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TIME-SERIES MODEL WITH PERIODIC
STOCHASTIC REGIME SWITCHING

Part I: Theory
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We present a class of stochastic regime-switching models. The time-series models may
have periodic transition probabilities and the drifts may be seasonal. In the latter case, the
model exhibits seasonal dummy variation that may change with the regime. The processes
entail nontrivial interactions between so-called business and seasonal cycles. We discuss
the stochastic properties as well as their relationship with periodic ARMA processes.
Estimation and testing are also discussed in detail.
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1. INTRODUCTION

The economy may recover from a slump much easier when seasonals are at their
peak. Bankruptcies tend to be postponed until after a shopping season. Financial
panics and stock market crashes tend to cluster around the fall.1 Is there any
reason to believe that these statements are true? The question is, can we model
such interdependencies in a simple fashion?

To accomplish this task, we first need to introduce a class of models hitherto not
studied formally in time-series analysis. Indeed, we need to formulate a class of
models that would allow us to estimate parametrically the nontrivial (nonlinear)
interdependencies between the different patterns of growth fluctuations just de-
scribed and to allow us to test for such interdependencies. Hence, this paper breaks
with a long-established tradition alluded to earlier of viewing seasonal fluctuations
as separate and orthogonal to all other movements in the economy. Two types
of models are considered. The first one that we analyze generalizes the periodic
regime-switching model described by Ghysels (1991). It has important connections

Conversations with Ren´e Garcia, John Geweke, Jim Hamilton, Adrian Pagan, Tom Sargent, Chris Sims, Doug
Steigerwald, and Mark Watson have proven very helpful during the course of this work. We also thank two referees
for their invaluable comments. Benoit Durocher provided excellent research assistance. Address correspondence to:
Eric Ghysels, Department of Economics, University of North Carolina, Chapel Hill, NC 27599-3305, USA; e-mail:
eghysels@unc.edu.

c© 2000 Cambridge University Press 1365-1005/00 $9.50 467

https://doi.org/10.1017/S136510050001703X Published online by Cambridge University Press

https://doi.org/10.1017/S136510050001703X


468 ERIC GHYSELS

to and also builds further on the regime-switching model of Hamilton (1989)
as well as the hidden periodic structures presented by Tiao and Grupe (1980),
Osborn (1988), and Hansen and Sargent (1996). The second class of models that
we consider is inspired by Diebold et al. (1994), Durland and McCurdy (1994),
and Filardo (1994), among others, who considered regime-switching models with
(stochastic) time-varying transition probabilities using logistic functions. Besides
univariate models, we also consider multivariate ones. Empirical applications of
the models proposed here appear in a paper by Ghysels et al. (1998) and a com-
panion paper by Bac et al. (1998).

The structure of the paper is as follows: Section 2 deals with the stochastic
process theory, estimation, and hypothesis testing; Section 3 covers theoretical
results; and Section 4 concludes.

2. STOCHASTIC PROCESS THEORY OF PERIODIC MARKOV
REGIME-SWITCHING MODELS

A general class of periodic Markov regime-switching models is presented in
this section. Special cases of this class include the (aperiodic) regime-switching
models considered by Hamilton (1988, 1989, 1990), Phillips (1991), Cecchetti
and Lam (1992), Albert and Chib (1993), Diebold et al. (1994), Durland and
McCurdy (1994), Filardo (1994), Kim (1994), McCulloch and Tsay (1994),
Sichel (1994), among others, as well as the periodic Markovian regime-switching
structure presented by Ghysels (1991, 1994b), which was used to investigate the
nonuniformity of the distribution of the NBER business-cycle turning points. The
discussion focuses first on a simplified example that presents some of the key fea-
tures and elements of interest. The main purpose of this example is to appeal to
intuition for presenting the basic insights, deferring all technical and formal dis-
cussion to a later section. Section 2.1 sets the scene, introducing the notations as
well as the specific model, which is an AR(1) stochastic regime-switching model
with a periodic Markov chain. Section 2.2 elaborates on the linear ARMA and lin-
ear periodic representation of the (nonlinear) stochastic regime-switching AR(1)
model. Properties such as the periodic duration distribution and seasonal condi-
tional heteroskedasticity are highlighted in Section 2.3. A general framework and
characterization for the class of periodic Markov regime-switching models are
presented in Section 2.4.

2.1. A Univariate AR(1) Model as an Example

The purpose of this section is to provide motivation and insights by first using
a simple model. Consider a univariate time-series process denoted{yt }. It will
typically represent a growth rate of, for example, GNP. Furthermore, let{yt } be
generated by the following stochastic structure:

{yt − µ[(i t , st )]} = φ{yt−1− µ[(i t−1, st−1)]} + εt (1)
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with

µ[(i t , st )] = α0+ α1i t +
S−1∑
s=1

1stαs (2)

where|φ|< 1, εt is i.i.d. N(0, σ 2) andµ[·] represents an intercept shift function
that includes seasonal dummies1st. If µ[(i t , st )] = α0 +

∑S−1
s=1 1st αs with st =

t mod(S), whereS is the frequency of sampling throughout the year (e.g.,S = 4
for quarterly sampling), then (1) would simply be a standard linear stationary
Gaussian AR(1) model with seasonal mean shiftsαs for s = 1, . . . ,S. Instead,
we assume that the intercept changes according to a Markovian regime-switching
model, following the work of Hamilton (1989). The “state-of-the-world” process
is different, however, from that originally considered by Hamilton. The state of
the world is described by(i t , st ), which is a stochastic regime-switching process
{i t } and the seasonal indicator process. Assuming thati t ∈ {0, 1} ∀ t , we allow the
{i t } and{st } processes to interact in the following way2:

0 1,

0 q(st ) 1− q(st ),

1 1− p(st ) p(st ),

(3)

where the transition probabilitiesq(·) andp(·) are allowed to change withst , that
is, the season. Becausest is a modS series, there are, of course, at most,S values
for q(·) and p(·); that is,q(st )∈ {q1, . . . , qS} and p(st )∈ {p1, . . . , pS}, where
q(st )=qs and p(st )= ps for s= st . Naturally, when

p(·) = p̄ and q(·) = q̄, (4)

we obtain the standard homogeneous Markov chain model considered by Hamilton.
However, if for at least somest the transition probability matrix differs, we have
a situation in which a regime shift will be more or less likely depending on the
time of the year. Becausei t ∈ {0, 1}, the process{yt } has a mean shiftα0 in state 1
(i t = 0) andα0+α1 in state 2. Equations (1) through (4) are a version of Hamilton’s
model with a periodic stochastic switching process. If we impose the condition that
α1 > 0 state 1 with low mean drift is called a recession and state 2 an expansion,
then, according to (3), we stay in a recession or move to an expansion with a
probability scheme that depends on the season.

2.2. Linear ARMA and Periodic ARMA Representations of a Periodic
Markov Regime-Switching Process

The structure presented so far is relatively simple, yet as we shall see, some inter-
esting dynamics and subtle interdependencies emerge. It is worth comparing the
AR(1) model with a periodic Markovian stochastic regime-switching structure,
as represented by (1) through (4), and the more conventional linear ARMA pro-
cesses as well as the periodic ARMA models discussed by Tiao and Grupe (1980),
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Todd (1983, 1990), Osborn (1988), Osborn and Smith (1989), and Hansen and
Sargent (1996), among others. Let us start by briefly explaining intuitively what
drives the connections between the different models. The model described in Sec-
tion 2.1, with yt typically representing a growth series, is covariance stationary
under suitable regularity conditions discussed later. Consequently, the process
has a linear Wold MA representation. Yet, the time-series model presented in
the preceding section provides a relatively parsimonious structure that determines
nonlinearly predictable MA innovations. In fact, there are two layers beneath the
Wold MA representation. One layer relates tohidden periodicities, as described
by Tiao and Grupe (1980) or Hansen and Sargent (1996), for instance. Typically,
such hidden periodicities can be uncovered via augmentation of the state space,
with the augmented system having a linear representation. However, the periodic
regime-switching model imposesfurther structureeven after the hidden periodic-
ities are uncovered. Indeed, there is a second layer that makes the innovations of
the augmented system nonlinearly predictable. Hence, the model described in the
preceding section also has nonlinearly predictable innovations as well as features
of hidden periodicities.

To develop this more explicitly, let us first note that the regime-switching process
{i t } admits the following AR(1) representation:

i t = [1− q(st )] + λ(st )i t−1+ vt (st ), (5)

whereλ(·)∈ {λ1, . . . , λS} with λ(st )≡−1+ p(st )+q(st )= λs for st = s. More-
over, conditional oni t−1= 1,

vt (st ) =
{

[1− p(st )] with probability p(st )

−p(st ) with probability 1− p(st ),
(6)

whereas conditional oni t−1 = 0,

vt (st ) =
{
−[1− q(st )] with probability q(st )

q(st ) with probability 1− q(st ).
(7)

Equation (5) is a periodic AR(1) model where all of the parameters, includ-
ing those governing the error process, may take on different values every season.
Of course, this is a different way of saying that the state-of-the-world is not only de-
scribed by{i t }but also by{st }.3 Although (5) resembles the periodic ARMA models
that were discussed by Tiao and Grupe (1980), Todd (1983, 1990), Osborn (1988),
and Hansen and Sargent (1996), among others, it is also fundamentally different
in many respects. The most obvious difference is the innovation process, which
has a discrete distribution. There are more subtle differences as well, but we shall
highlight those as we further develop the model. Despite the differences, there are
many features that equation (5) and the more standard periodic linear ARMA mod-
els have in common. Following Gladysev (1961), we can consider time-invariant
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representations of (5) that are built on stacked, skip-sampled vectors of observa-
tions. In particular, let us assume that we have a sample of lengthST , that is,T
number of years. Let us define the stacked vector of seasons that is sampled at an
annual frequency as follows:

iτ ≡
(
iSτ−S+1, iSτ−S+2, . . . . . . , iSτ

)′
, (8)

vτ ≡
(
v1
Sτ−S+1, v

2
Sτ−S+2, . . . . . . , vSSτ

)′
, (9)

τ = 1, . . . , T , so thatτ represents annual time accounting. Following equation (5),
we can write the DGP for the vector defined in (8) as follows:

1 0 . . . 0

−λ2 1 . . . 0
...

. . .
...

...

0 1 0

0 . . . . . . −λS 1


iτ =



1− q1

1− q2

...

...

1− qS


+



0 . . . λ1

0 0

0 . . . 0


iτ−1+ vτ .

(10)

We highlight two features of (10) on which we will digress further. The first is the
appearance of seasonal mean shifts, that is, what typically is called “deterministic
seasonality”; the second is the basis of a time-invariant Wold MA representation
for the (scalar){i t } process described by (5). We focus first on the latter, and follow
with a discussion of the former.

The purpose of stacking the process{i t } into annual vectors is to exhaust all
possible parameter variation appearing in (5) and (6). It is easy to see that the
vector process{iτ } has a covariance stationary representation now (again under
suitable regularity conditions discussed later) because the coefficient matrices in
(10) are time invariant. Through (10), we can derive the Wold representation of{i t }.
This usually is referred to as the Tiao–Grupe formula. Because we will be explicitly
using this formula, we briefly discuss it.4 Assume that the Wold infinite-order MA
decomposition representation for the vector process{iτ } can be written as follows:

iτ = M(L)ωτ + µ, (11)

whereωτ = [ωS(τ−1)+1 . . . . . . ωSτ
]′, µ= (µ1 . . . . . . µS)′. Then, the covari-

ance-generating function for the(iτ −µ) process is defined as

Si(z) = (2π)−1M(z)ÄM(z−1)
′
. (12)

From the covariance-generating function of the vector process{iτ }, we can ob-
tain the covariance-generating function for the scalar stochastic regime-switching
process{i t }, by using the Tiao–Grupe formula:

si (z) = Q(z)Si(z
S)Q(z−1)

′
, (13)
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whereQ(z)=S−1/2[1 z . . . zS−1]. One can calculate a spectral representation
of the{i t } process from (13) or derive the linear time-domain representation.

Note that the process certainly will not be represented by an AR(1) process
because part of the state space is “missing.” A more formal argument can be derived
directly from the analyses by Tiao and Grupe (1980) and Osborn (1991).5 The
periodic nature of autoregressive coefficients pushes the seasonality into annual
lags of the AR polynomial emerging from (13) and substantially complicates the
MA component.

Ultimately, of course, we are interested in the time-series properties of{yt } as it
is generated by (1) through (4) and how its properties relate to linear ARMA and
periodic ARMA representations of the same process. Because

yt = α0+ α1i t +
S−1∑
s=1

1stαs(1− φL)−1εt , (14)

andεt was assumed to be Gaussian and independent, we can simply view{yt }−∑S−1
s=1 1stαs as the sum of two independent unobserved processes:{i t } and the

process(1−φL)−1εt . Clearly, all of the features just described about the{i t }
process will be translated into similar features inherited by the observed process
yt , while yt −

∑S−1
s=1 1stαs has the following linear time-series representation:

sy(z) = α2
1si (z)+ {1/[(1− φz)(1− φz−1)]}(σ 2/2π). (15)

This linear representation has hidden periodic properties which can be derived
from (12) and a stacked skip-sampled version of the(1−φL)−1εt process. Finally,
the vector representation obtained as such would inherit the nonlinear predictable
features of{i t }.

Let us briefly return to (11), or, alternatively, to (10). We observe that the linear
representation has seasonal mean shifts that would appear as a “deterministic sea-
sonal” in the univariate representation ofyt . Hence, besides the spectral density
properties appearing in (15), which may or may not show peaks at the seasonal fre-
quency, periodic Markov switching produces seasonal mean shifts in the univariate
representation. This result is, of course, quite interesting because intrinsically we
do have a purely random stochastic process with occasional mean shifts. The fact
that we obtain something that resembles a deterministic seasonal simply comes
from the unequal propensity to switch regime (and hence mean) during some
seasons of the year. Note also, of course, that seasonal mean shifts appear in equa-
tion (2) already. Consequently, these mean-shift coefficientsαs in (2) are expected
to differ from seasonal dummies appearing in a linear representation of{yt } that
does not contain the Markov switching component.

2.3. Some Properties of Interest

So far, we have established some of the characteristics of the stochastic regime-
switching AR(1) process with periodic transition probabilities. In particular, in the
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preceding section, we described how to obtain a linear time-series representation
and how it entails hidden periodicity and nonlinear predictability. In this section,
we further digress on three properties of special interest: (1) seasonal conditional
asymmetries, (2) the periodic duration distribution, and (3) the seasonal impulse
response functions. We discuss each of these separately.

Seasonal conditional variance asymmetries.Consider the conditional vari-
ance of the innovation process appearing in (5). It can be written as

E
[(

vs
t

)2 ∣∣ i t−1, st
] = {p(st )[1− p(st )] if i t−1 = 1

q(st )[1− q(st )] if i t−1 = 0.
(16)

We observe that the variance of the stochastic regime-switching process, whether
it is presented as a scalar or a vector, displays heteroskedasticity, conditional not
only with regard to the season but also the regime shifts. The former source of
heteroskedasticity, namely the seasonal variation in (conditional) second moments,
is a natural by-product of the hidden periodicity and also features periodic ARMA
processes. However, what is different is the asymmetry in conditional second
moments blended with the periodic structure.

Periodic duration distribution. This feature highlights a characteristic proper
to periodic Markov chains that was exploited by Ghysels (1991, 1997) to test the
presence of periodicity via exact small-sample rank-based nonparametric statistics.
If a Markov chain is periodic, then the distribution of the length of time spent in
any particular regime depends on the starting season.

Seasonal impulse response functions.The purpose here is only to point out
that, due to the hidden periodicity, there is also a periodic impulse response scheme
that goes with the Wold decompositions conditional on the season as presented in
(13). Hansen and Sargent (1996) studied in detail how the impulse response mech-
anisms operate in a periodic (linear) environment. We can only refer the reader
to their detailed exposition. We also emphasize that Hansen and Sargent provided
several examples of economic structural models that yield a linear periodic repre-
sentation. Similar attempts were made by Todd (1983, 1990) and Osborn (1988),
though Hansen and Sargent provided a unifying general equilibrium approach.

3. A GENERAL CLASS OF PERIODIC MARKOV STOCHASTIC
REGIME-SWITCHING MODELS

Having mostly relied on intuition and on specific examples so far, we now turn our
attention to generalizations. Here, we will only point to the different directions in
which one can generalize the model and discuss how they can be formally treated.
In Section 3.1, we present the general class of models and, in Section 3.2, we
discuss the formal regularity conditions. In Section 3.3, we cover estimation and
testing.
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3.1. Model Structure

Consider the setY of Rn-valued discrete time vector processes defined on the
probability space(Ä,S,P), where for eachω ∈ Ä, {yt (ω)} ∈ Y is generated as
follows:6

yt = b0(i t , zt )x0t +
∑̀
j=1

bj (i t , st , zt )[yt− j − b0(i t− j , zt− j )x0t− j ] + δt . (17)

Equation (17) is an explicit representation of the vector process, showing that
possibly all coefficient matricesbj (·), j = 0, 1, . . . , ` are random and depend on
the state process(i t , st , zt ), where{i t } follows a Markov chain with transition
probability matrixP(st , zt ) andst ≡ t modS as defined earlier, whilezt is a set
of variables affecting the transition probabilities in a manner similar to that of
Diebold et al. (1994), Durland and McCurdy (1994), and Filardo (1994), among
others. The regressorsx0t in equation (17) are fixed, consisting of either a constant
or a constant andS − 1 seasonal dummies, while the error processδt is i.i.d.
N[0, 3(i t , st , zt )]. Hence, the innovation variance may depend on the discrete
state-of-the-world process.

A brief digression on the Markov process{i t } will be helpful before discussing
the matrix functionsbj (·), j = 0, . . . , `. It will be assumed that there arer “prim-
itive” states describingr possible regimes. Because there are` lags in equa-
tion (17), the Markov process will haver `+1 stateseach season. Hence, the
Markov chain throughout the year is described by the set{P(s, zt ), s= 1, . . . ,S},
whereP(s, zt ) is anr `+1× r `+1 transition probability matrix. Following Diebold
et al. (1994), Durland and McCurdy (1994), and Filardo (1994), we can consider
the transition probabilities to be time varying, evolving as logistic functions of
z′tγi (s), s= 1, . . . ,S. Hence, in statei , a different vectorγ(·) applies to each sea-
son. To illustrate this further, just let̀= 0 andr = 2 for the moment. Then we
have

0 1

0
exp[z′tγ0(s)]

{1+ exp[z′tγ0(s)]} 1− exp[z′tγ0(s)]
{1+ exp[z′tγ0(s)]}

1 1− exp[z′tγ1(s)]
{1+ exp[z′tγ1(s)]}

exp[z′tγ1(s)]
{1+ exp[z′tγ1(s)]} .

(18)

A special case of (18) is wherezt is a constant. Then the transition matrix sim-
ply becomes a function ofst only, which is what appeared in (2). Becauseγi (·)
becomes a scalar in such a case, we can simply express the transition probabilities
p(·) andq(·) in (2) via the logistic functionq(s)= exp[γ0(s)]/{1+ exp[γ0(s)]}
andp(s)= exp[γ1(s)]/{1+exp[γ1(s)]}. Another special case of (18) that is also of
particular interest for empirical work is whenP(st , zt )≡ P(zt ), that is, independent
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of st . Of course, this corresponds exactly to the analysis by Diebold et al. (1994).
Yet, unlike the work of Diebold et al. (1994), Durland and McCurdy (1994),
or Filardo (1994), it is important to observe thatzt may contain seasonal pro-
cesses. Hence, the transition probability matrix becomes seasonal as well as time
varying.

Then× n [wheren= dim(yt )] matrix functionsb1(·) throughbl (·) appearing
in (17) are allowed to shift with the regime. It was noted that the set of regressions
x0t consisted of a constant with or without seasonal dummies. With only a constant
in x0t , that is,x0t = 1∀ t , andb0(·) only depending on{i t }, we recover the most
familiar case in which{yt } is driven by a stochastic mean shift which is a function
of a latent Markov process determining the regime switches. Becauseyt is ann× 1
vector process,b0(·) determines ann× 1 vector of mean shifts depending on{i t }
for the joint multivariate process. Whenx0t also includes seasonal dummies it is
worth noting that the seasonal mean shifts are allowed to shift with the regime, a
feature discussed by Canova and Ghysels (1994).

Obviously, equation (17) contains many features all at once, making it potentially
a richly parameterized model that will be too demanding from which to infer most
data sets. Becauseb1, . . . , b`(·) andb0(·) are allowed to depend on{i t }and{st }, one
can indeed produce some quite complex dynamics in polynomial lags, seasonals,
and regimes.7

3.2. Regularity Conditions

So far, we have presented a vector stochastic regime-switching process with possi-
bly seasonal transition properties, both periodic throughst and possibly stochastic
throughzt , with fixed regressors and an AR(`) polynomial autoregressive struc-
ture. When is such a process stable? When does it have finite moments, like a
well-defined covariance structure, for instance? Our formal treatment only covers
the case in whichzt is a constant, hence the transition matrixP(·) is nonrandom, but
possibly periodic.8 It is shown that (periodic) Markov regime-switching processes
can be treated as doubly stochastic vector AR(1) processes, using the terminology
coined by Tjøstheim (1986). Our formalization relies on Tjøstheim (1990) and
Karlsen (1990) to characterize the necessary conditions for weak stationarity. An
autoregressive representation fori t , similar to equation (5) but more general, is the
most convenient representation for our purpose. Let us transcribe the definition
of i t using a slightly different notation: Consider the identity matrix of dimension
r `+1 and let thei th column be denoted byei for i = 1, . . . , r `+1. Then,ξt will
represent the state of the world; that is,i t = i ⇔ ξt = ei . Similarly to stackingi t

over an entire year as in (8), we also can obtain

ξτ ≡ [ξ ′S(τ−1)+1, . . . , ξ
′
τS ]′, (19)

whereξτ is anS × (r `+1) vector containingS entries equal to 1. The process{ξτ }
will have ahomogeneousvector autoregressive representation of order 1 because it
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corresponds to a Markov chain with a homogeneous transition probability matrix
obtained from the set{P(s), s= 1, . . . ,S}. More precisely,

ξτ =


I 0 0

−F1 I
...

. . .

−FS−1 I



−1


0 . . . FS
0 0
...

...

0
...

0 0


ξτ−1+ γτ , (20)

whereFs is entirely determined byP(s) for eachs= 1, . . .S, andγτ is uncor-
related withξτ−i for i > 0.9 Note that to obtain a homogeneous Markov chain
representation of a periodic regime-switching model with` autoregressive lags,
we need to consider an(S × r `+1)-state system.

We now define the, by now familiar, stacked skip-sampled versions of the series
{yt } and{δt }. Moreover, we also introduce the processesỹ`

t , δ`
t , ỹt and their stacked

counterparts:

ỹt ≡ yt − b0(i t , st )x0t , (21)

ỹ`
t ≡ [ ỹ′t . . . ỹ′t−`+1]′, (22)

δ`
t ≡ [δ′t O′n(`−1)×1]′, (23)

ỹ`
τ ≡

{[
ỹ`
S(τ−1)+1

]′
, . . . ,

(
ỹ`

τS
)′}′

, (24)

δ`
τ ≡

{[
δ`
S(τ−1)+1

]′
, . . . ,

(
δ`
τS
)′}′

, (25)

B`
0(ξt , st ) ≡

{
[b0(i t , st )x0t ]′O′n(`−1)×1

}′
, (26)

B`
0(ξt ) ≡

{
B`

0[iS(t−1)+1, 1]′ . . . B`
0(iSt ,S)′

}′
, (27)

where the latter two are stacked versions of the intercept processb0(i t , st ). Finally,
it is straightforward to define

y`
t ≡ B`

0(ξt , st )+ ỹ`
t , (28)

y`
τ ≡ B`

0(ξτ )+ ỹ`
τ . (29)

From (17) and the processes defined in (21) through (27), we can characterize
a doubly stochastic representation:

ỹ`
τ = B`(ξτ )ỹ

`
τ−1+ δ`

τ , (30)
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where

B`(ξτ ) ≡ M−1
1


0 −B`

(
ξSτ

,S
)

...
...

0 0


and−B`(ξt , s) is a matrix ln× ln with the first row containingb1(i t , s), . . . ,
bl (i t , s), stacked on top of the matrix(In⊗ In−10(n−1)l×n); the matrix M1 con-
tains−B`(ξS(τ−1)+1, 1) through−B`(ξSτ−1,S − 1) below the block diagonal
structure containingnl × nl identity matrices; andEδ`

τ (δ
`
τ )
′ = IS ⊗3`, where

3` = Eδ`
τ (δ

`
τ )
′.10

The regularity conditions for the existence of a well-defined autocovariance
structure for a general periodic Markov regime-switching process can be pre-
sented now. Several formulas that characterize the autocovariance structure are
introduced, with each entailing different computational operations. The structure
is as follows: (1) basic assumptions are presented first, (2) the steady state of the
Markov process is discussed next, and, (3) a theorem summarizes the main result.

Basic assumptions.

Assumption 1. The processes{ỹτ }, {δτ }, and{ξτ } are defined on a common
probability space(Ä,SS , PS). The process{ξτ } is a Markov chain that is station-
ary and ergodic with a finite number of states defined on the state spaceS with
dimensionSr `+1. It has a transition matrix denoted byP.

For convenience of notation, we denoter `+1 asK so that the number of states
in S equalsSK .11 To proceed with the next assumption, let us define the sigma
algebra:Sτ

Sy≡{yu, u≤ τ }.
Assumption 2. The matrix functionsB`(·) andB`(·) appearing in (30) are of

dimension(n`)× (n`); (Sn`)× (Sn`), respectively, and are measurable func-
tions with respect toSτ

Sy. Likewise, the matrix functionsB0(·) andB`
0(·) also are

measurable with regard to the same sigma algebra.

Assumption 3. The process{δτ } is a martingale difference sequence with regard
to Sτ

Sy andEδτδ
′
τ = IS ⊗3` <∞.

Because the estimation will be likelihood-based, we shall assume thatδt is
i.i.d. N(0, IS ⊗3) [as we did in equation (17)]. Alternatively, the analysis in this
section can be used to construct a generalized methods of moments estimator
[cf. Hansen (1982)]. Finally, we also make the assumption that follows.

Assumption 4. The processes{δτ } and{ξτ } are mutually independent.

Covariance structure. The basic question of interest is: Under what circum-
stances are{yt } and its derived processes integrable in quadratic mean? That is,
{yt (ω)} belongs to the usual Hilbert spaceL2(Ä,S, P) or {ỹτ (ω)} belongs to
L2(Ä,SS , PS). Because all processes have a doubly stochastic representation,
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we rely on the analysis by Karlsen (1990) to develop necessary conditions for
the existence of a well-defined covariance structure. We begin with a discussion
of the first moments. Hence, we are interested in the mean of{yt } as it appears
in (17). This, of course, means that we want to analyze the cross product of the
stochastic processb0(·) and the fixed regressorsx0t . From Assumption 1, we know
that the Markov chain process has a unique steady-state distribution. For each sea-
sons= 1, . . . . . . ,S, we characterize the steady-state distribution as the solution
πs to

πs = Fsπmod(s−1) with π ′s l = 1 s= 1, . . . ,S, (31)

where the matricesF1, . . . , FS are given in (20) and several methods can be used
to computeπs [see, e.g., Hamilton (1994, p. 3065)]. Moreover, the steady-state
distributionπ of the skip-sampled Markov chainξτ can be obtained easily either
by computingπ = Fπ or as follows:

π = S−1(π ′1 . . . . . . π ′S)
′ with π ′l = 1. (32)

Consider now the seasonal sampling of thex0t process, and let its limit be de-
notedx̄s

0s= 1, . . . ,S. If x0t is a constant, then of coursēxs
0≡ x̄0 ∀ s; if x0t includes

seasonal dummies, then̄xs
0 represents a differentn× 1 vector each season. Like-

wise, if x0t contains stochastic elements, thenx̄s
0 is a stochastic limit based on

seasonal sampling. Let

bK
0 (s) ≡ [b0(1, s)x̄s

0, . . . , b0(K , s)x̄s
0

]
s= 1, . . . ,S (33)

be the matrix of allK possible mean shifts each seasons. Then, the mean ofyt

conditional on seasons is expressed as

Eyt | s= bK
0 (s)πs s= 1, . . . ,S, (34)

while the mean unconditional ofs is Eyt ≡S−1∑S
s=1 Eyt | s. Some special cases

of (34) are worth pointing out. For instance, ifx0t is just a constant andbK
0 (s) is

not a function ofs, as for instance is the case in Hamilton (1989), thenEyt | s is
the cross product ofπs with bK

0 , that is, the expected mean shift under steady-
state distributionπs. Hence, as observed in Section 2 for a specific case, with
switching probabilities changing periodically, one generates a seasonal mean-
shifting behavior in linear representation. This seasonal dummy behavior is tightly
parameterized because it is determined entirely by the switching probabilities of
the Markov chain. Whenx0t includes dummies, a seasonal mean-shifting behavior
naturally arises with a more flexible parameterization. Having determined the mean
of yt , conditional or unconditional on the season, we turn our attention next to the
second moments of the demeaned processỹt as specified in (23), as well as the
second moments of theb0(i t , st ) process. To streamline its characterization, we
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rely on the doubly stochastic representation appearing in (30). We are interested
in the following objects:

0(H) = Ey`
τ y`′

τ+H , (35)

00(H) = EB`
0(ξτ )B`

0(ξτ+H )′, (36)

γs(h) = Ey`
t y`′

t+h ∀ t such thatt = τ(S − 1)+ s andh = 0, 1, . . . , (37)

γ0s(h) = E B`
0(ξt , s)B`

0(ξt+h, s̄)′ ∀ t such thatt = τ(S − 1)+ s, (38)

wheres̃= (s+ h− 1) modS andh= 0, 1, . . . .

The formula in (35) represents the covariance structure for the stacked skip-
sampled vector processy`

τ . In contrast, the formula in (36) represents the covariance
structure, conditional on a particular season, of the nonstackedy`

t process. Once the
formulas in (35) and (36) are well defined and characterized, we can again invoke
the Tiao–Grupe formula appearing in (13), this time applied to they`

t process,
yielding expressions for

γ (h) = Ey`
t y`′

t+h ∀t and h = 0, 1, . . . , (39)

γ0(h) = E B`
0(ξt , ·)B`

0(ξt+h, ·)′ ∀t and h = 0, 1, . . . . (40)

The existence and characterization of (35) through (37) are determined as follows:

THEOREM 1. Let Assumptions1 through4 hold. Then stochastic processes
{y`

τ } and{B`
0(ξτ )} are covariance-stationary with0(0) and00(0) finite if

(a) max
1≤s≤S

[
π ′s⊗ I(n`)2

]{
diag

[
B`

0(k, s)B`
0(k, s)′

]K

k=1

}[
l K ⊗ I(n`)2

]
<∞,

(b) ρ
{

diag[B`(k)⊗ B`(k)′]SK
k=1

}[
P ′ ⊗ I(Sn`)2

]
< 1.

Finally,

0(H) =


γ1(S) γ1(SH − S + 1)

...

γS(SH − S + 1) γS(SH)

 , (41)

with a similar relation applying to00(H) andγ s
0s(·), while

vecγs(h) = π ′s̃⊗ I(n`)2

{
diag

[
ISn` ⊗ B`(k)

]sK

k=1

}
vecγs(h− 1)+ vec3`. (42)

The proof of the theorem is omitted here because it relies extensively on Theo-
rem 4.1 of Karlsen (1990). By formulating equation (17) as a doubly stochastic
vector AR(1) process, Karlsen (1990) spells out the conditions for a well-defined
second-order structure when the parameter process in a doubly stochastic vector
AR(1) process is governed by a finite Markov chain.
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3.3. Estimation and Testing

Estimation of Markov regime-switching models is covered in detail by Hamilton
(1989, 1994). Testing the hypothesis of periodicity in regime switching is of key
interest for our purpose and is the focus of this section. Estimating a Markov
regime-switching model is mostly likelihood-based, either via classical methods
such as that used by Hamilton (1989) among others, or via Bayesian methods
following the work of Albert and Chib (1993) and McCulloch and Tsay (1994). The
estimation of Markov regime-switching models is covered in detail by Hamilton
(1989, 1993) for the case in which the Markov chain is homogeneous and by
Diebold et al. (1994) for time-varying transitions. Therefore, we restrict ourselves
here to a brief discussion, only highlighting new features occurring because of
periodicity. We first discuss the formulation of the likelihood function and then
cover classical hypothesis testing.

In general, we seek to estimate the parameter vectorΘ governing the coefficient
matricesbj (·), j = 0, 1, . . . , `, and the covariance matrix3 from equation (17).
We will make some concessions regarding generality and focus instead on the
special case of two primitive states with a simple periodic Markov chain, such as
in (3), involving a scalar stochastic processyt , that is,n= 1. Given a sample of
sizeST , that is,T full years of data points, the log-likelihood function can be
written as

L(YST , 2) ≡
ST∑
t=1

log p(yt |Yt−1;Θ), (43)

where p(· |Yt−1;Θ) represents the probability distribution ofyt , given observa-
tions up tot − 1; that is,Yt−1≡{(yt− j , st− j ), j ≥ 1}. Hamilton (1989, 1993) goes
into detail about how to formulatep(· |Yt−1;Θ) via a filtering algorithm to cal-
culate the distribution of the timet state, givenYt , denotedp(ξt |Yt ), and future
observations ofyt , in case of smoothed inference. The key element of interest is
the probability of the unobservable state processst = (ξt , st ) at any given point in
time. This probability can be written as

p[st = (i t , st ) |Yj ;Θ], (44)

where j can be smaller than, equal to, or greater thant . The algorithm starts
out with the unconditional probability. The first observation is drawn fromπs

with s= s1 andπs being determined by (31). The unconditional probabilities for
any of the seasons depend on all of the switching probabilitiesp(s) and q(s).
Explicit formulas for the casei t ∈ {0, 1} appear in Ghysels [1994, eq. (2.6)]. Once
p[st = (1, s1)], for example, is computed, we can derive the joint probability ofs1

ands2 as
p[s2 = (1, s2), s1 = (1, s1)] = p(s1)p[st = (1, s1)]. (45)

Iterations similar to (47) can be computed for an initial segmentt = 1, . . . , `+ 1,
where` is the lag length of the AR polynomial in (17). Then, the density of
the `+ 1 sample points conditional on(s1, . . . , s̀ +1), which will be denoted
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p(Ỳ +1 | s̀ +1, . . . , s1;2), can be readily computed from the normality ofδt in (17).
The conditional distribution of thè+ 1, first states, given data points inỲ +1, can
be expressed as

p(s̀ +1, . . . , s1 | Ỳ +1)

= p(Ỳ +1 | s̀ +1, . . . , s1)p(s̀ +1, . . . , s1)

K∑
k1

. . .

K∑
k`+1

p(Ỳ +1| s̀ +1 = k`+1, . . . , s1 = k1)p(s̀ +1 = k`+1, . . . , s1 = k1)

.

(46)

Equation (46) is applied iteratively throughout the sample, beginning with

p[st+1 = (k, st+1), st = ( j, st ) | (st−1, . . . , st−`+1)Yt ]

=
[ S∑

s=1

1(st+1 = s)p(s)
k j

]
p[st | (st−1, . . . , st−`+1)Yt ], (47)

where1(st = s) is a seasonal indicator function, namely,

1(st = s) =
{

1 if st = s

0 otherwise.

Next, we can write

p[yt+1 | st+1, st , (st−1, . . . , st−`+1)Yt+1] ∼ N

(
b0(i t+1, st+1)x0t+1

+
∑̀
j=1

bj (i t+1, st+1){[yt− j+1− b0(i t− j+1, st− j+1)]x0t− j+1}, 3
)

. (48)

Combining equations (46) through (48) yields

p(st+1 = (k, st+1) |Yt+1)

=
K∑

j=1

p(yt+1| st+1, st , Yt )

[ S∑
s=1

1(st+1 = s)pkj (s)

]
p[st = ( j, st ) |Yt ]{

K∑
u=1

K∑
v=1

p(yt+1| st+1, st , Yt)

[ S∑
s=1

1(st+1= s)puv(s)

]
p[st = (v, st ) |Yt ]

} .

(49)

The expressions in (50) together with (45) yield the desired log-likelihood func-
tion. One important feature about (50) will be most useful with respect to the deriva-
tion of an LM statistic: Only thep(s) for st+1= sappears in the recursion formula
for p(st+1 |Yt+1). All other transition matricesp(s) with s 6= st+1 do not appear
directly, though, of course, they affectp(st |Yt+1) on the right-hand side of (50).

https://doi.org/10.1017/S136510050001703X Published online by Cambridge University Press

https://doi.org/10.1017/S136510050001703X


482 ERIC GHYSELS

Finally, we elaborate on the LM test discussed in this section, which consists of
a system ofS stacked score functions involving only transitions from a particular
season. More specifically, in case there are two states, that is,K = 2, we have for
i = 1, 2 the following:

r s
i t (λ)≡ ∂ log p(yt |Yt−1; λ)

∂pii (s)
= 1(st = s)

{
pii (s)−1 p[st = (i, st ), st−1(i, st−1) |Yt ]

− [1− pii (s)]−1 p[st = ( j, st ), st−1 = (i, st−1) |Yt ]
}

+ [ pii (s)]−1

((
t−1∑
n=2

1(sn = s){p[sn = (i, sn), sn−1 = (i, sn−1) |Yt ]

− p(sn = (i, sn), sn−1 = (i, sn−1) |Yt−1)}
))

− [1− pii (s)]−1

((
t−1∑
j=1

1(sn = s){p[sn = ( j, sn), sn−1 = (i, sn−1) |Yt ]

− p[sn = ( j, sn), sn−1 = (i, sn−1)|Yt−1]}
))

+ 1(s1 = s)
p[s1 = (i, s1) |Yt ] − p[s1 = (i, s1) |Yt−1]

1− pii (s)
(50)

for t ≥ 2, whereas fort = 1,

r s
i 1(λ)= 1(s1= s)

p[s1= (i, s1) |Yt ]−{[1− pj j (s)]/[1− pii (s)+ 1− pj j (s)]}
1− pii (s)

,

(51)

where j = 2 wheni = 1 and j = 1 for i = 2. From (51) and (52), we define

Rs
t (λ) ≡

[
r s

1t (λ)

r s
2t (λ)

]
(52)

andRt (λ)≡ [R1
t (λ)′ . . . RSt (λ)′]′. The latter will be used to define the LM test.

Because general specification tests have been developed elsewhere, we will
not devote much attention to their presentation. Indeed, Hamilton (1996) devel-
oped tests for omitted autocorrelation, omitted ARCH, and misspecification of
the Markovian dynamics. Such tests can be applied easily to the present frame-
work. In the remainder of the section, we focus our attention exclusively on the
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principal hypothesis of interest, namely, the periodicity of the Markov structure.
The hypothesis of no periodic structure can be formally stated as follows:

H0 : pi j (s) = p̄i j ∀i, j ∈ {1, . . . , K }, s= 1, . . . ,S. (53)

This hypothesis is “standard,” and hence does not involve issues such as testing
when nuisance parameters are not identified under the null and issues that emerge
when testing model (17) against a linear time-series model, for instance.12

We first use an LR test, which can be formulated as follows:

LR= −2[L(yST , 2̂c)− L(yST , 2̂u)]
d→ χ2(df), (54)

where2̂u and2̂c are the unrestricted and restricted ML estimates, respectively,
df is the number of degrees of freedom equal to(S − 1)× K ; andL(·) is the log
likelihood appearing in (45) through (52).

Next, we consider an LM test for the same hypothesis. Such a test has several
advantages over the LR test. Since one estimates the restricted (i.e., nonperiodic)
model, one uses the score function of the periodic model evaluated at2̂c. The
fact that one has to estimate the model only once is one advantage. However, the
most important advantage is that the parameter space is greatly reduced to the sim-
ple aperiodic model for which estimates are readily available, like the estimates
obtained by Hamilton (1989) for the case of unadjusted quarterly GNP. The LM
test is also elegant because of its structure. So far, we have shown that the condi-
tional probabilityp(st+1 |Yt+1) only involvespi j (s) for st+1 = s. Because of this
feature the LM test will consist of a system ofS stacked score functions involving
only transitions from a particular season. More specifically, in case there are two
states, that is,K = 2, we have fori = 1, 2 the following:

Rs
t (λ) ≡

[
r s

1t (λ)

r s
2t (λ)

]
,

wherer s
i t (λ), i = 1, 2, are defined in (50) andRt (λ)≡ [R1

t (λ)′ . . . RSt (λ)′]′. The
latter is a stacked system of score functions for each season. Then, the score test
can be formulated as13

L M ≡ T

[
(1/T)

ST∑
t=1

Rt (λ̂c)

]′[
(1/T)

ST∑
t=1

Rt (λ̂c)Rt (λ̂c)
′
]−1

×
[
(1/T)

ST∑
t=1

Rt (λ̂c)

]
d→ χ2[(S − 1)× K ]. (55)
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The statistic has a standard asymptotic distribution because the periodic structure
is obviously an observable state.

4. CONCLUSIONS

We have presented a general class of regime-switching models that feature some
intriguing properties that allow for some nontrivial interactions between seasonal
cycles and so-called business cycles. Consequently, the regime-switching models
introduced here break with a long tradition of viewing seasonal and business
cycles as completely independent time-series movements. In a companion paper
[Bac et al. (1998)] we provide an empirical application involving historical time
series. Ghysels et al. (1998) also discuss several empirical examples applied to
monthly and quarterly U.S. data series.

NOTES

1. See, for example, Shiller (1994) who counts 23 crashes since 1926, with 10 occurring in October.
2. To avoid notation that is too cumbersome, we do not introduce a separate notation for the

theoretical representation of stochastic processes and their actual realizations.
3. If argumentsst were absent from equations (5) and (6), then we would recover the nonperiodic

AR(1) representation of Hamilton’s (1989) stochastic regime-switching model as it appears in equations
(3) and (4) of that paper.

4. For a more elaborate discussion, see Tiao and Grupe’s (1980) original paper or Hansen and
Sargent’s (1996) paper.

5. Osborn (1991) in fact establishes a link between periodic processes and contemporaneous ag-
gregation and uses it to show that the periodic process must have an average forecast MSE at least as
small as that of its univariate time-invariant counterpart. A similar result for periodic hazard models
and scoring rules for predictions is discussed by Ghysels (1993).

6. We substituteyt for yt (ω), etc., to avoid unnecessary notational complexity.
7. See, for instance, Hansen (1992) and McCulloch and Tsay (1994) for regime-switching models

with state-dependent AR polynomials.
8. A formal treatment of such regularity conditions has been absent from the literature on Hamilton-

type models. Because periodic Markov regime-switching models cover as a special case an aperiodic
homogeneous Markov scheme, the regularity conditions apply to a large set of applications hitherto
treated informally.

9. The correspondence betweenFs andP(s) is relatively simple and can be found, for instance, in
Hamilton (1994, pp. 3063, 3067).

10. Notice thatst no longer appears inB`(·) because it is absorbed through stacking.
11. The probability space used in Assumption 1 is appropriate for dealing with stacked skip-

sampled vectors where stacking is based on seasons. In particular,SS represents a sigma algebra based
on sampling events conditional on the season in which they occur. The formal discussion presented
here includes as special cases models that do not involve periodic Markov chains. Indeed, this is easy to
see: Simply replaceτ with t , and replace the probability space(Ä,SS , PS ) with (Ä,S, P) while the
number of states in Assumption 2 equalsr `+1. See Hansen and Sargent (1996) for the measure-theoretic
issues involved.

12. Hansen (1991) discusses testing Hamilton’s model against a linear time-series model. Using a
standardized LR test, he was unable to reject the hypothesis of an AR(4) in favor of Hamilton’s model.
Instead, he found supporting evidence for a mixture model with a state-dependent AR(2) model.

13. Note that the normalization is with regard toT because the score test is based on a stacked
vector central-limit argument.
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