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Abstract

We consider a model of branching Brownian motion in which the usual spatially
homogeneous branching and catalytic branching at a single point are simultaneously
present. We establish the almost sure growth rates of population in certain time-
dependent regions and as a consequence the first-order asymptotic behaviour of the
rightmost particle.
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1. Introduction and main results

1.1. Description of the model

Branching Brownian motion (BBM) is a spatial population model in which individuals
(referred to as particles) move in space according to the law of Brownian motion and reproduce
themselves at spatially dependent rates. The particular process that we are going to consider
may be described as follows.

It starts with a single particle at time 0 whose spatial position at time t ≥ 0 until the time
it dies is given by Xt, where (Xt)t≥0 is distributed like a standard Brownian motion. We let
T ′ and T0 be two random times that are independent conditional on (Xt)t≥0 and satisfy P(T ′ >
t | (Xs)s≥0) = e−βt and P(T0 > t | (Xs)s≥0) = e−β0Lt , where β ≥ 0 and β0 ≥ 0 are some constants
such that β and β0 are not both 0 and (Lt)t≥0 is the local time at 0 of (Xt)t≥0. Note that almost
surely XT0 = 0 and XT ′ �= 0.

At time T ′ ∧ T0, the initial particle dies and is replaced with a random number of new
particles. If T0 < T ′, then the number of new particles follows some given distribution (qn)n≥1.
Otherwise it follows a different distribution (pn)n≥1. We assume that q1 �= 1 and p1 �= 1.

All the new particles, independently of each other and of the past, then stochastically repeat
the behaviour of their parent starting from position XT ′∧T0 . That is, they move like Brownian
motions, die after random times giving births to new particles, etc.

Note that all the particles always produce at least one child upon their death, ruling out the
possibility of population extinction.
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An equivalent description (up to indistinguishability) would be to say that, after a random
time T such that P(T > t | (Xs)s≥0) = e−β0Lt−βt, the initial particle dies, and at position x where
it died, it is replaced with a random number A(x) of new particles where, for n ≥ 1,

P(A(x) = n) =
{

qn if x = 0,

pn if x �= 0,
(1)

and these new particles then stochastically repeat the behaviour of their parent starting from x.
Thus the model can be thought of as the BBM model with spatially inhomogeneous branching
rate β0δ0(·) + β, where δ0(·) is the Dirac delta function, and spatially inhomogeneous offspring
distribution given by (1), since informally we may say that Lt = ∫ t

0δ0(Xs) ds (this can be made
formal via the theory of additive functionals of Brownian motion).

Our model combines in a natural way the classical BBM model with constant branching and
the BBM model with a single catalytic point. The first one has been studied for many decades
and numerous asymptotic results are available (let us mention [3], [15], [18], and [19], among
many others). The catalytic model has been given less attention and has mostly been studied
either in the discrete space (see e.g. [4] or [5]) or in the context of superprocesses (see e.g. [6]
or [8]). For a general review of the topic one may refer to [13].

1.2. Some notation

Using common practice we label the initial particle by ∅ and all the other particles
according to the Ullam–Harris convention, so that, for example, particle ‘∅32’ is the second
child of the third child of the initial particle.

For two particles u and v we shall write u < v if u is an ancestor of v, so for example
∅<∅3 <∅32. We shall write |u| for the number of ancestors of the particle u, so for example
|∅32| = 2.

We denote the set of all particles in the system at time t by Nt, and for every particle u ∈ Nt,
we let Xu

t denote its spatial position at time t and (Xu
s )s∈[0,t] its historical path up to time t with

Lu
t the local time at 0 of (Xu

s )s∈[0,t]. We also define

Rt := sup{Xu
t : u ∈ Nt}

to be the position of the rightmost particle at time t. We let Au denote the number of offspring
produced by particle u when it dies.

We let m0 = ∑
n≥1nqn be the mean of the offspring distribution due to catalytic branching

and m = ∑
n≥1npn the mean of the offspring distribution due to homogeneous branching. For

convenience, we also respectively define the effective homogeneous and catalytic branching
rates as

β̂ := β(m − 1) and β̂0 := β0(m0 − 1).

Finally, we let (Ft)t≥0 be the natural filtration of the branching process, and for the
process initiated from position x ∈R we let Px be the associated probability measure with
the corresponding expectation Ex. Most of the time it will be assumed that x = 0, and we shall
then write P and E instead of P0 and E0.

1.3. Motivation

In this subsection we present a few simple calculations which should motivate our main
results in the next subsection.
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For any x ∈R and t ≥ 0, let us define

Nx
t := {u ∈ Nt : Xu

t > x} (2)

to be the set of particles in the system at time t whose spatial position is to the right of x.
A simple application of the widely used ‘many-to-one’ formula (see Subsection 2.2) gives an
exact expression for E|Nx

t | (to be proved in Subsection 2.2).

Proposition 1. For any x ≥ 0 and t ≥ 0,

E|Nx
t | = �

(
β̂0

√
t − x√

t

)
exp

{
1

2
β̂2

0 t − β̂0x + β̂t

}
, (3)

where

�(x) = P(N (0, 1) ≤ x) =
∫ x

−∞
(2π )−1/2 e−y2/2 dy

is the cumulative distribution function of a standard normal random variable.

In particular, for any λ ≥ 0 we obtain

E|Nλt
t | = �((β̂0 − λ)

√
t) exp

{(
1

2
β̂2

0 − β̂0λ + β̂

)
t

}
. (4)

Using the fact that �(x) ∼ (2π )−1/2|x|−1 e−x2/2 as x → −∞ and �(x) → 1 as x → ∞, we can
then see that

1

t
log E|Nλt

t | → �λ as t → ∞, (5)

where

�λ =

⎧⎪⎪⎨
⎪⎪⎩

1

2
β̂2

0 − β̂0λ + β̂ if λ ≤ β̂0,

−1

2
λ2 + β̂ if λ ≥ β̂0.

(6)

We can then observe that �λ takes positive or negative values according to whether λ < λcrit
or λ > λcrit, where

λcrit =

⎧⎪⎪⎨
⎪⎪⎩

β̂

β̂0
+ 1

2
β̂0 if β̂ ≤ 1

2
β̂2

0 ,

√
2β̂ if β̂ ≥ 1

2
β̂2

0 .

(7)

Since the expected number of particles to the right of (λcrit + ε)t decays exponentially with t
and the expected number of particles to the right of (λcrit − ε)t grows exponentially with t, we
may interpret λcrit for now as the speed of the rightmost particle ‘in expectation’.

Also, using symmetry or a direct calculation, we may find the expected total population at
any time t ≥ 0:

E|Nt| = 2E|N0
t | = 2�(β̂0

√
t) exp

{(
1

2
β̂2

0 + β̂

)
t

}
. (8)

In particular,

E|Nt| ∼ α exp

{(
1

2
β̂2

0 + β̂

)
t

}
as t → ∞, (9)

where α = 1 if β̂0 = 0 and α = 2 if β̂0 > 0.
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1.4. Main results

Our aim is to replace convergences in expectation from the previous subsection with the
almost sure convergences.

For all the results in this subsection we shall have to impose an additional condition on the
offspring distribution commonly known as the X log X condition (for some discussion see e.g.
[14], [16], or [17]):

∑
n≥1

pnn log n < ∞ and
∑
n≥1

qnn log n < ∞. (10)

This condition is needed to ensure that certain martingales have non-zero limits, as we shall
see in Subsection 2.3.

Our first result, which should be compared with (9), is the almost sure approximation of the
population size.

Theorem 1. Suppose that condition (10) on the offspring distribution is satisfied. Then

lim
t→∞

1

t
log |Nt| = 1

2
β̂2

0 + β̂ P-a.s.

Next, unarguably the most important result of this paper, is the almost sure approximation
of |Nλt

t |, and it should be compared with (5).

Theorem 2. Suppose that condition (10) is satisfied. Take any λ > 0 and let �λ be as in (6)
and λcrit as in (7).

If λ < λcrit, then

lim
t→∞

1

t
log |Nλt

t | = �λ (> 0) P-a.s. (11)

If λ > λcrit, then

lim
t→∞ |Nλt

t | = 0 P-a.s. (12)

and furthermore

lim
t→∞

1

t
log P(|Nλt

t | > 0) = �λ (< 0). (13)

As a direct corollary of Theorem 2 we establish the almost sure speed of the rightmost
particle.

Corollary 1. Suppose that condition (10) is satisfied. Then

lim
t→∞

Rt

t
= λcrit P-a.s.,

where λcrit is given in (7).

Note that letting either β0 → 0 or β → 0 in Theorem 1, Theorem 2, and Corollary 1, one
may recover previously known results for purely homogeneous or purely catalytic branching
processes.
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1.5. Outline of the paper

The rest of this article is organized as follows. In Subsection 2.1 we follow the standard
procedure of extending the probability space by constructing the spine process over our
branching system. Then in Subsection 2.2 we recall the Many-to-One formula for branching
processes and apply it to prove Proposition 1 as well as the upper bounds for Theorem 1
and Theorem 2. In Subsection 2.3 we construct certain change-of-measure martingales and
use them to prove the lower bound for Theorem 1 as well as ‘preliminary’ lower bounds for
Theorem 2. In Subsections 3.1 and 3.2 we give the heuristic argument and the formal proof for
the lower bounds in Theorem 2. Finally, we conclude the paper with the proof of Corollary 1.

2. Spine results and applications

2.1. Spine construction

In this section we extend our probability space by introducing the spine process. A more
detailed description of this procedure may be found for example in [9].

The spine of the branching process, which we shall denote by ξ , is the infinite line of descent
of particles chosen uniformly at random from all possible lines of descent. It is constructed in
the following way. The initial particle ∅ of the branching process begins the spine. When the
initial particle dies and is replaced with a random number of new particles, one of them is
chosen uniformly at random to continue the spine. This procedure is then repeated recursively:
whenever the particle in the spine dies, one of its children is chosen uniformly at random to
continue the spine. We may then write the spine as ξ = {ξ (0), ξ (1), ξ (2), . . .}, where ξ (n) is the
label of the spine particle in the nth generation and ξ (0) =∅.

We let P̃ denote the probability measure under which the branching process is defined
together with the spine. Hence P= P̃|F∞ . We let Ẽ be the expectation corresponding to P̃.

Below we introduce some new notation in relation with the spine process.
For any t ≥ 0 we write nodet (ξ ) for the unique particle u ∈ Nt ∩ ξ . That is, nodet (ξ ) is the

label of the spine particle at time t.
For any t ≥ 0 we write ξt for Xu

t , where u is the unique particle in Nt ∩ ξ . Then ξt is the
spatial position of the spine particle at time t. It is not hard to check that the process (ξt)t≥0 is
a Brownian motion under P̃. We let (L̃t)t≥0 denote its local time at the origin.

For any t ≥ 0 we write nt for the unique n such that ξ (n) ∈ Nt. Then (nt)t≥0 is the counting
process of the number of branching events that have occurred along the path of the spine by
time t. We denote the sequence of times of these branching events by Sn and the number of
particles produced at each such branching event by An, n ≥ 1.

Moreover, we would like to distinguish branching events along the spine that occurred due
to catalytic branching from those that occurred due to homogeneous branching. In order to do
so, we denote the branching times along the spine that took place when the spine was at the
origin by S0

n, and the number of particles produced at these times by A0
n, n ≥ 1. Similarly, we

denote the branching times along the spine when it was not at the origin by S′
n, and the number

of particles produced at these times by A′
n, n ≥ 1. We also denote the counting processes for

(S0
n)n≥1 and (S′

n)n≥0 by (n0
t )t≥0 and (n′

t)t≥0, respectively.
Observe that conditional on the path of the spine (ξt)t≥0, (n0

t )t≥0 and (n′
t)t≥0 are independent

(inhomogeneous in the first case) Poisson processes (or Cox processes) with jump rates β0δ0(·)
and β, respectively, so that

P̃(n0
t = k | (ξs)0≤s≤t) = (β0L̃t)k

k! e−β0L̃t
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and

P̃(n′
t = k | (ξs)0≤s≤t) = (βt)k

k! e−βt.

Finally, it is convenient to define several filtrations of the now extended probability space in
order to take various conditional expectations.

Definition 1. (Filtrations.)

• Ft was defined in Subsection 1.2. It is the filtration which contains all the information
about all the particles’ motion and their genealogy. It does not, however, have any
information about the spine.

• F̃t := σ (Ft, nodet (ξ )). Thus F̃ has all the information about the branching process and
all the information about the spine. This will be the largest filtration.

• Gt := σ (ξs : 0 ≤ s ≤ t). This filtration only contains information about the path of the
spine but it does not know which particles make up the spine along its path at different
times.

• G̃t := σ (Gt, nodes (ξ ) : 0 ≤ s ≤ t, A0
n : n ≤ n0

t , A′
m : m ≤ n′

t). This filtration has informa-
tion about the path of the spine, its genealogy, and how many particles are born along
the path of the spine. However, it has no information about anything happening off the
spine.

We note that Ft ⊂ F̃t and Gt ⊂ G̃t ⊂ F̃t.

2.2. Many-to-One Lemma and applications

The proof of the following result with a detailed discussion can be found for example in [9]
or [11].

Lemma 1. (Many-to-One Lemma.) Let Y be a non-negative F̃t-measurable random variable.
It can be decomposed as

Y =
∑
u∈Nt

Y(u)1{nodet (ξ )=u},

where for all u ∈ Nt, Y(u) is Ft-measurable and then

Ex
( ∑

u∈Nt

Y(u)

)
= Ẽx(Y eβ̂0L̃t+β̂t).

In particular, if f is a non-negative functional such that f ((ξs)s∈[0,t]) is a Gt-measurable random
variable, then

Ex
[ ∑

u∈Nt

f ((Xu
s )s∈[0,t])

]
= Ẽx[ f ((ξs)s∈[0,t]) eβ̂0L̃t+β̂t]. (14)

Let us now apply (14) to prove equations (3) and (8) given as the motivation in the first
section.

Proof of Proposition 1 and identity (8). Take x ≥ 0 and t ≥ 0. Then

E|Nx
t | =E

∑
u∈Nt

1{Xu
t >x} = Ẽ[1{ξt>x} eβ̂0L̃t+β̂t]. (15)
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We now make use of the joint density of ξt and L̃t (which for example can be found in [12]):

P̃(ξt ∈ dy, L̃t ∈ dl) = |y| + l√
2πt3

exp

{
− (|y| + l)2

2t

}
dy dl, y ∈R, l ≥ 0,

to complete the proof of (3). Then

Ẽ[1{ξt>x} eβ̂0L̃t+β̂t] = eβ̂t
∫ ∞

0

∫ ∞

x
eβ̂0l y + l√

2π t3
exp

{
− (y + l)2

2t

}
dy dl

= eβ̂t
∫ ∞

0
eβ̂0l 1√

2π t
exp

{
− (x + l)2

2t

}
dl

= eβ̂t
∫ ∞

0

1√
2π t

exp

{
− 1

2t
(l − (β̂0t − x))2 + β̂2

0

2
t − β̂0x

}
dl

= eβ̂t+(β̂2
0 /2)t−β̂0x

∫ ∞

−(β̂0
√

t−x/
√

t)

1√
2π

e−z2/2 dz

= �

(
β̂0

√
t − x√

t

)
exp

{
1

2
β̂2

0 t − β̂0x + β̂t

}
.

For the expected total population we could have followed a similar calculation:

E|Nt| = Ẽ[eβ̂0L̃t+β̂t] = · · · = 2�(β̂0
√

t) exp

{(
1

2
β̂2

0 + β̂

)
t

}
. (16)

�
Let us now prove the upper bound for Theorem 1.

Proposition 2. (Upper bound for Theorem 1.)

lim sup
t→∞

1

t
log |Nt| ≤ 1

2
β̂2

0 + β̂ P-a.s. (17)

Proof. Fix ε > 0. Then, by the Markov inequality and (8),

P

(
1

n
log |Nn| > 1

2
β̂2

0 + β̂ + ε

)
= P(|Nn| > e( 1

2 β̂2
0 +β̂+ε)n) ≤ e−( 1

2 β̂2
0 +β̂+ε)nE|Nn| < 2 e−εn.

It follows from the Borel–Cantelli lemma that

P

({
1

n
log |Nn| > 1

2
β̂2

0 + β̂ + ε

}
i.o.

)
= 0

and thus

lim sup
n→∞

1

n
log |Nn| ≤ 1

2
β̂2

0 + β̂ + ε P-a.s.

By letting ε → 0 we establish (17) with the limit taken over integer times. To get convergence
over any real-valued sequence, we note that (|Nt|)t≥0 is a non-decreasing process, and so for
any t > 0

1

t
log |Nt| ≤ �t�

t

log |N�t�|
�t� ,
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and hence

lim sup
t→∞

1

t
log |Nt| ≤ lim sup

t→∞
log |N�t�|

�t� ≤ 1

2
β̂2

0 + β̂ P-a.s. �

For upper bounds of Theorem 2 we need to adjust the previous argument because unlike
(|Nt|)t≥0 the process (|Nλt

t |)t≥0 is not monotone. We first establish the following result.

Proposition 3. For λ > 0 and n ∈N∪ {0}, we define the following set of particles:

N̂λn
n :=

{
u ∈ Nn+1 : sup

s∈[n,n+1]
Xu

s ≥ λn
}

.

Then

lim sup
n→∞

1

n
log E|N̂λn

n | ≤ �λ.

Note that for any t ∈ [n, n + 1] it is always true that |Nλt
t | ≤ |N̂λn

n |.
Proof of Proposition 3. By the Many-to-One Lemma we have

E|N̂λn
n | =E

∑
u∈Nn+1

1{sups∈[n,n+1] Xu
s ≥λn}

= Ẽ[1{sups∈[n,n+1] ξs≥λn} eβ̂0L̃n+1+β̂(n+1)]

= Ẽ[1{ξn+1+ξ̄n≥λn} eβ̂0L̃n+1+β̂(n+1)],

where ξ̄n := sups∈[n,n+1] (ξs − ξn+1) and ξ̄n
d= sups∈[0,1] ξs

d= |N (0, 1)| under P̃.
Then, for any δ ∈ (0, λ) we can split the latter expectation as

Ẽ[1{ξn+1+ξ̄n≥λn} eβ̂0L̃n+1+β̂(n+1)] = Ẽ[1{ξn+1+ξ̄n≥λn} eβ̂0L̃n+1+β̂(n+1)1{|ξn+1|≤(λ−δ)n}]

+ Ẽ[1{ξn+1+ξ̄n≥λn} eβ̂0L̃n+1+β̂(n+1)1{|ξn+1|>(λ−δ)n}].

We shall refer to the first term in the sum as I1 and the second one as I2. First we show that the
contribution of I1 is negligibly small as it has a faster than exponential decay rate:

I1 = Ẽ[1{ξn+1+ξ̄n≥λn} eβ̂0L̃n+1+β̂(n+1)1{|ξn+1|≤(λ−δ)n}]

≤ Ẽ[eβ̂0L̃n+1+β̂(n+1)1{ξ̄n≥δn}]

≤ (Ẽ[e2β̂0L̃n+1+2β̂(n+1)])1/2(P̃(ξ̄n ≥ δn))1/2

using the Cauchy–Schwarz inequality in the last line. Then, as we know from (16),

1

n
log (Ẽ[e2β̂0L̃n+1+2β̂(n+1)])1/2 → β̂2

0 + β̂ as n → ∞,

while, since ξ̄n
d= |N (0, 1)|,

1

n2
log (P̃(ξ̄n ≥ δn))1/2 → −δ2

4
as n → ∞.
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Thus

lim sup
n→∞

1

n2
log I1 ≤ −δ2

4
. (18)

On the other hand,

I2 = Ẽ[1{ξn+1+ξ̄n≥λn} eβ̂0L̃n+1+β̂(n+1)1{|ξn+1|>(λ−δ)n}]

≤ Ẽ[eβ̂0L̃n+1+β̂(n+1)1{|ξn+1|>(λ−δ)n}]

= 2Ẽ[eβ̂0L̃n+1+β̂(n+1)1{ξn+1>(λ−δ)n}]

= 2E|N(λ−δ)n
n+1 |,

using symmetry in the third line and identity (15) in the fourth line. Thus, from (3) we can see
(just as we did in (4)–(6)) that

lim sup
n→∞

1

n
log I2 ≤ �λ−δ . (19)

From (18) and (19) we have that, for any δ ∈ (0, λ),

lim sup
n→∞

1

n
log E|N̂λn

n | = lim sup
n→∞

1

n
log (I1 + I2) ≤ �(λ−δ).

Letting δ → 0 and using continuity and monotonicity of �λ as a function of λ, we obtain the
sought result. �

Proposition 3 can now be applied to prove the upper bounds for Theorem 2.

Proposition 4. (Upper bounds for Theorem 2.)
If λ < λcrit (�λ > 0), then

lim sup
t→∞

1

t
log |Nλt

t | ≤ �λ P-a.s. (20)

If λ > λcrit (�λ < 0), then
lim

t→∞ |Nλt
t | = 0 P-a.s. (21)

and

lim sup
t→∞

1

t
log P(|Nλt

t | > 0) ≤ �λ. (22)

Proof. For any λ > 0, let N̂λn
n be as in the previous proposition and fix ε > 0. Then the

Markov inequality gives

P(|N̂λn
n | > e(�λ+ε)n) ≤ e−(�λ+ε)nE|N̂λn

n |,
and from Proposition 3 the right-hand side decays exponentially fast. Therefore, by the Borel–
Cantelli lemma,

P({|N̂λn
n | > e(�λ+ε)n} i.o.) = 0.

This is equivalent to saying that

|N̂λn
n | ≤ e(�λ+ε)n eventually P-a.s.
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So P-almost surely, for all t sufficiently large,

|Nλt
t | ≤ |N̂λ�t�

�t� | ≤ e(�λ+ε)�t�.

Then, if λ > λcrit, we can take ε sufficiently small that �λ + ε < 0 and hence |Nλt
t | < 1 for t

large enough, thus proving (21).
If λ < λcrit, then we get

lim sup
t→∞

1

t
log |Nλt

t | ≤ �λ + ε P-a.s.,

and letting ε → 0 yields (20).
Finally, if λ > λcrit then (22) follows from the Markov inequality and (5):

lim sup
t→∞

1

t
log P(|Nλt

t | > 0) ≤ lim sup
t→∞

1

t
log E|Nλt

t | = �λ. �

Remark 1. Note that the X log X condition on the offspring distribution has not been required
so far. It will be essential in the next subsection.

2.3. Additive martingales and applications

Recall that under the probability P̃ the branching process together with the spine may be
described as follows.

• The process starts with a single spine particle whose path (ξt)t≥0 is distributed like a
Brownian motion.

• At instantaneous rate β0δ0(·) + β along its path, the spine particle splits into A(·)
particles. If splitting took place at position x, then

P̃(A(x) = n) =
{

qn if x = 0,

pn if x �= 0.

• Uniformly at random, one of the new particles is selected to continue the spine and thus
to stochastically repeat the behaviour of the initial particle starting from x.

• The remaining A(x) − 1 particles initiate independent copies of a branching process with
branching rate β0δ0(·) + β and offspring distribution A(·) as under Px.

We shall now describe a family of martingale changes of measure that will put a certain bias
on the motion of the spine particle as well as the birth rate and the offspring distribution along
the path of the spine particle. Again, for a detailed discussion the reader is referred to [9].

Let us consider a process of the form

M̃t =
[ nt∏

n=1

An

]
e−β̂t−β̂0L̃t M̃(1)

t =
[ n′

t∏
n=1

A′
n ×

n0
t∏

n=1

A0
n

]
e−β̂t−β̂0L̃t M̃(1)

t ,

where (An)n≥1, (A0
n)n≥1, (A′

n)n≥1, (nt)t≥0, (n0
t )t≥0, and (n′

t)t≥0 were defined in Subsection 2.1
and (M̃(1))t≥0 is a non-negative P̃-martingale of mean 1 with respect to the filtration (Gt)t≥0.
The effect of M̃(1), if used as a change of measure martingale, is to put some drift on (ξt)t≥0.

For this particular paper we shall take M̃(1) to be either

M̃(1)
t = eλξt−(λ2/2)t, t ≥ 0
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or

M̃(1)
t = eλ|ξt|−λL̃t−(λ2/2)t = eλ

∫ t
0 sgn (ξs) dξs−(λ2/2)t, t ≥ 0.

The first choice is the classical Girsanov martingale, which has the effect of adding constant
drift λ to (ξt)t≥0.

The second choice has the effect of adding instantaneous drift λ sgn (·) to (ξt)t≥0, so that
if λ < 0 then this is drift of magnitude |λ| towards the origin, whereas λ > 0 then this is drift
of magnitude λ away from the origin. For more details one can refer to [1] or [2, ‘Brownian
motion with alternating drift’, pp. 128–129]. Alternatively, the effect of this martingale can be
seen as adding constant drift λ to the Brownian motion (|ξt| − L̃t)t≥0.

Recalling that m = ∑
n≥1npn and m0 = ∑

n≥1nqn are the means of the offspring distribution
due to homogeneous and catalytic branching, we see that (M̃)t≥0 can be decomposed into a
product of three martingales:

M̃t = M̃(1)
t M̃(2)

t M̃(3)
t ,

where
M̃(2)

t = mn′
t e−β̂t × m

n0
t

0 e−β̂0L̃t

and

M̃(3)
t =

n′
t∏

n=1

A′
n

m
×

n0
t∏

n=1

A0
n

m0
.

When used as the Radon–Nikodym derivative, (M̃(2)
t )t≥0 has the effect of changing the

instantaneous jump rate of (n′
t)t≥0 from β to mβ and the jump rate of (n0

t )t≥0 from β0δ0(·)
to m0β0δ0(·). The effect of (M̃(3)

t )t≥0 is to change the distribution of random variables (A′
n)n≥1

from (pk)k≥1 to ((k/m)pk)k≥1 and the distribution of random variables (A0
n)n≥1 from (qk)k≥1

to ((k/m0)qk)k≥1 (while keeping them all independent). If we now define a new probability
measure Q̃ as

dQ̃

dP̃

∣∣∣∣F̃t

= M̃t, t ≥ 0,

then for any events E1 ∈ Gt, E2 ∈σ ((n′
s)0≤s≤t, (n0

s )0≤s≤t) and E3 ∈σ (A′
1, . . . , A′

n′
t
; A0

1, . . . , A0
n0

t
)

we have that

Q̃(E1, E2, E3) = Ẽ(1E1 1E2 1E3 M̃(1)
t M̃(2)

t M̃(3)
t )

= Ẽ[1E1 M̃(1)
t Ẽ(1E2 M̃(2)

t Ẽ(1E3 M̃(3)
t | σ (Gt, (n′

s)0≤s≤t, (n0
s )0≤s≤t)) | Gt)]

so it can be seen that the effects of M̃(1), M̃(2), and M̃(3) superimpose. Thus, under Q̃ the
branching process has the following description.

• The process starts with a single spine particle whose path (ξt)t≥0 is distributed like a
Brownian motion with drift imposed by M̃(1).

• At instantaneous rate m0β0δ0(·) + mβ along its path the spine particle splits into A(·)
particles. If splitting took place at position x, then

Q̃(A(x) = n) =

⎧⎪⎨
⎪⎩

n

m0
qn if x = 0,

n

m
pn if x �= 0.
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• Uniformly at random, one of the new particles is selected to continue the spine and thus
to stochastically repeat the behaviour of the initial particle starting from x.

• The remaining A(x) − 1 particles initiate independent unbiased copies of a branching
process with branching rate β0δ0(·) + β and offspring distribution A(·) as under Px.

Suppose now that, for all t ≥ 0, M̃(1)
t can be represented as

M̃(1)
t =

∑
u∈Nt

M(1)
t (u)1{nodet (ξ )=u}, (23)

where, for all u ∈ Nt, M(1)
t (u) is Ft-measurable. For example, if M̃(1)

t = eλ|ξt|−λL̃t−(λ2/2)t, then
we get the required representation by taking M(1)

t (u) = eλ|Xu
t |−λLu

t −(λ2/2)t. If we define

Mt :=
∑
u∈Nt

M(1)
t (u) e−β̂0Lu

t −β̂t, t ≥ 0, (24)

then (Mt)t≥0 is a unit-mean P-martingale such that

Mt = Ẽ(M̃t |Ft).

To see this, note that

Ẽ(M̃t |Ft) = Ẽ

([ nt∏
n=1

An

]
e−β̂t−β̂0L̃t M̃(1)

t

∣∣∣∣Ft

)

= Ẽ

( ∑
u∈Nt

([ ∏
v<u

Av

]
e−β̂t−β̂0Lu

t M̃(1)
t (u)1{nodet (ξ )=u}

) ∣∣∣∣Ft

)

=
∑
u∈Nt

([ ∏
v<u

Av

]
e−β̂t−β̂0Lu

t M̃(1)
t (u)P̃(u ∈ ξ |Ft)

)

=
∑
u∈Nt

([ ∏
v<u

Av

]
e−β̂t−β̂0Lu

t M̃(1)
t (u)

∏
v<u

1

Av

)

= Mt.

For the martingale property of (Mt)t≥0, we then check that, for any s ≤ t and an event A ∈Fs,

E(Mt1A) = Ẽ(Mt1A)

= Ẽ(Ẽ(M̃t |Ft)1A)

= Ẽ(Ẽ(M̃t1A |Ft))

= Ẽ(M̃t1A)

= Ẽ(M̃s1A)

= Ẽ(Ẽ(M̃s1A |Fs))

= Ẽ(Ẽ(M̃s |Fs)1A)

= Ẽ(Ms1A)

=E(Ms1A).
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If we now define Q := Q̃|F∞ , then we would have that

dQ

dP

∣∣∣∣Ft

= Mt, t ≥ 0,

since for any event A ∈Ft,

Q(A) = Q̃(A) = Ẽ(1AM̃t) = Ẽ(Ẽ(1AM̃t |Ft)) = Ẽ(1AẼ(M̃t |Ft)) = Ẽ(1AMt) =E(1AMt).

Since (Mt)t≥0 is always a non-negative P-martingale, it must converge P-almost surely to some
non-negative limit M∞. Particularly interesting are those martingales whose limit is not almost
surely 0.

When investigating whether the limit of M is P-almost surely 0 or not, we shall make use
of the following result, commonly known as the spine decomposition.

Lemma 2. (Spine decomposition.) Let (Mt)t≥0 be the P-martingale of the form (24) con-
structed from some given P̃-martingale (M̃(1)

t )t≥0 with the property (23). Then

Q̃(Mt | G̃∞) = spine (t) +
nt∑

n=1

(An − 1) spine (Sn),

where
spine (t) = M̃(1)

t e−β̂t−β̂0L̃t

and, as defined earlier, Sn is the time of the nth branching event along the path of the spine
process and An is the corresponding number of offspring produced.

Note that we have used Q̃ to denote the expectation corresponding to probability measure
Q̃, which is a common practice.

We have already used the fact that if A ∈Ft for some t ≥ 0, then

Q(A) =
∫

A
Mt dP.

Let us also recall that if A ∈F∞, then

Q(A) =
∫

A
M∞ dP+Q

(
A ∩

{
lim sup

t→∞
Mt = ∞

})
. (25)

The latter identity can be found in [7, p. 241].

Proposition 5. Let

M±
t :=

∑
u∈Nt

e−β̂0|Xu
t |− 1

2 β̂2
0 t−β̂t, t ≥ 0, (26)

be the P-martingale of the form (24) constructed by taking

M̃(1)
t = e−β̂0|ξt|+β̂0L̃t− 1

2 β̂2
0 t, t ≥ 0. (27)

(a) If condition (10) (the X log X condition on the offspring distribution) is satisfied, then

M±∞ > 0 P-a.s.
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(b) If condition (10) is not satisfied, then

M±∞ = 0 P-a.s.

Proof. Let Q± and Q̃± be the probability measures associated with martingales (26) and
(27) as previously described in this subsection.

A standard argument which relies only on point-recurrence of (ξt)t≥0 under P̃ (see e.g. [10])
tells us that P(M±∞ > 0) ∈ {0, 1}.

So if we could show that Q±( lim supt→∞ M±
t = ∞) = 1, then by taking A = � in (25) we

would get 1 =EM±∞ + 1 and hence M±∞ = 0 P-almost surely.
On the other hand, if we could show that Q±( lim supt→∞ M±

t = ∞) = 0 then, again by
taking A = � in (25), we would get 1 =EM±∞ + 0 and hence P(M±∞ > 0) > 0, which from the
0–1 law above is the same as P(M±∞ > 0) = 1.

Thus, to prove the proposition, it is sufficient to show that, if condition (10) is sat-
isfied, then Q±( lim supt→∞ M±

t = ∞) = 0, and if condition (10) is not satisfied, then
Q±( lim supt→∞ M±

t = ∞) = 1.
Let us observe that because of the effect of martingale M̃(3), for any choice of c > 0 we have

1

c
Ẽ(A′

1 log A′
1) = 1

c
mQ̃±(log A′

1)

= m
∫ ∞

0
Q̃±

(
1

c
log A′

1 ≥ t

)
dt

= m
∞∑

n=0

∫ n+1

n
Q̃±(log A′

1 ≥ ct) dt.

Hence, by monotonicity of Q̃±(log A′
1 ≥ ct), we have

mc
∞∑

n=1

Q̃±(log A′
1 ≥ cn) ≤ Ẽ(A′

1 log A′
1) ≤ mc

∞∑
n=0

Q̃±(log A′
1 ≥ cn). (28)

Then, since (A′
n)n≥1 are i.i.d. random variables, it follows from (28) that

∞∑
n=1

Q̃±(A′
n ≥ ecn) =

∞∑
n=1

Q̃±(log A′
1 ≥ cn) < ∞ ⇐⇒ Ẽ(A′

1 log A′
1) =

∞∑
n=1

pnn log n < ∞,

and then, by the first and second Borel–Cantelli lemmas,

Q̃±({A′
n ≥ ecn} i.o.) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if
∞∑

n=1

pnn log n < ∞,

1 if
∞∑

n=1

pnn log n = ∞.

(29)

An identical argument gives

Q̃±({A0
n ≥ ecn} i.o.) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if
∞∑

n=1

qnn log n < ∞,

1 if
∞∑

n=1

qnn log n = ∞.

(30)

Let us emphasize that dichotomies (29) and (30) hold for any choice of c > 0.
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(a) Assume now that condition (10) holds, and recall from Lemma 2 that

Q̃±(M±
t | G̃∞) = spine (t) +

n′
t∑

n=1

(A′
n − 1) spine (S′

n) +
n0

t∑
n=1

(A0
n − 1) spine (S0

n)

≤ 1 +
∞∑

n=1

(A′
n − 1) spine (S′

n) +
∞∑

n=1

(A0
n − 1) spine (S0

n),

where
spine (t) = e−β̂0|ξt|− 1

2 β̂2
0 t−β̂t.

Recall that martingale (27), when used as the Radon–Nikodym derivative, has the effect of
putting constant drift of magnitude β̂0 towards the origin onto (ξt)t≥0 or, equivalently, the
effect of putting constant drift β̂0 onto (L̃t − |ξt|)t≥0. Thus we can see that, Q̃±-almost surely,

L̃t − |ξt|
t

→ β̂0,
ξt

t
→ 0,

L̃t

t
→ β̂0

and consequently
n′

t

t
→ mβ and

n0
t

L̃t
→ m0β0 as t → ∞.

It follows that S′
n ∼ (1/(mβ))n as n → ∞ Q̃±-a.s., so for any δ > 0

e−(K+δ)n ≤ spine (S′
n) ≤ e−(K−δ)n eventually Q̃±-a.s., (31)

where

K =
(

1

2
β̂2

0 + β̂

)
1

mβ
> 0,

which together with the first line of (29) yields

∞∑
n=1

(A′
n − 1) spine (S′

n) < ∞ Q̃±-a.s.

Similarly,

S0
n ∼ 1

m0β0β̂0
n as n → ∞,

which together with the first line of (30) yields

∞∑
n=1

(A0
n − 1) spine (S0

n) < ∞ Q̃±-a.s.

We have thus shown that
lim sup

t→∞
Q̃±(M±

t | G̃∞) < ∞.

Applying conditional Fatou’s lemma we get

Q̃±( lim inf
t→∞ M±

t | G̃∞) ≤ lim inf
t→∞ Q̃±(M±

t | G̃∞) ≤ lim sup
t→∞

Q̃±(M±
t | G̃∞) < ∞,
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which implies that lim inft→∞ M±
t < ∞ Q̃±-a.s. and hence also Q±-a.s. (as {lim inft→∞ M±

t <

∞} ∈F∞). Then, since 1/M± is a positive supermartingale under Q± (in fact a true martingale
as there is no extinction), it must converge, so

lim sup
t→∞

M±
t = lim inf

t→∞ M±
t < ∞ Q̃±-a.s.,

which is sufficient to prove part (a) of the proposition.

(b) Assume now that
∑

n≥1 pnn log n = ∞. Then, counting only particles born from the spine,
we obtain

M±
S′

n
≥ A′

n spine (S′
n),

so that the first inequality in (31) and the second line in (29) give us that Q̃±, and hence also
Q±-almost surely

lim sup
n→∞

M±
S′

n
= ∞.

Therefore we also get
lim sup

t→∞
M±

t = ∞ Q±-a.s.,

which proves the sought result.
If

∑
n≥1 qnn log n = ∞, then we arrive at the same conclusion by replacing (S′

n)n≥1 with
(S0

n)n≥1 and (A′
n)n≥1 with (A0

n)n≥1 in the above argument. �
From Proposition 5 we can now easily derive the required lower bound for Theorem 1.

Proposition 6. (Lower bound for Theorem 1.) Suppose that condition (10) on the offspring
distribution is satisfied. Then

lim inf
t→∞

1

t
log |Nt| ≥ 1

2
β̂2

0 + β̂ P-a.s.,

Proof.

|Nt| e− 1
2 β̂2

0 t−β̂t ≥
∑
u∈Nt

e−β̂0|Xu
t |− 1

2 β̂2
0 t−β̂t = M±

t .

Then
log |Nt|

t
≥ 1

2
β̂2

0 + β̂ + log M±
t

t
,

and since, under condition (10), M±∞ > 0 P-almost surely, it follows that

lim inf
t→∞

1

t
log |Nt| ≥ 1

2
β̂2

0 + β̂ P-a.s.

In fact we have an even stronger inequality:

lim inf
t→∞ e− 1

2 β̂2
0 t−β̂t|Nt| ≥ M±∞ > 0 P-a.s. �

Propositions 6 and 2 together prove Theorem 1.
In the rest of this subsection we would like to present some results for a purely homogeneous

BBM (β0 = 0), which we shall make use of in the next section. We begin by stating the
following result from [14, Theorem 1].
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Proposition 7. Consider a BBM with β0 = 0 (only homogeneous branching present). For
λ ∈R, let

Mλ
t :=

∑
u∈Nt

eλXu
t − 1

2 λ2t−β̂t, t ≥ 0, (32)

be the P-martingale of the form (24) derived through the procedure described at the beginning
of this subsection by taking

M̃(1)
t = eλξt− 1

2 λ2t, t ≥ 0. (33)

(a) If
∑

n≥1 pnn log n < ∞ and |λ| < (2β̂)1/2, then

Mλ∞ > 0 P-a.s.

(b) If
∑

n≥1 pnn log n < ∞ and |λ| > (2β̂)1/2, then

Mλ∞ = 0 P-a.s.

(c) If
∑

n≥1 pnn log n = ∞, then

Mλ∞ = 0 P-a.s.

The proof is essentially the same as that of Proposition 5. If we define Qλ and Q̃λ as
probability measures associated with martingales (32) and (33), then we would see that under
Q̃λ the spine (t) term would grow exponentially if |λ| > (2β̂)1/2 and decay exponentially if
|λ| < (2β̂)1/2, which together with dichotomy (29) would lead to the required result.

We shall now make use of Proposition 7 to get lower bounds on |Nλt
t | in purely

homogeneous branching systems.

Proposition 8. Consider a BBM with β0 = 0 (only homogeneous branching present). If λ ∈
(0, (2β̂)1/2) and

∑
n≥1 pnn log n < ∞, then

lim inf
t→∞

1

t
log |Nλt

t | ≥ β̂ − λ2

2
P-a.s.

Proof. For any choice of δ > 0 such that λ + δ < (2β̂)1/2, we have the following lower
bound on |Nλt

t |:

|Nλt
t | ≥

∑
u∈Nt

1{λt≤Xu
t ≤(λ+2δ)t}

≥
∑
u∈Nt

e(λ+δ)Xu
t −(λ+δ)(λ+2δ)t1{λt≤Xu

t ≤(λ+2δ)t}

= eβ̂t− 1
2 (λ+δ)2t−δ(λ+δ)t

∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{λt≤Xu
t ≤(λ+2δ)t}. (34)

We now claim that as t → ∞∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{λt≤Xu
t ≤(λ+2δ)t} → Mλ+δ∞ P-a.s., (35)
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where Mλ+δ is the same martingale as in Proposition 7. Indeed,∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{Xu
t >(λ+2δ)t}

≤
∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{Xu
t >(λ+2δ)t} eδXu

t −δ(λ+2δ)t

= e− 1
2 δ2t

∑
u∈Nt

e(λ+2δ)Xu
t − 1

2 (λ+2δ)2t−β̂t1{Xu
t >(λ+2δ)t}

≤ e− 1
2 δ2tMλ+2δ

t → 0 P-a.s., (36)

using the fact that Mλ+2δ converges P-almost surely to a finite limit. Similarly, we have∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{Xu
t <λt}

≤
∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{Xu
t <λt} e−δXu

t +δλt

= e− 1
2 δ2t

∑
u∈Nt

eλXu
t − 1

2 λ2t−β̂t1{Xu
t <λt}

≤ e− 1
2 δ2tMλ

t → 0 P-a.s. (37)

Thus from (36) and (37) it follows that∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{λt≤Xu
t ≤(λ+2δ)t}

= Mλ+δ
t −

∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{Xu
t >(λ+2δ)t}

−
∑
u∈Nt

e(λ+δ)Xu
t − 1

2 (λ+δ)2t−β̂t1{Xu
t <λt} → Mλ+δ∞ P-a.s.,

proving (35). Moreover, from part (a) of Proposition 7 we know that Mλ+δ∞ > 0 P-almost surely.
Hence from (34) and (35) we get

lim inf
t→∞

1

t
log |Nλt

t | ≥ β̂ − 1

2
(λ + δ)2 − δ(λ + δ) P-a.s.,

which proves the proposition after letting δ → 0. �
Proposition 9. Consider a BBM with β0 = 0 (only homogeneous branching present). Let

Ñλ
t := {u ∈ Nt+1 : Xu

s > λs for all s ∈ [t, t + 1]}. (38)

If λ > (2β̂)1/2 and
∑

n≥1 pnn log n < ∞, then

lim inf
t→∞

1

t
log P(|Ñλ

t | > 0) ≥ β̂ − λ2

2
.

In particular, it is also true that

lim inf
t→∞

1

t
log P(|Nλt

t | > 0) ≥ β̂ − λ2

2
. (39)
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Proof. For any choice of δ > 0 and K > 0, consider the following events:

Sλ,t :=
{

there exists u ∈ Nt+1 : Xu
s > λs for all s ∈ [t, t + 1]

Xu
s ≤ K + (λ + 2δ)s for all s ∈ [0, t + 1]

}

and

S̃λ,t := {ξs > λs for all s ∈ [t, t + 1], ξs ≤ K + (λ + 2δ)s for all s ∈ [0, t + 1]}.
One can then see that Sλ,t ∈Ft+1 ⊆ F̃t+1, S̃λ,t ∈ Gt+1 ⊆ F̃t+1 and that

S̃λ,t ⊆ Sλ,t ⊆ {|Ñλ
t | > 0} ⊆ {|Nλt

t | > 0}.
We then have the following lower bound on P(|Ñλ

t | > 0):

P(|Ñλ
t | > 0) ≥ P(Sλ,t) =E

(
1Sλ,t

Mλ+δ
t+1

Mλ+δ
t+1

)
=Qλ+δ

(
1Sλ,t

1

Mλ+δ
t+1

)
= Q̃λ+δ

(
1Sλ,t

1

Mλ+δ
t+1

)
,

where Mλ+δ , Qλ+δ , and Q̃λ+δ are the same as in Proposition 7. Then

Q̃λ+δ

(
1Sλ,t

1

Mλ+δ
t+1

)
≥ Q̃λ+δ

(
1S̃λ,t

1

Mλ+δ
t+1

)
≥ Q̃λ+δ

(
1S̃λ,t

1

Q̃λ+δ(Mλ+δ
t+1 |G̃∞)

)
,

using the conditional Jensen inequality and the pull-through property of conditional expecta-
tion in the last inequality. We now recall that

Q̃λ+δ(Mλ+δ
t+1 | G̃∞) = spine (t + 1) +

nt+1∑
n=1

(An − 1) spine (Sn),

where
spine (t) = e(λ+δ)ξt− 1

2 (λ+δ)2t−β̂t.

On the event S̃λ,t we have that for all s ∈ [0, t + 1]

spine (s) ≤ exp

{
(λ + δ)(K + (λ + 2δ)s) − 1

2
(λ + δ)2s − β̂s

}

= eK(λ+δ) exp

{(
1

2
(λ + δ)2 + δ(λ + δ) − β̂

)
s

}

≤ Cδ exp

{(
1

2
(λ + δ)2 + δ(λ + δ) − β̂

)
t

}
,

where Cδ is some positive constant. Also from dichotomy (29) we know that An < eδn

eventually Q̃λ+δ-almost surely. Thus

nt+1∑
n=1

An ≤
nt+1∑
n=1

eδn + Y ≤ C′
δ eδnt+1 + Y,

where Y = ∑∞
n=1 An1{An>eδn} is a Q̃λ+δ-almost surely finite random variable independent of

nt+1 and (ξs)0≤s≤t+1 and C′
δ is some positive constant. Thus

Q̃λ+δ(Mλ+δ
t+1 | G̃∞) ≤ Cδ e( 1

2 (λ+δ)2+δ(λ+δ)−β̂)t(1 + Y + C′
δ eδnt+1 ).

https://doi.org/10.1017/jpr.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.51


910 S. BOCHAROV AND L. WANG

Then, using the fact that 1/(a + b) ≥ 1/(2ab) whenever a, b ≥ 1, we get

Q̃λ+δ

(
1S̃λ,t

1

Q̃λ+δ(Mλ+δ
t+1 |G̃∞)

)

≥ 1

Cδ

e(β̂− 1
2 (λ+δ)2−δ(λ+δ))t Q̃λ+δ

(
1S̃λ,t

1

1 + Y + C′
δ eδnt+1

)

≥ 1

2CδC′
δ

e(β̂− 1
2 (λ+δ)2−δ(λ+δ))tQ̃λ+δ(S̃λ,t)Q̃λ+δ(e−δnt+1 )Q̃λ+δ

(
1

1 + Y

)
.

We note that

Q̃λ+δ

(
1

1 + Y

)
> 0

since Y is Q̃λ+δ-almost surely finite, Q̃λ+δ(e−δnt+1 ) = emβ(t+1)(e−δ−1) since (nt)t≥0 is a Q̃λ+δ-
Poisson process with rate mβ, and Q̃λ+δ(S̃λ,t) → CK,δ for some positive constant CK,δ since
(ξt)t≥0 is a Brownian motion with drift λ + δ under Q̃λ+δ . Therefore

lim inf
t→∞

1

t
log P(|Ñλ

t | > 0) ≥ lim inf
t→∞

1

t
log Q̃λ+δ

(
1S̃λ,t

1

Q̃λ+δ(Mλ+δ
t+1 |G̃∞)

)

≥ β̂ − 1

2
(λ + δ)2 − δ(λ + δ) − mβ(1 − e−δ),

which proves the required result after letting δ → 0. �
Remark 2. Note that Propositions 8 and 9 (equation (39)) already provide sufficient lower
bounds for Theorem 2 (equations (11) and (13) respectively) in the case λ ≥ β̂0, since a
spatially homogeneous branching process can be embedded in a process with homogeneous
and catalytic branching both present, by simply not counting any particles born due to catalytic
branching.

3. Remaining proofs

In this subsection we shall complete the proof of Theorem 2 by establishing lower bounds
for equations (11) and (13). We shall then finish off the paper with the proof of Corollary 1.

3.1. Heuristic argument

Here we discuss the idea behind the proof in a non-rigorous way in order to help the reader
understand the formal argument given in the next subsection.

Our task is to find the optimal way for a particle to reach level λt at some large time t.
In the case of spatially homogeneous branching (β0 = 0), the birth rate along the path of a

particle is independent of the path, and so the optimal way would simply be to travel at speed λ

all the time (there are of course finer results available, but they are irrelevant to this discussion).
However, in the presence of the catalyst at the origin, travelling at speed λ all the time

might be disadvantageous as it will discard any contribution from the catalyst. Thus one might
think that a better strategy for a particle would first be to stay near the origin for some positive
proportion of time in order to give birth to more particles at an accelerated rate (due to both
homogeneous and catalytic branching potential), and then for the remaining time let its children
travel at whatever speed is necessary in order to reach the required level.
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The argument goes as follows. For a large time t we let

q :=
{

|Nλt
t | if λ < λcrit,

P(|Nλt
t | > 0) if λ > λcrit,

and we want a lower bound on q.
We fix a number p ∈ [0, 1]. As we know from Theorem 1, at time pt there are

|Npt| ≈ exp

{(
β̂2

0

2
+ β̂

)
pt

}

particles in the system and about half of them lie in the upper half-plane. Next we ignore any
catalytic branching that takes place between times pt and t by assuming that every particle u ∈
N0

pt starts an independent spatially homogeneous branching process from the position Xu
pt > 0.

We let

q(u) :=

⎧⎪⎪⎨
⎪⎪⎩

|N(λ/(1−p))T
T (u)| if

λ

1 − p
<

√
2β̂,

P(|N(λ/(1−p))T
T (u)| > 0) if

λ

1 − p
>

√
2β̂,

where N(λ/(1−p))T
T (u) is the set of particles which lie to the right of (λ/(1 − p))T at time T of

the spatially homogeneous process initiated by u in the time–space frame of this process and
where T = (1 − p)t. Then, from Propositions 8 and 9, we know that

q(u) � exp

{
β̂T − 1

2

(
λ

1 − p

)2

T

}
= exp

{
β̂(1 − p)t − λ2

2(1 − p)
t

}
.

Then, since every particle in N(λ/(1−p))T
T (u) for every u ∈ N0

pt also belongs to Nλt
t , we can

estimate

q �
∑

u∈N0
pt

q(u) ≈ |N0
pt| exp

{
β̂(1 − p)t − λ2

2(1 − p)
t

}
≈ exp

{(
β̂ + β̂2

0

2
p − λ2

2(1 − p)

)
t

}
. (40)

The value of p which maximizes this expression is

p∗ :=

⎧⎪⎨
⎪⎩

1 − λ

β̂0
if λ ≤ β̂0,

0 if λ ≥ β̂0.
(41)

Substituting this value of p into (40), we get

q �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

{(
β̂ + β̂2

0

2
− β̂0λ

)
t

}
if λ ≤ β̂0

exp

{(
β̂ − λ2

2

)
t

}
if λ ≥ β̂0

= exp{�λt},
which gives the lower bound on q that we want.
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Note that if λ is too large (λ ≥ β̂0) then p∗ = 0, and so the best strategy for a particle to reach
level λt at time t would indeed be to travel at speed λ, always being driven by a homogeneous
branching potential with negligible contribution from catalytic branching. This is consistent
with Remark 2 made earlier.

3.2. Lower bounds for (11) and (13)

Before we present the main body of the proof, let us give a couple of preliminary results.
The first is a very crude estimate of the number of particles which lie approximately in the
upper half-plane at a time t.

Proposition 10. Assume that condition (10) on the offspring distribution is satisfied. Then
P-almost surely, for any δ > 0, there exists a finite time Tδ such that, for all t ≥ Tδ ,

|N−δt
t | ≥ exp

{(
β̂ + β̂2

0

2
− cδ

)
t

}
,

where cδ is some positive constant with the property that cδ → 0 as δ → 0.

Proof. Let us observe that �δ → β̂ + β̂2
0/2 as δ → 0. So we may write �δ = β̂ + β̂2

0/2 − c′
δ

for some c′
δ > 0 such that c′

δ → 0 as δ → 0.
From Theorem 1 (or Proposition 6) we know that P-almost surely, for any δ > 0, there exists

a finite time T ′
δ such that, for all t ≥ T ′

δ ,

|Nt| ≥ exp

{(
β̂ + β̂2

0

2
− 1

4
c′
δ

)
t

}
. (42)

We also know from Proposition 4 (equation (20)) that P-almost surely, for any δ > 0, there
exists a finite time T ′′

δ such that, for all t ≥ T ′′
δ ,

|Nδt
t | ≤ exp

{(
�δ + 1

2
c′
δ

)
t

}
= exp

{(
β̂ + β̂2

0

2
− 1

2
c′
δ

)
t

}
.

Thus, by symmetry it is also true that P-almost surely, for any δ > 0, there exists a finite time
T ′′′

δ such that, for all t ≥ T ′′′
δ ,

|Nt| − |N−δt
t | ≤ exp

{(
β̂ + β̂2

0

2
− 1

2
c′
δ

)
t

}
. (43)

Subtracting (43) from (42) yields the result. �
The next result is basically a version of Chebyshev’s inequality.

Proposition 11. Let N be a random variable supported on N and (Sk)k≥1 a sequence of events
independent of each other conditional on N. If, for some r ∈ (0, 1), it is true that P(Sk | N) ≥ r
P-a.s. for all k ≥ 1, then

P

( N∑
k=1

1Sk ≤ r

2
N

∣∣∣∣ N

)
≤ 4

rN
P-a.s.

Sharper inequalities are of course available but are not needed here.
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Proof of Proposition 11. Let us assume for simplicity that N is deterministic. Then

P

( N∑
k=1

1Sk ≤ r

2
N

)
≤ P

( N∑
k=1

(1Sk − P(Sk)) ≤ −1

2

N∑
k=1

P(Sk)

)

≤ P

( ∣∣∣∣
N∑

k=1

(1Sk − P(Sk))

∣∣∣∣ ≥ 1

2

N∑
k=1

P(Sk)

)

≤
( N∑

k=1

var (1Sk )

)/(
1

4

( N∑
k=1

P(Sk)

)2)

≤ 4

rN

using the Markov inequality and the fact that var (1Sk ) = P(Sk) − P(Sk)2 ≤ P(Sk). The same
argument will then work for N random if we replace P(·) with P(· | N) and var (·) with
var (· | N). �
Proposition 12. (Lower bounds for Theorem 2.) Suppose that condition (10) on the offspring
distribution is satisfied.

If λ < λcrit (�λ > 0), then

lim inf
t→∞

1

t
log |Nλt

t | ≥ �λ P-a.s. (44)

If λ > λcrit (�λ < 0), then

lim inf
t→∞

1

t
log P(|Nλt

t | > 0) ≥ �λ. (45)

Proof. We let p = p∗ be the same as in (41). We note that p = 0 if and only if λ ≥ β̂0, while
if λ ≥ β̂0 then �λ = β̂ − 1

2λ2, so that (44) and (45) follow from Propositions 8 and 9 (equation
(39)) by simply not counting any particles born due to catalytic branching. Thus, for the rest
of the proof we shall assume that λ < β̂0, so that p = 1 − λ/β̂0 > 0 and �λ = β̂ + β̂2

0/2 − β̂0λ.
We then choose some δ > 0 and define

λ̂ := λ + δ

λ
β̂0.

We also define

f (δ) :=
(

β̂ − λ̂2

2
− δ

)
, g(δ) :=

(
β̂ + β̂2

0

2
− cδ

)
,

where cδ is the same as in Proposition 10. We let h(δ) be such that

(1 − p)f (δ) + pg(δ) =
(

β̂ − λ̂2

2
− δ

)
(1 − p) +

(
β̂ + β̂2

0

2
− cδ

)
p

= β̂ + β̂2
0

2

(
1 − λ

β̂0

)
− cδp − 1

2

(
λ + δ

λ
β̂0

)2
λ

β̂0
− δ(1 − p)

= �λ − h(δ).

Note that h(δ) > 0 and h(δ) → 0 as δ → 0.
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For t > 0 we define events
At := {|N−δpt

pt | ≥ eg(δ)pt}.
From Proposition 10 we know that P(An eventually) = 1, so that in particular P(At) → 1 as
t → ∞.

Finally, for every particle u ∈ Npt, let us consider the subtree initiated by u at time pt. In the
time–space frame of this subtree, we define Ns(u), s ≥ 0 to be the set of particles in the subtree
at time s and Yv

s the positions of particles v ∈ Ns(u) at time s. Moreover, by analogy with (2)
and (38), we define

Nx
s (u) := {v ∈ Ns(u) : Yv

s > x}
and

Ñl
s(u) := {v ∈ Ns+1(u) : Yv

r > lr for all r ∈ [s, s + 1]}. �

Proof of (44), the lower bound for (11). Assume that λ < λcrit so that �λ > 0. There are
two cases to consider, which require slightly different treatment.

Case 1: β̂ > 1
2 β̂2

0 (equivalently, β̂0 < (2β̂)1/2). We choose δ > 0 to be sufficiently small that

λ̂ < (2β̂)1/2, and for n ≥ 1 consider events

Bn :=
{ ∑

u∈N−δpn
pn

1Bn(u) <
1

4
|N−δpn

pn |
}
,

where, for every u ∈ N−δpn
pn ,

Bn(u) = {|Nλ̂s
s (u)| ≥ ef (δ)s for all s ∈ [(1 − p)n, (1 − p)n + 1]}.

We know that, conditional on Fpn, events Bn(u) are independent, since all the subtrees initiated
by particles u ∈ Npn are independent copies of the original branching process starting from
positions Xu

pn.
Moreover, if we ignore all the catalytic branching taking place in the subtrees initiated by

particles u ∈ N−δpn
pn , then we can get from Proposition 8 that there exists some deterministic n0

such that for all n ≥ n0, P(Bn(u) |Fpn) ≥ 1/2. Hence, by Proposition 11,

P(Bn |Fpn) ≤ 8

|N−δpn
pn |

P-a.s.

for all n ≥ n0. Then, for all n ≥ n0, we obtain

P(An ∩Bn) =E(E(1An 1Bn |Fpn)) ≤E

(
1An

8

|N−δpn
pn |

)
≤ 8 e−g(δ)pn,

which decays exponentially fast in n (for δ sufficiently small). Therefore P(An ∩Bn i.o.) = 0.
Then, since P(An eventually) = 1, it follows that P(An ∩Bc

n eventually) = 1. So P-a.s., for all
n large enough, ∑

u∈N−δpn
pn

1Bn(u) ≥ 1

4
|N−δpn

pn | ≥ 1

4
eg(δ)pn.
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Then, noting that, for all t ∈ [n, n + 1],

|Nλt
t | ≥

∑
u∈N−δpn

pn

1Bn(u) ef (δ)(1−p)n,

we get that P-a.s., for all t sufficiently large,

|Nλt
t | ≥ K eg(δ)pt+f (δ)(1−p)t,

where K is some positive constant. Hence

lim inf
t→∞

1

t
log |Nλt

t | ≥ �λ − h(δ) P-a.s.,

which yields the required value after letting δ → 0.
Case 2: β̂ ≤ 1

2 β̂2
0 (equivalently, β̂0 ≥ (2β̂)1/2). For n ≥ 1 we consider events

Cn :=
{ ∑

u∈N−δpn
pn

1{|Ñλ̂
(1−p)n(u)|>0} <

1

2
ef (δ)(1−p)n|N−δpn

pn |
}

(note that λ̂ > (2β̂)1/2). We know that, conditional on Fpn, events {|Ñλ̂
(1−p)n(u)| > 0} are

independent. Moreover, if we ignore all the catalytic branching taking place in the subtrees
initiated by particles u ∈ N−δpn

pn , then we can get from Proposition 9 that there exists some

deterministic n0 such that, for all n ≥ n0, P(|Ñλ̂
(1−p)n(u)| > 0 |Fpn) ≥ ef (δ)(1−p)n. Hence, by

Proposition 11, for all n ≥ n0,

P(Cn |Fpn) ≤ 4

|N−δpn
pn |

e−f (δ)(1−p)n P-a.s.

Then, for all n ≥ n0, we obtain

P(An ∩ Cn) =E(E(1An 1Cn |Fpn))

≤E

(
1An

4

|N−δpn
pn |

e−f (δ)(1−p)n
)

≤ 4 e−g(δ)p−f (δ)(1−p)

= 4 e−(�λ−h(δ))n,

which decays exponentially fast in n (for δ chosen sufficiently small). Therefore P(An ∩
Cn i.o.) = 0. Then, since P(An eventually) = 1, it follows that P(An ∩ Cc

n eventually) = 1. So
P-a.s., for all n large enough,

∑
u∈N−δpn

pn

1{|Ñλ̂
(1−p)n(u)|>0} ≥ 1

2
ef (δ)(1−p)n|N−δpn

pn | ≥ 4 e(�λ−h(δ))n.

Then, noting that, for all t ∈ [n, n + 1],

|Nλt
t | ≥

∑
u∈N−δpn

pn

1{|Ñλ̂
(1−p)n(u)|>0},
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we obtain

lim inf
t→∞

1

t
log |Nλt

t | ≥ �λ − h(δ) P-a.s.,

which yields the required result after letting δ → 0. �
Proof of (45), the lower bound for (13). Assume that λ > λcrit so that �λ < 0. Then neces-

sarily λ̂ > β̂0 > λ > λcrit ≥ (2β̂)1/2 (the last inequality follows from the fact that, for any given
β̂, the minimum value of β̂/β̂0 + 1

2 β̂0 over all β̂0 ∈ (0, ∞) is (2β̂)1/2). We note that

P(|Nλt
t | > 0) ≥ P

( ⋃
u∈N−δpt

pt

{|Nλ̂t
(1−p)t(u)| > 0}, |N−δpt

pt | ≥ eg(δ)pt
)

.

We know that conditional on Fpt events {|Nλ̂t
(1−p)t(u)| > 0} are independent. Moreover, if we

ignore all the catalytic branching taking place in the subtrees initiated by particles u ∈ N−δpt
pt ,

then we can get from Proposition 9 (equation (39)) that there exists some deterministic t0 such

that, for all t ≥ t0, P(|Nλ̂t
(1−p)t(u)| > 0 |Fpt) ≥ ef (δ)(1−p)t. Hence

P

( ⋃
u∈N−δpt

pt

{|Nλ̂t
(1−p)t(u)| > 0}, |N−δpt

pt | ≥ eg(δ)pt
)

=E

(
1{|N−δpt

pt |≥eg(δ)pt}

[
1 −

∏
u∈N−δpt

pt

(1 − P(|Nλ̂t
(1−p)t(u)| > 0 |Fpt))

])

≥ P(|N−δpt
pt | ≥ eg(δ)pt)[1 − (1 − ef (δ)(1−p)t)eg(δ)pt

]

≥ P(|N−δpt
pt | ≥ eg(δ)pt)

[
e(�λ−h(δ))t − 1

2
e2(�λ−h(δ))t

]

for all t large enough, and where in the last inequality we have used the fact that, for any a ∈
(0, 1) and b > 0, it is true that (1 − a)b ≤ e−ab ≤ 1 − ab + 1

2 a2b2. Then, noting that as t → ∞

P(|N−δpt
pt | ≥ eg(δ)pt) → 1 P-a.s.,

we obtain

lim inf
t→∞

1

t
log P(|Nλt

t | > 0) ≥ �λ − h(δ),

which yields the required result after letting δ → 0. �

3.3. Proof of Corollary 1

Proof of Corollary 1. Assume that condition (10) is satisfied. Then, for any λ < λcrit, as we
know from (11),

P(Rt > λt eventually) = P(|Nλt
t | > 0 eventually) = 1.

Thus lim inft→∞ (Rt/t) ≥ λ P-almost surely. Then, letting λ → λcrit gives

lim inf
t→∞

Rt

t
≥ λcrit P-a.s.
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Similarly, if λ > λcrit, then by (12),

P(Rt ≤ λt eventually) = P(|Nλt
t | = 0 eventually) = 1.

Thus lim supt→∞ (Rt/t) ≤ λ P-a.s. Then, letting λ → λcrit gives

lim sup
t→∞

Rt

t
≤ λcrit P-a.s.,

which completes the proof. �
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