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Abstract

For a character χ of a finite group G, the number χc(1) = [G : kerχ]/χ(1) is called the co-degree of χ. A
finite group G is an NDAC-group (no divisibility among co-degrees) when χc(1) � φc(1) for all irreducible
characters χ and φ of G with 1 < χc(1) < φc(1). We study finite groups admitting an irreducible character
whose co-degree is a given prime p and finite nonsolvable NDAC-groups. Then we show that the finite
simple groups 2B2(22 f+1), where f ≥ 1, PSL3(4), Alt7 and J1 are determined uniquely by the set of their
irreducible character co-degrees.

2020 Mathematics subject classification: primary 20C15; secondary 20D05.

Keywords and phrases: co-degree of a character, nonsolvable NDAC-group.

1. Introduction and preliminaries

In this paper, Gis a finite groupand p is a prime number. Let Irr(G) denote the set of
(complex) irreducible characters of G. For a normal subgroup N of G and θ ∈ Irr(N),
let IG(θ) denote the inertia group of θ in G and let Irr(G|θ) be the set of the irreducible
constituents of the induced character θG. Also, np(G) denotes the number of Sylow
p-subgroups of G. If m is a positive integer, mp denotes the p-part of m. For a character
χ of G, the number χc(1) = [G : kerχ]/χ(1) is called the co-degree of χ (see [11]).
Set Codeg(G) = {χc(1) : χ ∈ Irr(G)} and cd(G) = {χ(1) : χ ∈ Irr(G)}. In [1, 3, 4, 5, 8,
11], various properties of the co-degrees of irreducible characters of finite groups are
studied. By [11, Theorem A], if p | |G|, then p divides some element of Codeg(G). In
[1, 3, 4], it is shown that the p-parts of the co-degrees of irreducible characters of finite
groups can control the structure of groups. Our first result is the following theorem of
this type.

THEOREM 1.1. Let G be a finite group and p a prime. Then p ∈ Codeg(G) if and only
if either p divides |G/G′| or G has a normal subgroup K such that G/K is a Frobe-
nius group whose Frobenius kernel has order p and whose Frobenius complement
is cyclic.
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A finite group G is an NDAD-group (no divisibility among degrees) when α � β
for all α, β ∈ cd(G) with 1 < α < β. In [10], the finite nonsolvable NDAD-groups
were classified. Similarly, a finite group G is an NDAC-group (no divisibility among
co-degrees) when α � β for all α, β ∈ Codeg(G) with 1 < α < β. In [2], we showed that
if gcd(α, β) is either 1 or a prime for all α, β ∈ Codeg(G) with 1 < α < β, then G is
solvable. Our second result is the following classification theorem.

THEOREM 1.2. Let G be a nonsolvable NDAC-group and let U be the maximal normal
solvable subgroup of G. Then G is perfect and G/U is isomorphic to one of the simple
groups J1, 2B2(22 f+1), where f ≥ 1, Alt7, PSL3(4) or PSL2(2 f ), where f > 1.

Let P be an elementary abelian 2-group of order 16. Then there is an action of Alt5
on P such that for the extension G of P by Alt5, we have Codeg(G) = {1, 12, 15, 20, 64}.
So, G is an NDAC-group. This example shows that in Theorem 1.2, U is not necessarily
a central subgroup of G.

In 1990, Huppert conjectured that if S is a nonabelian simple group such that
cd(G) = cd(S), then G � S × A, where A is abelian. Let q > 3 be a prime power. In [5],
the analogue of Huppert’s conjecture for character co-degrees has been verified for
the simple group PSL2(q), that is, if Codeg(G) = CodegPSL2(q)), then G � PSL2(q).
We continue this investigation and prove the following result as a corollary of
Theorem 1.2.

COROLLARY 1.3. Let S be one of the simple groups J1, 2B2(22 f+1), where f ≥ 1, Alt7
or PSL3(4). If Codeg(G) = Codeg(S), then G is isomorphic to S.

2. Proofs of the main results

LEMMA 2.1 [11, Lemma 2.1]. Let N be a normal subgroup of G. Then Codeg(G/N) ⊆
Codeg(G). Also, if ψ ∈ Irr(N), then ψc(1) | χc(1) for every χ ∈ Irr(G|ψ).

LEMMA 2.2. Let N = S1 × · · · × St be a minimal normal subgroup of G, where Si � S,
a nonabelian simple group. Then there exists φ ∈ Irr(N) that extends to G with
ker φ = {1}.

PROOF. This follows immediately from [13, 12] and [6, Theorems 3–4 and
Lemma 5]. �

LEMMA 2.3. Let N be a minimal normal subgroup of G. If N is abelian and
Codeg(G) = Codeg(G/N), then |N | divides |G/N |.

PROOF. By [4, Proposition 6(i)], if χ ∈ Irr(G) is such that N � ker χ, then |N | | χc(1).
However, Codeg(G) = Codeg(G/N). Hence, χc(1) | |G/N |. So, the lemma follows. �

2.1. Proof of Theorem 1.1. If p divides |G/G′|, then [8, Lemma 2.2] completes the
proof. Next let K be a normal subgroup of G such that G/K is a Frobenius group whose
Frobenius kernel is F/K and |F/K| = p. Let α ∈ Irr(F/K) − {1F/K} and χ ∈ Irr(G/K|α).
Then IG/K(α) = F/K and, hence, χc(1) = |F/K| = p. By Lemma 2.1, p ∈ Codeg(G),
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as required. Conversely, let χc(1) = p for some χ ∈ Irr(G). If χ(1) = 1, then χ ∈
Irr(G/G′). So, χc(1) = p | |G/G′|, as required. Now let χ(1) � 1. Fix K = ker χ and
set Ḡ = G/K. Then Ḡ is nonabelian, p | |Ḡ| and χ(1) = |Ḡ|/p. Let P̄ be a p-subgroup
of Ḡ of order p. If CḠ(P̄) � P̄, then there exists an abelian subgroup Ā of Ḡ such that
P̄ < Ā. By [9, Problem 2.9(b)], χ(1) = |Ḡ|/p ≤ [Ḡ : Ā]. Consequently, |Ā| ≤ p, which
is a contradiction. This forces CḠ(P̄) = P̄. Also, χ2(1) < |Ḡ|. Therefore, |Ḡ|2/p2 < |Ḡ|.
Hence, |Ḡ| < p2. This shows that P̄ is a Sylow p-subgroup of Ḡ and np(Ḡ) < p. It
follows that np(Ḡ) = 1, so P̄ is normal in Ḡ. Since Ḡ/P̄ = NḠ(P̄)/CḠ(P̄) � Aut(P̄),
CḠ(P̄) = P̄ and Aut(P̄) is a cyclic group of order p − 1, it follows that Ḡ is a Frobenius
group whose Frobenius kernel is P̄ and whose Frobenius complement is cyclic. Now
the theorem follows. �

2.2. Proof of Theorem 1.2. In order to prove Theorem 1.2, we need to prove the
following propositions.

PROPOSITION 2.4. Every nonsolvable NDAC-group is perfect.

PROOF. Let G be a minimal counterexample. Assume that M is a minimal normal
subgroup of G such that G/M is nonsolvable. Since the hypothesis is inherited
by quotients, G/M is perfect. Hence, G′M = G and M � G′. Thus, M � M ∩ G′ �
G. As M is a minimal normal subgroup of G, M ∩ G′ = {1} and so G = G′ ×M.
Consequently, M is an elementary abelian p-group for some prime p. Therefore, M
admits an irreducible character φ whose co-degree is p. Since G is nonsolvable, G′ is
nonsolvable. So, there is a prime divisor q of |G′| such that p � q. By [11, Theorem
A], there is a χ ∈ Irr(G′) such that q | χc(1). Set χ1 = 1G′ × φ and χ2 = χ × φ. Then
χ1, χ2 ∈ Irr(G), χc

1(1) = p and pq | χc
2(1), which is a contradiction. Now suppose that

for every normal subgroup L of G, G/L is solvable. This forces G to have M as its
unique minimal normal subgroup, because G is nonsolvable. We observe that M is
nonabelian. As G′ � G and G/M is solvable, M � G and (G/M)′ � G/M. By Lemma
2.2, there is a φ ∈ Irr(M) that extends to χ ∈ Irr(G) and ker φ = {1}. Since M is the
unique minimal normal subgroup of G and ker φ = {1}, we have ker χ = {1}. Hence,
|G/M| < χc(1) and |G/M| divides χc(1). On the other hand, G/M � (G/M)′. Let p
be a prime divisor of [G/M : (G/M)′]. By Theorem 1.1, there exists a ψ ∈ Irr(G/M)
whose co-degree is p. However, ψ ∈ Irr(G), ψc(1) | χc(1) and ψc(1) � χc(1). This is a
contradiction. Therefore, G is perfect, as required. �

PROPOSITION 2.5. Let G be a nonsolvable NDAC-group. If U is the maximal normal
solvable subgroup of G, then G/U is a nonabelian simple group.

PROOF. We work by induction on |G|. By Lemma 2.1, for every proper normal
subgroup L of G, G/L is an NDAC-group. First, suppose that every normal subgroup
of G is nonsolvable. Then U = {1}. Let M1 and M2 be two distinct minimal normal
subgroups of G. Then M1 and M2 are nonsolvable. Also, M1M2/M1 � G/M1. So, G/M1
is a nonsolvable NDAC-group. By induction, G/M1 = M1M2/M1 × U0/M1, where
U0/M1 is solvable. By Proposition 2.4, G′ = G. Hence, U0/M1 = {M1}. Consequently,
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G = M1 ×M2. Let ψ1 ∈ Irr(M1) − {1M1} and ψ2 ∈ Irr(M2) − {1M2}. Set χ1 = ψ1 × 1M2

and χ2 = ψ1 × ψ2. Then χ1, χ2 ∈ Irr(G) − {1G}, χc
1(1) = |M1|/ψ1(1) divides χc

2(1) =
|M1||M2|/(ψ1(1)ψ2(1)) and χc

1(1) � χc
2(2), which is a contradiction.

Next let M be the unique minimal normal subgroup of G. If M = G, then G is
nonabelian and simple, as desired. If G � M, then there is a ψ ∈ Irr(M) that extends
to χ ∈ Irr(G) and kerψ = {1}, by Lemma 2.2. So, ker χ = {1}. Thus, |G/M| | χc(1) and
|G/M| � χc(1). For every φ ∈ Irr(G/M) − {1G/M}, we have 1 � φc(1) | |G/M|. Conse-
quently, φc(1) � χc(1) and φc(1) | χc(1), which is a contradiction. Finally, suppose that
M is a minimal normal subgroup of G, which is abelian. Then G/M is a nonsolvable
NDAC-group. By induction, G/M is an extension of a solvable group by a simple
group and so is G. Now the proof is complete. �

PROOF OF THEOREM 1.2. By Propositions 2.4 and 2.5, G is perfect and G/U is
nonabelian and simple. On the other hand, G/U is an NDAC-group and, for every ψ ∈
Irr(G/U) − {1G/U}, we have ψ(1) > 1 and kerψ = 1. So, α � β for all α, β ∈ cd(G/U)
with 1 < α < β. Hence, G/U is a nonabelian simple NDAD-group. Therefore, [10,
Theorem A] completes the proof. �

PROOF OF COROLLARY 1.3. By Theorem 1.1, Codeg(S) does not contain any prime
number and neither does Codeg(G). So, Theorem 1.1 forces G to be perfect. This
implies that G is a nonsolvable NDAC-group, because Codeg(G) = Codeg(S) and S is
an NDAC-group. If U is the maximal normal solvable subgroup of G, then Theorem
1.2 shows that G/U is isomorphic to one of the simple groups PSL2(2 f ), where f > 1,
2B2(22 f+1), where f ≥ 1, Alt7, PSL3(4) and J1. We note that

Codeg(PSL2(2 f )) = {1, 2 f (2 f − 1), 2 f (2 f + 1), (22 f − 1)}, (2.1)

Codeg(2B2(22 f+1)) = {1, (22(2 f+1) + 1)(22 f+1 − 1), 22(2 f+1)(22 f+1 − 1),

2 f+1(22(2 f+1) + 1), 22(2 f+1)(22 f+1 − 2 f+1 + 1),

22(2 f+1)(22 f+1 + 2 f+1 + 1)}, (2.2)

Codeg(PSL3(4)) = {1, 24.32.7, 26.32, 26.7, 26.5, 32.5.7}, (2.3)

Codeg(Alt7) = {1, 22.32.5, 22.32.7, 23.3.7, 22.3.5.7, 23.3.5, 23.32}, (2.4)

Codeg(J1) = {1, 3.5.11.19, 2.3.5.7.11, 23.3.5.19, 7.11.19,

23.3.5.11, 23.3.5.7}. (2.5)

Thus, Codeg(G/U) contains two different elements whose 2-parts are |G/U|2. Since
Codeg(G/U) ⊆ Codeg(G) = Codeg(S), considering the elements of Codeg(S),

|S|2 = |G/U|2. (2.6)

This shows that if S � Alt7 or J1, then |G/U|2 = 23 and so G/U � Alt7, PSL2(23)
or J1. However, 2.3.5.7.11 ∈ Codeg(J1), 11 � |Alt7|, 23.32 ∈ Codeg(Alt7) and 32 � |J1|.
Also, 23.7 ∈ Codeg(PSL2(23)) and 23.7 � Codeg(Alt7), Codeg(J1). This shows that if
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S � Alt7 or J1, then G/U � S. If S � 2B2(q) or PSL3(4), where q = 22 f+1 ≥ 8, then

Codeg(S) − {1} contains exactly one odd number which is |S|/|S|2, (2.7)

by (2.2) and (2.3). As |Alt7|2, |J1|2 < |S|2, it follows that G/U � Alt7, J1, by (2.6).
In the remaining possibilities, (2.1)–(2.3) show that |G/U|/|G/U|2 ∈ Codeg(G/U).
Since Codeg(G/U) ⊆ Codeg(G) and |G/U|/|G/U|2 is odd, we see from (2.7) that
|G/U|/|G/U|2 = |S|/|S|2. So, (2.6) forces |G/U| = |S|. Now we can check easily that
G/U � S. So, in all cases,

G/U � S. (2.8)

Next, we claim that U = {1}. Working towards a contradiction, let U � {1} and let
M be a maximal normal subgroup of G such that M � U. Then U/M is a minimal
normal subgroup of G/M. As U is solvable, U/M is an elementary abelian r-group
for some prime divisor r of |G|. Let 1U/M = λ1, . . . , λt be the representatives of the
action of G/M on Irr(U/M). If Oi is the G/M-orbit of λi, then 1 + Σt

i=2|Oi|λi(1)2 =

Σλ∈Irr(U/M)λ(1)2 = |U/M| ≡r 0. Hence, there exists an i > 1 such that r � |Oi|. Since
|Oi| = [G/M : IG/Mλi)], it follows that

|G/M|r | |IG/M(λi)|. (2.9)

Also,

[G/M : IG/M(λi)] = |Oi| < |U/M|. (2.10)

Let χ ∈ Irr(G/M|λi). If IG/M(λi) = G/M, then χU/M = eλi for some positive integer
e. So, ker χ ∩ U/M = ker λi. However, ker χ ∩ U/M � G/M and U/M is a minimal
normal subgroup of G/M. Thus, either kerχ ∩ U/M = U/M or {M}. In the former
case, U/M ≤ ker χ. Hence, χU/M = e1U/M , which is a contradiction. In the latter
case, ker λi = ker χ ∩ U/M = {M}. Hence, U/M is a cyclic group of order r. Since
(G/M)/CG/M(U/M) = NG/M(U/M)/CG/M(U/M) � Aut(U/M), Aut(U/M) is a cyclic
group of order r − 1 and G = G′, we see that CG/M(U/M) = G/M. Hence, U/M ≤
Z(G/M). On the other hand, (G/M)′ = G/M. Thus, |U/M| = r and G/M is a Schur
cover of G/U. Therefore, S � Alt7 and r ∈ {2, 3}, S � 2B2(8) and r = 2 or S � PSL3(4)
and r ∈ {2, 3}. By [7], we can check that Codeg(G/M) � Codeg(S) = Codeg(G), which
is a contradiction with Lemma 2.1. Hence, IG/M(λi) � G/M. This yields CG/M(U/M) =
U/M. We note that U/M ≤ IG/M(λi) and (G/M)/(U/M) � G/U � S. Consequently,

IG/M(λi)

U/M
is isomorphic to a proper subgroup of S. (2.11)

By (2.8) and Lemma 2.1,

Codeg(S) = Codeg(G/U) = Codeg
(G/M
U/M

)
⊆ Codeg(G/M) ⊆ Codeg(G) = Codeg(S).

Hence, Codeg(G/M) = Codeg(G/U) = Codeg((G/M)/(U/M)). It follows from
Lemma 2.3 that |U/M| ≤ |(G/M)/(U/M)|r = |G/U|r. So, (2.8) and (2.10) force

[G/M : IG/M(λi)] < |S|r. (2.12)
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We continue the proof by examining each of the four possibilities for the simple
group in Corollary 1.3 in turn.

Case 1: S � 2B2(q), where q = 22 f+1 ≥ 8. By (2.8), G/U � 2B2(q). As stated in
[10, Lemma 3.8], any proper subgroup of S = 2B2(q) is isomorphic to a subgroup
of 2B2(q0), where q0 = 22e+1 | q, or to a subgroup of some subgroup of order
q2(q − 1), 2(q − 1), 4(q − 2 f+1 + 1) or 4(q + 2 f+1 + 1). If |IG/M(λi)| divides |2B2(q0)|,
then q � χc(1), q − 1 � χc(1) and (q ± 2 f+1 + 1) � χc(1) for every χ ∈ Irr(G|λi), because
χc(1) | |IG/M(λi)|. This leads to a contradiction by considering the elements of Codeg(S)
in (2.2). It follows from (2.9), (2.11) and the above statement that

∣∣∣∣∣ IG/M(λi)

U/M

∣∣∣∣∣ divides

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q2(q − 1) if r = 2,
q2(q − 1) if r | q − 1,
4(q − 2 f+1 + 1) or 4(q + 2 f+1 + 1) if r | q2 + 1.

Thus, |S|r < [G/M : IG/M(λi)], contradicting (2.12).
Case 2: S � PSL3(4). By (2.8), G/U � PSL3(4). By [7], any proper subgroup of

PSL3(4) is isomorphic to a subgroup of some subgroup of order 72, 360, 168 or 960. It
follows from (2.9), (2.11) and the above statement that

IG/M(λi)

U/M
divides 960 if r = 2, 360 if r = 3, 360 or 960 if r = 5, 168 if r = 7.

Thus, if r � 2, then |S|r < [G/M : IG/M(λi)], contradicting (2.12). Now let r = 2. Then
2 � [G/M : IG/M(λi)] and 21 ≤ [G/M : IG/M(λi)] < |U/M| ≤ |S|2 = 64, by (2.9), (2.10)
and Lemma 2.3. Since |IG/M(λi)/(U/M)| | 960, either |IG/M(λi)/(U/M)| = 320 and
|U/M| = 64 or |IG/M(λi)/(U/M)| = 960 and |U/M| ∈ {32, 64}. Let χ ∈ Irr(G/M|λi).
Then χ is faithful. Hence, χc(1) = |IG/M(λi)|/eχ, where eχ = 〈χU/M , λi〉. Since
χc(1) ∈ Codeg(G/M) = Codeg(G) and 32, 7 � χc(1), we have χc(1) = 26.5, by (2.3).
Consequently, if |IG/M(λi)/(U/M)| = 320 and |U/M| = 64, then eχ = 26 and, if
|IG/M(λi)/(U/M)| = 960 and |U/M| ∈ {32, 64}, then 25.3 | eχ. Therefore, 212 ≤ e2

χ ≤
[IG/M(λi) : U/M] ≤ 26.3.5, which is impossible.

Case 3: S � Alt7. By (2.8), G/U � Alt7. By [7], any proper subgroup of S = Alt7
is isomorphic to a subgroup of some subgroup of order 23.32.5, 23.3.7, 23.3.5 or 23.32.
From (2.9), (2.11) and the above statement,∣∣∣∣∣ IG/M(λi)

U/M

∣∣∣∣∣ divides
{

23.32.5 or 23.3.7 if r = 2, 23.32.5 if r = 3,
23.32.5 if r = 5, 23.3.7 if r = 7.

Thus, if either r � 2, 3 or r ∈ {2, 3} and |IG/M(λi)/(U/M)| � 23.32.5, it follows
that |S|r < [G/M : IG/M(λi)], contradicting (2.12). Next assume that r ∈ {2, 3}
and |IG/M(λi)/(U/M)| = 23.32.5. Thus, |U/M| ≥ 7, by (2.10). If r = 2, then
|U/M| | |G/U|2 = 8 and, if r = 3, then |U/M| | |G/U|3 = 9, by Lemma 2.3. So, |U/M| ∈
{8, 9}. We note that U/M is an elementary abelian r-group. Thus, G/U � Aut(U/M),
which is isomorphic to GL3(2) or GL2(3). Hence, 32 � |G/U|, which is a contradiction.

Case 4: S � J1. By (2.8), G/U � J1. By [7], any proper subgroup of S = J1 is iso-
morphic to a subgroup of some subgroup of order 22.3.5.11, 23.3.7, 23.3.5, 2.3.19, 2.5.11,
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22.3.5 or 2.3.7. By (2.11), |IG/M(λi)/(U/M)| divides one of the above numbers. Thus,
|S|r < [G/M : IG/M(λi)], contradicting (2.12).

Therefore, U = {1} and G � S, as required. �
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