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Abstract
This paper proposes a novel method of error mitigation for stereo visual odometry (VO) applied in land vehicles.
A non-holonomic constraint (NHC), which imposes physical constraint to the rightward velocity of a land vehicle,
is implemented as an observation in an extended Kalman filter (EKF) to reduce the drift of stereo VO. The EKF
state vector includes position errors in an Earth-centred, Earth-fixed (ECEF) frame, velocity errors in the camera
frame, angular rate errors and attitude errors. All the related equations are described and presented in detail. In this
approach, no additional sensors are used but NHC, namely velocity constraint in the right direction , is applied as
an external measurement to improve the accuracy. Tests are conducted with the Karlsruhe Institute of Technology
and Toyota Technological Institute (KITTI) datasets. Results show that the relative horizontal positioning error
improved from 0·63% to 0·22% on average with the application of the velocity constraints. The maximum and root
mean square of the horizontal error with velocity constraints are both reduced to less than half of the error with
stand-alone stereo VO.

1. Introduction

The global navigation satellite system (GNSS) is widely applied in autonomous driving and vehicle
navigation. However, the performance of GNSS degrades in challenging environments such as dense
urban areas, tunnels, or underground parking lots due to GNSS signal blockage and reflection (Groves
and Jiang, 2013). Dead reckoning (DR) systems such as inertial navigation system (INS) or stereo visual
odometry (VO) are widely used as systems complementary to GNSS in GNSS-denied environments
(Liu, 2018; F. Liu et al., 2018a, 2018b). However, DR systems accumulate errors fast without external
information. To reduce the accumulation of errors in DR systems, different sensors are integrated to
reduce the rapidity of drift and increase system reliability.

The inertial measurement unit (IMU) is widely used in multi-sensor integration applications as the
core sensor since it works in most circumstances (Hartley and Zisserman, 2001; Balazadegan Sarvrood,
2016; F. Liu et al., 2018a, 2018b). However, the main drawback of IMU is quick error accumulation
without external information update. The results obtained from a low-cost micro-electrotechnical system
(MEMS) IMU manifest drift in a short time (Jekeli, 2012; Noureldin et al., 2012). In theory, any self-
dependent system can be deployed as the core component in an integrated navigation system. Stereo
VO is a self-dependent DR system that is increasingly being utilised as the core sensor in multi-sensor
fusion. For VO, the monocular camera is an orientation device only since the translation is estimated
up to a scale ambiguity (Zhang et al., 2014). Adding another camera means that depth information is
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achievable by the triangulation of stereo cameras (Scaramuzza and Fraundorfer, 2011). With VO, drift
is inevitable because of error accumulation. To reduce the VO drift, feature matching or tracking is
of significance in pose estimation. Random sample consensus (RANSAC) is applied in some studies
to filter out incorrect features in estimation (Scaramuzza, 2011; Geiger et al., 2013; Liu et al., 2017).
Key-frame-based bundle adjustment optimisation (Strasdat et al., 2012; Campos et al., 2020) and loop
detection and relocalisation (Gálvez-López and Tardos, 2012; Campos et al., 2020) are also applied to
improve the VO performance. By application of effective feature detection and matching, key-frame
based optimisation, loop detection, etc., the accuracy and robustness of VO has been greatly improved
(Cvišić and Petrović, 2015; Forster et al., 2016; Bloesch et al., 2017; Wang et al., 2017). In addition, an
integrated system with other types of sensors (e.g., IMU) is another common way to provide external
information to limit the drift (Bloesch et al., 2015; Leutenegger et al., 2015; Qin et al., 2018; Von
Stumberg et al., 2018; Qin et al., 2019). In the past, little work has been devoted to stereo VO as the
core sensor in integrated navigation. This paper presents the mechanisation equations of stereo VO and
the corresponding linearised error equations which can be applied as the core component in integration
with other types of measurements. For land vehicle applications, velocity constraint is an effective way
of reducing the rapidity of drift based on the fact that the land vehicle only has forward velocity in
most cases. To mitigate the error accumulation in land vehicle applications, velocity constraints in the
right and down directions can be applied as additional measurements to reduce the stereo VO drift
(Shin, 2001; Godha and Cannon, 2007; Noureldin et al., 2012; Y. Liu et al., 2018). Since the estimated
state vector elements are correlated, the velocity constraints can correct the velocity estimation together
with other unknowns. In this way, without adding any external sensors, the performance can be further
improved for land vehicle applications. If external measurements are available, the proposed method
can also be applied to integrate stereo VO with other systems.

The rest of this paper is organised as follows. In Section 2, the fundamentals of stereo VO are briefly
reviewed. The method with stereo VO as the core component together withthe NHC application in
the extended Kalman filter (EKF) is illustrated in Section 3. Section 4 presents the test results of the
proposed method using the KITTI datasets and the discussion and conclusions are in the final section.

2. Fundamentals of stereo VO

The principle of VO is to estimate the six degrees of freedom camera pose from consecutive images by
solving perspective-n-point (PnP) (Fischler and Bolles, 1981). To estimate the unknown translation and
rotation between the camera frames in two consecutive epochs, continuously tracked or matched image
features together with their three-dimensional (3D) coordinates are applied in the resectioning (Nistér
et al., 2004; Scaramuzza and Fraundorfer, 2011). Tracking or matching methods such as Kanade–Lucas–
Tomasi (KLT) tracking, SIFT, FAST, SURF, etc. are used to find common features in consecutive images
(Tomasi and Kanade, 1992; Shi and Tomasi, 1993; Bay et al., 2006; Rosten and Drummond, 2006).
Several PnP methods such as P3P, EPnP and direct least squares are widely used for VO resectioning
(Gao et al., 2003; Lepetit et al., 2009; Hesch and Roumeliotis, 2011).

In this paper, 3D feature coordinates are determined by the triangulation of stereo cameras. A KLT
tracker is used to track the common features continuously in consecutive frames (Shi and Tomasi, 1993).
The camera pose estimation is based on the least squares method proposed by Menze and Geiger (2015).
The general procedures can be summarised as follows. With the feature tracker, the common features on
stereo images in two consecutive epochs can be found. The translation and rotation unknowns between
two consecutive epochs can be calculated by minimising the difference between the reprojected and
tracked image coordinates of the features on the current stereo images in the least squares estimation.

The coordinate systems used in this paper are defined as follows. The origin of the camera frame
is defined at the perspective centre of the left camera with the X-axis pointing to the right, the Y-axis
pointing downward and the Z-axis completing the right-handed coordinate system. The origin of the
image coordinate system is the left-top corner with X pointing to the right and Y pointing to the down
direction. The coordinate conversion from the previous camera frame to the current camera frame can
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be given as (Menze and Geiger, 2015)

𝐶𝑐 = 𝑅𝑐
𝑝𝐶

𝑝 + 𝑇 𝑐
𝑐𝑝

𝑅𝑐
𝑝 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1

⎤⎥⎥⎥⎥⎦
(1)

where C𝑐 and C𝑝 are the feature coordinates in the current and previous camera frames; 𝑅𝑐
𝑝 is the

rotation matrix from the previous camera frame (p) to the current camera frame (c); 𝛾, 𝛽, 𝛼 are the
Euler angles rotating with the Z-axis in the previous camera frame Z𝑝 , Y-axis after the first rotation Y’
and the X-axis after the second rotation X′′ respectively; 𝑇 𝑐

𝑐𝑝= [tx, ty, tz]T is the translation expressed in
the current camera frame.

To reproject the feature coordinate C𝑐 (x𝑐 , y𝑐 , z𝑐) in the current camera frame on the image (u, v),
the following equation is applied (Scaramuzza and Fraundorfer, 2011)

𝑢 = 𝑓𝑥
𝑥𝑐
𝑧𝑐

+ 𝑢0

𝑣 = 𝑓𝑦
𝑦𝑐
𝑧𝑐

+ 𝑣0

(2)

where (u, v) is the feature image coordinate; (x𝑐 , y𝑐 , z𝑐) is the 3D feature coordinate in the current
camera frame; (u0, v0) is the principal point image coordinate; the focal length of image X- and Y-axes
are represented as f𝑥 and f𝑦 .

To estimate the unknowns [𝛼, 𝛽, 𝛾, tx, ty, tz]T, initial values are set and the corrections to the initial
values are estimated using the least squares equations. For six unknowns, at least three features are
required to form six equations (Lepetit et al., 2009). The RANSAC algorithm is applied to remove the
outliers (Nistér, 2005). Specifically, three features are randomly selected to estimate the rotation and
translation 50 times. In each estimation, the number of inliers is recorded with a certain threshold. The
maximum number of inliers is applied again to finally achieve the estimation, given as (Menze and
Geiger, 2015)

𝑑𝑋 = (𝐻𝑇 𝑃𝐻)−1𝐻𝑇 𝑃𝐿 (3)

with estimated covariance matrix as
𝑅 = (𝐻𝑇 𝑃𝐻)−1 (4)

In Equation (3), dX is the estimated corrections to the initial values of the unknowns [𝛼, 𝛽, 𝛾, tx,
ty, tz]T; P is the weight matrix; L is the misclosure of the observed feature pixel coordinates minus the
calculated ones achieved by Equations (1) and (2); H is the design matrix. In Equation (4), R is the
covariance matrix of dX in Equation (3); P and H have the same meaning as in Equation (3). In normal
cases, all the elements in R are expected to be non-zero, which means that the unknowns (translation
and rotation) are correlated with each other.

3. Stereo VO as a core component

So far, the procedures for solving the translation and rotation of stereo VO between consecutive epochs
have been introduced. By accumulating the rotation and translation, the camera pose at any epoch can
be achieved. To integrate stereo VO with other types of measurements as a core component, the stereo
VO error dynamic equations have to be derived to be applied in the Kalman filter. Therefore, another
way to apply the stereo VO is to form the stereo VO mechanisation using the results from the previous
section. In this section, the stereo VO mechanisation, error linearisation, Kalman filter integration and
ground vehicle velocity constraint are illustrated.
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3.1. Stereo VO mechanisation

To apply the stereo VO as a core component in integrated navigation, the mechanisation of stereo VO
can be given as Equation (5), based on the results achieved by Equations (3) and (4). In this paper, the
mechanisation of stereo VO is conducted in ECEF (Earth-centred, Earth-fixed), given as

[
�𝑟𝑒

�𝑅𝑒
𝑐

]
=

[
𝑅𝑒
𝑐𝑣

𝑐

𝑅𝑒
𝑐Ω

𝑐
𝑒𝑐

]
(5)

where the left side of the equation is the time derivatives of the r𝑒 and 𝑅𝑒
𝑐; r𝑒 is the position in ECEF;

𝑅𝑒
𝑐 is the rotation matrix from camera frame to ECEF; Ω𝑐

𝑒𝑐 is the skew-symmetric matrix of the angular
rate of camera frame with respect to ECEF expressed in the camera frame 𝜔𝑐

𝑒𝑐; v𝑐 is the velocity in the
camera frame.

Note that the initial position, velocity and attitude are assumed to be known. Therefore, to apply
Equation (5) for stereo VO navigation solutions, v𝑐 and Ω𝑐

𝑒𝑐 need to be calculated, which can be given
as follows. From Equations (1) to (3), the translation in the camera frame can be achieved. The velocity
is the translation divided by time interval, given as

𝑣𝑐 = 𝑇 𝑐
𝑐𝑝/Δ𝑡 (6)

where 𝑇 𝑐
𝑐𝑝 = [tx, ty, tz]T is the translation obtained from Equation (3); Δt is the time interval between

two consecutive epochs.
For the angular rate 𝜔𝑐

𝑒𝑐 , it can be calculated based on the Euler angles and their corresponding axis.
As mentioned in Equation (1), the rotation can be decomposed as Euler angles −𝛾, −𝛽, and −𝛼 rotating
Z𝑝 , Y′ and X′′ axes. Therefore, 𝜔𝑐

𝑒𝑐 can be given as

𝜔𝑐
𝑒𝑐 = (−𝛾/Δ𝑡) �𝑍𝑃 + (−𝛽/Δ𝑡)

−→
𝑌 ′ + (−𝛼/Δ𝑡)

−→
𝑋 ′′ (7)

Based on the rotation orders, the unit vectors of
−→
𝑌 ′.,

−→
𝑋 ′′can be derived as

⎡⎢⎢⎢⎢⎣
�𝑋 ′

�𝑌 ′

�𝑍 ′

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝑋𝑐

�𝑌 𝑐

�𝑍𝑐

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣
�𝑋 ′′

�𝑌 ′′

�𝑍 ′′

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
cos 𝛽 0 sin 𝛽

0 1 0
− sin 𝛽 0 cos 𝛽

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝑋 ′

�𝑌 ′

�𝑍 ′

⎤⎥⎥⎥⎥⎦
−→
𝑌 ′ = sin 𝛾 �𝑋𝑐 + cos 𝛾 �𝑌 𝑐

−→
𝑋 ′′ = cos 𝛽 �𝑋 ′ + sin 𝛽 �𝑍 ′ = cos 𝛽(cos 𝛾 �𝑋𝑐 − sin 𝛾 �𝑌 𝑐) + sin 𝛽 �𝑍𝑐

(8)

where 𝛾, 𝛽, 𝛼 are the Euler angles explained in Equation (1), namely Euler angles rotating Z𝑝 , Y′ and
X′′ respectively. With

−→
𝑌 ′,

−→
𝑋 ′′ obtained from Equation (8), Equation (7) can be rewritten as

𝜔𝑐
𝑒𝑐 = (−𝛾/Δ𝑡) �𝑍𝑃 + (−𝛽/Δ𝑡) �𝑌 ′ + (−𝛼/Δ𝑡) �𝑋 ′′

=

⎡⎢⎢⎢⎢⎣
−(𝛽/Δ𝑡) sin 𝛾 − (𝛼/Δ𝑡) cos 𝛽 cos 𝛾
−(𝛽/Δ𝑡) cos 𝛾 + (𝛼/Δ𝑡) cos 𝛽 sin 𝛾

−𝛾/Δ𝑡 − (𝛼/Δ𝑡) sin 𝛽

⎤⎥⎥⎥⎥⎦
(9)

With Equations (5) to (9), the stereo VO can be updated based on velocity and angular rate.
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3.2. Stereo VO error linearisation

Given the mechanisation process presented in Section 3.1, the errors of stereo VO mechanisation can be
modelled by linearisation of Equation (5). The purpose of modelling the errors is to integrate different
types of data. In this paper, the errors of position, velocity, attitude and angular velocity are estimated
in the Kalman filter. The state vector is given as

𝑋 =
[
𝛿𝑟𝑒 𝛿𝑣𝑐 𝜀 𝛿𝜔𝑐

𝑒𝑐

]𝑇 (10)

where 𝛿r𝑒 is the position error in ECEF; 𝛿r𝑒 is the velocity error in the camera frame; 𝜖 is the attitude
error; 𝛿𝜔𝑐

𝑒𝑐 is the angular rate error of the camera frame with respect to ECEF expressed in the camera
frame.

The EKF procedure after linearisation can be summarised as (Welch and Bishop, 1995)

𝑋−
𝑘+1 = Φ𝑘+1,𝑘𝑋𝑘 + 𝑤𝑘

𝑃−
𝑘+1 = Φ𝑘+1,𝑘𝑃𝑘Φ

𝑇
𝑘+1,𝑘 +𝑄𝑘

𝐾𝑘+1 = 𝑃−
𝑘+1𝐻

𝑇
𝑘+1(𝐻𝑘+1𝑃

−
𝑘+1𝐻

𝑇
𝑘+1 + 𝑅𝑘+1)

−1

𝑋𝑘+1 = 𝑋−
𝑘+1+𝐾𝑘+1(𝑍𝑘+1 − 𝐻𝑘+1𝑋

−
𝑘 )

𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃
−
𝑘+1

(11)

In Equation (11), 𝑋−
𝑘+1 is the predicted state estimate with covariance matrix 𝑃−

𝑘+1. 𝑋−
𝑘+1 is achieved

based on the transition matrix Φ𝑘+1,𝑘 and the previously estimated state vector X𝑘 with process noise
w𝑘 . The predicted covariance matrix 𝑃−

𝑘+1 is achieved by uncertainty propagation of the previously
estimated covariance matrix P𝑘 and the process noise covariance matrix Q𝑘 . The measurement update
is represented as Z𝑘+1 with covariance R𝑘+1 and the corresponding design matrix is represented as H𝑘+1.
Based on the optimal gain matrix K𝑘+1, the state vector and its covariance matrix can be updated. Note
that in Equation (11) P has a different meaning to that in Equation (4).

Since the errors are estimated in the Kalman filter, Equation (5) needs to be linearised to achieve the
dynamic information of the system errors, given as

⎡⎢⎢⎢⎢⎢⎢⎣

𝛿 �𝑟𝑒

𝛿 �𝑣𝑐

�𝜀
𝛿 �𝜔𝑒

𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

Ψ𝑅𝑒
𝑐𝑣

𝑐 + 𝑅𝑒
𝑐𝛿𝑣

𝑐

𝑤𝑣

𝑅𝑒
𝑐𝛿𝜔

𝑐
𝑒𝑐

𝑤𝜔

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

−𝑉𝑒𝜀 + 𝑅𝑒
𝑐𝛿𝑣

𝑐

𝑤𝑣

𝑅𝑒
𝑐𝛿𝜔

𝑐
𝑒𝑐

𝑤𝜔

⎤⎥⎥⎥⎥⎥⎥⎦
(12)

where 𝛿 represents the error of each item; the dot on the left side of the equation represents the time
derivative of each item; 𝜖 is the attitude error; Ψ is the skew-symmetric matrix of the attitude error 𝜖 ;
𝑅𝑒
𝑐𝑣

𝑐 achieves the velocity in ECEF v𝑒; V𝑒 is the skew-symmetric matrix of v𝑒; the velocity error 𝛿v𝑐,
and angular velocity error 𝛿𝜔𝑐

𝑒𝑐 are modelled as random walk, w𝑣 and w𝜔 are the driven noise of 𝛿v𝑐
and 𝛿𝜔𝑐

𝑒𝑐 respectively.
Based on Equation (12), the dynamic matrix of stereo VO can be formed as

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 𝑅𝑒
𝑐 −𝑉𝑒 0

0 0 0 0
0 0 0 𝑅𝑒

𝑐

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
(13)
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The transition matrix Φ𝑘+1,𝑘 in Equation (11) can be simplified as

Φ𝑘+1,𝑘 ≈ 𝐼 + 𝐹Δ𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐼 𝑅𝑒
𝑐Δ𝑡 −𝑉

𝑒Δ𝑡 0
0 𝐼 0 0
0 0 𝐼 𝑅𝑒

𝑐Δ𝑡
0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎦
(14)

Equation (13) shows the velocity error is not coupled with the angular rate error in the mechanisation.
However, this is not the case for stereo VO. The velocity and angular rate should be correlated since the
translation and rotation are correlated, based on Equations (3), (4), (6) and (9). To take full advantage of
the information from PnP, the velocity and angular rate derived from Equations (6) and (9) are used to
form the measurement update in the Kalman filter, which are the same as those used in mechanisation in
Equation (5). Therefore, the measurement update would be Z𝑘+1 = 0, which means that the measurement
update does not have an impact on the Kalman filter estimation. However, the velocity and angular rate
become coupled with each other due to the contribution of the measurement covariance. Specifically,
the covariance matrix of the measurement update in Equation (11) can be written as

𝑅𝑘+1 = 𝐴𝑅𝑃𝑛𝑃𝐴
𝑇

𝐴 =

[
𝐼/Δ𝑡 0

0 𝐵

]

𝐵 =

⎡⎢⎢⎢⎢⎣
−(1/Δ𝑡) cos 𝛽 cos 𝛾 −(1/Δ𝑡) sin 𝛾 + (𝛼/Δ𝑡) sin 𝛽 cos 𝛾 −(𝛽/Δ𝑡) cos 𝛾 + (𝛼/Δ𝑡) cos 𝛽 sin 𝛾
(1/Δ𝑡) cos 𝛽 sin 𝛾 −(1/Δ𝑡) cos 𝛾 − (𝛼/Δ𝑡) sin 𝛽 sin 𝛾 (𝛽/Δ𝑡) sin 𝛾 + (𝛼/Δ𝑡) cos 𝛽 cos 𝛾
−(1/Δ𝑡) sin 𝛽 −(𝛼/Δ𝑡) cos 𝛽 −(1/Δ𝑡)

⎤⎥⎥⎥⎥⎦
(15)

where R𝑃𝑛𝑃 is the PnP covariance matrix achieved from Equation (4); A is the design matrix based on
Equation (6) and linearisation of Equation (9); B is the linearisation of Equation (9).

For the process noise Q in Equation (11), the velocity and angular rate related process noise are set as
large values to fully use the information from PnP. The design matrix in Equation (11) can be given as

𝐻 =

[
0 𝐼 0 0
0 0 0 𝐼

]
(16)

3.3. Ground vehicle velocity constraint

With the equations in Section 3.2, the stereo VO can be integrated with other types of measurements.
When the stereo VO is applied on a ground vehicle, the velocity constraint can be applied to reduce
the drift if no additional sensors are available. In most cases, there is only the forward velocity for a
ground vehicle when it is not manoeuvring. Therefore, the rightward and downward velocity can be
applied as constraints in land vehicle applications (Shin, 2001). The velocity constraints can correct the
velocity, position and angular rate since they are coupled with each other. Furthermore, the attitude can
be corrected as well since it is correlated with the angular rate. In this way, the performance of stereo
VO can be improved.

The camera frame has to be aligned with the land vehicle frame with the X-axis of the camera frame
pointing to the right of the ground vehicle and the Y-axis of the camera frame pointing downward of the
ground vehicle. When the vehicle is not manoeuvring, the velocity constraint as measurement update
can be given as (Shin, 2001; Godha and Cannon, 2007; Noureldin et al., 2012; Y. Liu et al., 2018)

𝑍𝑁𝐻𝐶 =

[
0 − 𝑣𝑐𝑥
0 − 𝑣𝑐𝑦

]
=

[
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

]
𝑋 (17)
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Figure 1. KITTI data collection system setup (Geiger et al., 2013).

Figure 2. First dataset trajectories.

where Z𝑁𝐻𝐶 is the velocity constraint, 𝑣𝑐𝑥 and 𝑣𝑐𝑦 are the x and y components of camera velocity; X is
the state vector in Equation (10).

For ground vehicle navigation, horizontal positioning accuracy is much more important than height
accuracy. The velocity in the X-axis and angular rate in Y-axis in the camera frame are coupled with
each other and they have a greater impact on the horizontal positioning accuracy, compared with the
velocity in the Y-axis. Therefore, Equation (17) can be further simplified as

𝑍𝑁𝐻𝐶 = 0 − 𝑣𝑐𝑥 (18)

In this work, the angular rate of the Y-axis is applied to determine when to apply the constraint. If the
magnitude of the angular rate is larger than the threshold, the constraint is not applied due to possible
manoeuvres.

4. Field tests and results

Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) datasets (Geiger et al.,
2013) are used to verify the proposed stereo VO with NHC for ground vehicle applications. Shown in
Figure 1 is the KITTI test setup.
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Figure 3. First dataset horizontal errors.

Table 1. RMS of stereo VO and stereo VO with NHC for the first dataset.

Stereo VO Stereo VO with NHC

RMS (m) MAX (m) RMS (m) MAX (m)

East 6·08 21·27 3·11 5·70
North 8·33 19·93 3·81 7·38
Horizontal 10·32 21·89 4·92 8.16

In Figure 1, there are two grey (Cam 0 and Cam 1) and two colour cameras (Cam 2 and Cam
3) installed on the land vehicle roof. In this paper, only the grey stereo images collected by the grey
cameras (Point Grey Flea 2 FL2-14S3M-C) are used. FL2-14S3M-C is a CCD (charge-coupled device)
camera with a global shutter supporting 15 FPS (frames per second). The sensor format, pixel size and
resolution are 1/2′′, 4·65 𝜇m, and 1384 by 1032, respectively. The FPS used during the test is 10. The
stereo images applied are calibrated, rectified and synchronised, which are all done by KITTI. The laser
scanner shown in Figure 1 is not used in this work. The GNSS/IMU system OXTS RT 3003 is applied
as the reference with an accuracy of 0·4 m CEP (circular error probable).

Three relatively long KITTI datasets collected in residential areas are applied in this work. To verify
the improvement of the proposed method, the stereo VO with NHC results are compared with stand-alone
stereo VO results. The reference used is the DGPS (differential GPS)/IMU output of RT 3003.

The first dataset contains 2,762 stereo images with a duration of about four and a half minutes.
The total horizontal distance is approximately 2,205 m. The trajectories obtained by stereo VO and the
proposed method together with the reference are plotted in Figure 2. The green, blue and red lines
represent the stereo VO, stereo VO with NHC, and the reference (DGPS/IMU), respectively. It can
be seen that although it is inevitable for both stereo VO and stereo VO with NHC to suffer drift, the
accuracy of the proposed method with NHC is much improved. The trajectory of the proposed method
is closer to the reference most time of the test.
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Figure 4. Second dataset trajectories.

Figure 5. Second dataset horizontal errors.

To see the performance of the two different methods more clearly, the horizontal errors are plotted
in Figure 3 and the root mean square (RMS) values of horizontal positioning error obtained by each
method are summarised in Table 1. In Figure 3, the stereo VO and stereo VO with NHC errors are
plotted in green and blue lines respectively. The horizontal errors are represented by solid lines while
the east and north errors are plotted in two kinds of dash lines. Each epoch is 0·1 s since the FPS setting
is 10. Generally, the errors in each direction for both methods increase with time. For stereo VO, the
errors in east and north fluctuate during the test, which is caused by the manoeuvring. The maximum
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Table 2. RMS of stereo VO and stereo VO with NHC for the second dataset.

Stereo VO Stereo VO with NHC

RMS (m) MAX (m) RMS (m) MAX (m)

East 17·30 41·25 6·38 20·86
North 16·36 39·77 3·28 19·47
Horizontal 23·81 57·00 7·18 28·54

Figure 6. Third dataset trajectories.

horizontal error of stereo VO happens at the end of the trajectory. In comparison, the errors of stereo
VO with NHC in each direction grow much more slowly with time and all the errors are under 10 m.
The accuracy of the proposed method is improved in both east and north directions, compared with
stereo VO. The horizontal RMS value of the proposed method is less than half of stereo VO. The
maximum horizontal error is also reduced from 21·89 m to 8·16 m. From Figures 2 and 3, the stereo
VO horizontal error is smaller than stereo VO with NHC in a short period only at around the 2500th
epoch. After several manoeuvres, when the land vehicle just turns around, the stereo VO’s position is
not accurate due to the drift. However, it might move closer to the true path due to inaccurate heading.
This is the reason that the stereo VO errors fluctuate and sometimes are slightly better than stereo VO
with NHC.

The second dataset contains 5,177 stereo images with more manoeuvres during the test. The duration
of this dataset is over eight and a half minutes and the horizontal distance is about 4,129 m. Similarly, in
comparison with stereo VO, the trajectory of the proposed method with the application of the velocity
constraint is much closer to the reference in Figure 4.

The horizontal errors of stereo VO and stereo VO with NHC are plotted in Figure 5 and summarised
in Table 2. Stereo VO with NHC outperforms stereo VO, as shown in Figure 5. The abnormal peaks
around the 900th epoch may be caused by the inaccurate positioning results of the reference DGPS/IMU
system since the reference trajectory is not on the path during this short period. The maximum horizontal

https://doi.org/10.1017/S037346332100028X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332100028X


1036 Fei Liu et al.

Figure 7. Third dataset horizontal errors.

error of stereo VO with NHC happens during this period. Other than this period, the errors of stereo
VO with NHC in each direction grow slowly with time. Errors of stereo VO with NHC are under 10 m
most of the time, while the error growth of stereo VO is much more evident, especially after the 3,500th
epoch. Similar to the previous dataset, stereo VO errors are less than stereo VO with NHC during
very short periods around the 2,700th epoch and 4,500th epoch. From Table 2, the RMS values of the
proposed method are less than stereo VO in both east and north directions. The horizontal RMS value
of the proposed method is only one-third of the stereo VO. The maximum horizontal error drops from
57 m to 28·54 m.

The third dataset contains 4,663 stereo images with the most manoeuvres. The horizontal distance
of this data is about 5,060 m and the duration is more than seven and a half minutes. The trajectories
are shown in Figure 6. Similarly, the drift of the proposed method is much reduced compared with
stereo VO. To compare the accuracy of the two methods, the positioning errors with DGPS/IMU as the
reference are plotted in Figure 7 and RMS values are listed in Table 3. Although the performance of
the proposed method for this dataset is worse than the previous two datasets, the accuracy is still much
improved with horizontal RMS almost one-third of stereo VO. Because there are more manoeuvres in
this test, the horizontal errors of stereo VO fluctuate more than the previous datasets. The general error
trends of stereo VO with NHC are similar to the stereo VO, but the magnitudes are much less. The
velocity constraint effectively limits the error growth with a horizontal error smaller than 20 m most
of the time while the stereo VO errors increase significantly, especially during the second half of the
test. With the application of velocity constraint, the horizontal error RMS is reduced from 43·17 m to
13·24 m while the maximum horizontal error drops from 83·48 m to 23·88 m.

To summarise the results in this section, the relative horizontal position errors (the ratio of hor-
izontal error RMS to the horizontal distance) of both methods are listed in Table 4. The relative
horizontal position errors of the proposed method are much reduced compared with stereo VO. The
relative horizontal position errors of stereo VO with NHC are all less than half of the stereo VO.
With the velocity constraint applied, the relative horizontal position errors are all reduced to less
than 0·3%.
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Table 3. RMS of stereo VO and stereo VO with NHC for the third dataset.

Stereo VO Stereo VO with NHC

RMS (m) MAX (m) RMS (m) MAX (m)

East 31·13 80·19 8·44 17·53
North 29·91 75·77 10·20 19·99
Horizontal 43·17 83·48 13·24 23·88

Table 4. Relative horizontal position errors for the datasets.

Dataset Distance Stereo VO Stereo VO with NHC

1 2205 m 0·47% 0·22%
2 4129 m 0·58% 0·17%
3 5060 m 0·85% 0·26%

5. Conclusion

This paper proposes a velocity constrained stereo VO method to improve the horizontal positioning
accuracy for ground vehicle navigation. The method to apply the stereo VO as the core component
in multi-sensor integration is presented. The drift of stand-alone stereo VO is effectively reduced by
introducing the velocity constraint of the ground vehicle. The test results with the KITTI datasets show
that the horizontal errors of the proposed method are much less than the stereo VO. By comparison with
stereo VO, both the overall horizontal error RMS and maximum horizontal errors are reduced to half of
the stand-alone stereo VO. The relative horizontal position errors of the proposed method are reduced
to less than 0·3% for all the datasets.
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