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Abstract. In this paper we investigate the range of validity of Ruelle’s property. First,

we show that every finitely generated Fuchsian group has Ruelle’s property. We also

prove the existence of an infinitely generated Fuchsian group satisfying Ruelle’s property.

Concerning the negative results, we first generalize Astala and Zinsmeister’s results

[Mostow rigidity and Fuchsian groups. C. R. Math. Acad. Sci. Paris 311 (1990), 301–306;

Teichmüller spaces and BMOA. Math. Ann. 289 (1991), 613–625] by proving that all

convergence-type Fuchsian groups of the first kind fail to have Ruelle’s property. Finally,

we give some results about second-kind Fuchsian groups. [-3.2pc]
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1. Introduction
In this paper we call a Fuchsian group a Möbius group acting on the unit disk1 of the plane

properly discontinuously and freely. Equivalently, a Fuchsian group is a discrete Möbius

group acting on the circle without elliptic elements or else Fuchsian groups are exactly

the groups coming from uniformization of hyperbolic Riemann surfaces. The limit set of

a Fuchsian group G, denoted by 3(G), is the set of accumulation points of the G-orbit of

any point z ∈ 1. Since the action ofG is properly discontinuous,3(G) ⊂ ∂1. A Fuchsian

group G is said to be of the first kind if the limit set 3(G) is the entire circle. Otherwise,

it is of the second kind. Points of the limit set3 naturally correspond to geodesic rays with

fixed base point z0 ∈ 1. The limit set can be written as the disjoint union of two special

subsets: the conical limit set 3c(G), which corresponds to geodesics that return to some

compact set infinitely often (the recurrent geodesics) and the escaping limit set, 3e(G),

which corresponds to geodesics escaping to infinity.
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The critical exponent (or Poincaré exponent) of a Fuchsian group G is defined as

δ(G) = inf

{

t :
∑

g∈G

exp(−tρ(0, g(0))) < ∞

}

(1.1)

= inf

{

t :
∑

g∈G

(1 − |g(0)|)t < +∞

}

, (1.2)

where ρ denotes the hyperbolic metric.

It is proved in [11] that, for any non-elementary group G, δ(G) = HD(3c(G)), the

Hausdorff dimension of the conical limit set.

A Fuchsian group is said to be cocompact if the Riemann surface 1/G is compact

and cofinite if the quotient has finite hyperbolic area. A Fuchsian group G is said to be

of divergence type if 6g∈G(1 − |g(0)|) = ∞. Otherwise, we say that it is of convergence

type. It is well known that

cocompact ⊂ cofinite ⊂ divergence-type ⊂ first kind.

All groups of the second kind are of convergence type but the converse is not true, as we

shall see later.

We will call a Fuchsian group exceptional if it is the covering group of the sphere minus

m disks and n points, where 1 ≤ m+ n ≤ 3, (m, n) 6= (1, 0).

Let G be a Fuchsian group and let µ be a bounded measurable function on 1 such that

‖µ‖∞ < 1 and

µ(z) = µ(g(z))g′(z)/g′(z), z ∈ 1, g ∈ G.

We say that µ is a G-compatible Beltrami coefficient (or complex dilatation). For a

G-compatible Beltrami coefficient µ, there is a corresponding quasi-conformal mapping

fµ which is analytic outside 1 and such that

µ(z) =
∂fµ

∂z̄
/
∂fµ

∂z
almost every z ∈ 1.

This map, fµ, conjugates G to a quasi-Fuchsian group Gµ = fµ ◦G ◦ f−1
µ . We say that

Gµ is a quasi-conformal deformation of G.

We can generalize to quasi-Fuchsian groups the notion of conical and escaping sets: we

can also define the Poincaré exponent of such a group by replacing (1 − |g(0)|) in (1.2) by

dist(g(0), ∂fµ(1)), and the fact that the Poincaré exponent is equal to the dimension of

the conical limit set remains true in this case (see [8, 11]).

A Fuchsian group G has Bowen’s property if the limit set of any quasi-conformal

deformation of G is either a circle or has Hausdorff dimension > 1. In 1979, Bowen [14]

proved that if G is a cocompact Fuchsian group, then this dichotomy property holds. Soon

after, Sullivan [26, 27] extended Bowen’s property to all cofinite groups. In 1990, Astala

and the second author [3] showed that Bowen’s property fails for all convergence groups of

the first kind. Then, in 2001, Bishop showed that Bowen’s property holds for all divergence

groups (see [8]).

We will say that a Fuchsian group G has Ruelle’s property if, for any family

of G-compatible Beltrami coefficients (µt ) that is analytic in t ∈ 1, the map
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t 7→ HD(3(Gµt )) is real analytic in 1. In 1982, Ruelle [24] showed that all cocompact

groups have this property. In 1997, Anderson and Rocha [2] extended this result to finitely

generated Fuchsian groups without parabolic elements. In [5, 6], Astala and the second

author showed that, for Fuchsian groups corresponding to Denjoy–Carleson domains or

infinite d-dimensional ‘jungle gyms’ with d ≥ 3, Ruelle’s property fails. In [9], Bishop

gave a criterion for the failure of Ruelle’s property that applies to many divergence-type

examples including the d-dimensional ‘jungle gym’ with d = 1, 2, which thus implies that

Ruelle’s property is not equivalent to Bowen’s.

In this paper, we continue to investigate the range of validity of Ruelle’s property.

First, by investigating the role of parabolic points and using Mauldin and Urbanski’s [20]

techniques, we prove the following theorem.

THEOREM 1.1. Every finitely generated Fuchsian group has Ruelle’s property.

Using the same kinds of techniques, we also prove the existence of an infinitely

generated Fuchsian group with Ruelle’s property.

THEOREM 1.2. There exists a sequence (sn) of real numbers, increasing to infinity, such
that the Fuchsian group uniformizing S = C\{sn, n ≥ 0} has Ruelle’s property.

Remark Theorem 1.2 does not hold for any sequence (sn). For example, C \ Z is a

Z-covering of the twice-punctured sphere, as was noticed in [1] (we thank Mariusz

Urbanski pointing this reference out to us), which implies, by the result of Bishop [9],

that Ruelle’s property fails in this case.

Concerning the negative results, we first generalize Astala and Zinsmeister’s results in

[3, 4] by proving the following theorem.

THEOREM 1.3. All convergence-type Fuchsian groups of the first kind fail to have Ruelle’s
property.

Concerning the second kind of Fuchsian groups (that is, convergence type) we prove

the following theorem.

THEOREM 1.4. Let S be an infinite area hyperbolic Riemann surface and let G be the
universal covering group of S. Let γ be a closed geodesic in the surface S. Cutting S along
γ , one obtains one or two bordered Riemann surfaces. We construct a new surface S′ by
gluing the one of infinite area with one or two funnels along γ . IfG is of the first kind, then
the corresponding second-kind covering group G′ of S′ fails to have Ruelle’s property.

2. Proof of Theorem 1.3
In order to prove this theorem, we will need the following lemma from [10], Lemma 2.1.

LEMMA 2.1. Suppose that G is a Fuchsian group and µ is a G-compatible Beltrami
coefficient. If {µn} is a family of G-compatible complex dilatations with L∞ norms
uniformly bounded by k < 1 that converges pointwise to µ, then

lim inf
n→∞

δ(Gµn) ≥ δ(Gµ).

https://doi.org/10.1017/etds.2020.149 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.149


On Ruelle’s property 1477

For quasi-conformal deformations of Fuchsian groups, Bishop [9] gave the following

result.

LEMMA 2.2. If G is a torsion free non-exceptional type Fuchsian group, then G has a
quasi-conformal deformation Gµ with HD(3(Gµ)) ≥ δ(Gµ) > 1.

Let us recall some facts from BMO-Teichmuller theory, where the Bounded Mean

Oscillation (BMO) space is defined as the measurable functions on the unit circle ∂1

such that

‖f ‖BMO = sup
I

MI (|f −MI (f )|) < ∞,

where the sup is over all subintervals I of the unit circle ∂1 and

MI (f ) =
1

|I |

∫

I

f (x) dx,

for more detail, see [16, Chs VI–VII]. A Carleson measure on the unit disk 1 is a positive

measure ν such that there exists a constant C such that, for any z ∈ ∂1 and any r < 1,

ν(1 ∩D(z, r)) ≤ Cr ,

whereD(z, r) denotes the disk with center z and radius r . Garnett, Gehring and Jones have

shown that if G is a convergence-type Fuchsian group, then
∑

(1 − |g(0)|)δg(0)

is a Carleson measure on the unit disk 1 (δz stands for the Dirac mass at z); see [17] or

[19, Lemma 2.2]. Now consider a function ϕ ∈ L∞(1) with a compact support included

in some fundamental domain of G, with ‖ϕ‖∞ < 1. Then the function

µϕ(z) =
∑

g∈G

ϕ(g(z))
g′(z)

g′(z)

is aG-compatible Beltrami coefficient. If µ is anyG-compatible Beltrami coefficient, then

µ does not descend via the canonical projection1 → 1/G to a function, but |µ| does: by

a slight abuse of notation, we say that µ has compact support in 1/G if |µ| has. Then the

above-constructed Beltrami coefficient µϕ has compact support and it follows easily from

Garnett, Gehring and Jones’ result [17] that if G is of convergence type, then

|µ(z)|2

1 − |z|2
dxdy

is a Carleson measure. From this, it is easy to deduce the following lemma (see [19,

Lemma 2.2]).

LEMMA 2.3. Suppose that G is a convergence-type Fuchsian group and µ is a
G-compatible Beltrami coefficient. If µ is compactly supported on the surface 1/G
(we say that µ induces a compact deformation), then

|µ(z)|2

1 − |z|2
dxdy ∈ CM(1),

where CM(1) denotes the set of all Carleson measures of 1.
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Now, let µ be a Beltrami coefficient such that

|µ(z)|2

1 − |z|2
dxdy

is a Carleson measure. It is known that, in this case, log(f ′
µ) belongs to the space

BMOA(1) with a norm controlled by the above Carleson measure norm. In particular,

when the Carleson norm is small, then ∂fµ(1) is a rectifiable (chord-arc) curve [21, 25].

This is essential for the proof that convergence-type first-kind Fuchsian groups fail to have

Bowen’s property. For more details see [4, 5].

We can now prove the theorem. First, by Bishop’s result, Lemma 2.2, there exists a

G-compatible Beltrami coefficient µ such that δ(Gµ) > 1. Let (Kn) be an exhaustion of

some fundamental domain by compact sets: if µ is aG-compatible Beltrami coefficient let

µn(z) =
∑

g∈G

µ(g(z))1Kn(g(z))
g′(z)

g′(z)
.

This is a compactly supported G-invariant Beltrami coefficient and the sequence {µn}

converges pointwise to µ, so, for large n, µn satisfies δ(Gµn) > 1 by Bishop’s result

Lemma 2.1. But then, by Lemma 2.3,

|µn(z)|
2

1 − |z|2
dxdy ∈ CM(1),

and if we consider the family (tµn), we see that HD(3(Gµn) > 1 , while, by the recalled

results above, for small t , the curve Gtµ(∂1) is a chord-arc curve which is rectifiable, and

hence HD(3(Gtµ)) = 1 . This contradicts Ruelle’s property.

3. Proof of Theorem 1.4
We begin with the following claim.

CLAIM. HD(3e(G
′)) = 1.

Proof. To prove the claim, we need the following lemma, which is due to J.L. Fernandez

and M. Melian (see [18, Theorem 1]).

LEMMA 3.1. Suppose that G is a first-kind Fuchsian group such that the quotient 1/G
has infinite area. Then there are two possibilities.

(i) If G is of convergence type, then 3e has full measure.
(ii) If G is of divergence type, then 3e has measure zero, but its Hausdorff dimension is

equal to 1.

If G is of convergence type, we consider the lift of the closed geodesic γ in the unit

disk. It consists of a nested set 6 of hyperbolic lines: the one intersecting the Dirichlet

fundamental domain cuts it into two parts and we may assume that the origin belongs to

a part that has infinite (hyperbolic) area. The hyperbolic lines in 6 of the first generation

define a two-by-two disjoint family (Ij ) of intervals of the unit circle. Let us call lj the arc

length of Ij : if
∑

lj = 2π ,
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then almost every geodesic issued from 0 would visit γ infinitely often, which would

contradict (i) of Lemma 3.1. Thus 6lj < 2π and the set of geodesics from 0 that never

visit γ has positive measure. It follows that the escaping limit set of S′ has positive measure

and the claim follows.

Now, suppose that G is of divergence type and that the Riemann surface 1/G has

infinite area. A domainD ⊂ S is called a geodesic domain if its relative boundary consists

of finitely many non-intersecting closed simple geodesics and its area is finite. Fix a point

p ∈ S. By [18, Theorem 4.1] we know that there exists a family {Di}
∞
i=0 of pairwise disjoint

geodesic domains in S satisfying the following.

(i) The boundary of Di and Di+1 have at least a simple closed geodesic in common.

(ii) limi→∞ dist(p, Di) = ∞.

Let 8 be the isometric embedding mapping from S′ to S and let D′
i = 8−1(Di) be the

isometric embedding preimage of Di . Without loss of generality, we may suppose that γ

as stated in the theorem is part of the boundary of D0. For the family {Di}
∞
i=0, the method

used to prove [18, Theorem 1] by Fernandez and Melian is still valid. Modeled upon their

method, we get that HD(3e(G
′)) = 1. For the readers’ convenience, we include some

details taken from [18].

Let {D′
i}

+∞
i=0 be the family of geodesic domains of S′ constructed as above. For any i,

let S′
i be the Riemann surface obtained from D′

i by pasting a funnel along each one of the

simple closed geodesics of its boundary. For each i, we choose a simple closed geodesic

γi from the common boundary D′
i ∩D′

i+1 and a point Pi ∈ γi . By [18, Theorem 4.1], and

noticing that D′
i is the isometric image of Di , we have δi → 1 when i tends to infinity,

where δi is the Poincare exponent of S′
i .

For θ ∈ (0, 1
2
π), by [18, Theorem 5.1], we can choose a collection Bi of geodesics in

S′
i with initial and final endpoint Pi such that

Li ≤ length(γ ) ≤ Li + C(Pi), γ ∈ Bi .

The number of geodesic arcs in Bi is at least eσi , and both the absolute value of the angles

between γ and the closed geodesic γi are less than or equal to θ , where Li is a constant

such that Li → ∞ as i → ∞, C(Pi) is a constant depending only on the length of the

geodesic γi , and σi < δ(S′
i), σi → 1 as i → ∞. Note that for each i,D′

i is the convex core

of S′
i , which implies that every geodesic arc γ ∈ Bi is contained in the convex core D′

i .

Furthermore, for each i, we may choose geodesic arcs γ ∗
i with initial point Pi and final

endpoint Pi+1 such that

Li ≤ length(γ ∗
i ) ≤ Li + C(Pi+1),

and both the absolute value of the angles between γi , γ
∗
i , and γ ∗

i , γi+1 are less than or

equal to θ .

Now we are going to construct a tree T consisting of oriented geodesic arcs in the unit

disk 1.

First, lift γ ∗
0 to the unit disk starting at 0 (without loss of generality, we may suppose

that 0 projects onto P0). From the endpoint of the lifted γ ∗
0 (which project onto P1), lift

the family B1; from each of the endpoints of these liftings (which still project onto P1),

lift again B1. Keep lifting B1 in this way M1 times.
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Next, from each one of the endpoints obtained in the process above, we lift γ ∗
1 , and from

each one of the endpoints of the lifting of γ ∗
1 (which project onto P2), we lift the collection

B2 successively M2 times, as above. By continuing this process indefinitely we obtain a

tree T.

It is easy to see that T contains uncountably many branches. The tips of the branches of

T are contained in the escaping limit set 3e of the covering group of S′.

By the proof of [18, Theorem 1.1], we know that, for a suitable sequence {Mi} of

repetitions, the dimension of the set of the tips of the branches of T is one. By the

construction of the tree T, we see that it is a unilaterally connected graph. Hence the

geodesic corresponding to any branch of T does not tend to the funnel with boundary γ .

Hence the dimension of the escaping limit set 3e of the covering group G′ is one.

We can now prove the theorem.

As in the proof of Theorem 1.3, by Lemma 2.1 and Lemma 2.2, we can choose

a compactly supported G′-compatible Beltrami coefficient µ such that HD(3(G′
µ)) ≥

δ(G′
µ) > 1. Bishop [12] showed that the Hausdorff dimension of the escaping limit set

is unchanged under any compact deformation. Hence, for the deformation group G′
µ, we

have HD(3e(G
′
µ)) = HD(3e(G

′)). By Lemma 2.3,

|µ(z)|2

1 − |z|2
dxdy ∈ CM(1)

and if we also consider the family (tµ), by [21, 25] we know that, for small t , the curve

3(G′
tµ) is a chord-arc curve that is rectifiable, and hence we have that HD(3(G′

µ)) > 1

while HD(ftµ(∂1)) = 1 for small t . However, HD(3e(G
′
µ)) = 1 for any t ∈ [0, 1], and

hence HD(3(G′
tµ)) = 1 for t small, which thus contradicts Ruelle’s property.

4. Proof of Theorem 1.1
Before giving the proof of this theorem, we first recall some preliminaries.

Suppose that G is a finitely generated Fuchsian group of the first kind with a set of

generators containing n parabolic elements. By the work of Bowen and Series [15], we

know that there are countable partitions P = {Ii}
∞
i=1 of the unit circle S1 into intervals Ii

and a piecewise smooth map fG : S1 → S1 so that:

(1) the map fG is strictly monotonic on each Ii ∈ P and extends to a C2-function on I i

(in fact, fG|Ik = gk|Ik , for some fixed gk ∈ G);

(2) if fG(Ik) ∩ Ij 6= ∅, then fG(Ik) ⊃ Ij ; and

(3) for all i, j ,
⋃∞
n=0 f

n(Ii) ⊃ Ij .

The map fG is called a Markov map for G. This Markov map defines an iterated function

system (IFS). Let us recall the definition of an IFS (see [20]).

Let (X, ρ) be a non-empty compact metric space, let I be a countable index set with at

least two elements and let

S = {φi : X → X, i ∈ I }

be a collection of injective contractions fromX toX for which there exists 0 < s < 1 such

that

ρ(φi(x), φi(y)) ≤ sρ(x, y), i ∈ I , (x, y) ∈ X.

Any such collection of contractions is called an IFS.
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Let In denote the space of words of length n and let I∞ denote the space of infinite

sequences of symbols in I . Let I ∗ =
⋃

n≥1 I
n. For ω = ω1ω2 · · · ωn ∈ In, n ≥ 1, set

φω = φω1
◦ φω2

◦ · · · ◦ φωn .

If ω ∈ I ∗ ∪ I∞ and n ≥ 1 does not exceed the length of ω, we denote by ω|n the word

ω1ω2 · · · ωn. For ω ∈ I∞, the set

π(ω) =

∞
⋂

n=1

φω|n(X)

is a singleton and therefore we can define a map π : I∞ → X.

The set

J = π(I∞) =
⋃

ω∈I∞

∞
⋂

n=1

φω|n(X)

is called the limit set associated to the system

S = {φi : X → X, i ∈ I }.

Let ρ : I∞ → I∞ be the left-shift map on I∞, that is, ρ(ω) = ω2ω3 · · · . Since

φi(π(ω)) = π(iω) for every i ∈ I , we get

π(ω) = φω1
(π(ρ(ω)))

and

J =
⋃

i∈I

φi(J ).

For every σ ≥ 0, we define

ψ(σ) =
∑

i∈I

‖φ′
i‖
σ ≤ ∞,

where the norm ‖·‖ is the supremum norm taken over X. For n ≥ 1, let

ψn(σ ) =
∑

ω∈In

‖φ′
ω‖σ .

By [20], we know that

ψn(σ ) < ∞ ⇔ ψ(σ) = ψ1(σ ) < ∞.

Let θ = inf{σ : ψ(σ) < ∞}. For n ≥ 1, the function log(ψn) is convex on (θ , +∞), and

for these values of σ ,

P(σ) = lim
n→∞

1

n
log ψn(σ )

always exists and is finite if and only ifψ(σ) < ∞ : the function P is called the topological

pressure function. By [20], Lemma 3.2, we know that P(σ) is strictly decreasing in the

variable σ on the interval (θ , +∞). The IFS is regular if and only if P(θ) = ∞, which is

equivalent to ψ(θ) = ∞.

Let G be a finitely generated Fuchsian group of first kind with a set of generators

containing finitely many parabolic elements. Let fG be the associated Markov map. By
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Bowen and Series’ work [15], we know that there exists a subset K ⊂ ∂1 which is

the union of countably many open intervals
⋃

Ii ⊂ ∂1 such that the first return map

fK : K → K , fK(x) = f
m(x)
G (x), m(x) = inf{m : fmG (x) ∈ K} induced by fG satisfies

an additional expanding condition: there exists an integer N > 0 and a constant β > 1

such that (fNK )
′(x) ≥ β for all x ∈ K . We will use the intervals in K as the index and

denote the index set by I . Then we get an IFS by the map fK as

S = {φi : φi = f−1
K |i , i ∈ I }.

These results remain valid for finitely generated second-kind Fuchsian groups as was

proven by Anderson and Rocha [2] in the case of the set of generators containing no

parabolic elements, but the Bowen–Series result goes through in this later case.

We can now prove the theorem.

Proof. Let (µt ) be a family ofG-compatible Beltrami coefficients that is analytic in t ∈ 1.

By the self-similarity of the limit sets of quasi-Fuchsian groups Gt , in order to study the

dimensions of the limit set of the group Gt , it is enough to study the dimensions of the

images of K under quasi-conformal map fµt .

In fact, we have viewed here the Bowen–Series construction as giving an IFS for K; we

can look at it equivalently as giving a Markov partition for the whole circle, the latter one

being the limit set of G as well as the limit set of the Markov map. If µ is a G-compatible

Beltrami coefficient, we may transport the whole Markov partition (and the Markov map

as well) on 3µ = fµ(∂1), which is also the limit set of Gµ. If we use the IFS point of

view, it is clear that the Hausdorff dimension of Kµ = fµ(K) is the same as the Haudorff

dimension of 3(Gµ) by self-(almost) similarities. So, conjugating by fµt , we get an IFS

St induced by the IFS S as

St = {φti : φti = fµt ◦ φi ◦ f−1
µt

, i ∈ I , t ∈ 1}.

Let

ψ tn(σ ) =
∑

ω∈I tn

‖(φtω)
′‖σ , n ≥ 1

and let P be the topological pressure function

P(t , σ) = lim
n→∞

1

n
log ψ tn(σ ), t ∈ 1, σ ∈ (θt , +∞),

where θt = infσ {σ : ψ t1(σ ) < ∞}.

If the set of generators of Gt contains no parabolic elements, then the index set I is

finite. Thus θt = −∞ and the system is regular. When the set of generators ofGt contains

some parabolic elements, we need the following lemma.

LEMMA 4.1. For any t ∈ 1, θt = 1
2

and the IFS St is regular.

Proof. For fixed t ∈ 1, we need to show that

ψ t1(σ ) =
∑

i∈I

‖(φti )
′‖σ < ∞, σ >

1

2
,
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and

ψ t1

(

1

2

)

=
∑

i∈I

‖(φti )
′‖

1
2 = ∞.

Without loss of generality, we may suppose that the generators {γ1, . . . , γm, g} of G

contain only one parabolic element g. Now we divide I into two parts, Ih and Ip, where

Ih = {i ∈ I : φi is hyperbolic}

and

Ip = I \ Ih = {i ∈ I : φi is parabolic}

Then,

ψ t1(σ ) =
∑

i∈I

‖(φti )
′‖σ =

∑

i∈Ih

‖(φti )
′‖σ +

∑

i∈Ip

‖(φti )
′‖σ .

By the property of the Markov map fG and the definition of fK , the index set Ih is a

finite set (see [15, p. 160]). Hence
∑

i∈Ih

‖(φti )
′‖σ < ∞.

Since ∞ is an ordinary point of Gt , by [7] we know that

∑

i∈Ip

‖(φt )′i‖
σ ≍

∑ 1

n2σ
,

where A ≍ B means that A/C < B < CB for some implicit constant C that depends only

on the number of hyperbolic generators of Gt and the complex dilatation of fµt . The

lemma follows.

Mauldin and Urbanski [20] showed that, for a regular system, the dimension of the limit

set is the unique zero of the function σ 7→ P(t , σ). To finish the proof of the theorem, it

remains only to prove that the zero varies real analytically with respect to t . This follows

from the classical thermodynamic formalism (a generalization of the Perron–Frobenius

theorem (see [13, 23])): exp P(t , σ) is an isolated eigenvalue of an transfer operator. The

theorem follows from the implicit function theorem applied to (t , σ) 7→ exp(P (t , σ)).

5. Proof of Theorem 1.2
Let H be the upper half plane {z : Im(z) > 0}, let D∗

1 be the closed disk with diameter [0, 2]

and let D∗
n, n ≥ 2 be the closed disk with diameter [2n−1, 2n]. We consider the domain

� = H \

((

⋃

n≥1

D
∗
n

)

∪

(

⋃

n≥1

(−D
∗
n)

))

.

Let φ be the conformal mapping from � onto H fixing 0, 2 and ∞. We put z0 = 0,

and zn = φ(2n), n ≥ 1 and zn = φ(−2−n), n ≤ −1. Let σn be the reflection with respect

to ∂D∗
n and τ(z) = −z̄. By Rubel and Ryff’s construction [22] of the covering group

of a Riemann surface S = C \ {zn}, the Fuchsian group Ŵ generated by {τ ◦ σn}
∞
n=1

uniformizes the surface S in the sense that S ≃ H/Ŵ.
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If we return to the disk model, we then have S ≃ 1/G, where G = η ◦ Ŵ ◦ η−1 and

η : H → 1 is an isomorphism which sends ∞ to i, 1 to 1 and 0 to −i. Denote Dn =

η(D∗
n). The disks Dn

⋂

1̄ accumulate to i and the diameter of Dn is comparable to 2−n.

Let F be the domain 1 \
⋃

i 6=0 Di . The domain F is symmetric about the y-axis. Let

E be the intersection of the closure of F with the unit circle ∂1. By the construction of

G, we know that E contains countably many points.

As in [15], we denote by N the set of images of the sides of F under G. Let us

also denote by In, n ∈ Z \ {0}, the intersection of Dn with ∂1. For each point e ∈ E,

we consider the set of all the elements of N passing through e that are not a side of F ;

we denote it by Ne. We denote by NE the set that contains all the elements in N meeting

∂1 with only one endpoint in E. For each n ∈ Z, the intervals formed by the intersection

of the elements of NE with ∂1 then form a partition of each interval In. Let en−1, en

(in anticlockwise order on ∂1) be the endpoints of In. For k ≤ −1, we denote by In,k

the subinterval of In with endpoints just as the |k|th and (|k| + 1)th points in clockwise

order of the set of the intersection of elements of Nen−1
with ∂1. Similarly, for k ≥ 1,

we denote by In,k the subinterval of In with endpoints just as the kth and (k + 1)th points in

anticlockwise order of the set of the intersection of elements of Nen with ∂1. In this case,

In,0 is just the subinterval of In with endpoints just as the leftmost point in anticlockwise

order of the set of the intersection of elements of Nen−1
with ∂1 and the rightmost point

in the anticlockwise order of the set of the intersection of elements of Nen with ∂1. Hence

we have In =
⋃

k∈Z In,k . The set K in [15] is just
⋃

n∈Z\{0} In,0.

On each interval In, n ∈ Z \ {0}, the Markov map f is equal to s0 ◦ sn, where s0 is

the reflection across the y-axis and sn is the reflection across ∂Dn. Then the induced

map is equal to f on In,0 and to f nk on In,k , where nk is the first integer such that

f nk (In,k) ⊂ K .

Let I = {(n, k), n ∈ Z \ {0}, k ∈ Z}. For i ∈ I, let us put φi = f ni on Ii , where f is the

Markov map. Then we get a dynamical system with a Markov partition {Ii , i ∈ I, φi}. The

limit set of this dynamical system is now the unit circle minus the parabolic fixed points

and the orbit of i under G. Let (µt ) be a family of G-compatible Beltrami coefficients

that is analytic in t ∈ 1 and Gt , the deformation group of G under the quasi-conformal

mapping fµt . Conjugating by fµt , we get a dynamical system with a Markov partition

on 3µt whose limit set is now 3µt minus the parabolic points and the orbit of fµ(i)

under Gt . Let us denote by I ti , i ∈ I, the elements of this Markov partition and let d ti be

their diameter.

In order to show that the Fuchsian group G has Ruelle’s property, we need to show, as

before, the regularity of this dynamical system. The difficulty here is that we have infinitely

many parabolic elements in G, and we thus need uniform estimates.

LEMMA 5.1. For any t ∈ 1, the IFS St is regular with the θ number equal to 1
2
.

For fixed t ∈ 1, we need to show that

ψ t1(σ ) :=
∑

i∈I

(d ti )
σ < +∞, σ >

1

2
,
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and

ψ t1(
1
2
) = +∞.

To prove this, we will need two facts.

(1) If |t | ≤ k < 1, then there exists c(k) ∈ (0, 1) such that the maps fµt are all

c(k)-quasi-conformal and thus there exists a(k) ∈ (0, 1) such that all these maps

are a(k)-Hölder continuous with a uniform norm. As a consequence, for all n ≥ 1

and |t | ≤ k,

d tn,±1 ≤ C2−na(k),

with a uniform C.

(2) The maps fµt conjugate all the parabolic elements to parabolic elements, and

parabolic elements are conjugated to translations, by sending the parabolic fixed

point to ∞. It follows that the endpoints of In,k , k ≥ 1 (or k ≤ −1) all lie on a

same circle passing through the nth parabolic point. Combined with the first fact, we

get

d tn,±k ≤
C2−na(k)

k2
,

with a constant C independent of n, k.

This proves the first part of the lemma. To prove the second part, we notice that the last

inequality may be reversed as

d tn,±k ≥
d tn,±1

k2
,

from which the result follows.

As in the proof of Theorem 1.2, Mauldin and Urbanski [20] showed that, for a regular

system, the dimension of the limit set is the unique zero of the function σ 7→ P(t , σ).

By the classical thermodynamic formalism (a generalization of the Perron–Frobenius

theorem, see [23]) we know that exp P(t , σ) is an isolated eigenvalue of a transfer

operator. The theorem follows from the implicit function theorem applied to (t , σ) 7→

exp(P (t , σ)).
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