
(nl)

j
for some

l ≥ l + 1, since, by choosing l such that λ(nl ) < xm = min0≤i<r T ix, we assure that
Or (x) ∩ I (nl ) = ∅.

3.2.2.3. Orbit decomposition into sums along towers. Let us approximate Or (x) with
elements of ξnl+1(Z̄) and ξnl (Z̄). Using the assumption r < h(nl+1), the cardinality
#Or (x) ∩ I (nl+1) is bounded by [κ] + 1: since the return time to I (nl+1) is at
least minj h(nl+1) ≥ h(nl+1)/κ by κ-balance of heights, there cannot be more than

r/minjh
(nl+1)

j + 1 ≤ [κ] + 1 returns.

Hence there exists Zl+1
0 , Zl+1

1 , . . . , Zl+1
al+1+1

∈ ξnl+1(Z̄), with al+1 ≤ [κ] such that
(see Figure 4)

Or (x) ≺ Zl+1
0 ∧ Zl+1

1 ∧ · · · ∧ Zl+1
al+1+1

. (63)

Approximating Or (x) also with elements Zl
i ∈ ξnl (Z̄) (again, see Figure 4),

Zl
1 ∧ Zl

2 ∧ · · · ∧ Zl
al ≺ Or (x) ≺ Zl

0 ∧ Zl
1 ∧ · · · ∧ Zl

al ∧ Zl
al+1. (64)

We still need another level of approximation. Let L � l1 l̄ ∈ N where l1 is such that
2κ/dl1 < ε. We can find elements Zl−L

i ∈ ξnl−L(Z̄) such that (see Figure 4)

Zl−L
1 ∧ Zl−L

2 ∧ · · · ∧ Zl−L

al−L ≺ Or (x) ≺ Zl−L
0 ∧ Zl−L

1 ∧ · · · ∧ Zl−L

al−L ∧ Zl−L

al−L+1
. (65)

Denote by hl
i and hl−L

i the heights of Zl
i and Zl−L

i , respectively. Note that

al∑
i=1

hl
i ≤

al−L∑
i=1

hl−L
i ≤ r ≤

al−L+1∑
i=0

hl−L
i ≤

al+1∑
i=0

hl
i . (66)
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Let us truncate Or (x) into segments contained in different elements Zl−L
i ∈ ξl−L(Z̄).

Noting that I (nl−L) contains all the bases of the towers Zl−L
i , let us denote

yl−L
i � Or (x) ∩ Zl−L

i ∩ I (nl−L), i = 1, . . . , al−L. (67)

Since hl−L
i is exactly the first return time of yl−L

i to I (nl−L), yl−L
i+1 = T hl−L

i yl−L
i =

T (nl−L)yl−L
i . Add also the two auxiliary points:

yl−L
0 � (T (nl−L))−1yl−L

1 , yl−L

al−L+1
� T (nl−L)yl−L

al−L. (68)

From (65),
⋃al−L

i=1 O
hl−L

i
(yl−L

i ) ⊂ Or (x) ⊂ ⋃al−L+1
i=0 O

hl−L
i

(yl−L
i ).

As a consequence, since u > 0, we obtain the following estimate for Sr (u)(x):

al−L∑
i=1

S
hl−L

i
(u)(yl−L

i ) ≤ Sr(u)(x) ≤
al−L+1∑

i=0

S
hl−L

i
(u)(yl−L

i ). (69)

Each term in the summations in (69) is a Birkhoff sum along a tower of step nl−L.
Hence we can apply Proposition 3.3 to each term and find l0 � l(ε) + L such that for
each l ≥ l0 we obtain

Sr(u)(x) ≥ (1 − ε)

al−L∑
i=1

hl−L
i log h(nl−L) +

al−L∑
i=1

1

yl−L
i

, (70)

Sr(u)(x) ≤ (1 + ε)

al−L+1∑
i=0

hl−L
i log h(nl−L) +

al−L+1∑
i=0

1

yl−L
i

. (71)

Let us refer to the first term on the right-hand side of (70) or (71) as the ergodic term and
to the last term, i.e. the contributions of points in the bottom floors, as the resonant term.
There is an analogy with the terminology used by [16, 17].

Ergodic term. Taking the ratio of the ergodic term over r log r and applying the bounds
(66) for r , (∑al−L

i=1 hl−L
i

)
log h(nl−L)

r log r
≥

(
1 − 2h(nl−L)

r

)
log h(nl−L)

log r
, (72)(∑al−L+1

i=0 hl−L
i

)
log h(nl−L)

r log r
≤

(
1 + 2h(nl−L)

r

)
log h(nl−L)

log r
. (73)

By assumption (61) on r , property (3) of Proposition 3.2, Lemma 3.1, balance and choice
of L = l1 l̄,

2h(nl−L)

r
≤ 2h

(nl−l1 l̄ )

h(nl )
≤ 2κ

dl1
< ε.

Hence the first factors on the right-hand side of (72) and (73) are bounded, respectively,
below by (1 − ε) and above by (1 + ε). The second factor on the right-hand side of (73) is
trivially less than one. From r < h(nl+1),

log h(nl−L)

log r
≥ log h(nl+1) − log h(nl+1)/h(nl−L)

log h(nl+1)
. (74)
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Since by the heights transformation formula and Lemma 3.3

log(h(nl+1)/h(nl−L))

log h(nl+1)
≤ log ‖A(nl−L,nl+1)‖

log h(nl+1)

l→∞−−−→ 0,

also the second factor on the right-hand side of (73) is bounded from below by (1 − ε) if
l ≥ lo for some lo ≥ l0.

So far, combining (70) and (71) with (72), (73) and (74), and by using the fact that the
resonant term is positive, we have proved that

(1 − ε)2r log r ≤ Sr(u)(x) ≤ (1 + ε)r log r +
al−L+1∑

j=0

1

yl−L
j

. (75)

Resonant term. We want to prove the following estimate for the resonant term:

0 ≤
al−L+1∑

j=0

1

yl−L
j

≤ εr log r + κ + 1

xm

. (76)

Let us first group {yl−L
j }j=0,...,al−L+1 according to visits to different elements of the

partition ξnl (Z̄). Since

al−L+1⋃
j=0

{yl−L
j } ⊂

al−L+1⋃
j=0

Zl−L
j ⊂

al+1⋃
i=0

Zl
i ,

we have the estimate
al−L+1∑

j=0

1

yl−L
j

≤
al+1∑
i=0

∑
yl−L
j ∈Zl

i

j=0,...,al−L+1

1

yl−L
j

.

Each of the points yl−L
j ∈ Zl

i belongs to a different floor of a tower of step nl . Hence,
using an argument similar to that of Lemma 3.7 for the gap error, each of the terms∑

yl−L
j ∈Zl

i
(1/yl−L

j ) can be bounded from above by applying Lemma 3.8 to an auxiliary

arithmetic progression with step 1/dκνhl
i . The cardinality of points in each group, by (21),

is bounded by #{yl−L
j | yl−L

j ∈ Zl
i} ≤ #{Zl−L

j ∈ ξnl−L(Zl
i )} ≤ ‖A(nl−L,nl )‖. The initial

point min{yl−L
j | yl−L

j ∈ Zl
i} is given by the only visit to the base Zl

i ∩ I (nl ). Denote, as
above (see (67) and (68)),

yl
i � Or (x) ∩ Zl

i ∩ I (nl ), i = 1, . . . , al; yl
0 � (T (nl))−1yl

1; yl
al+1 � T (nl )yl

al .

Hence we obtain
al−L+1∑

j=0

1

yl−L
j

≤
al+1∑
i=0

dκνhl
i(log ‖A(nl−L,nl )‖ + 1) +

al+1∑
i=0

1

yl
i

. (77)

Comparing the first term on the right-hand side of (77) to r log r and recalling (66) we
obtain

dκν
(∑al+1

i=0 hl
i

)
(log ‖A(nl−L,nl)‖ + 1)

r log r
≤ dκν

(
1 + 2h(nl)

r

)
log ‖A(nl−L,nl )‖ + 1

log h(nl)
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where (1 + 2h(nl)/r) ≤ 3, so the last term, enlarging lo if necessary, is less than ε when
l ≥ lo by Lemma 3.3 and Corollary 3.1.

The second term on the right-hand side of (77) is bounded in two different ways,
according to the ratio between r and h(nl+1), using the quantity σl defined in (58) as a
threshold.

Case 1. Assume σlh
(nl+1) ≤ r < h(nl+1). Recalling (63),

{yl
i | i = 0, . . . , al + 1} ⊂

al+1+1⋃
j=0

{yl
i | yl

i ∈ Zl+1
j , i = 0, . . . , al + 1}.

To estimate the contribution from each of the sets on the right-hand side of (77), arguing as
above, consider an auxiliary arithmetic progression of step dκνhl+1

j . The closest point of

each set is given by the visit to I (nl+1). Noting that the number of points in each is bounded
by #{yl

i | yl
i ∈ Zl+1

j , i = 0, . . . , al + 1} ≤ #ξnl (Z
l+1
j ) ≤ ‖A(nl,nl+1)‖, we obtain

al+1∑
i=0

1

yl
i

≤
al+1+1∑
j=0

dκνhl+1
j (log ‖A(nl,nl+1)‖ + 1) +

∑
yl
i∈I (nl+1)

i=0,...,al+1

1

yl
i

. (78)

For the first term on the right-hand side of (78), by the assumptions on r , hl+1
j /r ≤

h(nl+1)/r ≤ 1/σl and al+1 ≤ κ ,∑al+1

j=0 dκνhl+1
j (log ‖A(nl,nl+1)‖ + 1)

r log r
≤ (κ + 2)dκν(log ‖A(nl ,nl+1)‖ + 1)

σl log h(nl)
.

The last expression, again enlarging lo if necessary, is smaller than ε if l ≥ lo by
properties (2) and (3) in Lemma 3.9.

The second term on the right-hand side of (78) can be just estimated with (κ + 1)/xm

since, as remarked at the beginning of this proof, #Or (x) ∩ I (nl+1) ≤ [κ]. This completes
the proof of (76) in this case.

Case 2. Assume h(nl) ≤ r < σlh
(nl+1). In this case, use the trivial estimate

al+1∑
i=0

1

yl
i

≤ (al + 2)
1

xm

.

Since xm = T ix for some 0 ≤ i < r and in this case r < σlh
(nl+1), by the assumption (61)

and the definition (59) of �+
l ,

xm ≥ σlλ
(nl ) ≥ σl

1

κh(nl)
,

where the last inequality uses the balance of nl (see Lemma 3.2). Moreover, from (66) and
κ-balance of heights,

al ≤ r

minj h
(nl )
j

≤ κr

h(nl )
.
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Hence, ∑al+1
i=0 1/yl

i

r log r
≤ (κr/h(nl) + 2)κh(nl)/σl

r log r
≤ κ2 + 2κ

σl log h(nl)
,

which, again enlarging lo, is smaller than ε for l ≥ lo by property (3) in Lemma 3.9.

In both cases we have proved the estimate (76) for the resonant term. Together with
(75), for an appropriate choice of ε, this completes the proof of Proposition 3.4. �

COROLLARY 3.2. Let T ∈ M+. For each ε > 0 there exists r0 such that, for all r ≥ r0,
x ∈ I (0),

Sr(u)(x) ≤ εr2 + κ + 1

xm

. (79)

The estimate in the corollary is worse than (62) in Proposition 3.4, but holds for all
points and is used in §4.3.

Proof. Let h(nl) ≤ r < h(nl+1). Note that (75), (77) and (78) in the proof of Proposition 3.4
were obtained without using the assumption (61) and hence still hold if r ≥ r0 � h(nlo ).
Terms estimated by r log r are clearly less than εr2 choosing r0 large enough. The second
term on the right-hand side of (78) is estimated by (κ + 1)/xm. Let us estimate the first
term on the right-hand side of (78) by

h(nl+1) log ‖A(nl,nl+1)‖
r2

≤ h(nl+1) log ‖A(nl ,nl+1)‖
h(nl)

2
≤ ‖A(nl,nl+1)‖ log ‖A(nl ,nl+1)‖

const dl

where we have used Corollary 3.1 in the last bound. The limit of this ratio as l → ∞ is
zero by equation (26) (property (4) of Proposition 3.2). �

3.3. Growth of Birkhoff sums of the derivatives. Let h
(n)

I and λ
(n)

I be the sequences of
heights and lengths of towers for T I . For T I ∈ M+, let {n′

l′ }l′∈N be the sequence of
balanced times for T I given by Proposition 3.2. Let σl′ = σl′(T I). We define

�−
l′ (T ) �

[σl′h
(n′

l′+1
)

I ]⋃
i=0

T −i [1 − σl′λ
(n′

l′ )
I , 1). (80)

COROLLARY 3.3. (Growth of Sr(v)) Let T ∈ M−. For any ε > 0 there exists l′o > 0
such that, if l′ ≥ l′o, for any r ∈ N and x ∈ I (0) such that

h
(n′

l′ )
I < r < h

(n′
l′+1

)

I and x /∈ �−
l′ (T ),

denoting by xM � max0≤i<r T ix, we obtain

(1 − ε)r log r ≤ Sr(v)(x) ≤ (1 + ε)r log r + κ ′ + 1

1 − xM

,

where κ ′ is the same as that given by Proposition 3.2.

Proof. Corollary 3.3 is simply obtained by restating Proposition 3.4 for u and T I and
using the relation with v given by (22). Note that mini (T

I)i(1 − x) = mini IT i(x) =
mini (1 − T ix) = 1 − xM and that (1 − x) ∈ �+

l′ (T
I) if and only if x ∈ �−

l′ (T ). �
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COROLLARY 3.4. (Growth Sr(f
′)) For each T ∈ M and C+ �= C− there exist

C1, C
′
1, C2, C3 > 0 and ro such that, for r ≥ ro, if

h(nl) ≤ r < h(nl+1),

h
(n′

l′ )
I ≤ r < h

(n′
l′+1

)

I
and x /∈ �+

l (T ) ∪ �−
l′ (T ), (81)

and x is not a singularity of Sr (f ),

Sr(f
′)(x) ≤ −C1r log r + C+(κ ′ + 1)

1 − xM

if C+ > C−, (82)

Sr(f
′)(x) ≥ C1r log r − C−(κ + 1)

xm

if C+ < C−, (83)

|Sr(f
′)(x)| ≤ C2r log r + C2(κ + 1)

xm

+ C2(κ
′ + 1)

1 − xM

, (84)

where xm, xM , κ and κ ′ are as in Corollary 3.3 and Proposition 3.4.
Moreover, for all x ∈ I (0) different from singularities of Sr(f ),

|Sr(f
′)(x)| ≤ C3r

2 + C3(κ + 1)

xm

+ C3(κ
′ + 1)

1 − xM

. (85)

Proof. Assume C+ > C−. Consider the sequence αr → 0 in Proposition 3.1. One can
choose r1 so that, for each r ≥ r1, we have (C+ − αr) > (C− + αr). Hence it is also
possible to choose ε > 0 so that, for r ≥ r1, C1 � (C+−αr )(1−ε)−(C−+αr )(1+ε) > 0.
By Proposition 3.1, Proposition 3.4 and Corollary 3.3, which can be applied by the

assumptions (81) when r ≥ ro, ro � max{r1, h
(nlo ), h

(n′
l′o )

I },
Sr (f

′)(x) ≤ −(C+ − αr)Sr (u)(x) + (C− + αr)Sr (v)(x)

≤ −(C+− αr)(1 − ε)r log r + (C− + αr )(1 + ε)r log r + (C− + αr)(κ
′ + 1)

1 − xM

≤ −C1r log r + C+(κ ′ + 1)

1 − xM

.

The case C+ < C− can be treated analogously.
Also (84) follows similarly: enlarging r1 so that if r ≥ r1, αr ≤ min(C+, C−), by

Proposition 3.1,

|Sr(f
′)(x)| ≤ (C+ + C−)(Sr (u)(x) + Sr(v)(x)) (86)

and Sr (u), Sr(v) can again be estimated by Proposition 3.4 and Corollary 3.3.
For (85), apply to (86) the rough estimate on Sx(u) for all points given by Corollary 3.2

and the analogous one for Sx(v) which follows from T ∈ M−. �

COROLLARY 3.5. (Growth Sr(f
′′)) For each T ∈ M and C+ �= C−, there exist C4 > 0

and ro such that for r ≥ ro, if (81) holds,

|Sr(f
′′)(x)| ≤ C4 max

{
1

xm

,
1

1 − xM

}(
r log r + κ + 1

xm

+ κ ′ + 1

1 − xM

)
.
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Proof. By definition of logarithmic singularity, there exists δ > 0 such that 0 ≤ f ′′(y) ≤
2C+/y2 if y < δ and 0 ≤ f ′′(y) ≤ 2C−/(1 − y)2 if y > 1 − δ. Let Mf ′′ be the maximum
of |f ′′| on [δ, 1 − δ]. Hence, for each x that is not a singularity of Sr(f ),

|Sr(f
′′)(x)| ≤ 2C+Sr(1/x2)(x) + 2C−Sr(1/(1 − x)2)(x) + rMf ′′

≤ 2C+ 1

xm

Sr (u)(x) + 2C− 1

1 − xM

Sr(v)(x) + rMf ′′ . (87)

Applying Proposition 3.4 and Corollary 3.3 one obtains the desired estimate. �

4. Construction of the mixing partitions
In this section we construct partitions ηm(t) that verify the mixing criterion
(see Lemma 1.1). The construction is carried out in three main steps, formulated in §4.1
as Propositions 4.1, 4.2 and 4.3. Their proofs are given in §§4.3, 4.4 and 4.5, respectively.
We anticipate in §4.2 the final area estimates, which conclude the proof of Theorem 1.1.

4.1. Partitions properties. Denoting by [·] the integer part, let

RM(t) � [t/mf ] + 2. (88)

PROPOSITION 4.1. (Preliminary partitions) For each 0 < δ < 1 and M > 1, there exist
t0 > 0 and partial partitions ηp(t) for t ≥ t0, such that Leb(ηp(t)) > 1 − δ and the
following properties hold for each I = [a, b) ∈ ηp(t).
(1) Continuity intervals:

T j is continuous on Ī = [a, b] for each 0 ≤ j ≤ RM(t).

(2) Control of interval sizes:

1

t log log t
≤ Leb(I) ≤ 2

t log log t
.

(3) Control of the distance from singularities:

dist(T j I, 0) ≥ M

t log log t
, dist(T j I, 1) ≥ M

t log log t
, 0 ≤ j ≤ RM(t).

(4) Control of the number of discrete iterations:

t

3
≤ r(x, t) ≤ RM(t) ≤ 2

mf

t for all x ∈ I.

We note that the function t log log t in Properties (2) and (3) of Proposition 4.1 is
chosen for convenience, but could be replaced by any expression tα(t) where α(t)

is a positive function such that limt→+∞ α(t) = +∞ and which we choose so that
limt→+∞ α(t)/(log t)ν = 0 for some 0 < ν < 1.

Assume now that T ∈ M. For definiteness, assume also that the asymmetry constants
of the roof function satisfy C+ > C−. Using the estimates on the growth of Birkhoff sums
obtained in §3, we can refine the partitions ηp(t) to obtain the following.
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PROPOSITION 4.2. (Stretching partitions) For T ∈ M and C+ > C−, there exist
C′

1, C
′
2, C

′′ > 0 such that for each 0 < δ < 1, M > 1, if ηp(t) are the corresponding
partitions in Proposition 4.1, there exists a one-parameter family of refined partitions
ηs(t) ⊂ ηp(t) with Leb(ηs) > Leb(ηp) − δ and there exists t1 > t0 such that, when
t ≥ t1, for any x ∈ ηs(t) and integer r with t/3 ≤ r ≤ 2t/mf ,

Sr(f
′)(x) ≤ −C′

1r log r, (89)

|Sr(f
′)(x)| ≤ C′

2r log r, (90)

Sr (f
′′)(x) ≤ C′′

M
r2(log r)(log log r). (91)

Let us show that Proposition 4.2 implies in particular that r(·, t) is an increasing function
on each interval I ∈ ηs(t) for t ≥ t1. Assume x < y are points of I . Since in particular
Sr(x,t)(f

′) < 0, the function Sr(x,t)(f ) is strictly decreasing. Hence Sr(x,t)(f )(y) <

Sr(x,t)(f )(x) ≤ t . Using again the definition of r(·, t), we obtain r(y, t) ≥ r(x, t).

4.1.1. Geometric description of the dynamics of partition elements. Let I = [a, b)

be an element of the partition ηs(t). Consider ϕt(I) and let us give first a geometric
description of ϕt(I) for t � 1. For C+ > C−, as just proved, r(·, t) is an increasing
function on each [a, b) ∈ ηp(t). Hence, let

r(a) = r(a, t) = min
x∈[a,b)

r(x, t), r(b) = r(b, t) = max
x∈[a,b)

r(x, t),

J = J ([a, b), t) � r(b, t) − r(a, t) + 1. (92)

The dependence on t will be omitted when t is clear from the context.
The image ϕt(I) splits into several curves and J gives exactly their cardinality.

More precisely, consider the equation Sr(f ) = t on I , which has a solution exactly for
r = r(a) + 1, . . . , r(b), unique by monotonicity. Denote by yj the solution of

Sr(a)+j (f )(yj ) = t, j = 1, . . . , J − 1, (93)

so that by equation (3), r(yj , t) = r(a) + j and ϕt(yj , 0) = (T r(yj ,t)(yj ), 0). The points
a � y0 ≤ y1 ≤ · · · ≤ yj ≤ yj+1 ≤ yJ−1 ≤ yJ � b are splitting points, meaning that
the image ϕt(I) consists of J curves, which are the graphs of t − Sr(a)+j (f ) restricted to
Ij � [yj , yj+1), j = 0, . . . , J−1. Each curve projects to T r(a)+j (Ij ), by (3). In particular,
they project to the orbit T r(a)+j (I ), for j = 0, . . . , J − 1.

4.1.2. Properties of the mixing partitions. Given δ > 0, if [b1, b2] is the base of the
rectangle R, denote by χ the indicator of [b1 + δ, b2 − δ]. Choose t2 ≥ t1 so that
2/(t2 log log t2) < δ and the mesh of the partitions ηp(t) for t ≥ t2 is bounded by δ

by property (2) in Proposition 4.1. Denoting by h(R) the height of the rectangle R, for
j = 0, . . . , J − 1, let

I
h(R)
j � {x | t − h(R) ≤ Sr(a)+j (f )(x) ≤ t}. (94)
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Points in I
h(R)
j are those that reach the correct height to intersect R, i.e. if x ∈ I

h(R)
j ,

then ϕt(x, 0) is contained in the horizontal strip I (0) × h(R) (as shown in the proof of
Lemma 4.1). For j = 0, . . . , J − 1, denote

�f j = �f j ([a, b), t) � Sr(a)+j (f )(a) − Sr(a)+j (f )(b), �f � �f 0.

Note that �f j ≥ 0. The quantity �f expresses the delay accumulated between the
endpoints in time t . Also, the quantity �f j gives the vertical stretch of the graph of
t − Sr(a)+j (f )|[a,b).

PROPOSITION 4.3. (Mixing partitions) Let T ∈ M+, C+ > C−. Given ε > 0 and
0 < δ < 1, there exist M(ε), t̄ > t2 and refined partial partitions ηm(t) ⊂ ηs(t), where
ηs(t) are the partitions given by Proposition 4.2, such that Leb(ηm(t)) > Leb(ηs(t)) − 2δ

and for each I = [a, b) ∈ ηm(t), J (I, t) → +∞ as t → +∞ and for t ≥ t̄ the following
properties hold.
(1) Uniform vertical distribution:∣∣∣∣h(R)(b − a)

�f j (I, t)
− Leb(I

h(R)
j )

∣∣∣∣ ≤ h(R)(b − a)

�f j (I, t)
ε, j = 1, . . . , J (I, t) − 2. (95)

(2) Variation of slopes:∣∣∣∣ �f (I, t)

�f j (I, t)
− 1

∣∣∣∣ ≤ ε, j = 0, . . . , J (I, t) − 2. (96)

(3) Asymptotic number of curves:∣∣∣∣J ([a, b), t) − 1

�f (I, t)
− 1

∣∣∣∣ ≤ ε. (97)

(4) Equidistribution on the base: for some x̄ ∈ I ,∣∣∣∣ 1

J ([a, b), t) − 1

(J ([a,b),t)−2∑
j=0

χ(T r(a)+j (x̄))

)
− (b2 − b1 − 2δ)

∣∣∣∣ ≤ ε. (98)

4.2. Area estimates. Let us show that the properties in Proposition 4.3 are enough to
deduce the estimate (8) of the mixing criterion (Lemma 1.1) and hence conclude the proof
of Theorem 1.1.

LEMMA 4.1. For each I = [a, b) ∈ ηm(t), t ≥ t̄ and x ∈ I ,

Leb([a, b) ∩ ϕ−t (R)) ≥
J ([a,b),t)−2∑

j=1

χ(T r(a)+jx) Leb(I
h(R)
j ). (99)

Proof. Let us first show that I
h(R)
j , j ∈ N, are all disjoint. If y ∈ I

h(R)
j , then for each

integer s > 0, Sr(a)+j+s(f )(y) = Sr(a)+j (f )(y) + Ss(f )(T r(a)+jy) > Sr(a)+j (f )(y) +
h(R) since h(R) < mf . Hence, by (94), Sr(a)+j+s(f )(y) > t and y /∈ I

h(R)
j+s . A similar

argument works for s < 0.
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Assume that j0 is such that 1 ≤ j0 ≤ J ([a, b), t) − 2 and χ(T r(a)+j0x) = 1,
i.e. T r(a)+j0x ∈ [b1+δ, b2−δ]. Recalling that t2 was chosen so that supI∈ηm(t) Leb(I) < δ

for t ≥ t2, when t ≥ t̄ ≥ t2, we have T r(a)+j0I ⊂ [b1, b2].
It is sufficient to show that Ih(R)

j0
⊂ [a, b)∩ϕ−t (R) to reach our conclusion. If y ∈ I

h(R)
j0

,
by definition t − h(R) ≤ Sr(a)+j0(f )(y) ≤ t . Also, recalling that h(R) < mf ,

t ≤ t − h(R) + f (T r(a)+j0y) < Sr(a)+j0+1(f )(y),

which shows that r(y, t) = r(a) + j0 and also that y ∈ [yj0, yj0+1] ⊂ [a, b), by mono-
tonicity and definition of splitting points (93).

It follows, by definition (94) of I
h(R)
j0

and (3) of the flow action, that

ϕt(y, 0) = (T r(a)+j0y, t − Sr(a)+j0(f )(y)) ∈ [b1, b2] × [0, h(R)] = R.

This shows that I
h(R)
j0

⊂ [a, b) ∩ ϕ−t (R). �

Let us estimate the right-hand side of (99). For t ≥ t̄ ,

J ([a,b))−2∑
j=1

χ(T r(a)+j (x)) Leb(I
h(R)
j )

≥ (1 − ε)h(R)(b − a)

J ([a,b),t)−2∑
j=1

χ(T r(a)+j (x))
1

�f j
(100)

≥ (1 − ε)2h(R)(b − a)

J ([a,b))−2∑
j=1

χ(T r(a)+j (x))
1

�f
(101)

≥ (1 − ε)3h(R)(b − a)

J ([a,b))−2∑
j=1

χ(T r(a)+j (x))

J ([a, b), t) − 1
(102)

≥ (1 − ε)3h(R)(b − a)(b2 − b1 − 2δ − 2ε)
ε,δ→0−−−→ µ(R)(b − a). (103)

We used, in order, the following properties of Proposition 4.3: property (1) to obtain (100),
property (2) to obtain (101), property (3) to obtain (102) and, finally, to obtain (103) we
combined property (4) with χ(T r(a)x)/(J (I, t) − 1) ≤ ε for t ≥ t̄ if t̄ is enlarged if
necessary, since J (I, t) tends to infinity.

When ε and δ are chosen sufficiently small, together with the Lemma 4.1, this concludes
the proof of (8). From Lemma 1.1, we obtain Theorem 1.1.

4.3. Preliminary partitions. Let us prove Proposition 4.1. Consider a fixed continuous
time t . The maximum number of discrete iterations of T when flowing by t , i.e. rM(t) �
supx∈I (0) r(x, t), can be bounded from above for each x by using that f ≥ mf > 0 and the
definition of r(x, t). We obtain

r(x, t)mf ≤ Sr(x,t)(f )(x) ≤ t .

Recalling the definition (88), we obtain rM(t) + 1 ≤ RM(t).
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4.3.1. Continuity intervals of controlled size. It is easy to see that any iterate T n �
T · · · · · T obtained iterating T n times is again an IET: denoting by β0 = 0 < β1 < · · · <

βd−1 < 1 the discontinuities of T , the discontinuities of T N are

{T −jβi | i = 0, . . . , d − 1; 0 ≤ j < N}. (104)

Note that T N is an exchange of at most Nd + 1 intervals.
Let η0(t) be the partition of I (0) into continuity intervals for T RM(t), i.e. the partition

into semi-open intervals whose endpoints coincide with the set (104) where N = RM(t).
By construction, for each 0 ≤ j ≤ RM(t), T j restricted to any [a, b) ∈ η0(t) is continuous.

Given M > 1, consider the set

U1 �
⋃

0≤i≤d
0≤j≤RM(t)

Ball

(
T −jβi ,

2M

t log log t

)
,

which consists of closed balls of radius 2M/t log log t centered at the endpoints of η0(t).
Let η1(t) be the partial partition obtained from η0(t) by throwing away all intervals
completely contained in U1. Since, using (88),

Leb(U1) ≤ 4M

t log log t
d

(
t

mf

+ 3

)
t→+∞−−−−→ 0, (105)

it follows that Leb(η1(t)) ≥ 1 − Leb(U1) converges to one. Moreover, by construction,
each I ∈ η1(t) contains at least one y /∈ U1. Hence, since the endpoints of I are centers of
the balls in U1, Leb(I) ≥ 4M/t log log t .

4.3.2. Distance from singularities. Let

U2 �
⋃

0≤j≤RM(t)

T −j

[
0,

M

t log log t

)
∪

⋃
0≤j≤RM(t)

T −j

[
1 − M

t log log t
, 1

)
.

Let η2(t) = η1(t)\U2. By construction, if x ∈ η2(t),

dist(T sx, 0) ≥ M

t log log t
, dist(T sx, 1) ≥ M

t log log t
, 0 ≤ s ≤ RM(t),

which is property (2) of Proposition 4.1. Similarly to (105), also Leb(U2)
t→∞−−−→ 0.

Given δ > 0, choose t0 so that Leb(η2(t)) ≥ Leb(η1(t)) − Leb(U2) > 1 − δ/2 for
t ≥ t0. Intervals I ∈ η2(t) are either intervals of η1(t) or are obtained by some I ′ ∈ η1(t)

by cutting an interval of length at most M/(t log log t) on one or both sides of I ′. Hence,
Leb(I ′) > 2M/t log log t .

Let η̃2(t) be the collection of intervals of the form [a, b′) ⊂ [a, b) associated to each
[a, b) ∈ η2(t). Choosing each b′ close enough to each b, one still has Leb([a, b′)) >

2M/t log log t and Leb(η̃2(t)) > 1 − δ/2. Since T j , for 0 ≤ j ≤ RM(t), is continuous on
[a, b′], property (1) of Proposition 4.1 holds for [a, b′) ∈ η̃2(t).

Construct η3(t) from η̃2(t) by cutting each of the intervals I ∈ η̃2(t) in pieces which
satisfy the length control property (property (2)) of Proposition 4.1. For example, cut first
[Leb(I)/(1/t log log t)]−1 intervals of length exactly 1/(t log log t) starting from the left,
so that the last remaining interval has length at most 2/t log log t .

Properties (1) and (3) still hold and Leb(η3(t)) = Leb(̃η2(t)) > 1 − δ/2 for t ≥ t0.
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4.3.3. Control of the number of discrete iterations. Let us bound r(x, t) from below
when x ∈ η3(t). As a consequence of property (3),

f (T jx) ≤ const log(t log log t), 0 ≤ j ≤ RM(t). (106)

Hence Sr(x,t)+1(f )(x) ≤ (r(x, t) + 1) const log(t log log t) and since, by definition of
r(x, t), we have Sr(x,t)+1(f )(x) > t ,

r(x, t) ≥ t

const log(t log log t)
− 1

t→+∞−−−−→ +∞, (107)

uniformly for all x ∈ η3(t). Since f ∈ L1 and T is ergodic, by the Birkhoff ergodic
theorem, for each δ > 0 there exist a measurable set Eδ and Nδ > 0 such that
Leb(Eδ) < δ/2 and∣∣∣∣1

r
Sr (f )(x) −

∫
f (s) ds

∣∣∣∣ < 1 for all x /∈ Eδ, r ≥ Nδ.

Define a refined partial partition η4(t) � η3(t)\{I ∈ η3(t) | I ⊂ Eδ}. For t ≥ t0,
Leb(η4(t)) ≥ Leb(η3(t))−δ/2 ≥ 1−δ. By construction for each I ∈ η4(t) there is at least
one xI ∈ I such that |(1/r)Sr(f )(xI ) − 1| < 1 for all r ≥ Nδ . Enlarging t0 if necessary,
by (107) we can assure r(xI , t) > Nδ for each xI , I ∈ η4(t). Hence Sr(xI ,t)+1(f )(xI ) <

2(r(xI , t) + 1), which, together with Sr(xI ,t)+1(f )(xI ) > t , gives

r(xI , t) > t/2 − 1 for all xI , I ∈ η4(t). (108)

To control all other r(x, t), x ∈ η4(t), let us estimate the variation r(x, t)−r(xI , t) when
x ∈ I ∈ η4(t). Assume r(x, t) < r(xI , t), otherwise we already have the lower bound.
By Properties (1) and (3), Sr(f ) is continuous on I and (T r )′ = 1 for 0 ≤ r ≤ RM , so
(Sr (f )(x))′ = Sr(f

′)(x). By the mean value theorem there exists z between xI and x such
that

|Sr(x,t)(f )(xI ) − Sr(x,t)(f )(x)| ≤ |Sr(x,t)(f
′)(z)||x − xI |.

Apply the rough bound on Sr (f
′) in Corollary 3.2, enlarging t0 again by (107) so that

r(x, t) ≥ r0 for t ≥ t0. Combining it with property (3) already proved, which gives
1/xm ≤ t log log t/M and 1/(1 − xM) ≤ t log log t/M , we find that |Sr(x,t)(f

′)(z)| ≤
const t2 for t ≥ t0. Since Leb(I) ≤ 2/(t log log t),

|Sr(x,t)(f )(xI ) − Sr(x,t)(f )(x)| ≤ const t

log log t
. (109)

Hence, using (109) and Sr(xI ,t)(f )(xI ) ≤ t and then Sr(x,t)(f )(x) > t − f (T r(x,t)x) and
(106),

(r(xI , t) − r(x, t))mf ≤ Sr(xI ,t)(f )(xI ) − Sr(x,t)(f )(xI )

≤ t − Sr(x,t)(f )(x) + const t

log log t
≤ const log(t log t log t) + const t

log log t
= o(t).

Re-arranging and using the control for xI given by (108), r(x, t) ≥ r(xI , t) − o(t) ≥
t/2 − 1 − o(t). Hence, recalling also r(x, t) ≤ RM(t) ≤ t/mf + 2, if t0 is sufficiently
large, when t ≥ t0, for each x ∈ I ∈ η4(t), t/3 ≤ r(x, t) ≤ RM(t) ≤ 2t/mf ,
which is property (4). Since the other properties still hold, setting ηp(t) � η4(t) proves
Proposition 4.1.
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4.4. Stretching partitions. Let us prove Proposition 4.2.
Let T ∈ M. For each t , let l(t) and l′(t) be uniquely determined by

h(nl(t)) ≤ RM(t) < h(nl(t)+1), h
(n′

l′(t))
I ≤ RM(t) < h

(n′
l′(t)+1

)

I , (110)

where {nl}l∈N and {n′
l′ }l′∈N are the sequences of balanced times given by Proposition 3.2

for T and T I , respectively.

LEMMA 4.2. There exists L ∈ N independent of t such that if t/3 ≤ r ≤ RM(t) then

h(nl(t)−L) ≤ r < h(nl(t)+1), h
(n′

l′(t)−L
)

I ≤ r < h
(n′

l′(t)+1
)

I . (111)

Proof. Let l ∈ N be such that dl ≥ max{6κ/mf , 6κ ′/mf } (recall that κ and κ ′are given
by Proposition 3.2 and Corollary 3.3).

By property (25) in Proposition 3.2, we can apply Lemma 3.1 considering products
of positive matrices that appear every l̄ balanced steps and obtain, recalling the choice

of l, by balance of the induction steps and (110), h
(nl(t)−ll̄ ) ≤ (κ/dl) minj h

(nl(t))

j ≤
(κ/dl)(2t/mf ) ≤ t/3 ≤ r . Analogous expressions can also be obtained for h

(n′
l′(t)−ll̄

)

I
and show that setting L � ll̄ + 1 we obtain (111). �

Define the set �t = �t(T ) as

�t �
l(t )−1⋃

l=l(t )−L

�+
l (T ) ∪

l′(t)−1⋃
l=l′(t)−L

�−
l′ (T ) ∪ �̄+

l(t )(T ) ∪ �̄−
l′(t)(T ), (112)

where the sets �+
l (T ) and �−

l′ (T ) were defined in (59) and (80) and where

�̄+
l(t )(T ) �

min{RM(t),[σl(t)h
(nl(t)+1)]}⋃

i=0

T −i[0, σl(t)λ
(nl(t))]

and �̄−
l′(t) is the analogous truncation of �−

l′(t). Note also that we have

Leb(�t)
t→+∞−−−−→ 0. (113)

Equation (113) follows from (60) and from the analogous property for each Leb(�−
l′ )

(note that l(t) and l′(t) → +∞ as t → +∞), and from the fact that �t is contained
in a union of at most 2(L + 1) sets which are either �+

l with l ≥ l(t) − L or �−
l′ with

l′ ≥ l′(t) − L.

Proof of Proposition 4.2. Fix T , C+ > C−, δ > 0 and M > 1 and let ηp(t) be the
preliminary partitions given by Proposition 4.1 for t ≥ t0. Consider the set �t(T ) defined
in (112) and, by (113), choose t1 ≥ t0 so that Leb(�t ) < δ/2 for t ≥ t1. Define ηs(t)

as the partition obtained from ηp(t) throwing away all the intervals which intersect �t .
If I ∈ ηp(t) and I ∩ �t �= ∅, then, from property (1) in Proposition 4.1, either I ⊂ �t or,
for some 0 ≤ j ≤ RM(t), T j I contains either some points σlλ

(nl ) with l(t)−L ≤ l ≤ l(t)
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or some 1 − σl′λ
(nl′ )
I with l′(t) − L ≤ l′ ≤ l′(t). Hence, using (113), property (2) in

Proposition 4.1 and bounding the number of such points, we obtain

Leb(ηs(t)) ≥ Leb(ηp(t)) − Leb(�t ) − 2

t log log t
2(L + 1)

2t

mf

and, enlarging t1 if necessary, both the last two terms in the previous equation are less
than δ/2.

Let t/3 ≤ r ≤ 2/mf and x ∈ ηs(t). Let us show that the assumptions of Corollary 3.4
and Corollary 3.5 on the growth of Sr(f

′) and Sr(f
′′) hold. By Lemma 4.2, there exist

l, l′, with l(t) − L ≤ l ≤ l(t) and l′(t) − L ≤ l′ ≤ l′(t) such that h(nl) ≤ r < h(nl+1) and

h
(n′

l′ )
I ≤ r < h

(n′
l′+1

)

I . Since by construction of ηs(t), x /∈ �t , in particular, if l < l(t) and
l′ < l′(t), x /∈ �+

l , x /∈ �−
l′ . Hence in this case the assumptions (81) of Corollaries 3.4

and 3.5 hold. In the case where l = l(t) or l′ = l′(t), we only have x /∈ �̄+
l or x /∈ �̄−

l′ , but
also in this case the corollaries hold since the only property needed in their proof is that

T ix /∈ [0, σl(t)λ
(nl(t))] or [1 − σl′(t)λ

(n′
l′(t))

I , 1) for 0 ≤ i ≤ r and r ≤ RM(t).
Since r ≥ t/3 ≥ t1/3, enlarging t1, one can assure that r ≥ ro, for the ro given

by Corollaries 3.4 and 3.5 and since x ∈ I ∈ ηp(t), x is not a singularity of Sr(f ) by
properties (1) and (3) of Proposition 4.1. Hence one can apply Corollaries 3.4 and 3.5.
Moreover, by property (3),

xm � min
0≤i<r

T ix ≥ M

t log log t
and 1 − xM � min

0≤i<r
(1 − T ix) ≥ M

t log log t
.

Thus, we obtain, respectively,

Sr (f
′)(x) ≤ −C1r log r

(
1 − C+(κ ′ + 1)t log log t

C1Mr log r

)
, (114)

|Sr(f
′)(x)| ≤ C2r log r

(
1 + (κ + κ ′ + 2)t log log t

Mr log r

)
, (115)

|Sr(f
′′)(x)| ≤ C4

t log log t

M
r log r

(
1 + (κ ′ + κ + 2)t log log t

Mr log r

)
. (116)

Recalling that t ≤ 3r and again by enlarging t1 if necessary, one can ensure that the last
terms in (114), (115) and (116), involving t log log t/r log r , are less than 1/2. Hence we
obtain (89), (90) and (91), respectively. �

COROLLARY 4.1. For each I = [a, b) ∈ ηs(t), x ∈ I and r(a, t) ≤ r ≤ r(b, t),

const(t log t) ≤ |Sr(f
′)(x)| ≤ const′(t log t), (117)

�f (I, t) ≥ const

(
log t

log log t

)
t→+∞−−−−→ +∞, (118)

|�f (I, t)| = o(log t), |�f 1(I, t)| = o(log t). (119)

Proof. Equation (117) follows from (89) and (90), since t/3 ≤ r(a, t), r(b, t) ≤ 2t/mf .
Since Sr(a,t)(f ) is continuous with its derivative on [a, b] (properties (1) and (3) in
Proposition 4.1), by the mean value theorem there exists z ∈ I such that

�f = Sr(a,t)(f )(a) − Sr(a,t)(f )(b) = −Sr(a,t)(f
′)(z)(b − a) ≥ const(t log t)

2t log log t
,
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where we applied (89) and the control on the interval sizes (property (2) in Proposition 4.1).
The proof of (119) is obtained similarly by using (117). �

4.5. Mixing partitions. Let us prove Proposition 4.3.

4.5.1. Uniform vertical distribution. Let us show that given ε > 0, choosing M >

M0(ε), each I ∈ ηs(t) satisfies property (1) of Proposition 4.3. Let us recall the following
definition used in [5] (see also [13, 16, 17]).

Definition 4.1. Given ε > 0, the function g on the interval [a, b] is ε-uniformly distributed
if, for any c, d such that inf[a,b) g ≤ c ≤ d ≤ sup[a,b) g, the measure of the set
Ic,d = {x ∈ [a, b) | c ≤ g(x) ≤ d} satisfies

(1 − ε)
d − c

sup[a,b) g − inf[a,b) g
≤ Leb(Ic,d )

b − a
≤ (1 + ε)

d − c

sup[a,b) g − inf[a,b) g
. (120)

In [5], Fayad proves the following criterion to get uniform distribution.

LEMMA 4.3. (Fayad) If g is monotonic and

sup
[a,b)

|g′′(x)||b − a| ≤ ε inf[a,b)
|g′(x)|, (121)

then g is ε-uniformly distributed on [a, b].
For each [a, b) ∈ ηs(t), consider Sr(a)+j (f ), for j = 1, . . . , J ([a, b), t) − 2.

From property (2) of Proposition 4.1, (89) and (91) and r ≤ 2t/mf ,

sup[a,b) |Sr(a)+j (f
′′)(x)||b − a|

inf[a,b) |Sr(a)+j (f ′)(x)| ≤ C′′r2(log r)(log log r)(b − a)

MC′
1r log r

≤ C′′((2t/mf ) log log(2t/mf ))(2/t log log t)

MC′
1

t→+∞−−−−→ 4C′′

MC′
1mf

.

Choosing M > M0(ε) � 8C′′/C′
1mf ε and then t3 ≥ t2 large enough, the last expression is

less than ε for t ≥ t3. Hence, each Sr(a)+j (f ), for j = 1, . . . , J −2, being also decreasing,

is ε-uniformly distributed on [a, b) ∈ ηs(t) by Lemma 4.3. The set I
h(R)
j defined in (94)

is of the form Ic,d for g = Sr(a)+j (f ), c = t − h(R) and d = t ; by the definition (93) of
splitting points, one can check that d = g(yj ) ≤ sup[a,b) g and c ≥ g(yj+1) ≥ inf[a,b) g.
Hence, by (120), its measure is bounded by

(1 − ε)
h(R)

�f j ([a, b), t)
(b − a) ≤ Leb(I

h(R)
j ) ≤ (1 + ε)

h(R)

�f j ([a, b), t)
(b − a). (122)

This proves the uniform vertical distribution property (95).
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4.5.2. Rough upper and lower bound on the number of curves. Recall that the number
of curves generated from each ϕt(I) is given by J (I, t) = r(b, t) − r(a, t) + 1.

LEMMA 4.4. For each I = [a, b),

r(T r(a)b,�f ) + 1 ≤ J (I, t) ≤ r(T r(a)+1b,�f 1) + 3. (123)

Lemma 4.4 shows that the number of strips is related to the number of fibers that the
point T r(a)b still has to cover in time �f when a stops, because of the delay accumulated
through the stretching of Sr(a)(f ).

Proof. Applying the relation Sr1+r2(f )(x) = Sr1(f )(x) + Sr2(f )(T r1x) and the definition
(2) of r(·, ·),

Sr(T r(a)b,�f )+r(a)(f )(b) = Sr(a)(f )(b) + Sr(T r(a)b,�f )(f )(T r(a)b)

≤ Sr(a)(f )(b) + �f = Sr(a)(f )(a) ≤ t .

Hence, r(b, t) ≥ r(T r(a)b,�f ) + r(a, t), which is the first inequality in (123).
For the second inequality,

Sr(T r(a)+1b,�f 1)+r(a)+2(f )(b) = Sr(a)+1(f )(b) + Sr(T r(a)+1b,�f 1)+1(f )(T r(a)+1b)

> Sr(a)+1(f )(b) + �f 1 = Sr(a)+1(f )(a) > t,

which implies that r(b) < r(T r(a)+1b,�f 1) + r(a) + 2. �

COROLLARY 4.2. Let J̄ (t) � supI∈ηs(t)
J (I, t). Then

J̄ (t) = o(log t). (124)

Proof. By Lemma 4.4, J (I, t) ≤ r(T r(a)+1b,�f 1) + 3 ≤ �f 1(I, t)/mf + 3. Recalling
that �f 1(I, t) = o(log t) by (119) of Corollary 4.1 we obtain the bound. �

Consider the map Rt : I (0) → I (0) given by Rt (x) = T r(x,t)x, which is the projection
of ϕt(x, 0) ∈ Xf to the base I (0). Note that Rt in general is not one-to-one. The following
lemma is used by Kochergin in [13] (Lemma 1.3).

LEMMA 4.5. (Kochergin) For any measurable set S ⊂ I (0),

Leb(R−1
t S) ≤

∫
S

(
f (x)

mf

+ 1

)
dx. (125)

Since f ∈ L1, by absolute continuity of the integral, for any δ > 0 it is possible to
choose δ1 such that the right-hand side of (125) is bounded by δ as long as Leb(S) < δ1.
Hence we obtain the following corollary.

COROLLARY 4.3. For each δ > 0, there exists δ1 > 0 such that for any measurable
S ⊂ I (0), if Leb(S) < δ1, then Leb(R−1

t S) < δ.

LEMMA 4.6. There exist partitions η5(t) ⊂ ηs(t) and t3 ≥ t2 such that, for t ≥ t3,
Leb(η5(t)) ≥ Leb(ηs(t)) − δ and for each x ∈ I ∈ η5(t),

|T rx| ≥ 1

(log t)2
, |1 − T rx| ≥ 1

(log t)2
, (126)

for each r(a, t) ≤ r ≤ r(a, t) + J (I, t).
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Proof. Define

U3(t) �
[J̄ (t )]⋃

i=−[J̄ (t )]
T i

([
0,

1

(log t)2

])
∪

[J̄ (t )]⋃
i=−[J̄ (t )]

T i

([
1 − 1

(log t)2 , 1

])
. (127)

Since the continuity intervals for T [J̄ (t )] and T −[J̄ (t )] are at most d([J̄ (t)] + 1)

(see §4.3.1), the set U3(t) consists of at most O(J̄ (t)2) disjoint intervals. Consider
the (2/t log log t)-neighborhood of U3(t), i.e. let U4(t) � {x ∈ I (0) | d(x,U3(t)) ≤
2/(t log log t)}. Hence, using Corollary 4.2,

Leb(U4(t)) ≤ 4J̄ (t) + 4

(log t)2 + const
J̄ (t)2

t log log t

t→+∞−−−−→ 0.

Choosing t3 > t2 so that for t ≥ t3, Leb(U4) < δ1 where δ1 is given by Corollary 4.3, we
obtain Leb(R−1

t (U4)) < δ. Define a refined partition η5(t) ⊂ ηs(t) by

η5(t) � ηs(t)\{I = [a, b) ∈ ηs(t) | Ī = [a, b] ⊂ R−1
t U4(t)}.

Clearly Leb(η5(t)) ≥ Leb(ηs(t)) − δ. Let us show that, for each I ∈ η5(t), we obtain
(126). By construction there exists x ∈ I such that Rt (x) = T r(x,t)x /∈ U4(t). Hence, by
Proposition 4.1, T r(x,t)y /∈ U3(t) for each y ∈ Ī . For each r = r(a), . . . , r(a) + J , the
point T ry satisfies the inequalities (126) by definition of U3(t), because T r(x,t)y /∈ U3(t),
as shown above, and |r(x, t) − r| ≤ J . �

LEMMA 4.7. (Rough lower bound on J ) Let J(t) � infI∈η5(t) J (I, t), so

J(t) ≥ const
log t

(log log t)2
t→+∞−−−−→ +∞. (128)

Proof. For each I = [a, b) ∈ η5(t), by Lemma 4.6, f (T rb) ≤ const log(log t) for each
r(a, t) ≤ r ≤ r(a, t)+ J (I, t). Hence, since by Lemma 4.4, J (I, t) ≥ r(T r(a)b,�f )+ 1,

J (I, t) ≥ Sr(T r(a)b,�f )+1(f )(T r(a)b)

max0≤i<r(T r(a)b,�f )+1 f (T r(a)+ib)
≥ const

�f

log(log t)
,

which gives (128) by using the bound (118) on �f . �

4.5.3. Variation of slopes. Given I = [a, b) ∈ η5(t) the variation of the average slope
of the curves (t − Sr(a)+j (f ))|I , for 0 ≤ j ≤ J (I, t) can be written as

|�f j − �f | = |Sr(a)+j (f )(a) − Sr(a)+j (f )(b) − Sr(a)(f )(a) + Sr(a)(f )(b)|

=
∣∣∣∣j−1∑
i=0

f (T r(a)+ia) −
j−1∑
i=0

f (T r(a)+ib)

∣∣∣∣ ≤
j−1∑
i=0

|f ′(T r(a)+ic)|(b − a),

where in the last estimate a ≤ c ≤ b by the mean value theorem. Using Lemma 4.6,
|f ′(T r(a)+ic)| ≤ const(log t)2 for each 0 ≤ i < j ≤ J̄ (t). Hence, applying also the
bound on J̄ (t) given by Corollary 4.2, the growth estimate (118) for �f and the size
control of (b − a) (property (2) of Proposition 4.1),∣∣∣∣�f j − �f

�f

∣∣∣∣ ≤ J̄ (t) supJ−1
i=0 |f ′(T r(a)+ic)|(b − a)

�f
≤ const

log t (log t)2

(log t/log log t)t log log t
,

which converges to zero as t → +∞. Enlarge t3 > 0 so that the right-hand side is less
than ε for t ≥ t3 to obtain (96).
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4.5.4. Equidistribution on the base and asymptotic number of curves. Both the
equidistribution on the base and the exact asymptotic number of curves follow by proving
uniform convergence on a large set for the Birkhoff sums of χ and f , respectively. More
precisely, one seeks uniform control for the points of the form T r(a)b where b are the
endpoints of the partition intervals [a, b).

Let η̃5(t) be a narrowing of η5(t) obtained by keeping only the central third of each
interval:

η̃5(t) �
{[

a + (b − a)

3
, b − (b − a)

3

) ∣∣∣∣ [a, b) ∈ η5(t)

}
.

For each ε > 0 and δ1 > 0, by ergodicity of T and T −1 one can find U5 and N > 0
such that Leb(U5) < δ and for each x /∈ U5 and n ≥ N ,∣∣∣∣Sn(f, T i)(x)

n
− 1

∣∣∣∣ < ε,

∣∣∣∣Sn(χ, T i)(x)

n
− (b2 − b1 − 2δ)

∣∣∣∣ < ε, i = 1,−1. (129)

If δ1 is given by Corollary 4.3 in correspondence of δ/3 > 0, we obtain Leb(R−1−t (U5)) <

δ/3. Define η6(t) ⊂ η5(t) by throwing away all intervals I ∈ η5(t) such that the
corresponding Ĩ is completely contained in R−t (U5). Hence, Leb(η6(t)) ≥ Leb(η5(t)) −
δ ≥ Leb(ηs(t)) − 2δ by Lemma 4.6.

By construction, for each I ∈ η6(t), there exists x̄ such that |x̄ −a|, |x̄ −b| > (b−a)/3
and T r(x̄,t)x̄ /∈ U5 and hence equation (129) holds for x = x. Arguing as in Corollary 4.1
to prove (118), both �f ([a, x̄), t) and �f ([x̄, b), t), as t → ∞, are bounded from below
by const(log t/log log t). As in Lemma 4.4,

r(x̄) − r(a) ≥ r(T r(a)x̄,�f ([a, x̄), t)), r(b) − r(x̄) ≥ r(T r(x̄)b,�f ([x̄, b), t)).

Hence, by the same proof as in Lemma 4.7, both r(x̄) − r(a) and r(b) − r(x̄) tend to
infinity uniformly as t increases. Choose t4 so that, for t ≥ t4, both r(x̄) − r(a) > N and
r(b)− r(x̄) > N . Hence, the estimates in (129) hold when n = r(x̄)− r(a) or r(b)− r(x̄)

and x = T r(x̄,t)x̄. Moreover, they also hold for i = −1 and x = T r(x̄,t)−1x̄. To see this, in
the case of f , use the fact that

Sr(x̄)−r(a)(f, T −1)(T r(x̄,t )−1x̄) = Sr(x̄)−r(a)+1(f, T −1)(T r(x̄,t )x̄) − f (T r(x̄,t )x̄)

and from Lemma 4.6 and the analogous result of Lemma 4.7 for �f ([a, x̄), t),

f (T r(x̄,t )x̄)

r(x̄) − r(a)
≤ const log(log t)2 (log log t)2

log t
,

which can be made arbitrarily small by enlarging t4 if necessary. In the case of χ , just use
the fact that χ ≤ 1 and r(x̄) − r(a) tends to infinity.

Let us combine these estimates decomposing the Birkhoff sums as

Sr(b)−r(a)(χ, T )(T r(a)x̄) = Sr(x̄)−r(a)(χ, T −1)(T r(x̄)−1x̄) + Sr(b)−r(x̄)(χ, T )(T r(x̄)x̄)

and using the fact that
r(b) − r(x̄)

r(b) − r(a)
+ r(x̄) − r(a)

r(b) − r(a)
= 1.
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We obtain ∣∣∣∣Sr(b)−r(a)(χ, T )(T r(a)x̄)

r(b) − r(a)
− (b2 − b1 − 2δ)

∣∣∣∣ ≤ 2ε, (130)

which proves equidistribution on the base (98) for x̄ ∈ I .

LEMMA 4.8. Enlarging t4 if necessary, for each [a, b) ∈ η6(t), t ≥ t4,∣∣∣∣ 1

r(b) − r(a)
Sr(b)−r(a)(f )(T r(a)b) − 1

∣∣∣∣ ≤ 2ε.

Proof. By the mean value theorem, there exists z ∈ [x̄, b) such that

|Sr(b)−r(x̄)(f )(T r(x̄,t )x̄) − Sr(b)−r(x̄)(f )(T r(x̄,t )b)|
≤ |Sr(b)−r(x̄)(f

′)(T r(x̄,t )z)| · (b − x̄) ≤ J̄ (t) sup
r(x̄)≤i≤r(b)

|f ′(T iz)|(b − x̄)

≤ const
log t (log t)2

t log log t
,

where we have used Corollary 4.2 to bound J̄ (t), Lemma 4.6 to bound |f ′(T iz)| and
property (2) in Proposition 4.1 to control the size (b − a). Hence, enlarging t4, from the
analogous estimate for T r(x̄,t)x̄, we obtain for t ≥ t4,∣∣∣∣ 1

r(b) − r(x̄)
Sr(b)−r(x̄)(f )(T r(x̄,t )b) − 1

∣∣∣∣ ≤ 2ε. (131)

In a similar way, from the analogous estimate for T r(x̄,t)−1x̄, we obtain∣∣∣∣ 1

r(a) − r(x̄)
Sr(a)−r(x̄)(f, T −1)(T r(x̄,t )−1b) − 1

∣∣∣∣ < 2ε. (132)

Combining (131) and (132) and decomposing the Birkhoff sums as

Sr(b)−r(a)(f, T )(T r(a)b) = Sr(x̄)−r(a)(f, T −1)(T r(x̄)−1b) + Sr(b)−r(x̄)(f, T )(T r(x̄)b)

we obtain the following lemma. �

LEMMA 4.9. Enlarging t4 if necessary, for each [a, b) ∈ η6(t), if t ≥ t4,∣∣∣∣Sr(b)−r(a)(f )(T r(a)b)

�f
− 1

∣∣∣∣ ≤ ε.

Proof. Since we can rewrite

Sr(b)−r(a)(f )(T r(a)b) = Sr(b)(f )(b) − Sr(a)(f )(b) + Sr(a)(f )(a) − Sr(a)(f )(a)

= �f + Sr(b)(f )(b) − Sr(a)(f )(a),

from t − f (T r(a)a) < Sr(a)(f )(a) ≤ t and t − f (T r(b)b) < Sr(b)(f )(b) ≤ t , we obtain∣∣∣∣Sr(b)−r(a)(f )(T r(a)b)

�f
− 1

∣∣∣∣ ≤ max{f (T r(b)b), f (T r(a)a)}
�f

≤ const
(log log t)2

log t
→ 0,

by using Lemma 4.6 and (118). �
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From Lemmas 4.8 and 4.9, for each ε > 0, and by choosing ε appropriately, we obtain∣∣∣∣ r(b, t) − r(a, t)

Sr(b)−r(a)(f )(T r(a)b)

Sr(b)−r(a)(f )(T r(a)b)

�f
− 1

∣∣∣∣ ≤ ε

for t ≥ t4. Recalling that J ([a, b), t) − 1 = r(b, t) − r(a, t), this concludes the proof of
the asymptotic number of curves (97).

Setting ηm(t) = η6(t), this completes the verification that the partitions ηm(t), for
an appropriate choice of δ and t ≥ t̄ � max{t3, t4}, satisfy all the properties listed in
Proposition 4.3.
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