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COMPLEXITY OF INDEX SETS OF DESCRIPTIVE
SET-THEORETIC NOTIONS

REESE JOHNSTON AND DILIP RAGHAVAN

Abstract. Descriptive set theory and computability theory are closely-related fields of logic; both are
oriented around a notion of descriptive complexity. However, the two fields typically consider objects
of very different sizes; computability theory is principally concerned with subsets of the naturals, while
descriptive set theory is interested primarily in subsets of the reals. In this paper, we apply a generalization
of computability theory, admissible recursion theory, to consider the relative complexity of notions that
are of interest in descriptive set theory. In particular, we examine the perfect set property, determinacy,
the Baire property, and Lebesgue measurability. We demonstrate that there is a separation of descriptive
complexity between the perfect set property and determinacy for analytic sets of reals; we also show that
the Baire property and Lebesgue measurability are both equivalent in complexity to the property of simply
being a Borel set, for Σ1

2 sets of reals.

§1. Uncountable computability. Computability is often used to study the relation-
ships between properties, to determine whether one property is more “complex” than
another; the general strategy is to establish that the set of indices for structures with
one property is reducible (Turing-reducible, m-reducible, 1-reducible, or any of a
number of other notions of reducibility) to the set of indices for structures with the
other property, thereby showing that the latter property is at least as complex as the
former. This technique has met considerable success in topics such as group theory
and graph theory, settings in which countable structures are of key interest.

In descriptive set theory, however, the properties of interest are of sets of reals
rather than sets of natural numbers. Because classical computability is predicated
on �, it is difficult to apply its techniques to descriptive set-theoretic notions. For
this reason, we turn to α-recursion, a notion of computability built by replacing �
with a larger ordinal α.

For a full treatment of α-recursion in the general case, see [1]; in this document,
we will be largely concerned with �1-recursion in particular. Further details on
�1-recursion may be found in [5]. To ensure that �1-recursion will be sufficient to
consider the objects of interest, we will operate under the premise thatV = L.

The fundamental definitions of �1-recursion will be provided at the beginning
of the next section. Over the course of this paper, however, we will rely on an
uncountable analogue of the Church-Turing Thesis: anything intuitively computable
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by a machine capable of manipulating countably infinite objects in memory and
running for any countable number of stages is �1-computable.

The work in this paper lies at the intersection of uncountable computability theory
and descriptive set theory. Classical descriptive set theory studies the topological
complexity of subsets of the set of real numbers R in terms of their place in the Borel
and projective hierarchies. Under the axiom of constructibility, every subset of R,
and more generally, any collection of Borel or projective subsets of R can be coded
as a subset of L�1 or of �1. It is then natural to investigate the connection between
topological or descriptive complexity and algorithmic complexity in the context of
the theory of computability on L�1 outlined above.

In this paper, the perfect set property, determinacy, the Baire property, and
Lebesgue measurability of some point classes in the projective hierarchy will be
investigated from the perspective of uncountable computability theory. Recall that
a set A of real numbers is called analytic if it is the continuous image of some Borel
subset of R. It is a classical theorem that every uncountable analytic set contains
a perfect set, which is a non-empty closed set with no isolated points. However
under the axiom of constructibility, this fails to hold for complements of analytic
sets, which are called co-analytic sets. In fact, a well-known result of Solovay (see
Kanamori [6]) says that all uncountable co-analytic sets contain a perfect set if and
only if for every real a,�L[a]

1 < �1. In particular, if every uncountable co-analytic set
contains a perfect set, then�1 is an inaccessible cardinal in L. We first investigate the
algorithmic complexity of the (code for the) collection of all uncountable co-analytic
sets of real numbers that contain perfect sets. It is shown that this set is Σ0

1-complete.
Another central theme in classical descriptive set theory is the determinacy of

two player games of perfect information where the payoff set is Borel or projective.
For any set A of real numbers, one can define a two player game �(A) as follows.
Two players, call them In and Out, take turns choosing natural numbers, with the
convention that In makes the initial move. At the end of play In and Out have
jointly constructed a sequence 〈an : n ∈ �〉 of natural numbers, where a2n has been
played by In and a2n+1 was chosen by Out in response, for every n ∈ �. Now this
sequence 〈an : n ∈ �〉 codes a real number and In wins this particular play of the
game �(A) if and only if the real number coded by 〈an : n ∈ �〉 belongs to the set
A. The set A is said to be determined if either In or Out has a winning strategy
in �(A). A major theorem is that every Borel subset of R is determined (see [8]).
However under the axiom of constructibility, not all analytic sets are determined.
The collection of all (codes for) analytic subsets of R that are determined under the
axiom of constructibility is shown to be Σ0

2-complete in Theorem 2.10.
These two results nicely tie-in with some well-known results from descriptive

set theory. The statement “every uncountable co-analytic subset of R contains a
perfect set” and the statement “every analytic subset of R is determined” are both
consistent relative to large cardinals, and indeed they are both consequences of the
existence of large cardinals (see [6]). However the consistency strength of the second
of these statements is significantly greater than that of the first. The statement
that every uncountable co-analytic subset of R contains a perfect set is known
to be equiconsistent with the existence of a strongly inaccessible cardinal, while
the statement that every analytic subset of R is determined requires at least the
consistency of the much more powerful 0�. Extrapolating from this to the context of
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896 REESE JOHNSTON AND DILIP RAGHAVAN

the axiom of constructibility, one might expect the collection of all analytic subsets
of R that are determined to be algorithmically strictly more complicated than the
collection of all uncountable co-analytic subsets of R that contain perfect sets. Our
results bear out this intuition.

The Baire property and Lebesgue measurability of Σ1
2 sets is considered next.

Here the concurrence with classical results in set theory is less straightforward. It is
shown in Theorem 2.13 that the collection of all (codes for) Σ1

2 sets that have Baire
property is Turing equivalent to the collection of all (codes for) Σ1

2 sets that are
Lebesgue measurable. In terms of consistency strength, the statement that all Σ1

2 sets
have the Baire property and the statement that all Σ1

2 sets are Lebesgue measurable
are equally weak. They are both equiconsistent with ZFC—Martin and Solovay
showed that they are both consequences of MAℵ1 . However an asymmetry between
the Baire property and Lebesgue measurability already appears at the level of Σ1

2
sets: Raisonnier and Stern showed that if all Σ1

2 sets are measurable, then all Σ1
2 sets

have the Baire property, while Judah produced a model of ZFC where all Σ1
2 sets have

the Baire property and yet there is even a Δ1
2 set that fails to be Lebesgue measurable

(see [13] for more details). It is well-known that a major asymmetry in consistency
strength appears one level higher at Σ1

3 sets. The statement that all Σ1
3 sets have

the Baire property is equiconsistent with ZFC, while the statement that all Σ1
3 sets

are measurable requires the consistency of a strongly inaccessible cardinal. Hence it
would be of interest to investigate whether an asymmetry in Turing complexity also
appears between the collection of all Σ1

3 sets that have the Baire property and the
collection of all Σ1

3 sets that are measurable.

§2. Index sets of descriptive set-theoretic notions. The following definitions are
essentially due to Kripke [10].

Definition 2.1. A set is hereditarily countable if it is countable and all of its
elements are hereditarily countable. Note that, under the assumption V = L, L�1 is
precisely the set of hereditarily countable sets.

We develop the Lévy hierarchy of formulas as usual: a formula ϕ is Σ0
1 if it has the

form ∃x�, where � is a formula with only bounded quantification. A formula ϕ is
Π0
n if it is the negation of a Σ0

n formula, and is Σ0
n+1 if it has the form ∃x�, where �

is a Σ0
n formula.

A subsetX ⊂ L�1 is said to be�1-Σ0
n if there exists a Σ0

n formulaϕ and a parameter
c ∈ L�1 so that for each x ∈ L�1 , x ∈ X iff L�1 |= ϕ(x, c). X is �1-computable if
both it and its complement are �1-Σ0

1.
As usual, we say that a function is �1-computable if its graph is �1-Σ0

1.

For ease of notation, we will use “computable” in place of “�1-computable” (and
likewise Σ0

n for �1-Σ0
n) except when ambiguity would arise. In general, if a notion

is intended in the classical sense, it will be referred to as “�-computable” or “in
the standard setting.” Boldface symbols are intended in the descriptive set-theoretic
sense, detailed below.

We begin with a few well-known elementary facts regarding �1-recursion.

Fact 2.2. (i) The map α → Lα taking each countable ordinal to the corre-
sponding level of the constructible hierarchy is a computable function.
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(ii) The canonical well-ordering <L, restricted to L�1 , is a computable relation,
which orders L�1 with order-type �1.

Further, the traditional definitions of many key topics of classical computability
carry forward in a natural way to the uncountable setting. The example which is
relevant to this paper is the definition of ∅′.

Definition 2.3. Let ∅′ be the set of (indices for) true Σ0
1 formulas with parameters

in L�1 .

With these definitions in place, we now turn our attention to descriptive set theory.

Definition 2.4. A code for a Π1
1 set is a tree T ⊆ (� × �)<� ; the set coded by a

tree T is X = {g ∈ �� | (∀f ∈ ��)(∃n)〈f � n, g � n〉 /∈ T}.
Let CΠ be the set of codes for uncountable, co-uncountable Π1

1 sets of reals.

Proposition 2.5. Π1
1 sets (equivalently, Σ1

1 sets) are �1-computable.

Proof. Given a tree T coding a Π1
1 set X, g ∈ X iff g ∈ �� and (∀f ∈ ��)(∃n ∈

�)〈f � n, g � n〉 /∈ T . This is a Π0
1 property by inspection—note that, while the

quantifier ∃n ∈ � would be considered an unbounded quantifier within the context
of classical computability, � is itself an �1-finite object, and the quantifier is hence
bounded from the standpoint of �1-computability.

On the other hand, it is also the case that g ∈ X iff there exists an map F from
the subtree {〈�, �〉 ∈ T | � ≺ g} into the countable ordinals so that F (〈�1, �1〉) <
F (〈�2, �2〉) whenever�1 � �2 and �1 � �2. Because this map, if it exists, is hereditarily
countable and hence a member of L�1 , the statement that such a map exists
is Σ0

1. �

Proposition 2.6. The set of codes for Π1
1 sets having the perfect set property is Σ0

1.

Proof. X has the perfect set property iff

(∃f : 2<� → �<�)(∀Y ∈ 2�)f[Y ] ∈ X.

Because X is Π1
1, the statementf[Y ] ∈ X is Π1

1[r] for some real r. So the statement

(∀Y ∈ 2�)f[Y ] ∈ X

is also a Π1
1[r] statement. By Proposition 2.5, it is computable; so the full formula

is Σ0
1. �

Definition 2.7. For X ⊆ �� , the Gale-Stewart game GX is the following two-
player game.

Players I and II alternate turns playing natural numbers, I going first. In this
manner, they construct an infinite sequence x of natural numbers. Player I wins if
x ∈ X ; Player II wins if x /∈ X .

A strategy is a functionf : �<� → �. A player may play according to f by playing
on each turn f(�), where � is the sequence of numbers chosen at previous turns.
The strategy f is a winning strategy for a given player if playing according to that
strategy always results in a win for that player, regardless of the other player’s moves.

A set X is determined if the game GX has a winning strategy for either player.
For more information on Gale-Stewart games, see [6], [8], or [12].
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It is well-known that all Borel sets are determined (see Kechris [8]). However, not
all Σ1

1 and Π1
1 sets in L are determined.

Proposition 2.8. The set of codes for determined Π1
1 sets is Σ0

2.

Proof. X is determined if there is a winning strategy:

X is determined ⇐⇒ ∃f∀g(the play resulting from f and g is in X ).

Since membership in X is computable, this is Σ0
2. �

Theorem 2.9 (V = L). The set of codes for Π1
1 sets having the perfect set property

is Σ0
1-complete. In fact, ∅′ ≡m (P,CΠ \ P), where P is the set of codes in CΠ coding a

Π1
1 set that contains a perfect set.

Proof. For the other direction, we use a construction used extensively in [11] to
construct a code for an uncountable, co-uncountable Π1

1 set which contains a perfect
set iff a given Σ0

1 formula is true. The basic idea of this method for constructing Π1
1

sets with special combinatorial properties under the axiom of constructibility goes
back to the work of Erdős et al. [3], and it has found several other applications
recently, for instance in [4, 7].

Say that Lα is point-definable iff the Skolem-hull of (Lα,∈) under the typical
Skolem functions for V = L is isomorphic to (Lα,∈). It is known that there are
unboundedly many point-definable Lα for α < �L1 ; see [2] for details. Let 〈L	s 〉s<�1

enumerate (in order) the point-definable L	 .
Fix a Σ0

1 formula ∃xϕ(x) for ϕ ∈ Δ0
0. We construct a set Sϕ together with an

auxiliary sequence x = 〈xs〉 as follows:

Stage 0: Let x be the empty sequence, and Sϕ the empty set.
Stage s > 0: Suppose L	s |= ¬∃xϕ(x). Let Ps be the <L-least code in L	s for a

perfect set P so that L	s |= ¬(∃y ∈ P, t < s)y = xt , and put xs the <L-least such y.
Let zs be the<L-least z ∈ L	s+� so that z �= xt for t ≤ s and there is a presentation
of L	s recursive in z, and include zs in Sϕ .

If L	s |= ∃xϕ(x), then put z in Sϕ for every z so that z �= xt for t ≤ s and z
computes some presentation of L	s , and halt construction.

BecauseL	s is point-definable and L has Skolem functions, there is a presentation
of L	s computable in the first-order theory of L	s . Because the first-order theory
appears shortly afterward in the constructible hierarchy, this presentation appears
by L	s+n for a finite n (the precise value of n is unimportant). As a result, L	s+�
is a sufficiently high level of the constructible hierarchy to run the construction up
through stage s; there is certainly a z ∈ L	s+� which computes a presentation ofL	s ,
and determining whether a given z does requires at most three additional levels of
definability (one to quantify over sets computable from z, one to determine whether
the necessary Skolem functions are realized in a given candidate presentation, and
one to determine whether all elements of the candidate are part of the Skolem hull).

Since L	s+� is sufficient to perform this construction through stage s, z ∈ Sϕ
iff z = zs for some s iff L	s+� |= z = zs for some s. But this holds only if z
computes some presentation of L	s , in which case there is a presentation of
L	s+� hyperarithmetic in z. So z ∈ Sϕ iff (∃x ∈ Δ1

1(z))x is a presentation of some
Lα ∧ Lα |= z ∈ Sϕ . Determining whether a given x is a presentation of some Lα is
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a Π1
1 task, because it requires checking for well-foundedness. By a result of Kleene

[9], the existential quantifier over Δ1
1(z) does not add further complexity; therefore,

Sϕ is Π1
1.

It is evident that Sϕ contains a perfect set iff L�1 |= ∃xϕ(x); if no witness is
ever found, then at every step we place one member of the next perfect set into
our sequence x, to be withheld from Sϕ . If a witness is eventually found, then the
entirety of {z | z ≥T L	s } (minus a countable set) is immediately included in Sϕ ;
this is Borel and not countable, and therefore contains a perfect set.

It is also evident that Sϕ is never countable or co-countable. If no witness to ϕ is
ever found, then one real is added to Sϕ at every stage and one withheld. If a witness
is eventually found, then Sϕ is only countably different from {z | z ≥T L	s } for the
appropriate s, which is clearly an uncountable and co-uncountable set.

Thus the function f taking ϕ to this canonical code for Sϕ is the desired m-
reduction. �

Theorem 2.10 (V = L). The set of codes for determined Π1
1 sets is Σ0

2-complete.
In fact, S ≡m (D,CΠ \D), where S is the set of true Σ0

2(L�1) formulas and D is the
set of codes in CΠ for determined Π1

1 sets.

Proof. To show the other direction, we perform a construction similar to before.
Fix a Σ0

2(L�1) formula ϕ = (∃x)(∀y)�(x, y). Again we construct a set of reals Sϕ
and an auxiliary sequence of reals 〈xs〉; we will ensure that Sϕ is Π1

1 by way of an
index uniform in ϕ. Again let 〈L	s 〉s<�1 enumerate the countable ordinals 	 so that
L	 is point-definable and 	 = α + � for some α.

Stage 0: Take Sϕ = ∅, 〈xs〉 the empty sequence.
Stage s > 0: If L	s |= (∃y)¬�(x, y) for the first value of x for which this was not

true at a previous stage, then let (f, i) be the<L-least pair of a strategy in L	s and a
player (I or II) that has not yet been considered, if any exists. Fix the <L-least two
reals z1, z2 so that the following holds:

(i) z1 �= z2;
(ii) Each is the result of the player i playing according to f ;
(iii) Neither are in Sϕ or the sequence 〈xt〉t<s ;
(iv) z2 ∈ L	s ; and
(v) z1 computes a presentation of L	s .

Observe that such a pair z1, z2 does exist; this is because the opposing player may
play any sequence of naturals, regardless of the restrictions on the player i. Since at
any countable stage both Sϕ and 〈xt〉t<s consist only of reals present inL	t for t < s ,
to satisfy condition (iii) it is sufficient that the sequence of plays by the opposing
player be a real not in any such L	t . As noted in the previous proof, since L	t is
point-definable there is a presentation ofL	t inL	t+� (in fact, there is a presentation
ofL	t+1, which cannot be inL	t ). By the choice of the sequence, 	t ≥ supu<t 	u + �
for all t, and therefore L	s includes reals not in any previous L	t . By taking one of
these reals as the opposing plays, we have a z2 ∈ L	s satisfying (ii) through (iv). By
taking a sufficiently complicated presentation of L	s (e.g., one found only in L	s+3)
and using this for the opposing plays, we obtain a z1 satisfying (i) through (v).

Put z1 ∈ Sϕ and setxs = z2. Note that, as long as the members of 〈xs〉 are withheld
from Sϕ , f cannot be a winning strategy for either player.
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If, on the other hand, L	s |= (∀y)�(x, y) for the first value of x for which this
was true until this stage, then let zs be the<L-least real so that zs �= xt for t < s and
zs is a presentation of L	s . Put zs ∈ Sϕ . This completes the construction.

Note that Sϕ is Π1
1 for the same reason as before: L	s+� is enough to run the

construction up through stage s.
If we fall in the first case only boundedly often, then Sϕ is (up to a countable

set) a set of reals coding well-founded relations; there is then clearly a strategy that
avoids Sϕ , and Sϕ is therefore determined. If we visit the first case unboundedly
often, on the other hand, then each possible strategy is eventually encountered and
diagonalized against, so Sϕ is not determined. And clearly we visit the first case
unboundedly often if and only if L�1 |= ¬ϕ. This completes the proof. �

Definition 2.11. A Σ1
2 code or a code for a Σ1

2 set is a pair (ϕ(x, b), a) where
ϕ(x, b) is a formula of the form (∃y ∈ ��)(∀z ∈ ��)�(x, y, z, b) and a ∈ �� . The
set X coded by a Σ1

2 code (ϕ(x, b), a) is {x ∈ �� | ϕ(x, a)}.

Definition 2.12. Let Borel2 denote the set of codes for Σ1
2 sets which are Borel.

Let Baire2 denote the set of Σ1
2 codes for Σ1

2 sets with the Baire property, and let
Lebesgue2 denote the set of Σ1

2 codes for Lebesgue-measurable Σ1
2 sets.

The remainder of this section will consist of the proof of the following theorem.

Theorem 2.13. Under the assumption V = L, the sets Borel2, Baire2, and
Lebesgue2 are pairwise m-equivalent. In particular, they have the same Turing degree.

The following lemma is straightforward, but essential to the proofs that follow.

Lemma 2.14 (V = L). A set of reals is Σ1
2 in the classical sense if and only if it is

Σ0
1 (c.e.) in the sense of �1.

Proof. (⇒): Let X be a Σ1
2 set of reals. Then there exists an arithmetic formula

ϕ and a parameter a ⊆ � such that

x ∈ X ⇐⇒ (∃y ⊆ �)(∀z ⊆ �)ϕ(a, x, y, z)

for all reals x. The formula (∀z ⊆ �)ϕ(a, x, y, z) is Π1
1, hence�1-computable; the

full statement is therefore �1-computably-enumerable.
(⇐): Let X be a c.e. set of reals. By definition, X is Σ0

1-definable overL�1 , so there
exists a formula ϕ and a parameter a ∈ L�1 such that

x ∈ X ⇐⇒ (∃y ∈ L�1)ϕ(a, x, y).

By replacing hereditarily countable sets with subsets of� encoding them, we may
replace this with the following:

x ∈ X ⇐⇒ (∃y ⊆ �)(WF (y) ∧ ϕ∗(a, x, y)),

whereWF (y) is the formula “the structure coded by y is well-founded” and ϕ∗ is
ϕ modified to decode y. WF (y) is a Π1

1 formula; the rest is Borel, so this is a Σ1
2

definition of X. �

As a consequence of the lemma, we will often transition freely between c.e. sets
of reals and Σ1

2 sets of reals.
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Theorem 2.13 is an immediate consequence of Theorems 2.15, 2.21, and 2.26.
The proofs of these three results have very similar structure, so before we begin we
outline some of the commonalities.

The general aim of each proof is to, given a c.e. set of reals X, produce a c.e. set
of reals A. Alongside this, an additional c.e. set, usually called B, is constructed as
well; B may be considered as a set of elements that are prohibited from entering A
except by actions of sufficiently high priority.

In each proof, we also maintain a collection S of promises of the form (s, i, Y ),
where s is a countable ordinal, i is either 0 or 1, and Y is (some representation of)
a set of reals. Intuitively, a promise of the form (s, 0, Y ) promises to include the
next available element of Y in A, while a promise of the form (s, 1, Y ) promises to
include it in B. The first component, s, is a priority; lower values have higher priority.
Promises are ordered in the natural way: lexicographically, using <L to order each
component. At every stage, the first promise that is satisfiable will be satisfied by
adding a real to either A or B, and then will be removed from S; the precise notion
of satisfiability will vary slightly between the proofs.

Theorem 2.15. Under the assumption that V = L, Borel2 ≥m Baire2.

Proof. Given a code for a Σ1
2 set X, we construct a code for another Σ1

2 set
A. Recall that a set has the Baire property iff there is an open set with which its
symmetric difference is meager; we therefore require a means of referring to open
and meager sets within the construction.

Definition 2.16. An open code is a countable subset of �<� . If U is an open
code, the set coded by U is the set {x ∈ �� | (∃� ∈ U )� ≺ x}.

A nowhere-dense code is a setX ⊆ �<� so that (∀� ∈ 2<�)(∃� ∈ X )(� � � ∨ � �
�). If N is a nowhere-dense code, the set coded by N is the set {x ∈ �� | ¬(∃� ∈
N )� ≺ x}.

A meager code is an �-sequence of nowhere-dense codes. If M is a meager code,
the set coded by M is the union of the sets coded by its members.

Note that every open set has an open code, and while not every nowhere-dense
set or meager set has a nowhere-dense or meager code, it is the case that every
nowhere-dense set is covered by a nowhere-dense set that does, and likewise for
meager sets.

It is also worth noting that every closed nowhere-dense set has a nowhere-dense
code, so the closure of a given nowhere-dense set is an example of a nowhere-dense
set with a nowhere-dense code that covers it.

A Borel code is a well-founded tree T ⊆ �<� equipped with a function f so
that f(�) ∈ �<� whenever � is a leaf node of T and f(�) ∈ {∪,∩} otherwise.
When B = (T,f) is a Borel code, the set coded by B is defined inductively: let
S� = {x ∈ �� | f(�) ≺ x} for � a leaf node of T ; let S� =

⋃
i∈� S�i if f(�) = ∪;

and let S� =
⋂
i∈� S�i otherwise. The set coded by B is S〈〉.

The set of open codes, the set of nowhere-dense codes, the set of meager codes, and
the set of Borel codes are all �1-computable (henceforth “computable”); note that
since 2<� is hereditarily countable, quantification over it is bounded quantification.
Likewise, the set coded by a code of any sort is computable uniformly in the code.
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We now begin the construction. Given a code for a Σ1
2 set X, we will construct a

code for a Σ1
2 set A so that A will be Borel iff X has the Baire property. We factor

through the equivalence of Σ1
2 sets of reals and c.e. sets of reals from Lemma 2.14,

and for clarity we do not distinguish between an open or meager code and the set it
codes. Finally, we arrange that all c.e. sets enumerate at most one element per stage.

During the construction, we will maintain two structures. First, we will be
constructing the c.e. set A, and alongside it an auxiliary c.e. set B. Second, we
maintain a collection S of promises of the form (s, i, Y ), where s ∈ �1, i = 0 or 1,
and Y is a (code for a) set. Intuitively, (s, 0, Y ) promises that the <L-least element
of Y will enter A, and (s, 1, Y ) that it will enter B, with priority s. We will ensure
that elements that are enumerated into B on behalf of a promise (s, 1, Y ) have not
previously been enumerated into A and will not be enumerated into A except on
behalf of a promise of the form (t, 0, Z) with t < s .

Fix an effective enumeration (Ue,Me) of pairs of open codes and meager codes.
These are the candidate witnesses to the Baire property for X. At any stage s, some
of these pairs may have been invalidated: an x has been enumerated into X so that
x /∈ Ue ∪Me . When this occurs, it is no longer possible that the symmetric difference
of X andUe might be covered byMe , so we disregard the pair; we will consider only
valid pairs (pairs which have not been invalidated). For ease of notation, we call an
index e valid if the pair (Ue,Me) is valid.

Let Ve,s denote the intersection of the Ui for i < e that are valid at stage s.
Let xs be the real enumerated into X at stage s, if any. Suppose that there exists

e < s such that the following conditions hold:

(i) e remains valid;
(ii) xs is the <L-least element of Ue \Me not already enumerated into X ; and

(iii) for every valid i < e, xs ∈ Ui .
In such a situation, we say that e triggers an action. For the least e which triggers

an action at stage s, add the promise (e, 0, Ve,s) to S.
Otherwise, let D be the first Borel set not yet considered. Add the promises (s, 1, D)

and (s, 0, D) to S.
Finally, we consider the contents of S. Say that a promise (t, i, Y ) is satisfiable if

one of the following holds:

(i) i = 0, Ls ∩ Y ∩ Vt,s \ A is nonempty, and the<L-least member of Y ∩ Vt,s \
A is either not in B or was enumerated into B on behalf of a promise of the
form (u, 1, Z) with u > t or

(ii) i = 1 and Ls ∩ Y ∩ Vt,s \ (A ∪ B) is nonempty.

If there is a satisfiable promise in S, let (t, i, Y ) be the first (<L-least) one. If
i = 0, we enumerate the <L-least member of Y ∩ Vt,s \ A into A; if this element
was already in B, return to S the promise of the form (u, 1, Z) on behalf of which
that element was enumerated into B. If i = 1, we enumerate the <L-least member
of Y ∩ Vt,s \ (A ∪ B) into B. In either case, we declare (t, i, Y ) satisfied and remove
it from S.

Claim 2.17. Every promise eventually ceases to be satisfiable.

Proof. Let (t, i, Y ) be a promise in S, and suppose by induction that all promises
that are <L-below it eventually cease to be satisfiable. Let s0 > t be a stage at which
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this has happened. If (t, i, Y ) is never satisfiable after stage s0, then of course it has
already ceased to be satisfiable. On the other hand, if it is satisfiable at some later
stage u, then it must be the<L-least promise satisfiable at that stage, which means it
will be satisfied.

If i = 0, then by construction, once satisfied the promise will never be returned
to S, and hence will never be satisfiable again.

If i = 1, then the only circumstance in which (t, i, Y ) would be returned to S
would be if a higher-priority promise of the form (s, 0, Z) enumerated into A the
element which was used to satisfy (t, i, Y ). However, this would only happen if
(s, 0, Z) became satisfiable, which by induction does not happen after stage u. �

Claim 2.18. If X is meager, then A is countable.

Proof. Suppose that X is meager. Then there is a meager code for a meager set
that covers it. Let e be least so that Ue is empty and Me ⊇ X . Clearly (Ue,Me) is
never invalidated.

For each i < e, the symmetric difference of X andUi is not contained inMi . Thus
there is some yi so that one of the following holds:

(i) yi ∈ X \Ui and yi /∈Mi or
(ii) yi ∈ Ui \ X and yi /∈Mi .
For a given i, if the first possibility holds, then as soon as yi is enumerated into

X the pair (Ui ,Mi) will be invalidated. Let s0 be a stage large enough that every
(Ui ,Mi) for i < e that will ever be invalidated has been.

If the second possibility holds instead, then after a certain stage the <L-least
element of Ui \ (Mi ∪ X ) will be a witnessing yi and will never be enumerated into
X. After this point, i will never trigger an action. Let s1 > s0 be a stage large enough
that this has occurred for every i < e for which it will ever occur.

After this stage, at most e elements will be enumerated into A: if no action
is triggered at a stage before e, an element of a Borel set might be promised.
Any promises made after stage e will never be satisfied, because by construction
the elements added would have to be members of Ue , which is empty. So A is
countable. �

Claim 2.19. If X has the Baire property, then A is Borel.

Proof. By Claim 2.18, we may suppose without loss of generality that X is
nonmeager.

Suppose that X has the Baire property. Then there is an open set U and a meager
set M so that the symmetric difference of X and U is M; since X is nonmeager, U is
nonempty. There therefore exists some e such that Ue is a code for U andMe codes
a meager set covering M. Fix the least such e.

For each i < e, the symmetric difference of X andUi is not contained inMi . Thus
there is some yi such that one of the following holds:

(i) yi ∈ X \Ui and yi /∈Mi or
(ii) yi ∈ Ui \ X and yi /∈Mi .
If the first possibility holds for a particular i, then as soon as yi is enumerated

into X the pair (Ui ,Mi) will be invalidated. Let s0 be a stage large enough that every
i < e that will ever be invalidated has been.
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If the second possibility holds instead, then after a certain stage the <L-least
element of Ui \Mi will be the witnessing yi and will never be enumerated into X ;
after this point, i will never trigger an action. Let s1 > s0 be a stage large enough
that this has occurred for every i < e for which it will ever occur.

LetV = Ve,s1 =
⋂
i<e validUi at stage s1. Note that V is the intersection of at most

countably many open sets, and so is G
 . Every element of Ue \Me will eventually
be enumerated into X, so e will trigger an action uncountably often after stage
s1. So uncountably many promises of the form (e, 0, V ) will be made, while only
countably many promises of the form (i, 1, Y ) with i < e (which could potentially
cause elements of V to be enumerated into B and prohibited from A) will be made;
so all but countably many members of V will be enumerated into A.

Likewise, after stage s1 every element enumerated into A will be in V ; if an action
is triggered by some j > e at a later s, any elements enumerated into A as a result
will be required to be in Vj,s ⊆ V . So A \ V consists only of the countably many
points enumerated before stage s1.

Therefore A differs only countably from a G
 set; in particular, A is Borel. �

Claim 2.20. If X does not have the Baire property, then A is not Borel.

Proof. Suppose that X does not have the Baire property. As noted in the proof
of Claim 2.19, for every pair (Ue,Me) there is some stage se after which e will never
again trigger an action (whether because it has been invalidated or because the
necessary element is simply never enumerated into X). The function α �→ sup	<α s	
is continuous, and therefore has a closed and unbounded set of fixed points. At each
such fixed point s, no e < s triggers an action and so no action is triggered. Thus
each Borel set D is eventually addressed under the final clause of the construction.

Let D be a Borel set, and let t be the first stage at which no action is triggered
and D is addressed. At stage t, the promises (t, 0, D) and (t, 1, D) are entered into
S. Likewise, let D be the complement of D, and let t̂ be the first stage at which no
action is triggered andD is addressed; at stage t̂, the promises (t̂, 0, D) and (t̂, 1, D)
are entered into S. By possibly exchanging the roles of D and D, let t > t̂.

Let s0 be a stage large enough that every i < t that will ever be invalidated has
been. Note that for s > s0, Vt,s = Vt,s0 ; call this V. Note that V must be nonempty,
because otherwise any member of X that lies in anyUi for valid i < t would have to
be absent from some Uj for valid j < t; it would then have to be inMj . Therefore,
if V were empty, X would be covered by the (countably many) meager sets Mi
for i < t, and would therefore itself be meager (and would hence have the Baire
property). Likewise, if V were countable, X would be covered by theMi and V ; thus
V must be uncountable.

SupposeD ∩ V is uncountable. Then there are uncountably many stages at which
there is an opportunity to satisfy the promises (t, 0, D) and (t, 1, D) (i.e., a new y ∈
D ∩ V has appeared in L). The only circumstance under which neither is satisfied
is when there is a promise of higher priority that is satisfied instead. But there are
only countably many promises of higher priority, and by Claim 2.17 these promises
eventually cease to be satisfiable; so eventually (t, 0, D) and (t, 1, D) will both be
satisfied by enumerating an element of D ∩ V into A and B respectively, such that
the member of B enumerated on behalf of (t, 1, D) will not enter A. Therefore, at
least one member of D will never be enumerated into A, and hence A �= D.
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Suppose instead that D ∩ V is countable. Then D ∩ V is uncountable. By the
symmetric argument to the above, at least one member ofD will be enumerated into
A; thus A �= D.

In either case, A �= D; since D was an arbitrary Borel set, A cannot be Borel. �
This completes the proof of Theorem 2.15. �
Theorem 2.21. Under the assumption that V = L, Baire2 ≥m Lebesgue2.

Proof. This proof will be very similar to the previous one. Given an index for a
Σ1

2 set X, we aim to construct a Σ1
2 set A so that X is Lebesgue-measurable iff A has

the Baire property. Recall that a set X is Lebesgue-measurable iff there is a G
 set G
and a null set N so that X = G \N .

Definition 2.22. Recall the definition of an open code from the proof of Theorem
2.15. A G
 code is an �-sequence of open codes. If G = 〈Gi〉i<� is a G
 code, the set
coded by G is

⋂
i Ai , where Ai is the set coded by Gi .

A null code is a sequence 〈Nn〉n<� of (possibly infinite) subsets of 2<� so that

lim
n→�

∑

�∈Nn

2–|�| = 0.

If N = 〈Nn〉n<� is a null code, the set coded by N is {x ∈ 2� | (∀n)
(∃� ∈ Nn)� ≺ x}.

Observe that the set of G
 codes and the set of null codes are both computable
sets (recalling that the definition of the limit requires only quantification over the
rationals, which is bounded for the purposes of�1-computability) and that the map
from a code of either sort to the set it codes is uniformly computable.

Note that while not every null set is coded by a null code, it is the case that every
null set is covered by a null set that is.

We now begin the construction. Given a code for a Σ1
2 set X, we will construct

a code for a Σ1
2 set A so that A will have the Baire property iff X is Lebesgue-

measurable. We again factor through the equivalence of Σ1
2 sets of reals and c.e. sets

of reals, and for clarity we do not distinguish between aG
 or null code and the set it
codes. Finally, we arrange that all c.e. sets enumerate at most one element per stage.

As in the previous proof, we will maintain two structures. First, we will construct
a c.e. set A, together with an auxiliary c.e. set B. Second, we maintain a collection
S of promises of the form (s, i, Y ), where s ∈ �1, i = 0 or 1, and Y is a (code for a)
set. (s, i, Y ) may be thought of as a “promise” to enumerate an element of Y into
A (if i = 0) or B (if i = 1), made with priority s. We will ensure that elements that
are enumerated into B on behalf of a promise (s, 1, Y ) have not previously been
enumerated into A and will not be enumerated into A except on behalf of a promise
of the form (t, 0, Z) with t < s .

Fix an effective enumeration (Ge,Ne) of pairs of G
 codes and null codes. These
are the candidate witnesses to X being Lebesgue-measurable. At any stage s, some
of these pairs may have been invalidated: an x has been enumerated into X so that
x /∈ Ge . When this occurs, it is no longer possible that X = Ge \N for a null set
covered by Ne , so we disregard the pair; we will consider only valid pairs (pairs
which have not been invalidated). For ease of notation, we again call an index e valid
if (Ge,Ne) is valid.
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Also fix an effective enumeration (Ui ,Mi), as before, of pairs of open codes
and meager codes; these are the candidate witnesses to A having the property of
Baire.

For each i, let G∗
i = {z ∈ Gi | (∃y ≤L z)y ∈ Gi \Ni}; note that if Gi \Ni is

nonempty then G∗
i is only countably different from Gi , but if Gi \Ni is empty then

so is G∗
i . Let Ve,s denote the intersection of G∗

i for all i < e that remain valid at
stage s.

Let xs be the real enumerated into X at stage s, if any. Suppose that there exists
e < s so that the following conditions hold:

(i) e remains valid and
(ii) xs is the <L-least element of Ge \Ne not already enumerated into X.

In such a situation, we say that e triggers an action.
If any action is triggered, let e be the least index that triggers an action. Enumerate

(e, 0, Ve,s) into S.
Otherwise, let (Uj,Mj) be the first pair of an open code and a meager code

not yet considered. Enumerate into S the promises (s, 1, Uj \Mj) and (s, 0,
�� \ (Uj ∪Mj)).

Finally, we handle promises in the same manner as in the previous proof. Say that
a promise (t, i, Y ) is satisfiable if one of the following holds:

(i) i = 0, Ls ∩ Y ∩ Vt,s \ A is nonempty, and the<L-least member of Y ∩ Vt,s \
A is either not in B or was enumerated into B on behalf of a promise of the
form (u, 1, Z) with u > t or

(ii) i = 1 and Ls ∩ Y ∩ Vt,s \ (A ∪ B) is nonempty.

If there is a satisfiable promise in S, let (t, i, Y ) be the first (<L-least) one. If
i = 0, we enumerate the <L-least member of Y ∩ Vt,s \ A into A; if this element
was already in B, return to S the promise of the form (u, 1, Z) on behalf of which
that element was enumerated into B. If i = 1, we enumerate the <L-least member
of Y ∩ Vt,s \ (A ∪ B) into B. In either case, we declare (t, i, Y ) satisfied and remove
it from S.

Claim 2.23. Every promise eventually ceases to be satisfiable.

Proof. Because the relevant details of the construction are the same, the proof
is identical to that of Claim 2.17. �

Claim 2.24. If X is Lebesgue-measurable, then A has the property of Baire.

Proof. Suppose that X is Lebesgue-measurable. Then there exists aG
 set G and
a null set N such that G \N = X ; call e a code point for X if Ge is a G
 code for
such a G and Ne is a code for a null set that covers the corresponding N. Note that
such an e will never be invalidated.

Let e be the least code point for X so thatGe \Ne is either empty or uncountable.
If X is null, there is a code point e for which Ge \Ne is empty; if X has positive
measure, then every code point e has Ge \Ne uncountable.

Let s0 be a stage late enough that every i < e that will ever be invalidated has
been. Note that, after stage s0, every i < e that remains valid must eventually
cease to trigger actions; otherwise it would be the case that Gi ⊇ X ⊇ Gi \Ni and
uncountably many elements would have been enumerated into Gi \Ni , in which
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case i would have been our chosen e. Let s1 > s0 be a stage large enough that every
i < e has ceased to trigger actions.

Suppose now that Ge \Ne is empty. Then G∗
e is empty, so no elements will be

enumerated into A on behalf of promises (t, i, Y ) with t > e. If A were uncountable,
then, there would have to be some i < e that triggers an action uncountably often;
by the above observation that cannot be the case. Therefore, if Ge \Ne is empty,
then A is countable.

Finally, suppose instead that Ge \Ne is uncountable. Because X ⊇ Ge \Ne ,
every element of Ge \Ne is eventually enumerated into X ; so e triggers an action
uncountably often. By the argument above, e is the least index which triggers an
action uncountably often, so (e, 0, Ve,s) is enumerated into S for unboundedly
many s.

For t > s1, Ve,t = Ve,s1 ; call this set V. All promises made after stage s1 will
enumerate only elements of V into A, so A \ V is countable. Uncountably many
promises (e, 0, V ) are eventually made, and eventually all promises (t, i, Y ) with
t < e that will ever be satisfied have been; after this point, all members of V that
have not been placed into B will be enumerated into A. Thus A will differ from V
by only a countable set. Since V is G
 , A has the property of Baire. �

Claim 2.25. If X is not Lebesgue-measurable, then A does not have the property of
Baire.

Proof. Suppose that X is not Lebesgue-measurable. Then, as noted in the proof
of Claim 2.24, for every pair (Ge,Ne) there is some stage se after which e will never
again trigger an action (whether because it has been invalidated or because the
necessary element is simply never enumerated into X). The function α �→ sup	<α s	
is a continuous function on the countable ordinals, and hence has a closed and
unbounded set of fixed points; at each such fixed point s, no e < s can trigger an
action, so no action is triggered. Thus each pair (Uj,Mj) is eventually addressed
under the final clause of the construction.

Fix (Uj,Mj), and let s be the stage at which it is addressed. At that stage, the
promises (s, 1, Uj \Mj) and (s, 0, �� \ (Uj ∪Mj)) are enumerated into S.

By some countable stage s0, all promises in S prior to (s, 1, Uj \Mj) that will ever
be satisfied have been. By some stage s1 > s0, all e < s that will ever be invalidated
have been; for t > s1, Vs,t = Vs,s1 . Call this V.

Suppose (Uj \Mj) ∩ V is uncountable. Then there exists some stage t > s1 at
which there is a new element y ∈ Lt ∩ (Uj \Mj) ∩ V that is not already in A.
At this stage, (s, 1, Uj \Mj) is satisfiable. Since t > s1 > s0, no prior promise is
satisfiable, so (s, 1, Uj \Mj) is satisfied by enumerating such a y into B. Since by
construction this element could only be enumerated into A on behalf of a higher-
priority promise, all of which have ceased to be satisfiable by this stage, this will not
be in A, so Uj \Mj � A. Therefore the symmetric difference of A and Uj is not
contained inMj .

Suppose instead that (Uj \Mj) ∩ V is countable. Then V \ (Uj \Mj) is not
(otherwise X would be a null set and hence measurable). Then, by a symmetric
argument to the above, the promise (s, 0, �� \ (Uj ∪Mj)) is eventually satisfied, so
A \Uj includes an element not inMj .
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In either case, the symmetric difference of A andUj is not contained inMj . Since
Uj was an arbitrary open code andMj an arbitrary meager code, A does not have
the property of Baire. �

This completes the proof of Theorem 2.21. �
Theorem 2.26. Under the assumption that V = L, Lebesgue2 ≥m Borel2.

Proof. The proof is again very similar. Given an index for a Σ1
2 set X, we aim to

construct a Σ1
2 set A so that X is Borel iff A is Lebesgue-measurable.

Recall the definitions of open codes and Borel codes from the proof of Theorem
2.15, and the definition of null codes from the proof of Theorem 2.21.

We will factor again through the equivalence of Σ1
2 sets of reals and c.e. sets of

reals, and we do not distinguish between a code and the set it codes. As before, we
arrange that all c.e. sets enumerate at most one element per stage.

Fix an effective enumeration of Borel codes 〈Be〉e<�1 , and an effective enumeration
(Ge,Ne) of pairs of G
 codes and null codes. The Be will be the candidates for X ;
the (Ge,Ne) will be candidates for witnesses that A is measurable. At any stage s, we
will consider the codes Be for e < s . Some of these may have been invalidated; that
is, an x has been enumerated into X so that x /∈ Be . We only consider valid pairs
(pairs which have not been invalidated). Let Ve,s be the intersection of Bi for the
i < e that remain valid at stage s.

We will maintain our usual two structures throughout the construction. First, the
c.e. set A and an auxiliary c.e. set C (a departure from the B of the previous proofs in
order to distinguish it from the Borel sets). Second, a set S of promises of the form
(t, i, Y ) for t ∈ �1, i = 0 or 1, and Y a (code for a) set of reals. Intuitively, (t, 0, Y )
promises to include the <L-least element of Y in A with priority t, while (t, 1, Y )
promises to include it in C.

We now begin the construction. Let xs be the real enumerated into X at stage s,
if any. Suppose that there exists e < s so that the following holds:

(i) e remains valid and
(ii) xs is the <L-least element of Be not already enumerated into X.
In such a situation, we say that e triggers an action.
If an action is triggered at stage s, let e be the least index which triggers an action.

Enumerate into S the promise (e, 0, Ve,s).
Otherwise, let (Gj,Nj) be the first pair of a G
 code and a null code not

yet diagonalized against. Then enumerate into S the promises (s, 1, Gj \Nj) and
(s, 0, �� \Gj).

We handle the satisfaction of promises in the same manner as in the proofs of
Theorems 2.15 and 2.21. Say that a promise (t, i, Y ) is satisfiable if one of the
following holds:

(i) i = 0, Ls ∩ Y ∩ Vt,s \ A is nonempty, and the<L-least member of Y ∩ Vt,s \
A is either not in C or was enumerated into C on behalf of a promise of the
form (u, 1, Z) with u > t or

(ii) i = 1 and Ls ∩ Y ∩ Vt,s \ (A ∪ C ) is nonempty.
If there is a satisfiable promise in S, let (t, i, Y ) be the first (<L-least) one. If

i = 0, we enumerate the <L-least member of Y ∩ Vt,s \ A into A; if this element
was already in C, return to S the promise of the form (u, 1, Z) on behalf of which
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that element was enumerated into B. If i = 1, we enumerate the<L-least member of
Y ∩ Vt,s \ (A ∪ C ) into C. In either case, we declare (t, i, Y ) satisfied and remove it
from S.

Claim 2.27. Every promise eventually ceases to be satisfiable.

Proof. Because the relevant details of the construction are the same, the proof
is identical to that of Claim 2.17. �

Claim 2.28. If X is countable, then A is countable.

Proof. If X is countable, then it is Borel. Let Be be the first Borel code for
X. Then, for any t > e and any s, Vt,s ⊆ X , and in particular Vt,s is countable.
Therefore, only countably many elements enter A on behalf of promises of the form
(t, i, Y ) for t > s .

The only other promises are those added toS by the triggering of an action; but an
action is triggered at most once for each element of X, which means only countably
many such promises are made, and therefore only countably many elements enter A
on their behalf. �

Claim 2.29. If X is Borel, then A is Lebesgue-measurable.

Proof. By Claim 2.28, we may suppose without loss of generality that X is
uncountable. Suppose X is Borel; then there is an e so that Be is a code for X. Fix
the least such e.

For each i < e, Bi �= X . Thus for some yi , one of the following holds:
(i) yi ∈ X \ Bi or

(ii) yi ∈ Bi \ X .
If the first possibility holds for some particular i, then as soon as yi is enumerated

into X, Bi will be invalidated. Fix a stage s0 large enough that every i < e that will
ever be invalidated has been.

If the second possibility holds for some particular i, then after a certain stage the
<L-least element of Bi \ X will be such a yi , and will never be enumerated into X ;
after this point, i will never trigger an action. Fix s1 > s0 large enough that this has
occurred for every i < e for which it will ever occur.

Let V = Ve,s1 . As a countable intersection of Borel sets, V is itself Borel. After
stage s1, e will trigger an action uncountably often, because every member of Be will
eventually be enumerated into X. So every element of V except those promised to C
with priority< e will eventually be enumerated into A, and there are only countably
many such promises. So V \ A will be countable. Likewise, after stage s1, every new
element enumerated into A will be in V. SoA \ V consists only of elements promised
to or enumerated into A before stage s1, of which there are only countably many.
Thus A differs only countably from a Borel set, and is hence Borel (and therefore
Lebesgue-measurable). �

Claim 2.30. If X is not Borel, then A is not Lebesgue-measurable.

Proof. Suppose that X is not Borel. Then, as noted in the previous argument,
for every code Be there is some stage se after which e will never again trigger an
action (whether because it has been invalidated or because the necessary element
is simply never enumerated into X). The function α �→ sup	<α s	 is a continuous
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function on the countable ordinals, and therefore has a closed and unbounded set
of fixed points. At each such fixed point s, no e < s can trigger an action, so no
action is triggered. Thus each pair (Gj,Nj) is eventually addressed under the final
clause of the construction.

Let (Gj,Nj) be an arbitrary pair of a G
 code and a null code, and let s be
the stage at which it is addressed. At that stage, the promises (s, 1, Gj \Nj) and
(s, 0, �� \Gj) are enumerated into S.

By some countable stage s0, all promises in S prior to (s, 1, Gj \Nj) that will ever
be satisfied have been. By some stage s1 > s0, all e < s that will ever be invalidated
have been; for t > s1, Vs,t = Vs,s1 . Call this V.

Suppose that (Gj \Nj) ∩ V is uncountable. Then there will come a stage t > s1 at
which a new y ∈ (Gj \Nj) ∩ V has appeared, which gives an opportunity to satisfy
the promise (s, 1, Gj \Nj). Since all prior promises that will ever be satisfied have
been already, this is the promise that is satisfied at stage t; so an element of Gj \Nj
is enumerated into C (and consequently never enters A). Therefore A � Gj \Nj .

Suppose instead that (Gj \Nj) ∩ V is countable. ThenV \Gj is not (otherwise X
would be Borel). By a symmetric argument to the above, the promise (s, 0, V \Gj)
is eventually satisfied, so A includes at least one element not in Gj ; hence A � Gj .

In either case, it is not the case thatGj ⊇ A ⊇ Gj \Nj ; since (Gj,Nj) was chosen
arbitrarily, A cannot be the difference of a G
 set and a null set. Therefore A is not
Lebesgue-measurable. �

This completes the proof of Theorem 2.26. �
We are now able to complete the proof of Theorem 2.13.

Proof of Theorem 2.13. By Theorem 2.15, Borel2 ≥m Baire2. By Theorem 2.21,
Baire2 ≥m Lebesgue2. By Theorem 2.26, Lebesgue2 ≥m Borel2. Combining these,
we have

Borel2 ≥m Baire2 ≥m Lebesgue2 ≥m Borel2.

So in fact Borel2 ≡m Baire2 ≡m Lebesgue2. �
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