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Abstract

Judges confer various awards on wines entered in dozens of wine competitions each year. This
article employs data on blind replicates to show that those awards are based on one instance of
stochastic ratings assigned by wine judges; awards based on the expected values of those sto-
chastic ratings would be different. This article recognizes the stochastic nature of ratings and
builds on the work of many others to propose and test a conditional-probability model that
yields maximum-likelihood estimates of judges’ latent consensus, idiosyncratic, and random
assignments of scores to wines. The exact p-value for a likelihood test of the null hypothesis
that the model’s results are random is less than 0.001. Applying the notion of conditional prob-
ability may lead to better methods of assigning awards to entries in wine competitions and of
assessing the capabilities of wine judges. (JEL Classifications: A10, C10, C00, C12, D12)

Keywords: consensus, idiosyncratic, random, statistics, wine tasting.

I. Introduction

Judges confer medals, ribbons, scores, ranks, and other awards on wines entered in
dozens of wine competitions each year. Diverse literature implies that those awards
are the observable results of an unseen or latent mixture of judges’ consensus, idio-
syncratic, and random decisions about quality or preference. Further, experiments
with blind replicates in wine competitions show that the random component of
judges’ decisions is material, variable, and nuanced.

The awards noted above are usually conferred using the sums of scores or the sums
of ranks assigned by a small number of judges. Those methods are easy to use and
communicate. Some competitions and researchers use or are examining Borda
counts, Shapely values, and preference models (see also Cao and Stokes, 2017;
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Ginsburgh and Zhang, 2012). Regardless of which of those five methods is
employed, it yields an aggregation that is based on judges’ observed ratings but
ignores the latent randomness that is a foundation of those ratings. Considering
that foundation would often lead to different awards. Disentangling the latent con-
sensus, idiosyncratic, and random components of judges’ ratings can yield awards
that are closer to a mode, mean, or maximum likelihood of consensus.
Disentangling the latent components of judges’ ratings can also yield useful informa-
tion about the judges and the wines.

Section II begins with analysis of the distribution of the ratings assigned to blind
replicates. The results are then employed in Section III to show that aggregations of
ratings are conditional and unlikely to yield a mode, mean, or maximum likelihood
of consensus. Then, building on the literature andworkof others, a model is proposed
and tested in Section IV that uncovers the latent consensus, idiosyncratic, and random
components of judges’ ratings. Using the Stellenbosch data published in Cicchetti
(2014) as an example, the exact p-value for the null hypothesis that themodel obtained
a random result is <0.001. Conclusions and discussion follow in Section V.

Before moving forward, the author’s anecdotal experience is that many Master
Sommeliers, Masters of Wine, Wine and Spirit Education Trust (WSET) certificate
holders, and other wine professionals express disdain for scoring wines and quanti-
tative analyses of those scores.1 They assert that wines and tasters are too complex
and too idiosyncratic for scores to convey much useful information. Nevertheless,
every year, and most often judged by wine professionals, dozens of state fair,
county fair, magazine, newspaper, and other wine competitions and reviews confer
ribbons, medals, awards, ranks, and scores. All of those designations can be
expressed as ranks or scores.2 This article is an effort to analyze the designations
awarded to wines while keeping complexity and idiosyncrasy in sight.

II. The Probability Distribution of an Observed Rating

Hodgson (2008), Ashton (2012), Hodgson and Cao (2014), and Cicchetti (2014)
show that a wine judge with near-perfect consistency, one who assigns the same
rating to the same wine every time, is rare. Bodington (2017b) finds that wine
judges tend to assign closer ratings to replicates than is likely due to chance alone.

1Disclosure: the author holds WSET Level II and Level III certifications.
2For example, the WSET (2014, 3) systematic approach concludes by designating a wine as faulty, poor,
acceptable, good, very good, or outstanding. That is an ordered set with six ranks; sampling is with
replacement. Liquid Assets tasters assign ranks in order of relative preference; sampling is without replace-
ment (liquidasset.com). Among several methods of transforming scores into ranks, Ashton (2016, 267)
expresses Robert Parker’s quality-level scores as a set with eight ranks and Jancis Robinson’s scores as
a set with eleven ranks. In both cases, sampling is with replacement. As shown in Olkin, Lou, Stokes,
and Cao (2015, 9) and Bodington (2015b, 175, 179), ties between wines are merely the expectations of
rank permutations. Finally, ranks can be transformed into evenly spaced scores on any scale.
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He also concludes that the distribution of ratings assigned to blind replicates is deter-
mined by judges’ capabilities, the mechanics of the tasting protocol, and the differ-
ence between the replicate and the other wines in the flight.

The findings summarized above are expressed by the probability mass function
(PMF) in Equation (1). The probability of an observed score (f) for a particular rep-
licate wine (i, and a total ofWwines) for a particular judge (j, and a total of J judges)
is an exponential function of the observed score (sj,i), a modal score parameter (̂sj;im),
the standard deviation of the judge’s scores on all the wines in a tasting (σj), and a
dispersion parameter (0 � θ̂j � 1). The PMF in Equation (1) expresses a discrete,

unimodal, and bounded distribution. For θ̂ ¼ 0 and sj;i ¼ ŝj;im; the probability of
sj,i is unity. That is perfect consistency, meaning that a judge assigns the same
score to the same wine every time. For θ̂ ¼ 1; the PMF describes a distribution in
which the probability of every sj,i is the same. In that case, there is no consistency,
and a judge assigns scores as if they were drawn from a uniform random distribution:

f s j;ijθ̂j; ŝ j;im
� �

¼ 1
Cj

� �
θ̂
d j;i

j ð1AÞ

d j;i ¼ s j;i � ŝ j;im
σ j

� �2

ð1BÞ

Cj ¼
Xsmax

smin
θ̂
d j;i

j ð1CÞ

The distance (d) defined in Equation (1B) is the square of the standardized difference
between the observed and modal scores. First, considering the distance (sj;i � ŝj;im)
alone can lead to a mirage of consistency. Some judges spread their scores more
broadly over the allowed range than others. For example, at Stellenbosch, σ7 = 1.6
and σ5 = 11.4. Thus, a judge with a narrow spread on replicates can appear to be
highly consistent even if all of his or her scores are also assigned randomly within
a narrow range. Dividing distance by σj standardizes the difference and then
favors judges who assign scores to replicates within a narrower range than the
scores that each judge assigns to all the wines. An additional benefit of standardizing
is that distance becomes unit-less, so θ̂j can be compared across tastings that have
difference score ranges. Finally, the constant (Cj) in Equation (1C) normalizes the
results of the exponential function in Equation (1A) so that the sum of probabilities
equals unity.

A test and example of Equation (1) appears in Figure (1). Stellenbosch Judge #7
assigns scores of (83, 84, 85) to replicates of Sauvignon Blanc and θ̂7 ¼ 0:13, Judge
#3 assigns (78, 82, 85) and θ̂3 ¼ 0:14, and Judge #4 assigns (65, 72, 86) and
θ̂4 ¼ 0:74. The maximum likelihood estimates (MLEs) of the parameters in
Equation (1) for all 15 judges appear in Table 1.
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Table 1
MLEs of Parameters in Equation (1) for Triplicates of Stellenbosch, Sauvignon Blanc

Judge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ŝj;im 81.3 75.0 81.7 74.3 75.6 77.0 84.0 83.3 86.7 94.7 85.3 62.7 80.3 79.7 82.7

θ̂j 0.24 0.39 0.14 0.74 0.74 0.50 0.13 0.60 0.54 0.50 0.67 0.32 0.04 0.09 0.31
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III. Start Over

The results in Figure 1 show that the scores that judges assign to awine are not iden-
tically distributed. The results in Figure 1 for Judge #4 show that one draw from the
distribution of scores for that judge is unlikely to be even close to the expected value
of scores. More important, the result of a function with a stochastic input is also sto-
chastic. Sums of scores, sums of ranks, Shapely values, Borda counts, and prefer-
ence-model results are therefore conditional, and they depend on one instance of
stochastic ratings. Especially for the small sample sizes that are typical of wine com-
petitions, the relationship between results for one instance of ratings and the mode,
mean, or maximum likelihood of results for the potential range of instances is thus
unknown. Without further investigation, little can be said about the interpretation
and reliability of conditional results that are aggregated while ignoring the implica-
tions of Figure 1. The appearance of a reliable consensus within observed ratings,
whether based on sums of scores, Borda, or any other metric, may be an illusion.

As a test and example, based on simple sums of scores, the aggregate order of the
quality ratings assigned by 15 judges to the Stellenbosch Sauvignon Blanc is (8 T, 5
T, 6, 1, 7, 3, 4, 2 T). Wine #1 is ranked fourth, #2 T is ranked last, and wine #8 T is
ranked highest. “T” indicates that the wine is a member of the blind triplicate; thus,
the sums of scores imply that the same wine from the same bottle ranks as highest
and lowest quality. Using the PMF in Equation (1), the expected value of a
judge’s score on a wine appears in Equation (2). According to the expected values
of the sums of scores, the order of quality rating for the flight of Sauvignon Blanc
is (6, 2 T, 5 T, 8 T, 1, 7, 3, 4). Note that the triplicate wines now correctly group
together. MATLAB code written by the author for those results is available on
request. In concept, the reason for the change in order is that low-randomness
judges (such as Judge #7) have more influence on differences between expected
values than high-randomness judges (such as Judge #4). That effect also applies
to the orders implied by sums of ranks, Shapley values, Borda counts, and prefer-
ence-model results:

E s j;i
� � ¼ Xsmax

k¼smin
k � f kjθ̂j ; ŝ j;im

� �
ð2Þ

Although the example above shows that the order implied by the expected values of
ratings is not the same as the order implied by the observed instance of ratings, it also
shows the difficulty of analyzing wines without replicates. The order of the wines
without replicates (6, 1, 7, 3, 4) does not change, because, with only one rating by
each judge, there are not enough data to support PMFs for those wines. Even
with blind triplicates, 3 points are meager support for estimates of ŝj;im and θ̂j .
Bodington (2015a, 2015b) addresses that difficulty by parsing observed ratings in
a mixture model with nonrandom and random components, and the PMF for the
random component is parameterized a priori as a uniform random distribution.
Cicchetti (2017) tests the hypothesis that judges who assign consistent scores to
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replicates also assign scores to nonreplicates that are consistent with the consensus of
scores assigned to those wines by other judges. This article aims in the next section to
build on that work and to recognize that although all judges’ scores are stochastic to
some extent, few judges assign scores as if drawn from a uniform random distribu-
tion, most do better, and some are as accurate as Judge #7.

IV. Disentangling Consensus, Idiosyncratic, and Random Ratings

This section moves forward in three steps. It begins with a review of consumer-choice
literature and efforts to disentangle consumers’ consensus and idiosyncratic prefer-
ences. That review provides useful background and definitions of consensus and idi-
osyncrasy, but it also shows that often-employed utility models have limited
application to wine-tasting results. Second, this section presents a review of prefer-
ence models, showing that preference models have been employed to evaluate the
results of taste tests since the 1970s and that such models have easy application to
wine-tasting results. Building on that work and Sections II and III, the third step pro-
poses and tests a model of judges’ aggregate consensus, idiosyncratic, and random
wine ratings.

Figure 1

Equation (1) PMF for Scores Assigned to Stellenbosch Replicates of Sauvignon Blanc
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A. Consumer Choice, Consensus, and Idiosyncrasy

The literature on consumer choice and heterogeneity is wide and deep. Greene and
Hensher (2010), Keane and Wasi (2013), Train (2002), and Yue et al. (2015) provide
recent reviews of the methods and literature.

Many published evaluations of consumer choice employ utility theory, and many of
those express utility in the general form Uj,i= ci+ βi Aj,i+ εj,i, where the utility of
product i to consumer j (Uj,i) is a product-specific intrinsic utility (ci), plus the utility
due to avector of unit values (βi) multiplied by avector of observable product and con-
sumer attributes (Aj,i), plus a product- and consumer-specific idiosyncratic utility (εj,i).
In application to wine-tasting results, research to date indicates that no covariates Aj,i

are observable and reliable predictors of judges’ scores or rank assignments. In partic-
ular, Frost and Nobel (2002) review the literature, quantify the wine knowledge and
sensory expertise of 57 tasters, and then obtain those tasters’ hedonic ratings on 14
sensory properties and their preferences for 12 red wines. They conclude that, with
the possible exception of preferences for vanilla/oak and against leather/sour flavors,
expressions of preference “could not be modeled well from the sensory properties”
(283). Rather than employing hedonic assessments of sensory properties, Cortez,
Cerdeira, Almeida, Matos, and Reis (2009) and Nachev and Hogan (2013) employ
11 laboratory-determined physiochemical properties of wine and machine-learning
methods to predict the mean scores assigned by experienced wine judges. For the
one tasting that they both evaluate, they obtain accuracies up to approximately
±20%. Further research appears necessary to prove the broad application and to
improve the accuracy of such analysis, and extensive physiochemical data are rarely
available. Frost and Nobel also find that sensory expertise and wine knowledge are
independently distributed and that no significant differences in preference “[are]
found across groups based on performance in the wine knowledge test or overall exper-
tise” (2002, 284). Mantonakis, Rodero, Lesschaeve, and Hastie (2009, 1311) find that
“high knowledge” wine tasters are more prone than “low knowledge” tasters to
primacy and recency biases. Ashton (2014) compares the scores assigned by novices
and wine professionals to wines from California and New Jersey. He finds that the
results “do not support the idea that professionals and novices differ in their appreci-
ation for New Jersey vs. Californiawines” (310). Bodington (2017a) shows that female
and male tasters assign about the same scores and ranks to the same wines. In sum,
that literature implies that no observable attributes of either wines or judges are
good predictors of the rating that a judge assigns to a wine. Consequently, in applica-
tion to wine-tasting results and until future research uncovers useful covariates and
methods, Uj,i= ci+ βi Aj,i+ εj,i reduces to Uj,i= ci+ εj,i.

The intercept ci is the intrinsic utility of a product and, all other things equal,
reflects consumers’ consensus about preference for or the quality of the product
under consideration. For ci >ck, product i is preferred to or is higher quality than
product k. The literature on idiosyncratic utility εt,i offers many examples. Bayer,
Ferreira, and McMillan (2003) examine a real-estate market, including the idiosyn-
cratic utility of home i to buyer k. Mc Breen, Goffette-Nagot, and Jensen (2009)
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evaluate a market for rental housing and find that “idiosyncratic tastes give some
monopoly power” to landlords (p. 5). Hastings, Kane, and Staiger (2006) analyze
school choice, including the “idiosyncratic preference of a student” for school i
(p. 11). Rhee, de Palma, and Thisse (1998) evaluate the so-called first-mover advan-
tage, consumers’ “unobservable … idiosyncratic preferences,” and find that being a
first mover is a disadvantage when consumers have sufficiently large idiosyncratic
preferences (p. 15). Rajan and Sinha (2008) evaluate hypothetical product pricing
in a duopoly and find an inverse relationship between price competition and the
strength of “idiosyncratic” reactions to the good (p. 3). All of those authors define
and model idiosyncratic preference and quality ratings as having a distribution
around ci. Mc Breen et al. (2009) assume that εj,i has a normal distribution. Bayer
et al. (2003) and Hastings et al. (2006) assume that εj,i has an extreme value distri-
bution. Rajan and Sinha (2008) assume that εj,i has a double exponential distribu-
tion, and Rhee et al. (1998) treat the difference between idiosyncratic preferences
for two products as a random disturbance with a logistic distribution.

Although the notions of latent consensus ci and idiosyncratic preferences εj,i cited
above do apply to wine-tasting results, the methodologies do not. All of those
methods rely on latent utility and functions that are continuous and unbounded.
In a wine tasting, judges’ scores and ranks are explicit and observable measures of
utility. Judges assign scores from a bounded line, and they assign ranks from a dis-
crete, ordered, and bounded set. When ties are not allowed, sampling is without
replacement. There is no support for assuming that idiosyncratic assignments have
a normal, extreme-value, double-exponential, or logistic distribution. Although
examining consensus and idiosyncratic ratings is common, a different methodology
is necessary for examining the results of wine tastings.

B. Rank-Preference Model Applications to Taste Tests

Wine tastings, and many other applications, involve a set of objects that can be
expressed as an object vector o= (oA, oB, oC, …). Judges consider the objects and
then assign to each a rating that is an assessment of absolute quality or relative pref-
erence. Those ratings can be expressed, for each judge, as a score sj= (sA, sB, sC , …)
vector and/or a rank rj = (rA, rB, rC,…) vector. So-called rank-preference models are
employed to examine the relationships, such as the consensus about order of quality
or preference, between the vectors of judges’ ratings.3 In contrast to the linear-utility
models summarized in Section IV.A, rank-preference models can be tailored to dis-
crete, ordered, and bounded ratings that are assigned with or without replacement.
The works of Marden (1995) and Alvo and Yu (2014) are widely cited texts concern-
ing these models.

3The term rank-preference model in this article refers to the set of models that can be employed to examine
scores or ranks that are indications of absolute quality or relative preference. The mechanics of a tasting
protocol determine which of many potential models can and ought to be employed.
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Rank-preference models have been applied to taste tests of breakfast foods (Green
and Rao, 1972), snap beans (Plackett, 1975), crackers (Critchlow, 1980), soft drinks
(Bockenholt, 1992), animal feed (Marden, 1995), cheese snacks (Vigneau,
Courcoux, and Semenou, 1999), salad dressings (Vargo, 1989; Theusen, 2007), an
unidentified food (Cleaver and Wedel, 2001), sushi (Chen, 2014), and, recently,
wine (Bodington, 2015a, 2015b, 2017a). A generalized Mallows (1957) preference
model is proposed in Equation (3), because it employs scores and is a simple varia-
tion of the exponential PMF already explained in Equation (1). In Equation (3), the
probability of one judge’s score vector (f′) is the product of the probabilities that the
judge assigns each score to each wine in that vector (f

0i). With two important excep-
tions, f

0i on the right-hand side is defined the same as it is in Equations (1A) through
(1C). The exceptions are that the parameter ŝic is the judges’ consensus score for the
subject wine, and the parameter θ̂i expresses dispersion about that consensus due to
idiosyncratic assignments of scores,

f 0 sj
� � ¼ YW

i¼1
f
0i s j;ijθ̂i; ŝic
� �

ð3Þ

This article has now defined two PMFs. Equation (1) is a PMF for the probability
that a judge assigns a particular score to a particular wine. Assuming a vector of
such scores for every judge, Equation (3) is then a PMF for the probability of one
judge’s score vector within the distribution of all the judges’ score vectors. Those
PMFs are combined into a conditional-probability model of consensus, idiosyn-
cratic, and random assignments below.

C. Consensus, Idiosyncrasy, and Randomness

A likelihood function that expresses the aggregate of judges’ latent consensus, idio-
syncratic, and random assignments of scores appears in Equation (4). The log like-
lihood (L) of the observed scores is the log sum of the probability of each judge’s

score on each wine f
0i sj;ijθ̂i; ŝic
� �

multiplied by the probability of observing that

score f sj;ijθ̂j; ŝj;im
� �

. Equations (1) and (3) are combined in Equation (4) to

express a conditional probability. MLEs of ŝic yield the judges’ consensus scores,
MLEs of θ̂i yield the dispersion in judges’ scores due to idiosyncratic differences
between judges, and MLEs of θ̂j yield the dispersion in each judge’s scores due to
individual underlying randomness:

L ¼
XJ

j¼1

XW

i¼1
ln f

0i s j;ijθ̂ic; ŝic
� �

� f s j;ijθ̂j; ŝ j;im
� �� �

ð4Þ

Section III concludes by noting that, with only one rating from each judge, there are

not enough data to support estimates of the parameters in f sj;ijθ̂j; ŝj;im
� �

for wines

without replicates. Even when there are blind triplicates, again, three observations
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provide meager support for estimates of two parameters. The solution proposed
below employs all of a judge’s scores to estimate θ̂j.

Cicchetti (2017) hypothesizes that “those wine tasters who agreed reliably with
their own previous evaluations of the same wine would also agree reliably with
other tasters. Conversely, those tasters who disagreed with their previous evaluations
of the same wines would also disagree substantially with the evaluations of other
tasters.” Here, that idea is restated as the hypothesis that θ̂j, the underlying random-
ness in a judge’s ratings, is positively correlated with the difference between a judge’s
observed scores and the all-judge-aggregate consensus scores sj;i � ŝic

� �
on all wines.

The PMF f sj;ijθ̂j; ŝj;im
� �

in Equation (4) is thus restated here as f sj;ijθ̂j ; ŝic
� �

. This

approach uses all the data, preserves degrees of freedom, and yields an estimate of
θ̂j for each judge.

Results for the Sauvignon Blanc data appear in Table 2. Focusing on Judge #7,
who has the narrowest distribution of scores in Figure 1, Table 2A shows that and
θ̂7 ¼ 0:31. That finding is consistent with the stand-alone analysis of triplicates in
Section II, Judge #7 is among the most accurate judges. Similar findings apply to
Judge #4. Judge #4 has the broadest distribution of scores in Figure 1, θ̂4 ¼ 0:77
in Table 2A, and Judge #4 is among the less-accurate judges. The order of quality
implied by the consensus scores ŝic in Table 2B is (7, 8 T, 5 T, 6, 2 T, 3, 4, 1). Note
that the triplicates nearly group together even though no information in Equation
(4) identifies them as the same wine.

If judges assign ratings as if they are drawn from a uniform random distribution,
the asymptotic log likelihood according to Equation (4) is L ¼ J �W � ln 1=S � 1=Sð Þ
and 15 � 8 � ln 1=51 � 1=51ð Þ ¼ �943:6. MLEs of parameters shown in Table 2 for the
Sauvignon Blanc data yieldL ¼ �803:5. A chi-square test of the likelihood-ratio test
statistic for the null hypothesis that those two likelihoods are the same has a p-value
< 0.001. However, Pearson (1900, 166) recommends using what is now called an
exact distribution if the chi-square distribution “is a bad fit” to the exact distribution.
That is a risk with the small sample sizes that are typical of wine tastings. An exact
random distribution of L is calculated using 1,000 sets of scores drawn from a
uniform random distribution. Using that distribution, the exact p-value for a test
of the null hypothesis that the findings above are a random result is also < 0.001.

Finally, are wine judges consistent in their inconsistency? Cicchetti (2017) con-
cludes that replicates are “moderately confirmative” predictors of consistency in
nonreplicate scores for one flight but “minimally confirmative” for another. That
question is answered here by comparing estimates of dispersion in replicates alone
using Equation (1) and θ̂j in Table 1 to estimates of aggregate dispersion due to ran-
domness using Equation (4) and θ̂j in Table 2B. A scatterplot of the result appears in
Figure 2. Although the slope of a least-squares line through the scatter is 0.34, the R2

is 0.29. The correlation coefficient is 0.54. At minimum, in agreement with Cicchetti,
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Table 2A
MLEs of Judge-Related Parameters in Equation (4)

Judge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ̂j 0.56 0.73 0.51 0.77 0.86 0.82 0.31 0.59 0.70 0.94 0.64 1.00 0.80 0.80 0.62
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the results show that dispersion in a judge’s scores on replicates may not have robust
implications about the consistency of scores on other wines.

V. Conclusion and Discussion

Judges confer medals, ribbons, scores, and other awards on wines entered in dozens
of wine competitions each year. Section II shows that those ratings are usually more
accurate than entirely random, yet still stochastic. Section III shows that sums of
scores, sums of ranks, Borda count, Shapley value, and preference-model results

Table 2B
MLEs of Wine-Related Parameters in Equation (4)

Wine, T indicates a member of the triplicate

1 2 T 3 4 5 T 6 7 8 T

Consensus score, ŝic 80.0 81.5 81.1 81.0 83.3 82.9 84.1 83.9
Idiosyncratic dispersion, θ̂i 0.50 0.78 0.61 0.69 0.32 0.35 0.85 0.72

Figure 2

MLEs of θ̂j Based on Replicates Alone (Equation (1)) and All Wines (Equation (4)).
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are conditional results. Using the notion of a conditional probability, a model is pro-
posed and tested in Section IV that yields information about judges’ latent consen-
sus, idiosyncratic, and random expressions of quality or preference. Using data for a
tasting of eight Sauvignon Blanc wines that contain a blind triplicate, the condi-
tional-probability model detects the similarity between the triplicates, and the
model results also show that the scores that a judge assigns to replicates may not
be a robust guide to the accuracy of the scores that the judge assigns to other wines.

These findings are based on one model and one set of data. Tests of other models
and tests using other data appear worthwhile. Other models could have different
PMFs. In particular, methods of estimating PMFs that express the stochastic
nature of the scores that judges assign need to be improved. The model proposed
above applies to scores assignedwith replacement, but another model could be devel-
oped for application to ranks assigned without replacement. Tests using other data
would illuminate the general applicability and usefulness of the proposed and other
models. The results may lead to more robust methods of assigning awards to entries
inwine competitions and tobettermethods of assessing the capabilities ofwine judges.
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