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Abstract

For a character y of a finite group G, the number y“(1) = [G : kery]/x(1) is called the co-degree of y. A
finite group G is an NDAC-group (no divisibility among co-degrees) when y“(1) 1 ¢¢(1) for all irreducible
characters y and ¢ of G with 1 < y“(1) < ¢°(1). We study finite groups admitting an irreducible character
whose co-degree is a given prime p and finite nonsolvable NDAC-groups. Then we show that the finite
simple groups 2B,(2%/*1), where f > 1, PSL3(4), Alt; and J; are determined uniquely by the set of their
irreducible character co-degrees.
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1. Introduction and preliminaries

In this paper, Gis a finite groupand p is a prime number. Let Irr(G) denote the set of
(complex) irreducible characters of G. For a normal subgroup N of G and 6 € Irr(N),
let /;(8) denote the inertia group of 6 in G and let Irr(G|6) be the set of the irreducible
constituents of the induced character 6°. Also, n,(G) denotes the number of Sylow
p-subgroups of G. If m is a positive integer, m,, denotes the p-part of m. For a character
x of G, the number y“(1) = [G : kery]/x(1) is called the co-degree of y (see [11]).
Set Codeg(G) = {x“(1) : y € Irr(G)} and cd(G) = {xy(1) : y € Irr(G)}. In [1, 3, 4, 5, 8§,
11], various properties of the co-degrees of irreducible characters of finite groups are
studied. By [11, Theorem A], if p | |G], then p divides some element of Codeg(G). In
[1, 3, 4], it is shown that the p-parts of the co-degrees of irreducible characters of finite
groups can control the structure of groups. Our first result is the following theorem of
this type.

THEOREM 1.1. Let G be a finite group and p a prime. Then p € Codeg(G) if and only
if either p divides \G|/G’| or G has a normal subgroup K such that G/K is a Frobe-
nius group whose Frobenius kernel has order p and whose Frobenius complement
is cyclic.
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A finite group G is an NDAD-group (no divisibility among degrees) when a 1 8
for all @, € cd(G) with 1 <@ <. In [10], the finite nonsolvable NDAD-groups
were classified. Similarly, a finite group G is an NDAC-group (no divisibility among
co-degrees) when a 1 g for all @, 8 € Codeg(G) with 1 < @ < B. In [2], we showed that
if ged(a, B) is either 1 or a prime for all @, € Codeg(G) with 1 < @ < 3, then G is
solvable. Our second result is the following classification theorem.

THEOREM 1.2. Let G be a nonsolvable NDAC-group and let U be the maximal normal
solvable subgroup of G. Then G is perfect and G /U is isomorphic to one of the simple
groups Jy,2By(2¥*Y), where f > 1, Alt;, PSL3(4) or PSLy(27), where f > 1.

Let P be an elementary abelian 2-group of order 16. Then there is an action of Alt;s
on P such that for the extension G of P by Alts, we have Codeg(G) = {1, 12, 15, 20, 64}.
So, G is an NDAC-group. This example shows that in Theorem 1.2, U is not necessarily
a central subgroup of G.

In 1990, Huppert conjectured that if S is a nonabelian simple group such that
cd(G) = cd(S), then G = S X A, where A is abelian. Let ¢ > 3 be a prime power. In [5],
the analogue of Huppert’s conjecture for character co-degrees has been verified for
the simple group PSL;(g), that is, if Codeg(G) = CodegPSL,(g)), then G = PSL,(g).
We continue this investigation and prove the following result as a corollary of
Theorem 1.2.

COROLLARY 1.3. Let S be one of the simple groups Jy,*B2(2*/*1), where f > 1, Alty
or PSL3(4). If Codeg(G) = Codeg(S), then G is isomorphic to S.

2. Proofs of the main results

LEMMA 2.1 [11, Lemma 2.1]. Let N be a normal subgroup of G. Then Codeg(G/N) C
Codeg(G). Also, if y € Irr(N), then y°(1) | x°(1) for every x € Irt(Gly).

LEMMA 2.2. Let N = 81 X - -+ X S; be a minimal normal subgroup of G, where S; = §,
a nonabelian simple group. Then there exists ¢ € Irr(N) that extends to G with
ker ¢ = {1}.

PROOF. This follows immediately from [13, 12] and [6, Theorems 3-4 and
Lemma 5]. O

LEMMA 2.3. Let N be a minimal normal subgroup of G. If N is abelian and
Codeg(G) = Codeg(G/N), then |N| divides |G/N|.

PROOF. By [4, Proposition 6(i)], if y € Irr(G) is such that N £ ker y, then |N| | y°(1).
However, Codeg(G) = Codeg(G/N). Hence, y“(1) | |G/N|. So, the lemma follows. O

2.1. Proof of Theorem 1.1. If p divides |G/G’|, then [8, Lemma 2.2] completes the
proof. Next let K be a normal subgroup of G such that G/K is a Frobenius group whose
Frobenius kernel is /K and |F/K| = p. Let @ € Irr(F/K) — {1r/k} and y € Irr(G/K|a).
Then Ig/k(a@) = F/K and, hence, xy°(1) = |[F/K| = p. By Lemma 2.1, p € Codeg(G),
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as required. Conversely, let y“(1) = p for some y € Irr(G). If y(1) =1, then y €
Irr(G/G’). So, x°(1) = p | |G/G’|, as required. Now let y(1) # 1. Fix K = ker y and
set G = G/K. Then G is nonabelian, p | |G| and x(1) = |G|/p. Let P be a p-subgroup
of G of order p. If C;(P) # P, then there exists an abelian subgroup A of G such that
P < A. By [9, Problem 2.9(b)], x(1) = |G|/p < [G : A]. Consequently, |A| < p, which
is a contradiction. This forces Cz(P) = P. Also, x*(1) < |G|. Therefore, |G|>/p? < |G|.
Hence, |G| < p?. This shows that P is a Sylow p-subgroup of G and n,(G) < p. It
follows that n,(G) = 1, so P is normal in G. Since G/P = Ng(P)/Cg(P) < Aut(P),
Ce(P) = P and Aut(P) is a cyclic group of order p — 1, it follows that G is a Frobenius
group whose Frobenius kernel is P and whose Frobenius complement is cyclic. Now
the theorem follows. O

2.2. Proof of Theorem 1.2. In order to prove Theorem 1.2, we need to prove the
following propositions.

PROPOSITION 2.4. Every nonsolvable NDAC-group is perfect.

PROOF. Let G be a minimal counterexample. Assume that M is a minimal normal
subgroup of G such that G/M is nonsolvable. Since the hypothesis is inherited
by quotients, G/M is perfect. Hence, GM =G and M £ G’. Thus, M # M N G" &
G. As M is a minimal normal subgroup of G, M NG’ = {1} and so G = G’ X M.
Consequently, M is an elementary abelian p-group for some prime p. Therefore, M
admits an irreducible character ¢ whose co-degree is p. Since G is nonsolvable, G’ is
nonsolvable. So, there is a prime divisor ¢ of |G’| such that p # q. By [11, Theorem
Al, there is a y € Irr(G”) such that g | y°(1). Set y; = 1¢ X ¢ and y» = x X ¢. Then
Xx1,x2 € Irr(G), x{(1) = p and pq | x5(1), which is a contradiction. Now suppose that
for every normal subgroup L of G, G/L is solvable. This forces G to have M as its
unique minimal normal subgroup, because G is nonsolvable. We observe that M is
nonabelian. As G’ # G and G/M is solvable, M # G and (G/M)" # G/M. By Lemma
2.2, there is a ¢ € Irr(M) that extends to y € Irr(G) and ker ¢ = {1}. Since M is the
unique minimal normal subgroup of G and ker ¢ = {1}, we have ker y = {1}. Hence,
|G/M| < x°(1) and |G/M]| divides xy°(1). On the other hand, G/M # (G/M)'. Let p
be a prime divisor of [G/M : (G/M)’]. By Theorem 1.1, there exists a ¥ € Irr(G/M)
whose co-degree is p. However, ¢ € Irr(G), ¢“(1) | x“(1) and ¢“(1) # x°(1). This is a
contradiction. Therefore, G is perfect, as required. O

PROPOSITION 2.5. Let G be a nonsolvable NDAC-group. If U is the maximal normal
solvable subgroup of G, then G/U is a nonabelian simple group.

PROOF. We work by induction on |G|. By Lemma 2.1, for every proper normal
subgroup L of G, G/L is an NDAC-group. First, suppose that every normal subgroup
of G is nonsolvable. Then U = {1}. Let M; and M, be two distinct minimal normal
subgroups of G. Then M| and M, are nonsolvable. Also, MM, /M, < G/M;. So, G/M,
is a nonsolvable NDAC-group. By induction, G/M| = MM, /M, X Uy/M,, where
Uy/M, is solvable. By Proposition 2.4, G’ = G. Hence, Uy/M;| = {M,}. Consequently,
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G =M, XM,. Let y € Irr(My) — {1p,} and yp € Irr(M3) — {1p,}. Set y1 =y X 1y,
and x2 = Y1 X . Then x1,x2 € Ir(G) — {16}, xS(1) = IMy|/un (1) divides x5(1) =
[M1|IMa|/(f1 (1D2(1)) and x{(1) # x5(2), which is a contradiction.

Next let M be the unique minimal normal subgroup of G. If M = G, then G is
nonabelian and simple, as desired. If G # M, then there is a y € Irr(M) that extends
to y € Irr(G) and kery = {1}, by Lemma 2.2. So, ker y = {1}. Thus, |G/M| | x“(1) and
|G/M| # x“(1). For every ¢ € Irr(G/M) — {1/}, we have 1 # ¢°(1) | |G/M|. Conse-
quently, ¢°(1) # x“(1) and ¢°(1) | x“(1), which is a contradiction. Finally, suppose that
M is a minimal normal subgroup of G, which is abelian. Then G/M is a nonsolvable
NDAC-group. By induction, G/M is an extension of a solvable group by a simple
group and so is G. Now the proof is complete. O

PROOF OF THEOREM 1.2. By Propositions 2.4 and 2.5, G is perfect and G/U is
nonabelian and simple. On the other hand, G/U is an NDAC-group and, for every y €
Irr(G/U) — {1y}, we have y(1) > 1 and keryy = 1. So, @ 1 § for all @, € cd(G/U)
with 1 < @ < 8. Hence, G/U is a nonabelian simple NDAD-group. Therefore, [10,
Theorem A] completes the proof. |

PROOF OF COROLLARY 1.3. By Theorem 1.1, Codeg(S) does not contain any prime
number and neither does Codeg(G). So, Theorem 1.1 forces G to be perfect. This
implies that G is a nonsolvable NDAC-group, because Codeg(G) = Codeg(S) and S is
an NDAC-group. If U is the maximal normal solvable subgroup of G, then Theorem
1.2 shows that G/U is isomorphic to one of the simple groups PSL,(2/), where f > 1,
2B,(2%/*1), where f > 1, Alt;, PSL3(4) and J;. We note that

Codeg(PSL,(27)) = {1,272/ — 1),27 27 + 1), (2% - 1)}, 2.1)
Codeg(232(22f+1)) — {1’(22(2f+1) + 1)(22f+1 _ 1),22(2f+1)(22f+1 -1,

OIS 4 1y 2Cf+(Q2+1 _pf+l 4

P AV A e ) (22)

Codeg(PSL3(4)) = {1,2%.3%.7,20.32,26.7,2°.5,32.5.7), (2.3)

Codeg(Alty) = {1,2%.3%.5,2%2.3%.7,23.3.7,22.3.5.7,2° 3.5,2% 3%}, (2.4)

Codeg(J,) = {1,3.5.11.19,2.3.5.7.11,2%.3.5.19, 7.11.19,
23.3.5.11,2%.3.5.7}. (2.5)

Thus, Codeg(G/U) contains two different elements whose 2-parts are |G/U|,. Since
Codeg(G/U) C Codeg(G) = Codeg(S), considering the elements of Codeg(S),

IS = 1G/Uls. (2.6)
This shows that if S = Alt; or J;, then |G/U|, = 23 and so G/U = Alt;, PSL,(2%)

or J;. However, 2.3.5.7.11 € Codeg(J;), 11 1 |Alty|, 23.3% € Codeg(Alt7) and 32 1 |/;].
Also, 2.7 € Codeg(PSL,(2*)) and 23.7 ¢ Codeg(Alt;), Codeg(J;). This shows that if
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S = Alty or Jy, then G/U = S.If § = 2B,(g) or PSL3(4), where ¢ = 2%/*! > 8, then
Codeg(S) — {1} contains exactly one odd number which is |S|/|S]s, 2.7

by (2.2) and (2.3). As |Alty]p, |12 < |S|2, it follows that G/U # Alty, J;, by (2.6).
In the remaining possibilities, (2.1)—(2.3) show that |G/U|/|G/U|, € Codeg(G/U).
Since Codeg(G/U) € Codeg(G) and |G/U|/|G/U|, is odd, we see from (2.7) that
|G/U|/IG/Uly = |S1/1Sl2- So, (2.6) forces |G/U| = |S|. Now we can check easily that
G/U = S. So, in all cases,

G/U = 8S. (2.8)

Next, we claim that U = {1}. Working towards a contradiction, let U # {1} and let
M be a maximal normal subgroup of G such that M £ U. Then U/M is a minimal
normal subgroup of G/M. As U is solvable, U/M is an elementary abelian r-group
for some prime divisor r of |G|. Let 1y = 45, ..., 4, be the representatives of the
action of G/M on Irr(U/M). If O; is the G/M-orbit of A;, then 1 + Z)§:2|O,»|/l,~(l)2 =
Zﬂelrr(U/M)/l(l)z = |U/M]| =, 0. Hence, there exists an i > 1 such that » ¢ |O;|. Since
|0l = [G/M : Ig/m )], it follows that

|G/M\ | Ugm(A:)|. (2.9)
Also,
[G/M : Ig/m(4)] = |0 < |U/M]|. (2.10)

Let y € Irr(G/M|A). If Igm(A4;) = G/M, then yym = ed; for some positive integer
e. So, kery N U/M = ker 4;. However, kery N U/M < G/M and U/M is a minimal
normal subgroup of G/M. Thus, either kery N U/M = U/M or {M}. In the former
case, U/M < kery. Hence, yy,u = elym, which is a contradiction. In the latter
case, ker A; = kery N U/M = {M}. Hence, U/M is a cyclic group of order r. Since
(G/M)/Ceim(U/M) = Nou(U/M)/Coiu(U[M) < Aut(U/M), Aut(U/M) is a cyclic
group of order r— 1 and G = G’, we see that Cg/y(U/M) = G/M. Hence, U/M <
Z(G/M). On the other hand, (G/M)" = G/M. Thus, |U/M| = r and G/M is a Schur
cover of G/U. Therefore, S = Alt; and r € {2,3}, S = 2B,(8) and r = 2 or § = PSL3(4)
and r € {2, 3}. By [7], we can check that Codeg(G/M) ¢ Codeg(S) = Codeg(G), which
is a contradiction with Lemma 2.1. Hence, I/y(4;) # G/M. This yields Ce/u(U/M) =
U/M. We note that U/M < Ig/y(4;) and (G/M)/(U/M) = G/U = S. Consequently,

IGm(A)
U/M
By (2.8) and Lemma 2.1,

is isomorphic to a proper subgroup of S. (2.11)

Codeg(S) = Codeg(G/U) = Codeg(%) C Codeg(G/M) < Codeg(G) = Codeg(S).

Hence, Codeg(G/M) = Codeg(G/U) = Codeg((G/M)/(U/M)). It follows from
Lemma 2.3 that |U/M| < |(G/M)/(U/M)|, = |G/UJ,. So, (2.8) and (2.10) force

[G/M : Ig/m(A)] < |S],. (2.12)
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We continue the proof by examining each of the four possibilities for the simple
group in Corollary 1.3 in turn.

Case 1: S = 2B,(q), where g = 2**! > 8. By (2.8), G/U = ?B>(g). As stated in
[10, Lemma 3.8], any proper subgroup of S = 2B;(q) is isomorphic to a subgroup
of 2By(qo), where gy =2%*'|g, or to a subgroup of some subgroup of order
(g —1),2(q = 1),4(q = 271 + 1) or 4(q + 2/ + 1), Tf gm(A)| divides Ba(qo)l,
then g ¢ x“(1), g — 1 { x°(1) and (g = 2/*' + 1) t x“(1) for every y € Irr(G|A;), because
X°(1) | Ig/m(4;)|. This leads to a contradiction by considering the elements of Codeg(S)
in (2.2). It follows from (2.9), (2.11) and the above statement that

Pg-1) ifr=2,
divides {g%(g - 1) ifrig—1,
Adg-2""+ Dord(g+2" +1) ifr|g+1.

Thus, IS, < [G/M : Ig/m(4;)], contradicting (2.12).

Case 2: S = PSL3(4). By (2.8), G/U = PSL3(4). By [7], any proper subgroup of
PSL3(4) is isomorphic to a subgroup of some subgroup of order 72, 360, 168 or 960. It
follows from (2.9), (2.11) and the above statement that

IGm(A)
U/M
Thus, if 7 # 2, then ||, < [G/M : Ig;1(4;)], contradicting (2.12). Now let » = 2. Then
24 [G/M : Igm(2)] and 21 < [G/M : Igm(A)] < |[U/M| < |S|, = 64, by (2.9), (2.10)
and Lemma 2.3. Since |Ig/p(4;)/(U/M)||960, either |Ig/n(4;)/(U/M)| =320 and
[U/M| =64 or |lgm(A;)/(U/M)| =960 and |U/M| € {32,64}. Let y € Irt(G/M|A;).
Then y is faithful. Hence, x“(1) = lIgm(4)l/e,, where e, = (xym,A;). Since
x°(1) € Codeg(G/M) = Codeg(G) and 32,7 t x°(1), we have y°(1) = 2°.5, by (2.3).
Consequently, if |Igp(4)/(U/M)| =320 and |U/M|= 64, then e, = 2% and, if
l/m(A)/(U/M)| = 960 and |U/M| € {32,64}, then 2°.3 | ¢,. Therefore, 2'* < ¢} <
[Ugm(4) : U/M] < 2°.3.5, which is impossible.
Case 3: S = Alt;. By (2.8), G/U = Alt;. By [7], any proper subgroup of S = Alty
is isomorphic to a subgroup of some subgroup of order 23.32.5,23.3.7,2%.3.5 or 23.3%,
From (2.9), (2.11) and the above statement,

Lo/m(A;) 23.3250r233.7 ifr=2, 23325 ifr=3,
U/M 23325 ifr=5, 2337 ifr=17

Thus, if either r#2,3 or re{2,3} and |lgm(4;)/(U/M)| # 23325, it follows
that ||, < [G/M : Ig/u(A;)], contradicting (2.12). Next assume that r e {2,3}
and |l u(A)/(U/M)| = 23325, Thus, |U/M|>7, by (2.10). If r=2, then
|U/M|||G/U|, = 8 and, if r = 3, then [U/M| | |G/U|3 = 9, by Lemma 2.3. So, |U/M| €
{8,9}. We note that U/M is an elementary abelian r-group. Thus, G/U < Aut(U/M),
which is isomorphic to GL3(2) or GL,(3). Hence, 3> 1 |G/U|, which is a contradiction.

Case 4: S = J,. By (2.8), G/U = J;. By [7], any proper subgroup of S = J; is iso-
morphic to a subgroup of some subgroup of order 22.3.5.11,23.3.7,2%.3.5,2.3.19, 2.5.11,

Igm(A)
U/M

divides 960 if r = 2, 360 if r = 3, 360 or 960 if r = 5, 168 if r = 7.

divides {
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22.3.5 or 2.3.7. By (2.11), lIgm(A;)/(U/M)| divides one of the above numbers. Thus,
S|, < [G/M : 1g;m(4;)], contradicting (2.12).
Therefore, U = {1} and G = §, as required. O

(1]

(8]

[9]
(10]

[11]

[12]
[13]

References

N. Ahanjideh, ‘The Fitting subgroup, p-length, derived length and character table’, Math. Nachr.
294 (2021), 214-223.

N. Ahanjideh, ‘The one-prime hypothesis on the co-degrees of irreducible characters’, Comm.
Algebra, to appear. DOI: 10.1080/00927872.2021.1910285.

R. Bahramian and N. Ahanjideh, ‘p-divisibility of co-degrees of irreducible characters’, Bull. Aust.
Math. Soc. 103(1) (2021), 78-82.

R. Bahramian and N. Ahanjideh, ‘p-parts of co-degrees of irreducible characters’, C. R. Math.
359(1) (2021), 79-83.

A. Bahri, Z. Akhlaghi and B. Khosravi, ‘An analogue of Huppert’s conjecture for character
codegrees’, Bull. Aust. Math. Soc., to appear. DOI: 10.1017/S0004972721000046.

M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, ‘Character degree graphs that are complete
graphs’, Proc. Amer. Math. Soc. 135(3) (2007), 671-676.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups
(Oxford University Press, London, 1984).

N. Du and M. Lewis, ‘Codegrees and nilpotence class of p-groups’, J. Group Theory 19(4) (2016),
561-568.

I. M. Isaacs, Character Theory of Finite Groups (Dover, New York, 1994).

G. Malle and A. Moreto, ‘Nondivisibility among character degrees II: Nonsolvable groups’, J. Lond.
Math. Soc. 76(3) (2007), 667-682.

G. Qian, Y. Wang and H. Wei, ‘Co-degrees of irreducible characters in finite groups’, J. Algebra
312 (2007), 946-955.

P. Schmid, ‘Rational matrix groups of a special type’, Linear Algebra Appl. 71 (1985), 289-293.
P. Schmid, ‘Extending the Steinberg representation’, J. Algebra 150 (1992), 254-256.

NEDA AHANIJIDEH, Department of Pure Mathematics,
Faculty of Mathematical Sciences, Shahrekord University,
P.O. Box 115, Shahrekord, Iran

e-mail: ahanjideh.neda@sci.sku.ac.ir, ahanjidn @ gmail.com

https://doi.org/10.1017/5S000497272100037X Published online by Cambridge University Press


http://dx.doi.org/10.1080/00927872.2021.1910285
mailto:ahanjideh.neda@sci.sku.ac.ir, ahanjidn@gmail.com
https://doi.org/10.1017/S000497272100037X

	1 Introduction and preliminaries
	2 Proofs of the main results
	2.1 Proof of Theorem 1.1
	2.2 Proof of Theorem 1.2


