Bull. Aust. Math. Soc. 105 (2022), 68–74 doi:10.1017/S000497272100037X

NONDIVISIBILITY AMONG IRREDUCIBLE CHARACTER CO-DEGREES

NEDA AHANJIDEH

(Received 1 March 2021; accepted 9 April 2021; first published online 24 May 2021)

Abstract

For a character χ of a finite group G, the number $\chi^c(1) = [G : \ker\chi]/\chi(1)$ is called the co-degree of χ . A finite group G is an NDAC-group (no divisibility among co-degrees) when $\chi^c(1) \nmid \phi^c(1)$ for all irreducible characters χ and ϕ of G with $1 < \chi^c(1) < \phi^c(1)$. We study finite groups admitting an irreducible character whose co-degree is a given prime p and finite nonsolvable NDAC-groups. Then we show that the finite simple groups ${}^{2}B_{2}(2^{2f+1})$, where $f \ge 1$, PSL₃(4), Alt₇ and J_{1} are determined uniquely by the set of their irreducible character co-degrees.

2020 *Mathematics subject classification*: primary 20C15; secondary 20D05.

Keywords and phrases: co-degree of a character, nonsolvable NDAC-group.

1. Introduction and preliminaries

In this paper, *G* is a finite groupand *p* is a prime number. Let Irr(G) denote the set of (complex) irreducible characters of *G*. For a normal subgroup *N* of *G* and $\theta \in Irr(N)$, let $I_G(\theta)$ denote the inertia group of θ in *G* and let $Irr(G|\theta)$ be the set of the irreducible constituents of the induced character θ^G . Also, $n_p(G)$ denotes the number of Sylow *p*-subgroups of *G*. If *m* is a positive integer, m_p denotes the *p*-part of *m*. For a character χ of *G*, the number $\chi^c(1) = [G : ker\chi]/\chi(1)$ is called the co-degree of χ (see [11]). Set $Codeg(G) = {\chi^c(1) : \chi \in Irr(G)}$ and $cd(G) = {\chi(1) : \chi \in Irr(G)}$. In [1, 3, 4, 5, 8, 11], various properties of the co-degrees of irreducible characters of finite groups are studied. By [11, Theorem A], if $p \mid |G|$, then *p* divides some element of Codeg(G). In [1, 3, 4], it is shown that the *p*-parts of the co-degrees of irreducible characters of finite groups can control the structure of groups. Our first result is the following theorem of this type.

THEOREM 1.1. Let G be a finite group and p a prime. Then $p \in \text{Codeg}(G)$ if and only if either p divides |G/G'| or G has a normal subgroup K such that G/K is a Frobenius group whose Frobenius kernel has order p and whose Frobenius complement is cyclic.

^{© 2021} Australian Mathematical Publishing Association Inc.

A finite group *G* is an NDAD-group (no divisibility among degrees) when $\alpha \nmid \beta$ for all $\alpha, \beta \in cd(G)$ with $1 < \alpha < \beta$. In [10], the finite nonsolvable NDAD-groups were classified. Similarly, a finite group *G* is an NDAC-group (no divisibility among co-degrees) when $\alpha \nmid \beta$ for all $\alpha, \beta \in Codeg(G)$ with $1 < \alpha < \beta$. In [2], we showed that if $gcd(\alpha, \beta)$ is either 1 or a prime for all $\alpha, \beta \in Codeg(G)$ with $1 < \alpha < \beta$, then *G* is solvable. Our second result is the following classification theorem.

THEOREM 1.2. Let G be a nonsolvable NDAC-group and let U be the maximal normal solvable subgroup of G. Then G is perfect and G/U is isomorphic to one of the simple groups J_1 , ${}^2B_2(2^{2f+1})$, where $f \ge 1$, Alt₇, PSL₃(4) or PSL₂(2^f), where f > 1.

Let *P* be an elementary abelian 2-group of order 16. Then there is an action of Alt₅ on *P* such that for the extension *G* of *P* by Alt₅, we have $Codeg(G) = \{1, 12, 15, 20, 64\}$. So, *G* is an NDAC-group. This example shows that in Theorem 1.2, *U* is not necessarily a central subgroup of *G*.

In 1990, Huppert conjectured that if *S* is a nonabelian simple group such that cd(G) = cd(S), then $G \cong S \times A$, where *A* is abelian. Let q > 3 be a prime power. In [5], the analogue of Huppert's conjecture for character co-degrees has been verified for the simple group $PSL_2(q)$, that is, if $Codeg(G) = CodegPSL_2(q)$), then $G \cong PSL_2(q)$. We continue this investigation and prove the following result as a corollary of Theorem 1.2.

COROLLARY 1.3. Let S be one of the simple groups J_1 , ${}^2B_2(2^{2f+1})$, where $f \ge 1$, Alt₇ or PSL₃(4). If Codeg(G) = Codeg(S), then G is isomorphic to S.

2. Proofs of the main results

LEMMA 2.1 [11, Lemma 2.1]. Let N be a normal subgroup of G. Then $Codeg(G/N) \subseteq Codeg(G)$. Also, if $\psi \in Irr(N)$, then $\psi^c(1) \mid \chi^c(1)$ for every $\chi \in Irr(G \mid \psi)$.

LEMMA 2.2. Let $N = S_1 \times \cdots \times S_t$ be a minimal normal subgroup of G, where $S_i \cong S$, a nonabelian simple group. Then there exists $\phi \in Irr(N)$ that extends to G with ker $\phi = \{1\}$.

PROOF. This follows immediately from [13, 12] and [6, Theorems 3–4 and Lemma 5].

LEMMA 2.3. Let N be a minimal normal subgroup of G. If N is abelian and Codeg(G) = Codeg(G/N), then |N| divides |G/N|.

PROOF. By [4, Proposition 6(i)], if $\chi \in Irr(G)$ is such that $N \nleq \ker \chi$, then $|N| | \chi^c(1)$. However, Codeg(G) = Codeg(G/N). Hence, $\chi^c(1) | |G/N|$. So, the lemma follows. \Box

2.1. Proof of Theorem 1.1. If *p* divides |G/G'|, then [8, Lemma 2.2] completes the proof. Next let *K* be a normal subgroup of *G* such that G/K is a Frobenius group whose Frobenius kernel is F/K and |F/K| = p. Let $\alpha \in \operatorname{Irr}(F/K) - \{1_{F/K}\}$ and $\chi \in \operatorname{Irr}(G/K|\alpha)$. Then $I_{G/K}(\alpha) = F/K$ and, hence, $\chi^c(1) = |F/K| = p$. By Lemma 2.1, $p \in \operatorname{Codeg}(G)$,

N. Ahanjideh

as required. Conversely, let $\chi^c(1) = p$ for some $\chi \in \operatorname{Irr}(G)$. If $\chi(1) = 1$, then $\chi \in \operatorname{Irr}(G/G')$. So, $\chi^c(1) = p \mid |G/G'|$, as required. Now let $\chi(1) \neq 1$. Fix $K = \ker \chi$ and set $\overline{G} = G/K$. Then \overline{G} is nonabelian, $p \mid |\overline{G}|$ and $\chi(1) = |\overline{G}|/p$. Let \overline{P} be a *p*-subgroup of \overline{G} of order *p*. If $C_{\overline{G}}(\overline{P}) \neq \overline{P}$, then there exists an abelian subgroup \overline{A} of \overline{G} such that $\overline{P} < \overline{A}$. By [9, Problem 2.9(b)], $\chi(1) = |\overline{G}|/p \leq [\overline{G} : \overline{A}]$. Consequently, $|\overline{A}| \leq p$, which is a contradiction. This forces $C_{\overline{G}}(\overline{P}) = \overline{P}$. Also, $\chi^2(1) < |\overline{G}|$. Therefore, $|\overline{G}|^2/p^2 < |\overline{G}|$. Hence, $|\overline{G}| < p^2$. This shows that \overline{P} is a Sylow *p*-subgroup of \overline{G} and $n_p(\overline{G}) < p$. It follows that $n_p(\overline{G}) = 1$, so \overline{P} is normal in \overline{G} . Since $\overline{G}/\overline{P} = N_{\overline{G}}(\overline{P})/C_{\overline{G}}(\overline{P}) \lesssim \operatorname{Aut}(\overline{P})$, $C_{\overline{G}}(\overline{P}) = \overline{P}$ and $\operatorname{Aut}(\overline{P})$ is a cyclic group of order p - 1, it follows that \overline{G} is a Frobenius group whose Frobenius kernel is \overline{P} and whose Frobenius complement is cyclic. Now the theorem follows.

2.2. Proof of Theorem 1.2. In order to prove Theorem 1.2, we need to prove the following propositions.

PROPOSITION 2.4. Every nonsolvable NDAC-group is perfect.

PROOF. Let G be a minimal counterexample. Assume that M is a minimal normal subgroup of G such that G/M is nonsolvable. Since the hypothesis is inherited by quotients, G/M is perfect. Hence, G'M = G and $M \not\leq G'$. Thus, $M \neq M \cap G' \trianglelefteq$ G. As M is a minimal normal subgroup of G, $M \cap G' = \{1\}$ and so $G = G' \times M$. Consequently, M is an elementary abelian p-group for some prime p. Therefore, Madmits an irreducible character ϕ whose co-degree is p. Since G is nonsolvable, G' is nonsolvable. So, there is a prime divisor q of |G'| such that $p \neq q$. By [11, Theorem A], there is a $\chi \in Irr(G')$ such that $q \mid \chi^c(1)$. Set $\chi_1 = 1_{G'} \times \phi$ and $\chi_2 = \chi \times \phi$. Then $\chi_1, \chi_2 \in Irr(G), \chi_1^c(1) = p$ and $pq \mid \chi_2^c(1)$, which is a contradiction. Now suppose that for every normal subgroup L of G, G/L is solvable. This forces G to have M as its unique minimal normal subgroup, because G is nonsolvable. We observe that M is nonabelian. As $G' \neq G$ and G/M is solvable, $M \neq G$ and $(G/M)' \neq G/M$. By Lemma 2.2, there is a $\phi \in \operatorname{Irr}(M)$ that extends to $\chi \in \operatorname{Irr}(G)$ and ker $\phi = \{1\}$. Since M is the unique minimal normal subgroup of G and ker $\phi = \{1\}$, we have ker $\chi = \{1\}$. Hence, $|G/M| < \chi^{c}(1)$ and |G/M| divides $\chi^{c}(1)$. On the other hand, $G/M \neq (G/M)'$. Let p be a prime divisor of [G/M: (G/M)']. By Theorem 1.1, there exists a $\psi \in Irr(G/M)$ whose co-degree is p. However, $\psi \in Irr(G), \psi^{c}(1) \mid \chi^{c}(1)$ and $\psi^{c}(1) \neq \chi^{c}(1)$. This is a contradiction. Therefore, G is perfect, as required.

PROPOSITION 2.5. Let G be a nonsolvable NDAC-group. If U is the maximal normal solvable subgroup of G, then G/U is a nonabelian simple group.

PROOF. We work by induction on |G|. By Lemma 2.1, for every proper normal subgroup *L* of *G*, *G/L* is an NDAC-group. First, suppose that every normal subgroup of *G* is nonsolvable. Then $U = \{1\}$. Let M_1 and M_2 be two distinct minimal normal subgroups of *G*. Then M_1 and M_2 are nonsolvable. Also, $M_1M_2/M_1 \leq G/M_1$. So, G/M_1 is a nonsolvable NDAC-group. By induction, $G/M_1 = M_1M_2/M_1 \times U_0/M_1$, where U_0/M_1 is solvable. By Proposition 2.4, G' = G. Hence, $U_0/M_1 = \{M_1\}$. Consequently,

 $G = M_1 \times M_2$. Let $\psi_1 \in \operatorname{Irr}(M_1) - \{1_{M_1}\}$ and $\psi_2 \in \operatorname{Irr}(M_2) - \{1_{M_2}\}$. Set $\chi_1 = \psi_1 \times 1_{M_2}$ and $\chi_2 = \psi_1 \times \psi_2$. Then $\chi_1, \chi_2 \in \operatorname{Irr}(G) - \{1_G\}, \ \chi_1^c(1) = |M_1|/\psi_1(1)$ divides $\chi_2^c(1) = |M_1||M_2|/(\psi_1(1)\psi_2(1)))$ and $\chi_1^c(1) \neq \chi_2^c(2)$, which is a contradiction.

Next let *M* be the unique minimal normal subgroup of *G*. If M = G, then *G* is nonabelian and simple, as desired. If $G \neq M$, then there is a $\psi \in \operatorname{Irr}(M)$ that extends to $\chi \in \operatorname{Irr}(G)$ and ker $\psi = \{1\}$, by Lemma 2.2. So, ker $\chi = \{1\}$. Thus, $|G/M| \mid \chi^c(1)$ and $|G/M| \neq \chi^c(1)$. For every $\phi \in \operatorname{Irr}(G/M) - \{1_{G/M}\}$, we have $1 \neq \phi^c(1) \mid |G/M|$. Consequently, $\phi^c(1) \neq \chi^c(1)$ and $\phi^c(1) \mid \chi^c(1)$, which is a contradiction. Finally, suppose that *M* is a minimal normal subgroup of *G*, which is abelian. Then G/M is a nonsolvable NDAC-group. By induction, G/M is an extension of a solvable group by a simple group and so is *G*. Now the proof is complete.

PROOF OF THEOREM 1.2. By Propositions 2.4 and 2.5, *G* is perfect and G/U is nonabelian and simple. On the other hand, G/U is an NDAC-group and, for every $\psi \in Irr(G/U) - \{1_{G/U}\}$, we have $\psi(1) > 1$ and ker $\psi = 1$. So, $\alpha \nmid \beta$ for all $\alpha, \beta \in cd(G/U)$ with $1 < \alpha < \beta$. Hence, G/U is a nonabelian simple NDAD-group. Therefore, [10, Theorem A] completes the proof.

PROOF OF COROLLARY 1.3. By Theorem 1.1, Codeg(*S*) does not contain any prime number and neither does Codeg(*G*). So, Theorem 1.1 forces *G* to be perfect. This implies that *G* is a nonsolvable NDAC-group, because Codeg(*G*) = Codeg(*S*) and *S* is an NDAC-group. If *U* is the maximal normal solvable subgroup of *G*, then Theorem 1.2 shows that G/U is isomorphic to one of the simple groups $PSL_2(2^{f})$, where f > 1, ${}^{2}B_2(2^{2f+1})$, where $f \ge 1$, Alt₇, PSL₃(4) and J_1 . We note that

$$Codeg(PSL_{2}(2^{f})) = \{1, 2^{f}(2^{f} - 1), 2^{f}(2^{f} + 1), (2^{2f} - 1)\},$$

$$Codeg(^{2}B_{2}(2^{2f+1})) = \{1, (2^{2(2f+1)} + 1)(2^{2f+1} - 1), 2^{2(2f+1)}(2^{2f+1} - 1), 2^{2(2f+1)}(2^{2f+1} + 1), 2^{2(2f+1)}(2^{2f+1} - 2^{f+1} + 1), 2^{2(2f+1)}(2^{2f+1} + 2^{f+1} + 1)\},$$

$$(2.2)$$

$$Codeg(PSL_{3}(4)) = \{1, 2^{4}.3^{2}.7, 2^{6}.3^{2}, 2^{6}.7, 2^{6}.5, 3^{2}.5.7\},$$
(2.3)

$$Codeg(Alt_7) = \{1, 2^2.3^2.5, 2^2.3^2.7, 2^3.3.7, 2^2.3.5.7, 2^3.3.5, 2^3.3^2\},$$
(2.4)

$$Codeg(J_1) = \{1, 3.5.11.19, 2.3.5.7.11, 2^3.3.5.19, 7.11.19, 2^3.3.5.11, 2^3.3.5.7\}.$$
(2.5)

Thus, $\operatorname{Codeg}(G/U)$ contains two different elements whose 2-parts are $|G/U|_2$. Since $\operatorname{Codeg}(G/U) \subseteq \operatorname{Codeg}(G) = \operatorname{Codeg}(S)$, considering the elements of $\operatorname{Codeg}(S)$,

$$|S|_2 = |G/U|_2. (2.6)$$

This shows that if $S \cong \text{Alt}_7$ or J_1 , then $|G/U|_2 = 2^3$ and so $G/U \cong \text{Alt}_7$, $\text{PSL}_2(2^3)$ or J_1 . However, 2.3.5.7.11 $\in \text{Codeg}(J_1)$, 11 $\nmid |\text{Alt}_7|$, $2^3.3^2 \in \text{Codeg}(\text{Alt}_7)$ and $3^2 \nmid |J_1|$. Also, $2^3.7 \in \text{Codeg}(\text{PSL}_2(2^3))$ and $2^3.7 \notin \text{Codeg}(\text{Alt}_7)$, $\text{Codeg}(J_1)$. This shows that if N. Ahanjideh

 $S \cong \text{Alt}_7 \text{ or } J_1$, then $G/U \cong S$. If $S \cong {}^2B_2(q)$ or $\text{PSL}_3(4)$, where $q = 2^{2f+1} \ge 8$, then

 $Codeg(S) - \{1\}$ contains exactly one odd number which is $|S|/|S|_2$, (2.7)

by (2.2) and (2.3). As $|Alt_7|_2, |J_1|_2 < |S|_2$, it follows that $G/U \not\cong Alt_7, J_1$, by (2.6). In the remaining possibilities, (2.1)–(2.3) show that $|G/U|/|G/U|_2 \in Codeg(G/U)$. Since $Codeg(G/U) \subseteq Codeg(G)$ and $|G/U|/|G/U|_2$ is odd, we see from (2.7) that $|G/U|/|G/U|_2 = |S|/|S|_2$. So, (2.6) forces |G/U| = |S|. Now we can check easily that $G/U \cong S$. So, in all cases,

$$G/U \cong S. \tag{2.8}$$

Next, we claim that $U = \{1\}$. Working towards a contradiction, let $U \neq \{1\}$ and let M be a maximal normal subgroup of G such that $M \leq U$. Then U/M is a minimal normal subgroup of G/M. As U is solvable, U/M is an elementary abelian r-group for some prime divisor r of |G|. Let $1_{U/M} = \lambda_1, \ldots, \lambda_t$ be the representatives of the action of G/M on Irr(U/M). If O_i is the G/M-orbit of λ_i , then $1 + \sum_{i=2}^t |O_i| \lambda_i (1)^2 = \sum_{\lambda \in Irr(U/M)} \lambda(1)^2 = |U/M| \equiv_r 0$. Hence, there exists an i > 1 such that $r \nmid |O_i|$. Since $|O_i| = [G/M : I_{G/M} \lambda_i)]$, it follows that

$$|G/M|_r | |I_{G/M}(\lambda_i)|. \tag{2.9}$$

Also,

$$[G/M: I_{G/M}(\lambda_i)] = |O_i| < |U/M|.$$
(2.10)

Let $\chi \in \operatorname{Irr}(G/M|\lambda_i)$. If $I_{G/M}(\lambda_i) = G/M$, then $\chi_{U/M} = e\lambda_i$ for some positive integer e. So, ker $\chi \cap U/M = \ker \lambda_i$. However, ker $\chi \cap U/M \leq G/M$ and U/M is a minimal normal subgroup of G/M. Thus, either ker $\chi \cap U/M = U/M$ or $\{M\}$. In the former case, $U/M \leq \ker \chi$. Hence, $\chi_{U/M} = e1_{U/M}$, which is a contradiction. In the latter case, ker $\lambda_i = \ker \chi \cap U/M = \{M\}$. Hence, U/M is a cyclic group of order r. Since $(G/M)/C_{G/M}(U/M) = N_{G/M}(U/M)/C_{G/M}(U/M) \leq \operatorname{Aut}(U/M)$, Aut(U/M) is a cyclic group of order r - 1 and G = G', we see that $C_{G/M}(U/M) = G/M$. Hence, $U/M \leq Z(G/M)$. On the other hand, (G/M)' = G/M. Thus, |U/M| = r and G/M is a Schur cover of G/U. Therefore, $S \cong \operatorname{Alt}_7$ and $r \in \{2, 3\}$, $S \cong {}^2B_2(8)$ and r = 2 or $S \cong PSL_3(4)$ and $r \in \{2, 3\}$. By [7], we can check that Codeg $(G/M) \notin Codeg(S) = Codeg(G)$, which is a contradiction with Lemma 2.1. Hence, $I_{G/M}(\lambda_i) \neq G/M$. This yields $C_{G/M}(U/M) = U/M$. We note that $U/M \leq I_{G/M}(\lambda_i)$ and $(G/M)/(U/M) \cong G/U \cong S$. Consequently,

$$\frac{I_{G/M}(\lambda_i)}{U/M}$$
 is isomorphic to a proper subgroup of *S*. (2.11)

By (2.8) and Lemma 2.1,

$$\operatorname{Codeg}(S) = \operatorname{Codeg}(G/U) = \operatorname{Codeg}\left(\frac{G/M}{U/M}\right) \subseteq \operatorname{Codeg}(G/M) \subseteq \operatorname{Codeg}(G) = \operatorname{Codeg}(S).$$

Hence, $\operatorname{Codeg}(G/M) = \operatorname{Codeg}(G/U) = \operatorname{Codeg}((G/M)/(U/M))$. It follows from Lemma 2.3 that $|U/M| \le |(G/M)/(U/M)|_r = |G/U|_r$. So, (2.8) and (2.10) force

$$[G/M: I_{G/M}(\lambda_i)] < |S|_r.$$
(2.12)

We continue the proof by examining each of the four possibilities for the simple group in Corollary 1.3 in turn.

Case 1: $S \cong {}^{2}B_{2}(q)$, where $q = 2^{2f+1} \ge 8$. By (2.8), $G/U \cong {}^{2}B_{2}(q)$. As stated in [10, Lemma 3.8], any proper subgroup of $S = {}^{2}B_{2}(q)$ is isomorphic to a subgroup of ${}^{2}B_{2}(q_{0})$, where $q_{0} = 2^{2e+1} | q$, or to a subgroup of some subgroup of order $q^{2}(q-1), 2(q-1), 4(q-2^{f+1}+1)$ or $4(q+2^{f+1}+1)$. If $|I_{G/M}(\lambda_{i})|$ divides $|{}^{2}B_{2}(q_{0})|$, then $q \nmid \chi^{c}(1), q-1 \nmid \chi^{c}(1)$ and $(q \pm 2^{f+1}+1) \nmid \chi^{c}(1)$ for every $\chi \in Irr(G|\lambda_{i})$, because $\chi^{c}(1) \mid |I_{G/M}(\lambda_{i})|$. This leads to a contradiction by considering the elements of Codeg(*S*) in (2.2). It follows from (2.9), (2.11) and the above statement that

$$\left| \frac{I_{G/M}(\lambda_i)}{U/M} \right| \text{ divides } \begin{cases} q^2(q-1) & \text{if } r = 2, \\ q^2(q-1) & \text{if } r \mid q-1, \\ 4(q-2^{f+1}+1) \text{ or } 4(q+2^{f+1}+1) & \text{if } r \mid q^2+1. \end{cases}$$

Thus, $|S|_r < [G/M : I_{G/M}(\lambda_i)]$, contradicting (2.12).

Case 2: $S \cong PSL_3(4)$. By (2.8), $G/U \cong PSL_3(4)$. By [7], any proper subgroup of PSL₃(4) is isomorphic to a subgroup of some subgroup of order 72, 360, 168 or 960. It follows from (2.9), (2.11) and the above statement that

 $\frac{I_{G/M}(\lambda_i)}{U/M}$ divides 960 if r = 2, 360 if r = 3, 360 or 960 if r = 5, 168 if r = 7.

Thus, if $r \neq 2$, then $|S|_r < [G/M : I_{G/M}(\lambda_i)]$, contradicting (2.12). Now let r = 2. Then $2 \nmid [G/M : I_{G/M}(\lambda_i)]$ and $21 \le [G/M : I_{G/M}(\lambda_i)] < |U/M| \le |S|_2 = 64$, by (2.9), (2.10) and Lemma 2.3. Since $|I_{G/M}(\lambda_i)/(U/M)| = 960$, either $|I_{G/M}(\lambda_i)/(U/M)| = 320$ and |U/M| = 64 or $|I_{G/M}(\lambda_i)/(U/M)| = 960$ and $|U/M| \in \{32, 64\}$. Let $\chi \in \operatorname{Irr}(G/M|\lambda_i)$. Then χ is faithful. Hence, $\chi^c(1) = |I_{G/M}(\lambda_i)|/e_{\chi}$, where $e_{\chi} = \langle \chi_{U/M}, \lambda_i \rangle$. Since $\chi^c(1) \in \operatorname{Codeg}(G/M) = \operatorname{Codeg}(G)$ and $3^2, 7 \nmid \chi^c(1)$, we have $\chi^c(1) = 2^6.5$, by (2.3). Consequently, if $|I_{G/M}(\lambda_i)/(U/M)| = 320$ and |U/M| = 64, then $e_{\chi} = 2^6$ and, if $|I_{G/M}(\lambda_i)/(U/M)| = 960$ and $|U/M| \in \{32, 64\}$, then $2^5.3 \mid e_{\chi}$. Therefore, $2^{12} \le e_{\chi}^2 \le |I_{G/M}(\lambda_i) : U/M| \le 2^6.3.5$, which is impossible.

Case 3: $S \cong Alt_7$. By (2.8), $G/U \cong Alt_7$. By [7], any proper subgroup of $S = Alt_7$ is isomorphic to a subgroup of some subgroup of order $2^3.3^2.5, 2^3.3.7, 2^3.3.5$ or $2^3.3^2$. From (2.9), (2.11) and the above statement,

$$\left|\frac{I_{G/M}(\lambda_i)}{U/M}\right| \text{ divides } \begin{cases} 2^3.3^2.5 \text{ or } 2^3.3.7 & \text{if } r = 2, 2^3.3^2.5 & \text{if } r = 3, \\ 2^3.3^2.5 & \text{if } r = 5, 2^3.3.7 & \text{if } r = 7. \end{cases}$$

Thus, if either $r \neq 2,3$ or $r \in \{2,3\}$ and $|I_{G/M}(\lambda_i)/(U/M)| \neq 2^3.3^2.5$, it follows that $|S|_r < [G/M : I_{G/M}(\lambda_i)]$, contradicting (2.12). Next assume that $r \in \{2,3\}$ and $|I_{G/M}(\lambda_i)/(U/M)| = 2^3.3^2.5$. Thus, $|U/M| \ge 7$, by (2.10). If r = 2, then $|U/M| | |G/U|_2 = 8$ and, if r = 3, then $|U/M| | |G/U|_3 = 9$, by Lemma 2.3. So, $|U/M| \in \{8,9\}$. We note that U/M is an elementary abelian *r*-group. Thus, $G/U \le \operatorname{Aut}(U/M)$, which is isomorphic to $GL_3(2)$ or $GL_2(3)$. Hence, $3^2 \nmid |G/U|$, which is a contradiction.

Case 4: $S \cong J_1$. By (2.8), $G/U \cong J_1$. By [7], any proper subgroup of $S = J_1$ is isomorphic to a subgroup of some subgroup of order 2^2 .3.5.11, 2^3 .3.7, 2^3 .3.5, 2.3.19, 2.5.11,

N. Ahanjideh

2².3.5 or 2.3.7. By (2.11), $|I_{G/M}(\lambda_i)/(U/M)|$ divides one of the above numbers. Thus, $|S|_r < [G/M : I_{G/M}(\lambda_i)]$, contradicting (2.12).

Therefore, $U = \{1\}$ and $G \cong S$, as required.

References

- [1] N. Ahanjideh, 'The Fitting subgroup, *p*-length, derived length and character table', *Math. Nachr.* **294** (2021), 214–223.
- [2] N. Ahanjideh, 'The one-prime hypothesis on the co-degrees of irreducible characters', Comm. Algebra, to appear. DOI: 10.1080/00927872.2021.1910285.
- [3] R. Bahramian and N. Ahanjideh, 'p-divisibility of co-degrees of irreducible characters', Bull. Aust. Math. Soc. 103(1) (2021), 78–82.
- [4] R. Bahramian and N. Ahanjideh, 'p-parts of co-degrees of irreducible characters', C. R. Math. 359(1) (2021), 79–83.
- [5] A. Bahri, Z. Akhlaghi and B. Khosravi, 'An analogue of Huppert's conjecture for character codegrees', *Bull. Aust. Math. Soc.*, to appear. DOI: 10.1017/S0004972721000046.
- [6] M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, 'Character degree graphs that are complete graphs', *Proc. Amer. Math. Soc.* 135(3) (2007), 671–676.
- [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of Finite Groups* (Oxford University Press, London, 1984).
- [8] N. Du and M. Lewis, 'Codegrees and nilpotence class of *p*-groups', *J. Group Theory* 19(4) (2016), 561–568.
- [9] I. M. Isaacs, Character Theory of Finite Groups (Dover, New York, 1994).
- [10] G. Malle and A. Moreto, 'Nondivisibility among character degrees II: Nonsolvable groups', J. Lond. Math. Soc. 76(3) (2007), 667–682.
- [11] G. Qian, Y. Wang and H. Wei, 'Co-degrees of irreducible characters in finite groups', J. Algebra 312 (2007), 946–955.
- [12] P. Schmid, 'Rational matrix groups of a special type', *Linear Algebra Appl.* **71** (1985), 289–293.
- [13] P. Schmid, 'Extending the Steinberg representation', J. Algebra 150 (1992), 254–256.

NEDA AHANJIDEH, Department of Pure Mathematics,

Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran

e-mail: ahanjideh.neda@sci.sku.ac.ir, ahanjidn@gmail.com

[7]