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Abstract

We develop a dimension theory for coadmissible ÙD-modules on rigid analytic spaces
and study those which are of minimal dimension, in analogy to the theory of holonomic
D-modules in the algebraic setting. We discuss a number of pathologies contained in this
subcategory (modules of infinite length, infinite-dimensional fibres). We prove stability
results for closed immersions and the duality functor, and show that all higher direct
images of integrable connections restricted to a Zariski open subspace are coadmissible
of minimal dimension. It follows that the local cohomology sheaves H i

Z(M) with sup-
port in a closed analytic subset Z of X are also coadmissible of minimal dimension for
any integrable connectionM on X.

1. Introduction

Let K be a complete discrete valuation field of characteristic zero with valuation ring R and
uniformizer π ∈ R. We allow both the case of mixed characteristic (e.g. finite field extensions of
the p-adic numbers Qp) and equal characteristic (e.g. C((t))).

In [AW19], the first and third authors introduced the sheaf ÙDX of analytic (infinite-order)
differential operators on a smooth rigid analytic K-space X. It was shown in [AW19] and in
greater generality in [Bod19a] that sections over affinoids are Fréchet–Stein algebras as defined
by Schneider and Teitelbaum [ST03], which suggests the notion of coadmissibility as the natural
analogue of coherence in this setting. We denote the category of coadmissible ÙDX -modules by CX .

In the classical theory of D-modules (on a smooth complex algebraic variety X, say), one is
often particularly interested in those modules which are holonomic. There are various equivalent
ways to define these, one of which is as follows. One can introduce a dimension function d
for coherent D-modules, either as the dimension of the support of the associated characteristic
variety, or in terms of homological algebra by interpreting the homological grade of a module
as its codimension. One then shows that any non-zero coherent DX -module M on a smooth,
equidimensional variety X satisfies

dimX ≤ d(M) ≤ 2 dimX,

which is known as Bernstein’s inequality. A coherent DX -module M is said to be holonomic if
d(M) ≤ dimX, that is,M is either zero or of minimal dimension.
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Equivalently, holonomic DX -modules can be characterized as those coherent DX -modulesM
satisfying either of the following equivalent properties:

(∗) for every point i : x→ X and any j ∈ Z, the cohomology Hj(i+M) is a finite-dimensional
vector space over C, where i+ denotes the derived inverse image of D-modules (see [HTT08,
Theorem 3.3.1]);

(∗∗) for any smooth morphism f : X ′ → X and any divisor Z of X ′, the local cohomology sheaves
H i

Z(f∗M) are coherent DX′-modules for any i ≥ 0 (see property (∗∗) in the introduction
of [Car04]).

The category of holonomic DX -modules plays a crucial role in many parts of algebraic geometry,
algebraic analysis and geometric representation theory. It contains all integrable connections
on X, and each holonomic module has finite length. Moreover, the notion of holonomicity is
stable under pullback, pushforward, tensor product and the duality functor, which takes the
form

D :M �→ Extdim X
DX

(M,DX)⊗OX
Ω⊗−1

for any holonomic DX -module M.
Moreover, the Riemann–Hilbert correspondence asserts an equivalence of categories between

holonomic modules with regular singularities and the category of perverse sheaves.
In this paper, we begin the study of a subcategory of CX analogous to the category of

holonomic D-modules. While there is currently no satisfactory theory of characteristic varieties
for coadmissible ÙD-modules, we can adopt the homological viewpoint by slightly generalizing
the dimension theory for Fréchet–Stein algebras given in [ST03], where results were given for
Fréchet–Stein algebras defined by Banach algebras which are Auslander regular with univer-
sally bounded global dimension. We relax this condition by allowing Banach algebras which are
Auslander–Gorenstein with universally bounded self-injective dimension. This allows us to
define the dimension of a coadmissible ÙDX -module. We then prove the corresponding Bernstein
inequality.

Theorem A. Let X be a smooth affinoid K-space such that T (X) is a free O(X)-module.

(i) There is a Fréchet–Stein structure ÙD(X) ∼= lim←−An, where each An is Auslander–Gorenstein
with self-injective dimension bounded by 2 dimX.

(ii) If M is a non-zero coadmissible ÙD(X)-module then

d(M) ≥ dimX,

where d(M) = 2 dimX − j(M) for j(M) the homological grade of M .

We also note that Mebkhout and Narvaez-Macarro have already discussed dimensions of
modules over the sheaf D of algebraic (i.e. finite-order) differential operators on a rigid analytic
space in [MN91], and we show that the two theories are compatible in the obvious way. This
rests on the following theorem.

Theorem B. Let X be a smooth affinoid K-space. Then ÙD(X) is a faithfully flat D(X)-module.

We call a coadmissible ÙD-moduleM on X which satisfies d(M) ≤ dimX weakly holonomic.
This choice of nomenclature reflects the fact that the category of weakly holonomic modules still
contains some pathologies which do not appear in the algebraic theory: we present examples of
weakly holonomic modules which are not of finite length and have infinite-dimensional fibres. In
particular, the natural analogues of (∗) and (∗∗) do not provide equivalent characterizations of
weak holonomicity.
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In [BB21], Bitoun and the second author already gave an example of an integrable connection
on the punctured unit disc such that its direct image on the disc is not even coadmissible, so
weakly holonomic ÙD-modules are not stable under pushforward either.

Nonetheless, we also produce some positive results. One can define a duality functor as in
the classical setting and show that this gives an involution of the category of weakly holonomic
modules. We also show that the ÙD-module analogue of Kashiwara’s equivalence given in [AW18]
respects weak holonomicity. Concerning the question of pushforwards along open embeddings,
we prove the following result.

Theorem C. Let j : U → X be a Zariski open embedding of smooth rigid analytic K-spaces and
let M be an integrable connection on X. Then Rij∗(M|U ) is a coadmissible, weakly holonomicÙDX -module for any i ≥ 0.

By ‘Zariski open embedding’, we mean that U is an admissible open subspace of X whose
complement is a closed analytic subset of X.

The proof of Theorem C relies on the rigid analytic analogue of Hironaka’s resolution of
embedded singularities as developed by Temkin [Tem18].

As a corollary, we obtain that the local cohomology sheaves H i
Z(M) are also coadmissible,

weakly holonomic ÙDX -modules, where Z is any closed analytic subset of X.
In this way, we verify that any integrable connectionM on X satisfies the following natural

analogue of (∗∗):
(∗∗′) for any smooth morphism f : X ′ → X and any divisor Z of X ′, the local cohomology

sheaves H i
Z(f∗M) are coadmissible for any i ≥ 0.

We mention at this point that Caro has taken property (∗∗) as the point of departure for his devel-
opment of the study of overcoherent arithmetic D-modules [Car04]. It would be very interesting
to investigate whether (∗∗′) (maybe together with some analogue of Caro’s overholonomicity
condition [Car09]) yields a sufficiently rich subcategory of weakly holonomic ÙD-modules which
has better finiteness and stability properties.

We hope that these results bring us closer to the formulation of a theoretical framework
which allows for a p-adic Riemann–Hilbert correspondence for ÙDX -modules, generalizing results
by Liu and Zhu [LZ17] for (a suitable category of) integrable connections and (de Rham) local
systems.

Structure of the paper
In § 2 we recall some of the results and terminology from [AW19].

In § 3 we prove Theorem B.
In § 4 we show that the sections ÙD(X) over a smooth affinoid X are of the form as claimed

in Theorem A(i). In § 5 we slightly generalize the dimension theory from [ST03] to algebras of
this form.

In § 6 we prove Bernstein’s inequality, Theorem A(ii).
In § 7 we show some basic properties of the category of weakly holonomic ÙD-modules. Among

other things, we prove that every integrable connection is weakly holonomic, and discuss the
duality functor.

In § 8 we present examples which have no analogue in the classical theory: there exist weakly
holonomic ÙD-modules which do not have finite length and have fibres of infinite dimension.
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We also briefly recall the results from [BB21], which is concerned with the extension of meromor-
phic connections to coadmissible ÙD-modules. Crucially, it also gives an example of an integrable
connection whose direct image is not coadmissible.

In §§ 9 and 10 we prove Theorem C by first considering the case where the complement of
U is the analytification of a strict normal crossing divisor and then reducing to that case by
invoking Temkin’s resolution of embedded singularities [Tem18] and the results in [Bod19b].

Convention
All our rigid analytic spaces will be quasi-separated.

Throughout, smooth rigid analytic spaces will be assumed to be equidimensional for sim-
plicity. Arguing on each connected component separately, analogues of all our results can be
formulated for arbitrary smooth spaces in a straightforward manner.

Notation
Given an R-module M , we denote by M̂ its π-adic completion and abbreviate M̂ ⊗R K to ‘MK .

2. Basic theory of ıD-modules

We recall some definitions and results from [AW19].

2.1 Fréchet completed enveloping algebras
Let k be a commutative base ring and A a commutative k-algebra.

A Lie–Rinehart algebra (or (k, A)-Lie algebra) is an A-module L equipped with a k-bilinear
Lie bracket and an A-linear Lie algebra homomorphism, called the anchor map,

ρ : L→ Derk(A)

such that [x, ay] = a[x, y] + ρ(x)(a)y for any a ∈ A, x, y ∈ L.
We say that L is smooth if it is coherent and projective as an A-module.
For any (k, A)-Lie algebra L, one can form the enveloping algebra UA(L) as in [Rin63, § 2].

Similarly to the construction of the universal enveloping algebra of a Lie algebra, this can be
obtained as a quotient of the tensor algebra Tk(A⊕ L) by suitable relations, such that (see
[AW19, § 2.1]) UA(L) is an associative k-algebra, equipped with canonical morphisms

iA : A→ UA(L), iL : L→ UA(L)

of k-algebras and k-Lie algebras respectively, satisfying the following universal property. If S
is a k-algebra with jA : A→ S a k-algebra homomorphism and jL : L→ S a k-Lie algebra
homomorphism such that

jL(ax) = jA(a)jL(x) and jL(x)jA(a) = jA(a)jL(x) + jA(ρ(x)(a))

for all a ∈ A, x ∈ L, then there exists a unique k-algebra homomorphism φ : UA(L)→ S such
that φ ◦ iA = jA and φ ◦ iL = jL.

Therefore, if M is an A-module, taking for jA the action map σ : A→ Endk(M) shows that
to extend the A-module structure on M to a UA(L)-module structure is equivalent to giving a
k-linear Lie algebra action jL : L→ Endk(M) of L on M such that

jL(ax)(m) = σ(a)(jL(x)(m)) and jL(x)(σ(a)(m)) = σ(a)(jL(x)(m)) + σ(ρ(x)(a))(m)

for all a ∈ A, x ∈ L, m ∈M (see, for example, [Rin63, p. 197]).
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If A is an affinoid K-algebra, we say that an R-subalgebra A ⊂ A is an affine formal model
if A⊗R K = A and A is a topologically finitely presented R-algebra.

Let A be an affinoid K-algebra with affine formal model A. A finitely generated A-submodule
L of a (K, A)-Lie algebra L is called an A-Lie lattice if L ⊗R K = L, L is closed under the Lie
bracket and ρ(x)(a) ∈ A for any x ∈ L, a ∈ A. In particular, L is naturally an (R,A)-Lie algebra.
We note that if L is an A-Lie lattice, so is πnL for any n ≥ 0.

We say that L admits a smooth Lie lattice if there exists an affine formal model A such that
L contains a A-Lie lattice L which is smooth when regarded as an (R,A)-Lie algebra.

Definition [AW19, § 6.2]. Let A be an affinoid K-algebra with affine formal model A, and let L
be a coherent (K, A)-Lie algebra with A-Lie lattice L. The Fréchet completed enveloping algebra
ŮA(L) is defined to be

ŮA(L) = lim←−
n

¤UA(πnL)K .

It was shown in [AW19, § 6.2] that this does not depend on the choice of affine formal model
and Lie lattice.

The key property of Ŭ(L) is that it is a Fréchet–Stein algebra in the sense of [ST03] whenever
L is smooth.

Definition [ST03, § 3]. A K-Fréchet algebra U is called (left, right, two-sided) Fréchet–Stein
if it is isomorphic to a countable inverse limit lim←−Un for (left, right, two-sided) Noetherian
K-Banach algebras Un whose connecting maps are flat (on the right, on the left, on both sides)
with dense images.

A left U -module M is called coadmissible if M ∼= lim←−Mn, where Mn is a finitely generated
Un-module such that the natural morphism Un ⊗Un+1 Mn+1 →Mn is an isomorphism for each n.

For a given Fréchet–Stein algebra U , we denote the category of coadmissible left U -modules
by CU .

Theorem [Bod19a, Theorem 3.5]. Let A be an affinoid K-algebra and let L be a smooth (K, A)-
Lie algebra. Then ŮA(L) is a two-sided Fréchet–Stein algebra.

2.2 Lie algebroids and Fréchet completions
Let X be a rigid analytic K-variety. Recall from [BGR84, § 9.1.4] the strong G-topology Xrig

consisting of admissible open subsets of X and admissible coverings. We now discuss the sheafifi-
cation of the notion of Lie–Rinehart algebra, where the role of Derk(A) is played by the tangent
sheaf TX .

Definition. A Lie algebroid on a rigid analytic K-space X is a pair (ρ, L ) where

(i) L is a locally free sheaf of OX -modules of finite rank on Xrig,
(ii) L is a sheaf of K-Lie algebras, and
(iii) ρ : L → TX is an OX -linear map of sheaves of Lie algebras such that

[x, ay] = a[x, y] + ρ(x)(a)y

for any a ∈ OX , x, y ∈ L .
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Given a Lie algebroid L , there exists a unique sheaf Ů (L ) on Xrig such that on each
admissible open affinoid subspace Y ⊆ X, we have

Ů (L )(Y ) = ˇUO(Y )(L (Y ))

with the obvious restriction maps to smaller affinoid subdomains (see [AW19, Theorem 9.3] and
the remark after [Bod19a, Theorem 4.9]).

If X is a smooth rigid analytic K-space, then its tangent sheaf TX (together with ρ = id) is
a Lie algebroid, and we write ÙDX = Ů (TX).

2.3 Localization and coadmissible modules
Given a Lie algebroid L on an affinoid K-space X, write ıU = Ů (L ). We can localize coad-
missible modules over the Fréchet–Stein algebra ıU (X) as follows (see [AW19, § 8.2]). For any
admissible open affinoid subspace Y of X, the functor

ıU (Y ) “⊗ÙU (X)

− : C ÙU (X)
→ ıU (Y )−mod

sends coadmissible ıU (X)-modules to coadmissible ıU (Y )-modules, where each term is equipped
with its canonical Fréchet topology (it was shown in [BB21, Corollary A.6] that the completed
tensor product “⊗ agrees with the operation Ù⊗ defined in [AW19, § 7.3]).

This gives rise [AW19, Theorem 8.2, Theorem 9.5] to a fully faithful exact functor

Loc : {coadmissible ıU (X)-modules} → {sheaves of ıU -modules on Xrig},

and we call its essential image CÙU , the category of coadmissible ıU -modules.

Definition [AW19, Definition 9.4]. If X is an arbitrary rigid analytic K-space and L is a Lie
algebroid on X, we say that a sheaf of Ů (L )-modulesM on Xrig is coadmissible if there exists
an admissible covering (Ui) of X by affinoids such that for each i, M|Ui

∼= Loc Mi for some
coadmissible Ů (L )(Ui)-module Mi.

If X is smooth, we shorten CÛDX
to CX .

3. Faithfully flat completions of deformable algebras

3.1 Statement of the theorem and preliminaries
Recall that a positively filtered R-algebra U is called deformable if grU is flat over R. We define
its nth deformation to be the subring

Un :=
∑
i≥0

πinFiU.

Let U be a deformable R-algebra such that grU is a commutative Noetherian R-algebra and
F0U is π-adically separated.

Note that these assumptions make F0U a commutative Noetherian R-algebra, as it is a
quotient of grU . Moreover, FiU is a finitely generated F0U -module by [AW19, Lemma 6.5]

For example, the properties above are satisfied if U = UA(L) is the enveloping algebra of a
smooth (R,A)-Lie algebra L over an affine formal model A of some affinoid K-algebra A.

It was shown in [AW19, Theorem 6.7] that ŨK = lim←−
’Un,K is a two-sided Fréchet–Stein

algebra.
In this section we prove Theorem B from the introduction by proving the corresponding

result for deformable algebras.
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Theorem. Let U be a deformable R-algebra such that gr U is a commutative Noetherian
R-algebra and F0U is π-adically separated. Then the natural morphism UK → ŨK is faithfully
flat.

By ‘faithfully flat’ we mean that ŨK a faithfully flat UK-module both on the left and on the
right. We present the proof for the right module structure; the analogous statement for the left
module structure can be shown mutatis mutandis.

We note that this result already appears in [SS16, Proposition 3.6] under slightly modified
assumptions, but we do not follow the last step in the proof and would like to put forward this
alternative argument.

Note that flatness follows by the same argument as in [Bod19a, Lemma 4.14], so it remains
to show faithfulness.

Suppose that N is a simple UK-module. We wish to show that ŨK ⊗UK
N �= 0, so it suffices

to find some n such that ’Un,K ⊗UK
N �= 0.

Let M be a finitely generated U -submodule of N such that N = MK , and equip M with a
good filtration F•M (pick a finite generating set m1, . . . , mr and set FiM =

∑r
j=1 FiUmj). We

can now form the finitely generated Un-module

Mn =
∑
i≥0

πinFiM ⊆M.

This is equipped with the filtration

FjMn =
j∑

i=0

πinFiM,

making it a filtered Un-module.
Clearly Mn ⊗R K = N . Moreover, FjMn ⊆ FjM is a finitely generated F0U -module for any

j, n ≥ 0, as F0U is Noetherian.
Recall that [AW13, Lemma 3.5] provides us with an isomorphism ξn : grU → gr Un given

by multiplication by πnj on the jth graded piece. The lemma below discusses an analogous
morphism for modules.

Lemma. There exists a graded R-linear morphism μn : grM → gr Mn such that

(i) μn(m + Fj−1M) = πnjm + Fj−1Mn for all m ∈ FjM ,
(ii) μn(u ·m) = ξn(u) · μn(m) for all u ∈ gr U , m ∈ gr M ,
(iii) μn is surjective,
(iv) ker(μn|grj M ) = (grj M)[πnj ].

Proof. It is immediate from the definition of the filtrations that (i) gives a well-defined R-linear
graded morphism μn satisfying (ii).

For (iii), note that πnjFjM + Fj−1Mn = FjMn for any j ≥ 0, so that μn(grj M) = grj Mn.
For (iv), let m ∈ FjM with the property that m̄ ∈ grj M is annihilated by μn. This means

that πnjm ∈ Fj−1Mn =
∑j−1

i=0 πinFiM ⊆ Fj−1M . So πnjm̄ = 0, that is, m̄ ∈ (grj M)[πnj ]. The
reverse inclusion is clear. �
Corollary. Suppose that πn annihilates the π-torsion of gr M . Then grMn is π-torsionfree.

Proof. Let x̄ ∈ grj Mn satisfy πx̄ = 0. If j ≥ 1, then surjectivity of μn (Lemma 3.1(iii)) implies
that there exists ȳ ∈ grj M such that μn(ȳ) = x̄, and hence

μn(πȳ) = πx̄ = 0.
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Therefore ȳ ∈ gr M is π-torsion by Lemma 3.1(iv), implying that πnȳ = 0 by assumption. As
j ≥ 1, it follows that x̄ = πnj ȳ = 0 as well.

As gr0 Mn = F0M is also π-torsionfree, we have (grMn)[π] = ⊕j(grj Mn)[π] = 0, as
required. �

Since grM is finitely generated over the Noetherian ring grU , it follows from the corollary
that grMn is π-torsionfree for sufficiently large n.

3.2 Torsionfree deformations and the proof of Theorem 3.1
Lemma. Suppose that gr Mn is π-torsionfree. Then N is (1 + πUn)-torsionfree.

Proof. Let Sn = 1 + πUn. Equipping U with its π-adic filtration, it follows from [Li96, Corollary
2.2] that Sn is an Ore set in U and hence in UK . In particular, the set of Sn-torsion elements in
N is a UK-submodule of N , and by simplicity is either 0 or N itself. Assume therefore that N
and hence Mn is Sn-torsion.

We now claim that FjMn = πFjMn for any j ≥ 0. Once we have proved the claim, finite
generation of FjMn over the Noetherian π-adically complete ring F0U forces FjMn = 0 by [AM69,
Corollary 10.19], so Mn = 0, which provides us with the desired contradiction, as Mn ⊗R K =
N �= 0.

Let m ∈ FjMn. As Mn is Sn-torsion, there exists u ∈ Un such that (1− πu)m = 0, so m =
πum.

Since grMn is π-torsionfree, the same is true for FiMn/Fi−1Mn for each i, and thus Mn/FjMn

is also π-torsionfree. In particular, πum ∈ FjMn implies um ∈ FjMn and thus m ∈ πFjMn, as
required. �
Proof of Theorem 3.1. By the remark after Corollary 3.1 and by Lemma 3.2, there exists t such
that N is Sn-torsionfree for any n ≥ t. Then M̂n �= 0 by [AM69, Theorem 10.17]. As Mn is
π-torsionfree, so is M̂n

∼= ”Un ⊗Un Mn, and hence M̂n ⊗R K ∼= ’Un,K ⊗UK
N �= 0 for any n ≥ t.

Therefore ŨK ⊗UK
N �= 0, as required. �

Corollary. Let A be an affinoid K-algebra and let L be a smooth (K, A)-Lie algebra. Then

UA(L)→ ŮA(L) is faithfully flat.

Proof. Flatness was already proven in [Bod19a, Lemma 4.14], so it suffices to show faithfulness.
If L admits a smooth Lie lattice, this follows directly from Theorem 3.1. In the general case,

note that there exists a finite affinoid covering (SpAi) of SpA such that Ai ⊗A L is free (and in
particular admits a smooth Lie lattice) for each i. We thus obtain the commutative diagram

UA(L) ��

��

ŮA(L)

��

⊕UAi(Ai ⊗A L) �� ⊕Ǔ(Ai ⊗ L)

where the left vertical arrow is faithfully flat due to the isomorphism U(Ai ⊗A L) ∼= Ai ⊗A

UA(L) (see [AW19, Proposition 2.3]). Theorem 3.1 thus implies that ⊕Ǔ(Ai ⊗A L) is faith-
fully flat over UA(L): if N is a non-zero U(L)-module, then there exists some i such that

U(Ai ⊗ L)⊗U(L) N �= 0, and hence Ǔ(Ai ⊗ L)⊗U(L) N �= 0. Therefore, if N is a U(L)-module

such that Ŭ(L)⊗N = 0, it follows from ⊕Ǔ(Ai ⊗ L)⊗U(L) N = 0 that N = 0. �
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If A is a smooth affinoid K-algebra and L = T (Sp A), this now proves Theorem B from the
introduction.

4. Auslander–Gorenstein rings and completed enveloping algebras

4.1 Faithfully flat descent
Definition. Let A be a ring.

(i) The grade of an A-module M is

j(M) = min{i : Exti
A(M, A) �= 0},

and ∞ if no such i exists.
(ii) We say that A satisfies the Auslander condition if for every Noetherian A-module M and

any i ≥ 0, we have j(N) ≥ i whenever N is a (right) submodule of ExtiA(M, A).
(iii) A two-sided Noetherian ring is called Gorenstein if it has finite left and right self-injective

dimension.
(iv) A two-sided Noetherian ring is called Auslander–Gorenstein if it satisfies the Auslander

condition and has finite left and right self-injective dimension.

The proof of the following straightforward lemma can be pieced together from the literature
(see, for example, [LS06, Theorem 3.3] and [BBP02, Theorem 1.2]), but as far as we know it has
never been written down in this generality in a single place.

Lemma. If S → S′ is a faithfully flat homomorphism of rings with S′ Auslander–Gorenstein
then S is also Auslander–Gorenstein. Moreover, the dimension of S is bounded above by the
dimension of S′.

Proof. First we show that S is left Noetherian. Suppose that (In) is an ascending chain of left
ideals in S. For each n ∈ N let Jn be the image of S′ ⊗S In → S′ so that (Jn) is an ascending
chain of left ideals in S′. Since S′ is left Noetherian the chain Jn must terminate. Because S → S′

is faithfully flat Jn/Jn−1
∼= S′ ⊗S In/In−1 �= 0 whenever In/In−1 �= 0. Thus the chain In must

terminate.
By symmetry (or by considering the opposite rings) S is also right Noetherian.
Next we show that S satisfies the Auslander condition. Let N be a right S-submodule of

Exti
S(M, S) for some finitely generated left S-module M , and let j < i. Since S → S′ is flat there

is an isomorphism S′ ⊗S Extj
S(N, S) ∼= Extj

S′(N ⊗S S′, S′). The latter is zero since S′ satisfies
the Auslander condition and N ⊗S S′ is isomorphic to a submodule of ExtiS(M, S)⊗S S′ ∼=
Exti

S′(S′ ⊗S M, S′) by the flatness of S → S′ again. Since S → S′ is faithfully flat we may deduce
that Extj

S(N, S) = 0 as required.
Finally, suppose that d = injdimS′S′. For each cyclic S-module M we can compute

Extd+1(M, S)⊗S S′ ∼= Extd+1(S′ ⊗S M, S′) = 0. Since S → S′ is faithfully flat we can deduce
Extd+1(M, S) = 0 and so, using [Jan64, p. 55], that injdimSS ≤ d. �

4.2 Smooth affinoids and Gorenstein formal models
Recall that Raynaud’s theorem [BL93, Theorem 4.1] establishes an equivalence of categories X �→
Xrig between the category of quasi-compact admissible formal R-schemes localized by admissible
formal blowing-ups, and the category of quasi-compact rigid analytic spaces over K. (Recall that
all our rigid analytic spaces are assumed to be quasi-separated.)
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Proposition. Suppose that X is a smooth quasi-compact rigid analytic space over K. Given any
quasi-compact formal model X of X over R, there is an admissible formal blowing-up X † → X
of formal R-schemes with X † Gorenstein.

Proof. By [Har03, Theorem 1.4] there is a finite separable field extension K ′ of K with ring
of integers R′, a quasi-compact strictly semi-stable formal R′-scheme X ′, and a composition of
morphisms of quasi-compact admissible formal R-schemes X ′ → X † → X such that X † → X is
an admissible formal blowing-up and X ′ → X † is flat and surjective. Since being Gorenstein is
a local condition and X ′ → X † is faithfully flat it suffices by Lemma 4.1 to show that X ′ is
Gorenstein. But X ′ is a regular scheme [Har03, Remark 1.1.1] and so Gorenstein. �

4.3 Completed enveloping algebras over Gorenstein algebras
Lemma. Suppose that A is a commutative Gorenstein k-algebra for some commutative ring k,
and L is a smooth (k, A)-Lie algebra of rank r. Then U(L) is Auslander–Gorenstein of dimension
at most dimA + r.

Proof. By [Rin63, Theorem 3.1] there is a positive filtration on U(L) such that grU(L) ∼= Sym(L)
is commutative. By [Lev85, Théorème 4.4, Remarque 4.5] it thus suffices to show that Sym(L)
is Auslander–Gorenstein of dimension at most dimA + r.

Since L is a finitely generated projective (k, A)-module there is a cover of Spec(A) by basic
open subsets D(f1), . . . , D(fm) such that Afi ⊗A L is a free Afi-module of rank r for each i =
1, . . . , m. Since Sym(L)→ ⊕m

i=1 Sym(Afi ⊗A L) is faithfully flat we can use Lemma 4.1 to reduce
to the case that L is free over A, that is, Sym(L) is isomorphic to a polynomial ring A[t1, . . . , tr].
Thus we are done by [WITO69, Corollary 1]. �
Theorem. Suppose that A is a smooth K-affinoid algebra over K with affine formal model
A and that L is a smooth (R,A)-Lie algebra of rank r. There is an integer m ≥ 0 such that
⁄U(πnL)K is Auslander–Gorenstein of dimension at most dimA + r for each n ≥ m.

Proof. First we establish the result when A is Gorenstein with m = 0. In this case it follows
from the lemma that U(L) is Auslander–Gorenstein of dimension at most dimA+ r = dimA +
1 + r. Thus U(L)/πU(L) is Auslander–Gorenstein of dimension at most dimA + r by [ASZ99,
Propositions 1.3 and 2.1].

Now ⁄U(πnL)K is a complete doubly filtered K-algebra and

Gr(⁄U(πnL)K) ∼= U(L)/πU(L)

by [AW13, Lemma 3.7]. Thus ⁄U(πnL)K is Auslander–Gorenstein of dimension at most dimA + r
by [Bjo89, Theorem 3.9].

In the general case Proposition 4.2 shows that there is an admissible formal blowing-up
X → Spf(A) over R with X Gorenstein. Let {Spf(Ai)} be an affine cover of X . By [AW19,
Proposition 7.6] and the proof of [AW19, Lemma 7.6(b)] there is a positive integer m such that
each Ai is L-stable and each (Spf Ai)rig is a πnL-accessible subdomain of X for each n ≥ m.
Thus each natural map

⁄U(πnL)K →
⊕ ¤U(Ai ⊗A πnL)K

with n ≥ m is faithfully flat by [AW19, Theorem 4.9(b)]. The result now follows from Lemma 4.1
and the case A is Gorenstein. �

This proves Theorem A(i).
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5. Dimension theory for coadmissible modules

5.1 Review
We slightly generalize the exposition of [ST03, § 8] which introduced a dimension theory for
Fréchet–Stein algebras with the property that each member of the defining family of Banach
algebras is Auslander regular of global dimension bounded by a universal constant; we relax this
last condition to Auslander–Gorenstein with self-injective dimension bounded by a universal
constant.

We suppose throughout this section that U = lim←−Un is a two-sided Fréchet–Stein algebra.

Lemma [ST03, Lemma 8.4]. For any coadmissible left U -module M and any integer l ≥ 0 the
U -module Extl

U (M, U) is coadmissible with

Extl
U (M, U)⊗U Un

∼= Extl
Un

(Un ⊗U M, Un)

for any n ∈ N.

Definition. We say that U is coadmissibly Auslander–Gorenstein (or c-Auslander–Gorenstein)
of dimension at most d if d is a non-negative integer such that there exists a presentation U ∼=
lim←−Un of U as a Fréchet–Stein algebra with each Un being Auslander–Gorenstein of self-injective
dimension at most d.

It follows easily from the lemma that if U is c-Auslander–Gorenstein of dimension at most
d then every coadmissible U -module M satisfies Auslander’s condition; that is, for every integer
l ≥ 0 every coadmissible submodule N of Extl

U (M, U) has grade at least l. It is also an easy
consequence that every (non-zero) coadmissible U -module has grade at most d.

If A is a smooth K-affinoid algebra and L is a (K, A)-Lie algebra that admits a smooth lattice
of rank r then Ŭ(L) is c-Auslander–Gorenstein of dimension at most dimA + r by Theorem 4.3.
In particular, if DerK(A) admits a smooth lattice then ÙD(SpA) is c-Auslander–Gorenstein of
dimension at most 2 dim A.

Definition. Suppose that A is a smooth K-affinoid algebra and L is a (K, A)-Lie algebra that
admits a smooth lattice of rank r. Writing U for Ŭ(L), the dimension of a (non-zero) coadmissible
U -module M is defined by

dU (M) := dim A + r − jU (M).

We will sometimes suppress the subscript U and simply write d(M) if this will not cause
confusion.

5.2 Left–right comparison
Let A be an affinoid K-algebra and let L be a (K, A)-Lie algebra that admits a smooth Lie
lattice of rank r. Recall [AW18, Theorem 3.4] that there is an equivalence of categories between
coadmissible left Ŭ(L)-modules and coadmissible right Ŭ(L)-modules, given by ΩL ⊗A − and
HomA(ΩL,−), where

ΩL = HomA

Ä∧r
L, A

ä
.

Lemma. For each coadmissible left Ŭ(L)-module M there is a natural isomorphism

Extj

Ū(L)
(ΩL ⊗A M, Ŭ(L)) ∼= HomA(ΩL, Extj

Ū(L)
(M, Ŭ(L)) ∀j ≥ 0.

In particular, d(M) = d(ΩL ⊗A M).
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Proof. As ΩL is a projective A-module, the left-hand side is the jth cohomology
of R Hom

Ū(L)
(ΩL ⊗L

A M, Ŭ(L)), while the right-hand side is the jth cohomology of

R HomA(ΩL, R Hom
Ū(L)

(M, Ŭ(L)). The natural isomorphism thus follows directly from the

derived tensor-Hom adjunction [KS06, Theorem 18.6.4(vii)].
Because ΩL is an invertible A-module,

Extj

Ū(L)
(M, Ŭ(L)) = 0 if and only if HomA(ΩL, Extj

Ū(L)
(M, Ŭ(L))) = 0

for each j ≥ 0, and hence d(M) = d(ΩL ⊗A M). �

5.3 Dimension theory for Ů (L )
Let L be a Lie algebroid on a smooth, equidimensional rigid K-analytic space X. Let Xw(L )
denote the set of affinoid subspaces Y of X such that L (Y ) admits a smooth Lie lattice. By
[AW19, Lemma 9.3], Xw(L ) is a basis for the topology on X, that is, every admissible open in
X has an admissible cover by objects in Xw(L ).

Proposition. For each t ≥ 0 there is a functor Ext t

Ŭ (L )
(−, Ů (L )) from coadmissible left

Ů (L )-modules on X to coadmissible right Ů (L )-modules on X such that

Ext t

Ŭ (L )
(M, Ů (L ))(Y ) = Extt

U̧(L (U))
(M(Y ), Ų(L (Y )))

for each coadmissible left Ů (L )-module M and each Y ∈ Xw(L ).

Proof. Let M be a coadmissible Ů (L )-module and suppose that Z ⊂ Y are in Xw(L ). Let A
be an affine formal model in O(Y ) such that L (Y ) admits a smooth Lie lattice L. By replacing
L by πmL for some positive integer m, we may assume that Z is πnL-accessible for all n ≥ 0
(see [AW19, Proposition 7.6]).

Let B be an affine formal model in O(Z) such that B ⊗A L is a B-Lie lattice in L (Z) =
B ⊗A L (Y ).

For each n ≥ 0, let Un and Vn denote the K-Banach algebras ⁄U(πnL)K and ¤U(B ⊗ πnL)K

respectively and let U := lim←−Un = Ų(L (Y )) and V := lim←−Vn = Ų(L (Z)). Now, using [AW19,
Theorem 9.4], we see that Mn(Y ) := Un ⊗U M(Y ) is a finitely generated left Un-module,
Mn(Z) := Vn ⊗V M(Z) is a finitely generated left Vn-module and Mn(Z) ∼= Vn ⊗Un Mn(Y ).
Moreover, by [AW19, Theorem 4.8], Un → Vn is flat on both sides for all positive integers n.
Thus Extt

Vn
(Mn(Z), Vn) ∼= Extt

Un
(Mn(Y ), Un)⊗Un Vn for each t ≥ 0.

By Lemma 5.1, Extt
U (M(Y ), U) is a coadmissible right U -module such that

Extt
U (M(Y ), U)⊗U Un

∼= Extt
Un

(Mn(Y ), Un)

and Extt
V (M(Z), V ) is a coadmissible V -module with Extt

V (M(Z), V )⊗V Vn
∼= Extt

Vn
(Mn(Z), Vn).

Thus we can compute

Extt
V (M(Z), V )⊗ Vn

∼= Extt
Vn

(Mn(Z), Vn)
∼= Extt

Un
(Mn(Y ), Un)⊗Un Vn

∼= Extt
U (M(Y ), U)⊗U Vn.

Now we see that Extt
V (M(Z), V ) ∼= Extt

U (M(Y ), U)Ù⊗UV by (the proof of) [AW19, Lemma 7.3].
It follows, using [AW19, Theorem 8.2, Theorem 8.4], that the presheaf on Yw that sends Z ∈ Yw to
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Extt

U̧(L (Z))
(M(Z), Ų(L (Z))) is a coadmissible sheaf of Ů (L )-modules on Yw. Applying [AW19,

Theorem 9.1, Theorem 9.4] completes the proof of the proposition. �
The analogous statement for coadmissible right modules can be proven using the same

argument.

Definition. Suppose that U is an admissible cover of X by affinoid subspaces in Xw(L ). For
each (non-zero) coadmissible Ů (L )-module M we define the dimension of M with respect to
U by

dU (M) = sup{d(M(Y )) | Y ∈ U}.

Lemma. Suppose that U and V are two admissible covers of X by affinoid subspaces in Xw(L ).
Then dU (M) = dV(M).

Proof. Since X is quasi-separated, for any pair Y ∈ U and Z ∈ V that does not intersect trivially
we can cover Y ∩ Z by a finite set of affinoid subspaces in Xw(L). Thus we may reduce to the
case that V is a refinement of U and every element of U has an admissible cover by elements
of V.

Now suppose Y ∈ U is covered by Z1, . . . , Zk ∈ V. Then by the proposition Ext j

Ů (L |Y )
(M|Y ,

Ű (L |Y )) is a coadmissible Ű (L |Y )-module for each j ≥ 0. Since Ų(L (Y ))→ ⊕k
i=1Ǔ(L (Zi))

is c-faithfully flat by [AW19, Theorem 7.7(b)] it follows that j(M(Y )) = inf{j(M(Zi)) |
M(Zi) �= 0}.

As dim Y = dimZi for each i by equidimensionality, the result follows. �
It follows that we may define the dimension of M by d(M) = dU (M) for any choice U of

admissible cover of X by affinoid subspaces in Xw(L ).

6. Bernstein’s inequality

6.1 Dimension and pushforward along a closed embedding
Let ι : Y → X be a closed embedding of smooth rigid analytic K-spaces. In [AW18], the first
and the third author produced a functor

ι+ : CY → CX .

The construction of ι+ rests on the case when ι : Y = SpA/I → Sp A = X and L = T (X) admits
an I-standard basis, that is, there exist an A-basis {x1, . . . , xd} for L and a generating set
{f1, . . . , fr} for I with r ≤ d such that xi · fj = δij for any 1 ≤ i ≤ d, 1 ≤ j ≤ r.

Any closed embedding of smooth rigid analytic K-varieties is locally of this form by [AW18,
Theorem 6.2], and we have

ι+M(X) =M(Y ) Ù⊗ÛD(Y )

Ŭ(L)/IŬ(L)

for any coadmissible right ÙDY -moduleM – the corresponding functor for left modules is obtained
via side-changing operations.

We refer to [AW18] for details.
We will now show that ι+ respects our dimension function in a natural way, allowing us

to reduce many statements about modules on smooth affinoid spaces to the corresponding
statements on polydiscs.
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Lemma. Suppose that A is a smooth affinoid K-algebra with affine formal model A, and L is
a smooth (R,A)-Lie algebra. Let f ∈ A such that L · f = A, and write C = CL(f) = {x ∈ L :
x · f = 0}. Let I = (fA) ∩ A.

(i) B := A/fA is a smooth affinoid algebra with affine formal model B := A/I, and C/I is a
smooth (R,B)-Lie algebra.

(ii) If Sp A is connected, then f is a regular central element in ÿUA(C)K .

Proof. By assumption, there exists x ∈ L such that x · f = 1. Applying the anchor map, we also
have ∂ ∈ DerK(A) such that ∂ · f = 1, and by [AW18, Lemma 4.1],

DerK(A) = A∂ ⊕ C,

where C = {ξ ∈ Der(A) : ξ · f = 0}. In particular, it follows from smoothness that C is a
projective A-module.

By the second fundamental exact sequence [BLR95, Proposition 1.2], we have

DerK(B) = C/(f),

which is projective, so B is smooth. Moreover, B is easily seen to be an affine formal model.
In the same vein, applying [AW18, Lemma 4.1] to L yields

L = Ax⊕ C,

so C is projective over A, and the (R,B)-Lie algebra C/I is also a projective B-module.
For (ii), note that f is central in ◊U(C)K by definition of C. So it suffices to show that f · P �= 0

for any non-zero P ∈◊U(C)K . In particular, this only depends on the A-module structure of
◊U(C)K . But it follows from [Rin63, Theorem 3.1] that

◊U(C)K
∼= ¤SymA(C)K

as A-modules. Since C is a projective finitely generated A-module, it is a direct summand of a
free A-module of finite rank, L′. By functoriality, ÿSym CK embeds into ÿSymL′K , so we are done
if we can show that f is regular in A.

To show that f is regular in A, consider the annihilators

AnnA(f) ⊆ AnnA(f2) ⊆ · · · .

By Noetherianity of A, this chain of ideals stabilizes, so that

Ann(f r) = Ann(f r+1) = · · ·

for some integer r.
As X = SpA is smooth, we can consider the Fréchet–Stein algebra D = ÙD(X). We claim

that AnnA(f r) is a D-submodule of A, from which Ann(f) ⊆ Ann(f r) = {0} follows because of
[AW18, Proposition 7.4] (note that Ann(f r) �= A as f r �= 0 by reducedness of Sp A).

If a ∈ Ann(f r) and ξ ∈ Der(A), then

ξ(a) · f r+1 = ξ(af r+1)− af rξ(f) = 0,

so that ξ(a) ∈ Ann(f r+1) = Ann(f r). By [AW18, Theorem 7.3], it follows that Ann(f r) is a
D-submodule of A, as required. �
Proposition. Suppose that A is a smooth, connected affinoid algebra with affine formal
model A and L is a smooth (R,A)-Lie algebra. Let F = {f1, . . . , fr} be a subset of A such
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that L · (f1, . . . , fr) = Ar and write C = CL(F ) = {x ∈ L : x · f = 0 ∀f ∈ F}. If M is a finitely

generated ◊U(C)K/(F )-module then

j÷U(L)K

(◊U(L)K ⊗’U(C)K
M) = j’U(C)K/(F )

(M) + r.

Proof. We first introduce some notation. For i = 0, . . . , r, write Ai = A/(f1, . . . , fi), Ii =
(
∑i

j=1 fjA) ∩ A and Ai = A/Ii. Let Ci = CL({f1, . . . , fi}) and let Li = Ci/Ii. By applying the
preceding lemma repeatedly, each Ai is smooth, with affine formal model Ai, and Li is a smooth
(R,Ai)-Lie algebra. Note also that L0 = L and Lr = C/(F ).

In fact, [AW18, Lemma 4.1] gives an explicit description of Li: if x1, . . . , xr ∈ L such that
xifj = δij , then

Li =
r⊕

j=i+1

Aixj ⊕ C/Ii.

In particular, note that the natural map

Li → CLi−1(fi)/Ii

is an isomorphism for i = 1, . . . , r, and ◊U(C)K/(F ) ∼= ÿU(Lr)K
∼= ¤U(CLr−1(fr))K/(fr).

It thus suffices to prove the following claim. If M is finitely generated ÿU(Li)K-module then

jÿU(Li−1)K

(⁄U(Li−1)K ⊗¤U(CLi−1
(fi))K

M
)

= j÷U(Li)K

(M) + 1.

Write U = ¤U(CLi−1(fi))K , V = ⁄U(Li−1)K . Since, by [AW18, Corollary 4.3], U → V is faithfully
flat and Extj

U (M, U)⊗U V ∼= Extj
V (V ⊗U M, V ), we see that jU (M) = jV (V ⊗U M). Thus it

suffices to show that jU (M) = jU/(fi)(M) + 1. By the preceding lemma, fi is a regular central
element in U , so we can apply [ASZ99, Lemma 1.1] to conclude the proof. �
Corollary. Suppose that I is an ideal in the smooth, connected affinoid K-algebra A and
let L be a (K, A)-Lie algebra which admits an I-standard basis. Write LY for the (K, A/I)-
Lie algebra NL(I)/IL. If M is a (non-zero) coadmissible Ů(LY )-module then d

Ū(L)
(ι+M) =

d
Ŭ(LY )

(M) + dimA− dim A/I.

Proof. By Lemma 5.2, we can consider the case where M is a right coadmissible module. Let
{x1, . . . , xd} be an I-standard basis and let F = {f1, . . . , fr} ⊂ A be the corresponding generating
set. Rescaling the xi and fj if necessary, we can assume that there exists an affine formal model
A of A such that L :=

∑Axi is a free Lie lattice in L.
Write Un = ⁄U(πnL)K . Recall that [AW18, Lemma 5.8] provides an isomorphism of

Fréchet–Stein algebras

Ů(LY ) ∼= Ǔ(CL(F ))/(F ).

Denote ¤U(CπnL(F ))K by Vn, so Ů(LY ) ∼= lim←−Vn/(F ) exhibits Ů(LY ) as a Fréchet–Stein algebra.
Now

j
Ū(L)

(ι+M) = jUn

(
ι+M ⊗

Ū(L)

Un

)
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for sufficiently large n by Lemma 5.1, and by definition of ι+,

ι+M
⊗
Ū(L)

Un
∼= M

⊗
Ŭ(LY )

Vn

(F )

⊗
Vn/(F )

Un

IUn
.

Therefore Proposition 6.1 implies that

jUn(ι+M ⊗ Un) = jVn/(F )

Ä
M ⊗

Ŭ(LY )
Vn/(F )

ä
+ r.

Since dimA− dim A/I = r, it follows that for sufficiently large n,

d
Ū(L)

(ι+M) = 2 dimA− jUn

Ä
ι+M ⊗ Un

ä

= 2 dimA− jVn/(F )(M ⊗ Vn/(F ))− r

= 2r + (2 dimA/I − j
Ŭ(LY )

(M))− r

= d
Ŭ(LY )

(M) + r

as required. �
Theorem. Suppose that ι : Y → X is a closed embedding of smooth, equidimensional K-affinoid
spaces. Then for every non-zero coadmissible ÙDY -module M the dimension of ι+M is given by

d(ι+M) = d(M) + dimX − dimY.

Proof. By [AW18, Theorem 6.2], there exists an affinoid covering (Xi) of X, with Xi = SpAi

connected such that the (K, Ai)-Lie algebra Li = T (Xi) admits an Ii-standard basis, where Ii ⊂
Ai is the vanishing ideal of Y ∩Xi – the conditions in the reference are satisfied by smoothness
of Y . Moreover, TY (Y ∩Xi) ∼= NLi(Ii)/IiLi by dualizing [BLR95, Proposition 1.2]. Hence the
claim follows from Corollary 6.1. �

6.2 Proof of Bernstein’s inequality
Proposition. Let X = SpK〈x1, . . . , xd〉 be a polydisc. Each non-zero coadmissible ÙDX -module
has dimension at least d.

Proof. Let L be the R〈x1, . . . , xd〉-submodule of DerK(K〈x1, . . . , xd〉) spanned by {∂1, . . . , ∂d}.
Then L is a smooth Lie lattice in T (X) and write Dn = ⁄U(πnL)K and D = ÙD(X). Then D =
lim←−Dn is a presentation of D as a Fréchet–Stein algebra.

Let M be a coadmissible ÙDX -module and write M :=M(X), a coadmissible D-module,
and Mn = Dn ⊗D M . Since X ∈ Xw(T (X)) it suffices to show that jD(M) ≤ d. Since
Extj

D(M, D)⊗D Dn
∼= Extj

Dn
(Mn, Dn) by Lemma 5.1 it suffices to show that jDn(Mn) ≤ d

whenever Mn �= 0. This follows from [AW13, Corollary 7.4, Theorem 3.3]. �
Theorem. Suppose that X is a smooth rigid analytic space over K. Then every non-zero
coadmissible ÙDX -module has dimension at least dimX.

Proof. Let M be a non-zero coadmissible ÙDX -module. Since dimM is defined locally we may
assume that X is affinoid and T (X) admits a smooth Lie lattice. Now every K-affinoid can be
viewed as a closed analytic subset of a polydisc Y = SpK〈x1, . . . , xN 〉 for N sufficiently large.
Let ι : X → Y denote the closed embedding. By Theorem 6.1, d(ι+M) = d(M) + N − dimX.
Thus it suffices to show that d(ι+M) ≥ N , and the result follows from the proposition. �

This finishes the proof of Theorem A(ii).
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7. Weakly holonomic ıD-modules

7.1 Definition and basic properties
Definition. A coadmissible ÙDX -module M on a smooth rigid analytic K-variety X (assumed
equidimensional by convention) is called weakly holonomic if d(M) ≤ dimX.

We remind the reader of our convention stated at the end of the introduction: X is always
assumed to be equidimensional. For a non-connected smooth rigid analytic space whose compo-
nents are of varying dimension, we can define the notion of weak holonomicity by imposing the
inequality above on each connected component.

We denote the full subcategory of CX consisting of weakly holonomic ÙDX -modules by Cwh
X .

Proposition. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of coadmissible ÙDX -modules. Then M2 is weakly holonomic if and
only if bothM1 andM3 are weakly holonomic.

Proof. As the dimension can be calculated locally, we can assume that X = SpA is a smooth,
connected affinoid K-space with T (X) admitting a smooth Lie lattice. Choosing an affine formal
model A and a smooth (R,A)-Lie lattice L in T (X), we can write ÙD(X) = lim←−

ŸUA(πnL)K , where
ŸUA(πnL)K is Auslander–Gorenstein of dimension at most 2 dimA for sufficiently large n by

Theorem 4.3. As before, we abbreviate D = ÙD(X) and Dn = ⁄U(πnL)K .
If 0→M1 →M2 →M3 → 0 is a short exact sequence of coadmissible D-modules, there

exists an integer m such that

jD(Mi) = jDn(Dn ⊗D Mi) for i = 1, 2, 3, n ≥ m,

by Lemma 5.1, so the result follows from [Lev92, Proposition 4.5(ii)] applied to

0→ Dn ⊗M1 → Dn ⊗M2 → Dn ⊗M3 → 0,

which is exact by flatness of Dn over D. �
It follows immediately from the above that Cwh

X is an abelian subcategory of CX .

Lemma. Let ι : Y → X be a closed embedding of smooth rigid analytic K-varieties. Then
Kashiwara’s equivalence [AW18, Theorem A] restricts to an equivalence between Cwh

Y and the

category of weakly holonomic ÙDX -modules supported on Y .

Proof. This is a direct consequence of Lemma 6.1. �

7.2 Extensions
Let X be a smooth rigid analytic K-variety and let DX denote the sheaf of algebraic (i.e.
finite-order) differential operators on X. In [MN91], Mebkhout and Narvaez-Macarro developed
a dimension theory on the category coh(DX) of coherent DX -modules by setting d(Loc M) =
2 dim X − jD(X)(M) whenever M is a finitely generated D(X)-module on a smooth affinoid
K-variety X with free tangent sheaf. They also prove a version of Bernstein’s inequality and
define modules of minimal dimension as the analogue of holonomicity.

Recall from [Bod19a, Lemma 4.14] that there is an exact extension functor

EX : coh(DX)→ CX
M �→ ÙDX ⊗DX

M.

It follows from Theorem 3.1 that EX is also faithful.
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Proposition. Let M be a coherent D-module on a smooth, equidimensional rigid analytic
K-space X. Then

d(M) = d(EXM).

In particular, EX sends modules of minimal dimension to weakly holonomic ÙD-modules.

Proof. Without loss of generality, X = SpA is a smooth affinoid with free tangent sheaf. Write
D = D(X) and ÙD = ÙD(X). If M is a finitely generated D-module, then faithful flatness of ÙD
over D (Theorem 3.1) implies that for any j,

ExtjÛD(ÙD ⊗D M, ÙD) ∼= Extj
D(M, D)⊗D

ÙD = 0 if and only if ExtjD(M, D) = 0.

In particular, jD(M) = jÛD(ÙD ⊗D M), and the result follows. �
Corollary. Let M be an integrable connection on a smooth rigid analytic K-space X. Then
M is a weakly holonomic ÙDX -module.

Proof. Any integrable connection is a coherent DX -module of minimal dimension, so we are done
by applying [AW18, Proposition 6.2]. �

7.3 Duality
Lemma. Let X be a smooth rigid analytic K-space of dimension d. The functor

HomOX
(ΩX , ExtdÛDX

(−, ÙDX)) : CX → Cop
X

sends weakly holonomic ÙDX -modules to weakly holonomic ÙDX -modules.

Proof. As X is equidimensional, we can assume that X is affinoid, with T (X) admitting a smooth
Lie lattice. Let M = Loc M be a non-zero weakly holonomic ÙDX -module, so that j(M) = d.

By Auslander’s condition, Extd(M, ÙD(X)) has grade ≥ d as a right ÙDX(X)-module. Thus
Proposition 5.3 implies that

Extd

D̂X
(M, D̃X) ∼= Loc Extd(M, ÙDX(X))

is a coadmissible right ÙDX -module of dimension d, and the result follows from Lemma 5.2. �
Similarly, Auslander’s condition in conjunction with Bernstein’s inequality forces

Ext i(M, ÙD) = 0 for anyM∈ Cwh
X , i �= d.

We define the duality functor D on Cwh
X by D = HomO(ΩX , ExtdÛDX

(−, ÙDX)).

Proposition. There is a natural isomorphism of functors D2 ∼= id.

Proof. Let X be a smooth affinoid of dimension d with T (X) admitting a smooth Lie lattice
L. Write D = ÙD(X) and Dn = ⁄U(πnL)K , so that D = lim←−Dn. By Theorem 4.3, we can assume
that Dn is Auslander–Gorenstein of dimension at most 2d for each n ≥ 0.

Let M be a coadmissible D-module of grade d. By Lemma 5.2 and [AW18, Theorem 3.4], we
have

HomA(Ω, Extd
D(HomA(Ω, Extd

D(M, D)), D)) ∼= Extd
D(Extd

D(M, D), D),
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and now

Extd(Extd(M, D), D) ∼= lim←−
Ä
Dn ⊗D Extd

D(Extd
D(M, D), D)

ä
∼= lim←−Extd

Dn
(Extd

D(M, D)⊗D Dn, Dn)

∼= lim←−Extd
Dn

(Extd
Dn

(Dn ⊗D M, Dn), Dn)

by repeatedly applying Lemma 5.1.
Note that Exti

Dn
(Dn ⊗D M, Dn) = 0 for any i �= d by Lemma 5.1, so

Extd(Extd(Dn ⊗M, Dn), Dn) ∼= Dn ⊗M

by [Iwa97, Theorem 4],1 and hence

Extd(Extd(M, D), D) ∼= lim←−(Dn ⊗D M) ∼= M

by coadmissibility of M .
Thus D2(Loc M) ∼= Loc M as required. �

8. Examples

8.1 Infinite length and infinite-dimensional fibres
We present an example of a weakly holonomic ÙD-module on the unit disc which is not of finite
length and has infinite-dimensional fibres.

Let θn(t) =
∏n

m=0(1− πmt), and consider the power series

θ(t) = lim
n→∞ θn(t) =

∞∏
m=0

(1− πmt).

Note that θ(t) ∈ K̄[t] = lim←−K〈πnt〉. We also note that for any n ≥ 0, (1− πmt) is a unit in
K〈πnt〉 for any m > n. Thus θ(t) = unθn(t), where un is a unit in K〈πnt〉.

Let X = SpK〈x〉 be the unit disc over K, and write ∂ ∈ T (X) for the derivation d/dx. Let
D = ÙD(X) and set

M = D/Dθ(∂).

This is a coadmissible ÙD(X)-module, as it is finitely presented.
Let A = R〈x〉, L = A · ∂ ⊂ T (X), and let Dn = ŸUA(πnL)K . By the considerations above,

Dn ⊗D M ∼= Dn/Dnθn(∂),

which is finitely generated over K〈x〉. In particular, d(M) = 1.
But now note that for every n ≥ 0, M surjects onto D/Dθn(∂), which is a direct sum of n + 1

integrable connections of rank 1. In particular, M cannot be of finite length as a D-module.
By the same argument, the fibre at zero M/xM cannot be a finite-dimensional K-vector

space. In particular, weakly holonomic ÙD-modules need not have finite-dimensional fibres, and
weak holonomicity is generally not stable under pullback.

8.2 Pushforward along an open embedding
We now recall from [BB21] that weak holonomicity is generally not stable under pushforward
either.

1 In the reference, this is stated as a canonical isomorphism rather than a natural one, but it is clear that this is
the natural morphism M → R Hom(R Hom(M, R), R) which becomes an isomorphism on this particular class of
modules.
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For this, recall from [Ked10, Definition 13.1.1] that the type of λ ∈ K is the radius of
convergence of the formal power series

∑
i≥0,i�=λ

xi

λ− i
.

Let X = SpA be an affinoid K-space with free tangent sheaf, let f ∈ A be non-constant and
consider j : U = {f �= 0} → X. We call a left D(X)[f−1]-module N a meromorphic connection
on X with singularities along Z = X \ U if N is free of finite rank over A[f−1].

Given m ∈ N , consider the ideal I(m) ⊆ K[s] consisting of all polynomials b(s) such that
there exists some P (s) ∈ D(X)[s] satisfying

P (s)f−sm = b(s)f−s−1m ∀s ∈ Z.

By [MN91, Théorème 3.1.1], I(m) is non-zero, and we call its monic generator the b-function
of m.

Theorem [BB21, Theorems 1.2, 1.3].

(i) Let N be a meromorphic connection on X with singularities along Z. Suppose that N
is generated as an A[f−1]-module by m1, . . . , mr such that all the roots of the associated
b-functions b1, . . . , br in an algebraic closure of K are of positive type. Then N localizes to
an integrable connectionM on U such that j∗M∈ CX .

(ii) Let X = SpK〈x〉 and j : U → X for U = X \ {0}. Set Mλ = OUxλ for λ ∈ K. Then
j∗Mλ ∈ CX if and only if λ is of positive type. In particular, there exist integrable
connections M on U such that j∗M is not coadmissible.

9. Zariski open embeddings: The case of an algebraic snc divisor

Let j : U → X be an embedding of a Zariski open subspace U in a smooth rigid analytic K-space
X. We show that, at least in the case of the structure sheaf, pathologies as in Theorem 8.2(ii)
do not occur.

As the question is local, we can (and will) assume from now on that X is a smooth affinoid
with free tangent sheaf. We will first consider the case where Z = X \ U is the analytification of
a strict normal crossing divisor. In § 10 we will reduce the general case to this set-up by passing
to a suitable resolution of singularities.

9.1 Relative analytification
We recall some results from [Sch99] regarding relative analytification. This was already considered
by Köpf in [Kop74], but we have decided to refer to a source that is more readily available.

Let A be an affinoid K-algebra. An A-scheme will mean for us throughout a scheme of finite
type over Spec A.

The paper [Sch99] yields a relative analytification functor X �→ Xan/A from A-schemes to
rigid analytic K-varieties. The construction of Xan/A is a straightforward generalization of the
analytification procedure for A = K.

There is a natural morphism

ηX : Xan/A → X

of locally G-ringed spaces, satisfying the usual universal property: any morphism Y → X of
locally G-ringed spaces, where Y is a rigid analytic K-variety, factors uniquely through ηX

[Sch99, Definition 1.1.1].
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Proposition. Let A and B be affinoid K-algebras.

(i) If X is both an A-scheme and a B-scheme, then the analytification of X relative to A is
isomorphic to the analytification of X relative to B. In particular, we can speak of ‘the’
analytification of X and write Xan instead of Xan/A.

(ii) The analytification of Spec A is Sp A.
(iii) If Z is a closed subscheme of an A-scheme X given by the vanishing ideal I, then Z := η−1(Z)

is the closed analytic subset of Xan defined by η∗I. Moreover, Z ∼= Zan.
(iv) If Y is an open subscheme of an A-scheme X, then Yan can be identified with η−1(Y), a

Zariski open subspace of Xan.
(v) If Xi, X are A-schemes such that the Xi form a covering of X, then the Xan

i form an
admissible covering of Xan.

(vi) If X→ S,Y → S are morphisms of A-schemes, then (X×S Y)an ∼= Xan ×San Yan.

Proof. (i) is clear from the universal property, (ii) is [Sch99, Example 1.3.2(1)]. (iii) is [Sch99,
Corollary 2.1.3]. Concerning (iv), it follows easily from the universal property that Yan ∼=
η−1(Y), which is an admissible open subspace of Xan by continuity of η. By (iii), it is then
even Zariski open. (v) is a consequence of (iv) and the fact that η is a morphism of locally
G-ringed spaces. (vi) follows again from the universal property. �

9.2 Algebraic snc divisors
Definition. A closed subscheme Z of a locally Noetherian regular scheme X is called a strict
normal crossing (snc) divisor if:

(i) Z is defined as the vanishing of an invertible ideal sheaf I;
(ii) for each x ∈ Z, there exists a regular set of local parameters x1, . . . , xd ∈ OX,x such that

the ideal Ix ⊆ OX,x is generated by
∏r

i=1 xi for some 1 ≤ r ≤ d.

A closed analytic subset Z of a rigid analytic K-variety X is called an algebraic snc divisor if
there exist an affinoid K-algebra B, a regular scheme X that is also a B-scheme with Xan ∼= X,
and an snc divisor Z of X such that Zan = Z as in Proposition 9.1(iii).

We now wish to lift the snc condition from the stalk level to a condition on the level of
admissible coverings.

Note that if X = SpA is a smooth affinoid, then X = Spec A is a Noetherian regular scheme
by [BGR84, Proposition 7.3.2/8].

Lemma. Let X = SpA be a smooth affinoid K-space, and let Z ⊆ Spec A = X be an snc divisor.
Then there exists an admissible covering of X by affinoid subdomains Xi = SpAi with the
following property: for each i with Zan ∩Xi �= ∅, there exist xi1, . . . , xid ∈ Ai such that

(i) the elements dxi1, . . . , dxid form a free generating set of Ω1(Xi), and
(ii) the subvariety Zan ∩Xi is given as the vanishing set of

∏r
j=1 xij for some 1 ≤ r ≤ d.

Proof. Without loss of generality, we can assume that X (and hence X) is connected.
Let x ∈ Z be a closed point in SpecA, and let x1, . . . , xd ∈ OX,x be a regular set of

local parameters as in Definition 9.2. By definition, there exists some Zariski open affine
subscheme Ux = Spec B(x) ⊂ X containing x such that x1, . . . , xd are defined on Ux, and
Z ∩ Ux = {∏r

j=1 xj = 0}.
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By smoothness, Ω1(X) is a finitely generated projective A-module, so there exists
f1, . . . , fn ∈ A such that

Afk
⊗A Ω1(X)

is a free Afk
-module for each k, with free generating set sk1, . . . , skd.

Fix k such that x ∈ Spec Afk
. Then B(x)fk

⊗A Ω1(X) is freely generated by sk1, . . . , skd, so
there exist M = (mij) ∈ Matd×d(B(x)fk

) such that

dxi =
∑
j

mijskj .

As x ∈ X is closed, it corresponds to a unique point in X = SpA, which we also denote by x. As
the xi form a regular system of local parameters in OX,x, they also define a regular system of
local parameters in the local ring OX,x by [Bos14, Propositions 4.1/1, 4.1/2], so that {dxi} form
a free generating set in Ω1

X,x = OX,x ⊗A Ω1(X). Thus M becomes invertible as a matrix over
OX,x and hence over OX,x, as OX,x → OX,x is injective by [Bos14, Proposition 4.1/2]. Therefore
x is contained in a Zariski open affine subscheme Spec C(x) of X with the property that:

(i) x1, . . . , xd ∈ C(x), and dxi form a free generating set of C(x)⊗A Ω1(X);
(ii) Z ∩ Spec C(x) = {∏r

j=1 xj = 0} for some 1 ≤ r ≤ d.

As the SpecC(x) for varying x ∈ Z together with X \ Z forms a Zariski covering of X, it follows
from Proposition 9.1(v) that their analytifications form an admissible covering of X, and any
refinement of this covering by affinoid subdomains has the desired property. �
Proposition. Let Z be an algebraic snc divisor of a smooth rigid analytic K-variety X. Then
there exists an admissible covering of X by affinoids Xi = SpAi with the following property: for
each i with Z ∩Xi �= ∅, there exist xi1, . . . , xid ∈ Ai such that

(i) the elements dxi1, . . . , dxid form a free generating set of Ω1(Xi), and
(ii) the subvariety Z ∩Xi is given as the vanishing set of

∏r
j=1 xij for some 1 ≤ r ≤ d.

Proof. By the above lemma, it is sufficient to show that X admits an admissible covering by
affinoid subspaces Yi = SpBi such that Z ∩ Yi is obtained as the analytification of an snc divisor
on Spec Bi.

Let B be an affinoid K-algebra, X a B-scheme with snc divisor Z such that Xan ∼= X,
Zan ∼= Z. Let (Ui) be an affine covering of X such that Z ∩Ui is given by the vanishing of a
single element fi ∈ Bi, where Ui = Spec Bi.

By Proposition 9.1(v), (Uan
i )i is an admissible covering of X. Recall from [Sch99,

Construction 1.2.1] that the analytification Uan
i is constructed as the union of SpBi,n for various

Banach completions Bi,n of Bi. Thus by definition, (SpBi,n)i,n is also an admissible covering
of X.

There are natural morphisms of schemes

φi,n : Spec Bi,n → Spec Bi = Ui ⊆ X.

Now Spec Bi,n is a regular Noetherian scheme by [BGR84, Proposition 7.3.2/8]. Let Zi,n denote
the vanishing set of φ�

i,n(fi) ∈ Bi,n. Then Zi,n is an snc divisor, as for any x ∈ Zi,n, a regular set
of local parameters in OUi,φi,n(x) gives a regular set of local parameters of OSpec Bi,n,x by [Sch99,
Claim 1.2.6].

Since Zan
i,n = {fi = 0} ⊂ Sp Bi,n by Proposition 9.1(iii), it follows that Zan

i,n = Zan ∩ Sp Bi,n =
Z ∩ SpBi,n, as required. �
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9.3 Extending across algebraic snc divisors
Proposition. Let X be a smooth rigid analytic K-variety. Let Z be an algebraic snc divisor on
X, and let j : U → X be its complement. Then j∗(M|U ) is a coadmissible ÙDX -module for any
integrable connectionM on X.

Proof. By Proposition 9.2, we can assume that X ∼= Sp A is a smooth affinoid with free tangent
sheaf, and also that there exist elements x1, . . . , xd ∈ A such that {dxi} form a free generating
set in Ω1

X and Z = {∏r
i=1 xi = 0} for some 1 ≤ r ≤ d.

We denote by {∂i} the derivations forming the basis in T (X) dual to {dxi}, so that

∂i(xj) = δij , [∂i, ∂j ] = 0

for all i, j. We write f =
∏r

i=1 xi.
Let M =M(X), which we can assume to be a free A-module of finite rank, and let m ∈M .

We will now show that all roots of the b-function of m, viewed as an element in M [f−1], are
integers, so that we can apply Theorem 8.2(i).

We write ∂
[k]
i = ∂k

i /k! for any non-negative integer k. By Noetherianity, there exists
some natural number n such that ∂

[n]
i ·m is contained in the A-submodule generated by

m, ∂i ·m, . . . , ∂
[n−1]
i ·m, so that there exists a monic polynomial

∑
ai,jx

j ∈ A[x] of degree n
satisfying

n∑
j=0

ai,j∂
[j]
i ·m = 0.

Now in D(X)[f−1], one obtains as usual (see, for example, [Ber96, Equation (2.0.2)])

∂
[j]
i fs =

j∑
k=0

∂
[j−k]
i (fs)∂[k]

i

=
j∑

k=0

(
s

j − k

)
xk−j

i fs∂
[k]
i ∀s ∈ Z,

which can be verified by straightforward induction on j.
By writing m = fsf−sm, we thus have in M [f−1] the following equations for any integer s:

0 = xn−1
i f−s

n∑
j=0

ai,j∂
[j]
i ·m

=
n∑

j=0

xn−j
i ai,j

Ä
xj−1

i f−s∂
[j]
i ·m

ä

=
n∑

j=0

xn−j
i ai,j

( j∑
k=0

(
s

j − k

)
xk−1

i ∂
[k]
i · f−sm

)

=
n∑

k=0

n∑
j=k

(
s

j − k

)
xn−j+k−1

i ai,j∂
[k]
i · f−sm.

As ai,n = 1, we obtain(
s
n

)
x−1

i f−sm = −
∑′ ( s

j − k

)
xn−j+k−1

i ai,j∂
[k]
i · f−sm,

where
∑′ denotes the sum over all pairs (j, k), 0 ≤ k ≤ j ≤ n, (j, k) �= (n, 0).
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Setting Pi(s) = −∑′ Ä s
j−k

ä
xn−j+k−1

i ai,j∂
[k]
i ∈ D(X)[s], we note that Pi(s) is contained in the

subring A[∂i, s] and hence commutes with xj for any j �= i. We thus conclude from the above
that

Pi(s) · x−1
1 . . . x−1

i−1f
−sm =

(
s
n

)
x−1

1 . . . x−1
i f−sm

for any 1 ≤ i ≤ r, and by induction( r∏
i=1

Pi(s)
)
· f−sm =

(
s
n

)r

f−s−1m.

In particular,
Ä

s
n

är ∈ I(m). Thus the b-function of m is a factor of
Ä

s
n

är
, and all its roots are

integers. As integers are of positive type by [Ked10, Proposition 13.1.5], applying Theorem 8.2(i)
proves the result. �

10. Zariski open embeddings: The general case

10.1 Cohomology on hyperplane complements
We introduce the following notation: if X = SpA and f ∈ A is non-constant, we denote by Xf

the admissible open subspace given by the non-vanishing of f . Note that O(Xf ) �= Af , but rather

O(Xf ) = lim←−A〈πnf−1〉.

The following is a partial generalization of [Kie67, Satz 2.4.2].

Proposition. Let X = SpA be smooth and let f ∈ A be non-constant. IfM is a coadmissibleÙD-module on Xf then Hi(Xf ,M) = 0 for every i > 0.

Proof. Let A ⊂ A be an affine formal model and let L ⊂ T (X) be an A-Lie lattice. Then after
rescaling f if necessary, we can assume without loss of generality that f ∈ A, so that Um :=
X(πmf−1) is πnL-accessible for any n ≥ m.

We write D = ÙD(Xf ), Dn = ÿU(Ln)K , where Ln is the image of A〈πnf−1〉 ⊗A πnL inside
T (Un). Let Dn be the sheaf of algebras on the site of Ln-admissible subspaces of Un associated to

V �→ OX(V )“⊗OX(Un)Dn.

As the maps Dn+1 → Dn+1(Un)→ Dn are flat by [Bod19a, Theorem 4.10] and [AW19, Theorem
6.6], D = lim←−Dn exhibits D as a Fréchet–Stein algebra, and ifM is a coadmissible ÙDXf

-module
then M(Xf ) = lim←−Mn for Mn = Dn ⊗ÛD(Un)

M(Un) makes M(Xf ) a coadmissible D-module.
Let Mn be the sheaf Loc Mn on the site of Ln-admissible subspaces of Un, a coherent

Dn-module (see [AW19, § 5.1]). Let U = (Ui) and let Un = {U1, . . . , Un}. Note that by [AW19,
Proposition 9.5],

Hi(Xf ,M) ∼= Ȟi(U,M)

for any i.
Consider the complexes C(n)• = Č•(Un,Mn) with natural morphisms of complexes

C(n + 1)• → C(n)• induced by restriction. By [Bod19a, Theorem 4.16],

Ȟi(Un,Mn) = 0 ∀ i > 0, n,

and Ȟ0(Un+1,Mn+1) = Mn+1 → Ȟ0(Un,Mn) = Mn is a continuous morphism of Banach spaces
with dense image for each n by [ST03, § 3, Theorem A].
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Thus by [EGA3, Proposition 13.2.3, Remarques 13.2.4],

Hi(lim←−C(n)•) ∼= lim←−Hi(C(n)•)

for each i.
It hence remains to show that lim←−C(n)• ∼= Č•(U,M). But

lim←−
n

C(n)• = lim←−
m,n
m≥n

Č•(Un,Mm) ∼= lim←−
n

Č•(Un,M) ∼= Č•(U,M),

as required. �
Corollary. Let X be a smooth affinoid K-space and let j : U → X be a Zariski open embed-
ding. Let U = (Ui) be an admissible covering of U with the following property: for each i, there
exists a smooth morphism of affinoids Vi = SpAi → X fitting into a commutative diagram

Ui
��

���
��

��
��

Vi

��
X

which identifies Ui with (Vi)fi for some non-constant fi ∈ Ai.

IfM is a coadmissible ÙD-module on U then Rij∗M(X) ∼= Ȟi(U,M) for any i ≥ 0.

Proof. Note that Vi1 ×X · · · ×X Vir is a smooth affinoid such that Ui1 ∩ · · · ∩ Uir can be identified
with (Vi1 ×X · · · ×X Vir)fi1

...fir
, so it follows from the Proposition that for i ≥ 1,

Hi(Ui1 ∩ · · · ∩ Uir ,M) = 0

for any i1, . . . , ir. Thus the result follows from [Sta18, Tag 03F7]. �

10.2 Completed tensor products and sections of ıD
In this subsection we use some basic results from [BB21] about completed tensor products to
describe sections of ÙD over Zariski open subspaces.

Lemma. Let X = SpA be an affinoid K-space with free tangent sheaf. Then the functor
−“⊗A

ÙD(X) is strict exact on Fréchet A-modules.

Proof. As a left A-module, ÙD(X) is isomorphic to O(X × Ad,an), where d is the rank of TX . The
result now follows from [Kis99, Propositions 1.2.2 and 1.2.6(2)]. �
Proposition. Let X = SpA be an affinoid K-space with free tangent sheaf, and let U be a
Zariski open subspace. Then the natural morphism

O(U)“⊗A
ÙD(X)→ ÙD(U)

is an isomorphism of locally convex O(U)-modules.

Proof. First let U = Xf for some f ∈ A. Let A be an affine formal model, and let L be an A-Lie
lattice in T (X). Then [AW19, § 3.3, Theorem 3.5] gives rise to sheaves of K-algebras Dn on
the site of πnL-admissible affinoid subdomains of X such that for any πnL-admissible affinoid
subdomain Y = SpB ⊂ X, we have ÙD(Y ) ∼= lim←−m≥n

Dm(Y ) and Dn(Y ) ∼= B“⊗ADn(X). Without
loss of generality, f ∈ A, so that Un := X(πnf−1) is πnL-admissible. Now

ÙD(U) ∼= lim←−
ÙD(Un) ∼= lim←−Dn(Un) ∼= lim←−

Ä
O(Un)“⊗ADn(X)

ä
,

so that the result follows from [BB21, Lemma A.2(iv)].
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If U is the complement of V (f1, . . . , fr), we consider the Čech complex Č•((Xfi),O). Applying
−“⊗A

ÙD(X) and invoking the lemma then finishes the proof in general. �
We also emphasize that by [BB21, Corollary A.6] the coadmissible tensor product Ù⊗ defined

in [AW19, § 7.3] agrees with the completed tensor product “⊗ with respect to the canonical Fréchet
structures on coadmissible modules.

10.3 An algebraic analogue
In order to make the arguments below more accessible, we recall in some detail the following
basic property of coherent D-modules on algebraic varieties.

Proposition. Let k be an algebraically closed field of characteristic zero, and consider a diagram

U
j′

��

j

���
��

��
��

� X ′

ρ

��

ι �� Pn ×X

pr�����������

X

of smooth algebraic varieties over k, where j and j′ are open embeddings, ι is a closed embedding,
and pr is the natural projection. Assume further that j′ is affine.

If M is a coherent DU -module such that j′∗M is a coherent DX′-module, then Rij∗M is a
coherent DX -module for every i ≥ 0.

Proof. For any morphism f : Y ′ → Y of smooth algebraic varieties over k, one can define [HTT08,
p. 40] the D-module pushforward functor

f+ : Db(DY ′)→ Db(DY ).

For right modules, this takes the form

M �→ Rf∗(M⊗L

DY ′ DY ′→Y ),

where DY ′→Y is the transfer bimodule f∗DY . For left modules, we compose the above with
suitable side-changing operations.

By [HTT08, Proposition 1.5.21, Example 1.5.22] and the assumption on j′, we have

Rj∗M = j+M = pr+ι+j′+M = pr+ι+j′∗M.

Write P = Pn ×X.
Now ι+ preserves coherence by Kashiwara’s equivalence [HTT08, Theorem 1.6.1], and

pr+ sends Db
c(DP ) to Db

c(DX) by [HTT08, Theorem 2.5.1]. This immediately proves the
proposition. �

More explicitly, ifM is a coherent right DU -module, we can write

Rj∗M = Rpr∗(ι+j′∗M⊗L

DP
DP→X),

where DP→X is the (DP , pr−1DX)-bimodule pr∗DX = UOP
(pr∗TX), the enveloping sheaf of the

Lie algebroid pr∗TX .
To prove the general case of Theorem C, we will use an embedded resolution of singularities

(X ′, U)→ (X, U) to reduce to the case of an algebraic snc divisor, and an analogue of the
above proposition in order to descend from X ′ to X again. While a theory of general ÙD-module
pushforwards has not been established yet, it turns out that we can make all computations
explicitly in our situation.
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10.4 Pushforward of the structure sheaf on a Zariski open subspace
Let j : U → X be an arbitrary Zariski open embedding of smooth rigid analytic K-spaces. As
always, we can assume that X = SpA is affinoid with free tangent sheaf.

Writing Z = SpB for the complement of U with its reduced subvariety structure, we obtain
a closed embedding Spec B → Spec A of schemes over Q. We recall the following result from
[Tem18].

Theorem [Tem18, Theorem 1.1.11]. Let X be a quasi-excellent Noetherian scheme over Q, and
let Z be a closed subscheme of X. Then there exist a regular scheme X′ and a morphism of
schemes ρ : X′ → X which is a sequence of blow-ups with centres contained in Z ∪Xsing such
that Z×X X′ is an snc divisor in X′.

Let X = Spec A, Z = Spec B. By [BKKN67, Satz 3.3.3], X is an excellent Noetherian scheme,
so we can apply Theorem 10.4. As X is also regular by [BGR84, Proposition 7.3.2/8], the centres
of the blow-ups in the theorem are contained in Z. In particular, the theorem provides us with
a morphism ρ : X′ → X which is an isomorphism away from Z, so that we have the following
commutative diagram:

U
j′

��

j ���
��

��
��

� X′

ρ

��
X

where j : U→ X is the complement of Z inside X, and j′ realizes U as the complement of an
snc divisor in X′. Finally, we note that ρ is projective, as it is a sequence of blow-ups, so that
we obtain a factorization of ρ as a closed immersion and a projection:

U
j′

��

j ���
��

��
��

� X′ ι ��

��

Pn ×X

pr
�����������

X

By construction, all schemes in this diagram are A-schemes, and applying analytification, we
obtain the commutative diagram of rigid analytic K-spaces

U
j′

��

j ���
��

��
��

� X ′ ι ��

ρ

��

Pn,an ×X

pr
������������

X

(∗)

where:

(i) j and j′ are Zariski open embeddings by Proposition 9.1(iv), and (U)an = (X \ Z)an =
X \ Z = U by Proposition 9.1(iii);

(ii) X ′ = X′an is a smooth rigid analytic K-space by [Sch99, Corollary 1.3.5] and [BLR95,
Lemma 2.8];

(iii) X ′ \ U is an algebraic snc divisor in X′ by construction;
(iv) ι is a closed immersion of rigid analytic spaces by Proposition 9.1(iii);
(v) (Pn ×X)an ∼= Pn,an × (X)an = Pn,an ×X by Proposition 9.1(ii) and (vi).

We are now in a position to discuss the rigid analytic analogue of Proposition 10.3.
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Proposition. LetM be a coadmissible ÙD-module on U . If j′∗M is a coadmissible ÙDX′-module,
then Rij∗M is a coadmissible ÙDX -module for every i ≥ 0.

Proof. We prove the proposition for right coadmissible ÙD-modules. The left module analogue
follows by applying the side-changing operators.

We write P = Pn,an ×X. By [AW18, § 5.4], there exists a right coadmissible ÙDP -module
ι+(j′∗M) such that the following holds: for each admissible open affinoid V of P with the property
that X ′ ∩ V has a free tangent sheaf, we have

ι+(j′∗M)(V ) = (j′∗M)(X ′ ∩ V ) “⊗ÛD(X′∩V )

(
O(X ′ ∩ V ) “⊗

O(V )

ÙD(V )
)
.

We now note that pr∗TX is a Lie algebroid on P which is free as an OP -module, and is naturally
a direct summand of TP . This makes

Ǔ (pr∗TX) ∼= OP “⊗
pr−1OX

pr−1ÙDX

a (ÙDP , pr−1ÙDX)-bimodule.

We can thus form the right coadmissible Ǔ (pr∗TX)-module

N := ι+(j′∗M) Ù⊗ÛDP

Ǔ (pr∗TX).

By [Bod19b, Theorem 6.11], Ripr∗N is coadmissible over pr∗Ǔ (pr∗TX) ∼= ÙDX for every i ≥ 0.
We now show that Ripr∗N is naturally isomorphic to Rij∗M.

Let V = (Vi) be a finite affinoid covering of P where Vi = Wi × Yi, Wi an admissible open
affinoid subspace of Pn,an, Yi an affinoid subdomain of X, and X ′ ∩ Vi has a free tangent sheaf.
Moreover, refining this covering, we can assume that the complement of U ∩ Vi inside X ′ ∩ Vi is
cut out by a single equation for each i.

By comparing the Čech complex Č•(V,N ) to Č•(U ∩V,M) and invoking Corollary 10.1, it
suffices to show that we have natural isomorphisms

N (V ) ∼=M(V ∩ U)

where V is any intersection of the Vi.
Let W be an admissible open affinoid subspace of Pn,an, Y = SpC an affinoid subdomain of

X such that X ′ ∩ (W × Y ) has a free tangent sheaf, and write V = W × Y .
Now

N (V ) = ι+(j′∗M)(V ) “⊗ÛD(V )

Ǔ (pr∗TX)(V ),

and this is isomorphic to

(j′∗M)(X ′ ∩ V ) “⊗ÛD(X′∩V )

(
O(X ′ ∩ V ) “⊗

O(V )

ÙD(V )
) “⊗ÛD(V )

Ä
O(V )“⊗

C

ÙD(Y )
ä
.

By associativity of the completed tensor product [BB21, Lemma A.3], this can be simplified to

(j′∗M)(X ′ ∩ V ) “⊗ÛD(X′∩V )

(
O(X ′ ∩ V )“⊗

C

ÙD(Y )
)
,

2580

https://doi.org/10.1112/S0010437X21007521 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007521


ÙD-modules on rigid analytic spaces III

which in turn can be written as(
M(U ∩ V ) “⊗ÛDU (U∩V )

(O(U ∩ V ) “⊗
O(X′∩V )

ÙD(X ′ ∩ V )
) “⊗ÛD(X′∩V )

(
O(X ′ ∩ V )“⊗

C

ÙD(Y )
)
,

since ÙD(U ∩ V ) ∼= O(U ∩ V ) “⊗
O(X′∩V )

ÙDX′(X ′ ∩ V ) by Proposition 10.2.

We thus obtain

N (V ) ∼=M(U ∩ V ) “⊗ÛDU (U∩V )

(
O(U ∩ V )“⊗

C

ÙDX(Y )
)

∼=M(U ∩ V ) “⊗ÛD(U∩V )

(
O(U ∩ V ) “⊗

O(U∩Y )
(O(U ∩ Y )“⊗

C

ÙD(Y ))
)

∼=M(U ∩ V ) “⊗ÛD(U∩V )

(
O(U ∩ V ) “⊗

O(U∩Y )

ÙD(U ∩ Y )
)

∼=M(U ∩ V ) “⊗ÛD(U∩V )

ÙD(U ∩ V )

∼=M(U ∩ V ),

by once more invoking Proposition 10.2, and by [BB21, Proposition 2.11(ii)]. �
Corollary. Let j : U → X be a Zariski open embedding of smooth rigid analytic K-spaces,
and letM be an integrable connection on X. Then Rij∗(M|U ) is a coadmissible D̃X -module for
every i ≥ 0.

Proof. Without loss of generality, we can assume that X is affinoid with free tangent sheaf. We
can therefore consider the diagram (∗).

By Proposition 9.3, j′∗(M|U ) is a coadmissible ÙDX′-module. Now apply Theorem 10.4. �

10.5 Weak holonomicity
Lemma. Let X = SpA be a smooth affinoid K-space, and let U = Xf for f ∈ A non-constant.

Let M be an integrable connection on X. Then j∗(M|U ) is a weakly holonomic ÙDX -module,
where j : U → X is the natural embedding.

Proof. Without loss of generality, we can assume that TX is free as an OX -module. By Corollary
10.4, j∗(M|U ) is a coadmissible D̃X -module, and it remains to show that the dimension ofM(U)
as a ÙDX(X)-module is dimX. We write M =M(X).

By [MN91, Théorème 3.2.1], M [f−1] is a D(X)-module of minimal dimension, so that

d(ÙD(X)⊗D(X) M [f−1]) = dimX

by Proposition 7.2. But by [BB21, Proposition 2.14], the natural morphism

θ : ÙD(X)⊗D(X) M [f−1]→M(U)

is a surjection of coadmissible ÙD(X)-modules, so dÛD(X)
(M(U)) = dim X by Proposition 7.1. �

We can now give a proof of Theorem C.

Theorem. Let j : U → X be a Zariski open embedding of smooth rigid analytic K-spaces, and
let M be an integrable connection on X. Then Rij∗(M|U ) is a coadmissible, weakly holonomicÙDX -module for each i ≥ 0.
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Proof. Without loss of generality, X = SpA is affinoid with free tangent sheaf. There are finitely
many elements f1, . . . , fr ∈ A such that U = X \ V (f1, . . . , fr). Note that the Xfi form an
admissible covering of U , which we denote by V.

By Corollary 10.1, Rij∗(M|U )(X) ∼= Ȟi(V,M|U ). By Lemma 10.5, Č•(V,M|U ) is a com-
plex of coadmissible ÙDX(X)-modules of minimal dimension, so Rij∗(M|U )(X) is a coadmissibleÙDX(X)-module of minimal dimension by Proposition 7.1. �

10.6 Local cohomology
Let X be a smooth rigid analytic K-space and let Z be a closed analytic subset. The local
cohomology sheaf functor H i

Z(−) is then, as usual, the ith derived functor of H0
Z(−), which

assigns to a coherent OX -module its maximal subsheaf with support in Z (see [Kis99, Definition
2.1.3]).

Theorem. Let Z be a closed analytic subset of a smooth rigid analytic K-space X. Let M be
an integrable connection on X. Then H i

Z(M) is a coadmissible, weakly holonomic ÙDX -module
for each i ≥ 0.

Proof. Suppose that X is affinoid with free tangent sheaf. Let j : U → X be the complement
of Z. As in [Kis99, Proposition 2.1.4], we can consider the exact sequence

0→ H0
Z(M)→M→ j∗(M|U )→ H1

Z(M)→ 0,

as well as the isomorphism H i
Z(M) ∼= Ri−1j∗(M|U ) for any i ≥ 2. Thus the result follows imme-

diately from Theorem 10.5 for i ≥ 2, and from the fact that Cwh
X is an abelian category for

i = 0, 1. �
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Iwa97 Y. Iwanaga, Duality over Auslander–Gorenstein rings, Math. Scand. 81 (1997), 184–190.
Jan64 J. P. Jans, Rings and homology (Holt, Rinehart and Winston, New York, 1964).
Ked10 K. Kedlaya, p-adic differential equations, Cambridge Studies in Advanced Mathematics,

vol. 125 (Cambridge University Press, Cambridge, 2010).
Kie67 R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent.

Math. 2 (1967), 256–273.
Kis99 M. Kisin, Analytic functions on Zariski open sets, and local cohomology, J. Reine Angew.

Math. 506 (1999), 117–144.
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