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In this work, we employ a kinetic-theory-based approach to predict the hydrodynamic
forces on electromechanical resonators operating in gaseous media. Using the
Boltzmann–BGK equation, we investigate the influence of the resonator geometry
on the fluid resistance in the entire range of non-dimensional frequency variation
0 � τω � ∞; here the fluid relaxation time τ = μ/p is determined by the gas viscosity
μ and pressure p at thermodynamic equilibrium, and ω is the (angular) oscillation
frequency. Our results here capture two important aspects of recent experimental
measurements that covered a broad range of experimental parameters. First, the
experimentally observed transition from viscous to viscoelastic flow in simple gases
at τω ≈ 1 emerges naturally in the numerical data. Second, the calculated effects of
resonator geometry are in agreement with experimental observations.

1. Introduction
Electromechanical resonators with linear dimensions in the nanometre to micrometre
scales are being developed for technological applications and fundamental research.
One of the most important attributes of these nano/microelectromechanical systems
(N/MEMS) resonators is that they have a very small intrinsic dissipation of energy,
quantified by their high quality factors Qo ∼ O(102–104). N/MEMS resonators are
thus ultrasensitive to external perturbations enabling important technologies such as
atomic force microscopy (AFM) (Binnig, Quate & Gerber 1982) and biochemical
sensing (Ekinci, Huang & Roukes 2004).

Some of the most promising applications of N/MEMS, however, require their
immersion in fluid media (e.g. air mixtures or biological fluids), where fluid–
device interaction can significantly degrade the overall sensitivity (Sader 1998;
Bhiladvala & Wang 2003; Paul & Cross 2004). Numerous efforts are currently
underway to overcome this difficulty and develop future N/MEMS for promising
nanotechnological and biomedical applications. Unquestionably, the flows generated
by N/MEMS demand a novel understanding of fluid mechanics at increasingly smaller
time and length scales. Conversely, experimental characterization and numerical
analysis of fluid-immersed N/MEMS resonators provide an invaluable opportunity
to advance knowledge in new areas of fluid mechanics such as high-frequency
nanofluidics. Recent work on high-frequency oscillating flows (Karabacak, Yakhot &
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Figure 1. (a) Cantilever beam (b) Doubly clamped beam (c) Quartz crystal.

Ekinci 2007; Yakhot & Colosqui 2007; Colosqui et al. 2009) reports a viscoelastic
transition in simple gases at sufficiently large values of the non-dimensional frequency
τω. Here, τ = μ/p is the relaxation time in terms of the pressure p and viscosity
μ of the gas at equilibrium; ω is the oscillation (angular) frequency; the non-
dimensional frequency is also the Weissenberg number for this problem, Wi = τω.
Such a remarkable phenomenon is beyond the reach of classical (Newtonian) fluid
mechanics, which is only valid for τω � 1. The viscoelastic transition is accompanied
by a substantial attenuation of the energy dissipated by the fluid and a subsequent
improvement in the performance of the fluid-immersed device.

In this study, we solve the Boltzmann–BGK equation (BE–BGK) via numerical
procedures based on the rigorous formulation of the lattice Boltzmann–BGK (LBGK)
method in Hermite space (Shan, Yuan & Chen 2006; Zhang, Shan & Chen 2006).
Previous work demonstrated that consistent LBGK algorithms, using low-order
Hermite expansions and so-called regularization procedures, are not constrained
to Newtonian hydrodynamics and can effectively model linear viscoelastic behaviour
in high-frequency (isothermal) flows (Colosqui et al. 2009). The present numerical
results show a close agreement with experimental measurements of the energy
dissipation on different resonators over a wide range of frequency and pressure
variation.

2. Electromechanical resonators
Illustrated in figure 1(a,b) are the first class of studied resonators in the form of
cantilever and doubly clamped beams (Lz � Lx ∼ Ly). Harmonic motion in the beams
can be induced through the application of periodic electrostatic, photothermal or
inertial forces. The beams are driven around their fundamental and first harmonic
out-of-plane flexural resonances while optical techniques are used to determine the
resonant response (Kouh et al. 2005). The doubly clamped beams are suspended
above a stationary substrate at a mean height � � 400 nm; thus, the presence of
the substrate has no significant effect on the fluidic damping (e.g. via squeeze-
film damping) (Karabacak et al. 2007). We also study a macroscopic quartz crystal
resonator (Ekinci, Karabacak & Yakhot 2008). The studied resonator (see figure 1c)
is in the form of a thin crystal disk (Lx = Lz � Ly) connected to electrodes so that
its resonances in thickness-shear modes can be electrically excited and detected by
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Lattice Boltzmann simulation of electromechanical resonators 243

Dimensions ωo/2π S/mo

Class (μm) (MHz) Qo (m2 kg−1) AR

Cantilever beama Lx = 2.0 Ly = 53 Lz = 460 0.078 8320 688 26
Cantilever beama Lx = 3.6 Ly = 36 Lz = 125 1.97 3520 405 10
Doubly clamped beam Lx = 0.2 Ly = 0.23 Lz = 9.6 24.2 415 8380 1
Quartz crystal disk Lx = Lz = d � 10 000 Ly � 160 32.7 40 755 6.29 0

Table 1. Electromechanical resonators. aFirst harmonic.

piezoelectric effects. In all the measurements, the resonance amplitudes of the beams
and crystal resonators are kept extremely small.

Specific dimensions and (vacuum) characteristics, such as the resonance frequency
ωo, quality factor Qo and surface to modal mass ratio S/mo, of four studied resonators
are listed in table 1. The size of the devices vary from sub-micron to millimetres while
their resonance frequencies are in the range of kilohertz to megahertz. Experimental
analysis of the four resonators in table 1 is performed with the devices operating in
purified nitrogen at room temperature, T � 300 K; the pressure is gradually varied
from low-vacuum to atmospheric conditions, 0.1 � p � 1000 Torr. As the pressure is
varied and given that τ =μ/p, the resulting flows cover a wide range of dimensionless
frequency variation 0.001 � τω � 10 (Karabacak et al. 2007).

2.1. Resonators immersed in a fluid

The dynamics of an electromechanical resonator immersed in a fluid can be studied by
means of a one-dimensional harmonic oscillator approximation (Cleland & Roukes
1998)

mo

(
xtt + γo xt + ω2

ox
)

= F (t) + Ff (t), (2.1)

where mo is the effective mass corresponding to the vibrational mode (Cleland &
Roukes 1998; Karabacak et al. 2007), γo is the (structural) damping coefficient
and ωo is the resonance frequency of the device in vacuum. The load on the
oscillator is produced by the driving force F (t) = Re{F (ω)e−iωt} along with a
fluid resistance Ff (t) = −mo(γf xt + βf xtt ) which has both dissipative and inertial
components (Landau & Lifshitz 1959). The oscillation amplitude has the general
form x(t) = Re{x(ω)e−i(ωt+φ)} and from (2.1) the frequency response is

x(ω) =
F0

mo

1[
ω2

o − ω2(1 + βf ) − iω(γo + γf )
] , (2.2)

with F0 ≡ F (ω)eiφ being the effective force amplitude. Equation (2.2) includes fluidic
effects through the fluidic inertia, or fluid-added mass, βf and fluidic damping
γf . Experimental values of the added mass and fluidic dissipation are respectively
obtained from the frequency shift and the broadening of the Lorentzian frequency
response (2.2) (Karabacak et al. 2007). In this study, the fluid-added mass is very small,
βf � 1, and so is the measured shift in the resonance frequency: �ωo/ωo ≈ βf /2. The
device quality factor in the fluid thus becomes Q ≈ ωo/(γo + γf ).

3. Hydrodynamics of high-frequency flows
Similar to previous work (Sader 1998; Bhiladvala & Wang 2003; Paul & Cross
2004), the present analysis is valid when gradients along the spanwise direction of
the oscillating body are negligible so that the flow is considered two-dimensional.
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This assumption holds for a slender beam (Lz � Lx ∼ Ly) with uniform rectangular
cross-section, or a thin disk (Lx = Lz = d � Ly), where the aspect ratio AR = Ly/Lx

(see table 1) becomes the geometric parameter characterizing the dominant chordwise
flow. Other dynamically relevant flow parameters are the Mach number M =Uo/cs

and the Reynolds number Re = ρUoLx/μ determined by the fluid velocity amplitude
Uo = |ωx(ω)|, the speed of sound cs � 298 m s−1 and molecular viscosity μ � 1.78 ×
10−5 kgm−1 s−1 of nitrogen at room temperature. Given the tiny oscillation amplitude
of the resonators, the resulting Mach and Reynolds number are extremely small,
M ∼ Re < 0.001, in all operation conditions. Consequently, the generated flow can be
assumed laminar, nearly incompressible and isothermal.

The common approach hitherto encountered in the literature (Sader 1998;
Bhiladvala & Wang 2003; Paul & Cross 2004) for the theoretical and/or numerical
determination of fluidic effects on resonators is based on the Navier–Stokes (NS)
equations for Newtonian fluid flow. However, a fundamental assumption for the
applicability of classical NS equations is that hydrodynamic scales are much larger
than their kinetic counterparts, i.e. τω � 1. Previous work (Karabacak et al. 2007;
Yakhot & Colosqui 2007; Ekinci et al. 2008; Colosqui et al. 2009) on high-frequency
oscillating flows has established that varying the non-dimensional frequency τω

gives rise to qualitatively different behaviour: purely viscous (Newtonian) for τω =0,
viscoelastic (transitional) for 0 <τω < ∞ and purely elastic (free molecular) for
τω → ∞. While viscous flows are accurately described by Newtonian hydrodynamic
equations, an ‘extended’ hydrodynamic description accounting for kinetic (non-
equilibrium) phenomena is required at sufficiently large τω where non-Newtonian
behaviour is observed (see Yakhot & Colosqui 2007; Colosqui et al. 2009).

3.1. Newtonian hydrodynamics

In the Newtonian regime τω � 1, the flow around a body oscillating with very small
amplitude |x(ω)| � Lx is governed by the linearized NS equations for incompressible
flow (Landau & Lifshitz 1959):

∇ · u = 0,
∂u
∂t

= ν∇2u − 1

ρ
∇p. (3.1)

After adoption of the standard no-slip boundary conditions, these equations provide
well-known analytical solutions for simple geometries (Landau & Lifshitz 1959; Tuck
1969). Through these solutions, one can determine fluidic forces over a body as

Ff (t) = ρBω2Re{Γ (ω)x(ω)e−i(ωt+φ)},

where ρ is the fluid density and B is the body volume; Γ = mo(βf +iγf /ω)/(ρB) is the
so-called ‘hydrodynamic’ function. One of the simplest solutions of the unsteady NS
equations is obtained for an infinite plate oscillating in a fluid (Lx = Lz = ∞, Ly = 0),
known as the Stokes’ second problem (Landau & Lifshitz 1959; Yakhot & Colosqui
2007). For a slender body having a thin cross-section with small but finite width
(0 <AR � 1), the Newtonian hydrodynamic function can be approximated by the
solution of Stokes’ second problem:

Γ(AR � 1)(ω) = (1 + i)
S

B

√
ν

2ω
. (3.2)

Here, S is the surface area in contact with the fluid and ν = μ/ρ. When the cross-
section is not small (AR � 1), the common approach has been to study the flow
generated by simpler geometries such as a cylinder with a radius equal to half the
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nominal length scale, r =Ly/2. For the case of an infinite cylinder with its axis normal
to the x-direction, the hydrodynamic function is (Sader 1998; Bhiladvala & Wang
2003; Paul & Cross 2004)

Γcyl(ω) = 1 +
4i√

iωr2/ν

K1(−i
√

iωr2/ν)

K0(−i
√

iωr2/ν)
, (3.3)

where K0 and K1 are Bessel functions of the third kind. The asymptotic behaviour of
the Newtonian hydrodynamic function of a cylinder (3.3) and that of a rectangular
beam are similar in both limits ωr2/ν → 0 and ωr2/ν → ∞ (Tuck 1969). For
this reason, and only within the Newtonian regime (τω � 1), the solution for an
oscillating cylinder has been employed with some degree of accuracy in estimating
fluidic effects on rectangular beams with cross-sections of moderate-to-large aspect
ratio (Sader 1998; Bhiladvala & Wang 2003; Paul & Cross 2004). For very large
aspect ratios (Lx → 0), Sader (1998) formulated an empirical correction to (3.3)
such that the hydrodynamic function becomes Γ(AR � 1) = ΓcylΩ(ωL2

y/ν). Nevertheless,

the correction of Sader (1998) remains essentially unity |Ω − 1| =O(10−1) within all
regimes studied in this work.

3.2. Beyond Newtonian hydrodynamics

When flow time scales T = 1/ω are of the same order as the relaxation time τ ,
kinetic effects become significant and Newtonian hydrodynamic equations (3.1) break
down. The primary issue encountered beyond Newtonian regimes (τω � 1) is the lack
of a robust hydrodynamic equation governing the flow. To obtain a hydrodynamic
description valid for arbitrary non-dimensional frequencies (0 � τω ≡ τ/T � ∞), one
must resort to kinetic theory representations of the flow. Unfortunately, the problem
of deriving (closed-form) hydrodynamic equations via kinetic theory, albeit largely
studied (see Grad 1949; Cercignani 1969; Chapman & Cowling 1970; Chen, Orszag &
Staroselsky 2007), remains essentially open for arbitrary flow regimes.

Another critical point arising when kinetic effects are no longer negligible is
that of proper boundary conditions for the hydrodynamic equations at the solid–
fluid interface. Hydrodynamic boundary conditions are determined by a rather
complex fluid–solid interaction in the vicinity of a solid surface. For flows at finite
Knudsen number, the slip boundary condition has been extensively adopted (Park,
Bahukudumbi & Beskok 2004; Lauga, Brenner & Stone 2007; Weng 2008). According
to Maxwell’s picture of slip of a gas over a solid surface, a finite mean free path
λ∼ τcs leads to an ‘effective’ slip velocity

[u(xw, t) − Uw] · t =
2 − σv

σv

λ [∇(u · t) · n + ∇(u · n) · t] (3.4)

to be employed as boundary condition at the coarse-grained (hydrodynamic) level.
Here t and n are the unit tangent and normal vectors to a wall located at xw and
moving with velocity Uw; and u is the fluid velocity. Meanwhile, σv is the tangential
momentum accommodation coefficient of the solid surface. A unit accommodation
coefficient (σv = 1) represents a situation where all fluid particles are diffusively
scattered after collision with the wall; the opposite limit (σv = 0) corresponds to the
case where all such collisions are specular. First-order Maxwell slip models (3.4) are
accurate for steady flow at small to moderate Knudsen numbers (Kn < 1) (Park et al.
2004; Weng 2008), while high-order versions have been proposed for unsteady shear
flow (Park et al. 2004; Hadjiconstantinou 2005). The effective slip in oscillating shear
flows has recently been investigated via kinetic methods such as LBGK and direct
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simulation Monte Carlo (DSMC). Expected functional shapes have been obtained
for the slip as a function of the Knudsen number Kn = λ/L in steady shear flows
(L ∼ |∇ut |/|ut |) or the non-dimensional frequency τω = τ/T in oscillating shear flows
(Park et al. 2004; Hadjiconstantinou 2005; Colosqui & Yakhot 2007).

4. Kinetic model of hydrodynamics
At room temperature and under ordinary pressure conditions (ranging from low-
vacuum to atmospheric pressure), simple gases are composed of a large number
of electrically neutral molecules, each with an effective diameter that is negligible
compared to the average intermolecular distance. Under such conditions, the BE–
BGK is commonly employed as a kinetic model of the flow (Cercignani 1969; Chen
et al. 2007). For monatomic gases in the absence of external force fields F = 0, the
BE–BGK for the evolution of the Boltzmann distribution f (x, v, t) in phase space
(x, v) reads:

∂f

∂t
+ v · ∇f = −f − f eq

τ
. (4.1)

Without loss of generality, we define θ = kBT /mgas = c2
s and adopt a molecular mass

mgas =1; the equilibrium distribution can then be expressed as

f eq(x, v, t) =
ρ

(2πθ)D/2
exp

[
− (v − u)2

2θ

]
, (4.2)

where D is the velocity space dimension (v = vkek; k =1, D). Hydrodynamic quantities,
like mass density ρ, fluid velocity u and energy are obtained as moments of the
distribution function:∫

f (x, v, t) dv = ρ(x, t),∫
f (x, v, t)v dv = ρu(x, t),∫
f (x, v, t)v2 dv = ρDθ(x, t) + ρu2(x, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.3)

Hereafter, since M =Uo/
√

θ � 1 for the studied flow regimes, we assume θ � const.
The BE–BGK (4.1) must be regarded as an ad hoc or phenomenological model

satisfying a few basic symmetries and conservation laws of a real system. Thus,
the exact applicability limits of the BE–BGK model will remain questionable until
it is rigorously derived from microscopic equations. In the limit of small Knudsen
(Kn → 0) and Weissenberg (Wi → 0) numbers, the model leads to the NS equations,
justifying its approximate validity. In the opposite limits Kn � 1 and/or Wi � 1, the
accuracy of the BE–BGK model can be tested either by comparison with experimental
data or with another, more rigorous, theory. In this paper, interested in oscillating
flows in the high-frequency limit Wi = τω � 1, we have chosen detailed comparison
with experimental data as a criterion to determine the applicability of the employed
models in this non-trivial and poorly studied limit.

4.1. Kinetic boundary conditions

For bounded flows, particular solutions of (4.1) will require proper boundary
conditions. Within the framework of classical kinetic theory, we consider the gas
as bounded by a perfectly elastic and isothermal surface (θw = θ) located at xw while
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moving with velocity Uw . Under this depiction, particles impinging on a solid surface
with velocity v′ acquire a post-collision velocity v defined by the scattering kernel
B(v′ → v). General boundary conditions will then read (Cercignani 1969)

|(v − Uw) · n| f (xw, v, t) =

∫
(v′−Uw)·n<0

|(v′ − Uw) · n| B(v′ → v)f (xw, v′, t) dv′ (4.4)

for (v − Uw) · n > 0. In this work, we implement and assess two different kinetic
boundary conditions at the fluid–solid interface: diffuse-scattering (DS)

f (xw, v, t) =
ρ

(2πθ)D/2
exp

[
− (v − Uw)2

2θ

]
; (v − Uw) · n > 0 (4.5)

and bounce-back (BB)

f (xw, v, t) = f (xw, −v + 2Uw, t); (v − Uw) · n > 0, (4.6)

where impinging particles [(v − Uw) · n < 0] are reflected back with the same relative
speed and angle of incidence. While a DS kernel yields hydrodynamic slip in agreement
with the Maxwell slip model (3.4) for a fully accommodating surface (σv = 1), the BB
model renders no-slip at the wall for all flow regimes (i.e. the surface has negative
accommodation coefficient σv = −2). The validity range of each model for the solid–
fluid interaction will be assessed by comparing LBGK simulation results using both
DS and BB schemes against experimental results.

4.2. Free-molecule hydrodynamics

The non-dimensional frequency τω = 2πλ/LFM is proportional to the ratio of the
(equilibrium) mean free path λ= τcs to the average distance LFM = cs2π/ω travelled
by a particle during one oscillation period. Hence, in the high-frequency limit τω � 1
one has λ� LFM , and free-molecule flow approximations are applicable within a
thin ‘ballistic’ layer adjacent to the wall. However, LFM → 0 for τω → ∞, while
fluid particles undergo multiple collisions as they penetrate the heat bath outside
the vanishing ‘ballistic’ layer. When the system momentum varies over times smaller
than the relaxation time of the heat bath, coupling between microscopic relaxation
and hydrodynamic processes can lead to memory effects and other nonlinearities in
the transport coefficients (i.a. time-dependent shear viscosity). Due to such strong
non-equilibrium phenomena, not modelled by the free-molecule approach described
in this section, the fluid system ceases to be Markovian and viscoelastic effects can
be observed at macroscopic level.

Employing a free-molecule approximation (Bird, Stewart & Lightfoot 2002), let
us analyse an Lx × Ly rectangular section moving in the x-direction with velocity

u = ui by assuming that M = u/
√

θ � 1, while the fluid infinitely far away remains at
thermodynamic equilibrium and undisturbedly at rest (ρ∞ = ρ, U∞ = 0). In the case
of diffusive wall scattering (4.5), the net x-force per unit length is

F DS
f (t) = −

(√
8

π
Ly +

√
2

π
Lx

)
ρ

√
θ u. (4.7)

For the BB model (4.6), which renders no hydrodynamic slip, one has F BB
f = 2F DS

f .
Similar expressions can be obtained for other models of the gas–surface interaction,
e.g. F SP

f (t) = −(
√

(32)/(π)Ly)ρ
√

θ u for specular reflection models rendering no
shear stress. Clearly, under the free-molecule approximation employed, there is no
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fluidic inertia (βf =0) and hydrodynamic forces only have a dissipative component
(Ff = fd u).

5. Lattice Boltzmann–BGK simulation
The method in this work falls in the class of isothermal LBGK models originally
formulated by Shan et al. (2006) and investigated by Colosqui et al. (2009) for
unidirectional flow in non-Newtonian regimes. Discretization of velocity space in a
finite number of lattice velocities {vi; i = 1, Q} allows one to reduce the problem of
solving (4.1) to that of solving a set of LBGK equations

∂fi

∂t
+ vi · ∇fi = −fi − f

eq
i

τ
, (5.1)

f
eq
i = wiρ

[
1 +

1

θ
(vi · u) +

1

2θ2
(vi · u)2 − 1

2θ
u2

]
i = 1, Q, (5.2)

governing the evolution of each lattice population fi(x, t) =wif (x, vi , t) in
configuration space. The set of LBGK equations (5.1) and (5.2) is formally derived by
projecting the continuum BE–BGK equations (4.1) and (4.2) onto the Hilbert space
�2 spanned by the orthonormal basis of Hermite polynomials up to second order. A
Gauss–Hermite quadrature formula determines the lattice velocities vi , i.e. integration
points, and their associated weights wi . A quadrature rule with algebraic degree of
precision d � 4 permits the exact numerical integration of the three leading moments
(4.3) of the continuum distribution f :

ρ(x, t) =

Q∑
i=1

fi(x, t), ρu(x, t) =

Q∑
i=1

fi(x, t)vi , ρ(u2(x, t) + Dθ) =

Q∑
i=1

fi(x, t)v2
i .

(5.3)

The particular lattice employed for the present simulations is the D2Q37 (Shan &
Chen 2007) (i.e. velocity space dimension D =2, number of lattice velocities Q =37);
the weights and velocity abscissae of the lattice are included in Appendix A. After
lattice discretization of configuration space (�xi = vi�t), numerical procedures to
solve the LBGK equations (5.1) advance in two steps: advection and collision. During
the advection step, the streaming of lattice populations {fi; i = 1, Q} is performed
along the lattice directions:

f adv
i (x, t) = fi(x − vi�t, t). (5.4)

At the end of the advection step, mass, momentum and energy (5.3) are computed
from f adv

i , which allows the explicit evaluation of equilibrium distributions (5.2).
Then, the BGK ansatz is applied at the collision step:

fi(x + vi , t + �t) = f
eq
i +

[
1 − �t

τ

]
f̂i

ne
. (5.5)

The projected, or ‘dealiazed’, non-equilibrium component (Zhang et al. 2006)

f̂ ne
i =

wi

2θ2
(vαivβ i

− θδαβ)

Q∑
j=1

(
f adv

j − f
eq
j

)
vαjvβj

, α, β = 1, D i = 1, Q (5.6)

ensures that the post-collision distribution fi is strictly expressed by a linear
combination of up to second-order Hermite polynomials, i.e. fi ∈ �2. The projection
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procedure (Zhang et al. 2006) specified in (5.5) and (5.6) eliminates significant
numerical errors due to lattice orientation anisotropy and ‘aliasing’ effects, which
are reported for the standard LBGK algorithm in strong non-equilibrium conditions
(Zhang et al. 2006; Colosqui et al. 2009). The hydrodynamic equations rendered by
the employed LBGK model have been studied in previous work (Yakhot & Colosqui
2007; Colosqui et al. 2009) and are presented in Appendix B.

6. Results
Our approach here is to compare the simulation results to recent experimental
measurements. In order to do this, we have used the experimentally available
parameters in our simulations and presented our numerical data along with our
previous experimental data.

The quantitative analysis of fluidic damping on devices with different sizes and
structural features is performed by employing the non-dimensional quantity:

γ f (τω, AR) =
γf

ρ

√
θ

2

S

mo

. (6.1)

Here, S/mo is the ratio of wet area to modal mass reported in table 1. After
normalization by the fluid mass density ρ and speed of sound cs =

√
θ , the

dimensionless damping γ f (6.1) is solely determined by the non-dimensional frequency
τω and hydrodynamic shape characterized by the aspect ratio AR = Ly/Lx . Based
on reported data in table 1, we adopt AR � 0 for the quartz resonator and AR � 1,
10 and 26 for the beams. Experimentally measured values of the total damping are
presented as open symbols in figure 2. These are determined from measurements of
the resonant response (2.2) as a function of pressure as discussed above. As observed
in figure 2, experimental values of the density-normalized damping γ f (6.1) exhibit an
increasing dispersion in the upper limit of dimensionless frequency variation τω → ∞
where γf → 0. This is due to the fact that the measured fluidic effect becomes smaller
and smaller as the pressure is lowered and the measured signal is dominated by the
finite error ∼ 5 % present in all the experimental data. This is discussed in more
detail in Karabacak et al. (2007).

6.1. Lattice Boltzmann–BGK simulation

Simulations are performed with the D2Q37-H2 model described in § 5 and
Appendix A. It has been demonstrated (Zhang et al. 2006; Colosqui et al. 2009)
that high-order LBGK models such as D2Q37-H2 with a projection procedure
are in exact agreement with extended hydrodynamic descriptions (see Appendix B)
previously derived for isothermal and unidirectional flows in both Newtonian and
non-Newtonian regimes. In all simulations, τ = μ/p ≡ ν/θ is readily determined from
the gas properties at thermodynamic equilibrium, while the employed Mach number
is very low M = Uo/

√
θ � 0.01. Dimensional analyses of the studied oscillating

flow (Ekinci et al. 2008) indicate that as long as |x(ω)| � Lx and Re =MLx/λ� 1
(i.e. for Lx/λ� 1/M), the relevant length scale is not determined by linear geometric
dimensions of the body Ly ∼ AR Lx but by a dynamic characteristic length δ. This
dynamic length emerges as the viscous Stokes layer thickness δ =

√
ν/ω = λ/

√
τω for

τω � 1 and becomes the so-called ‘ballistic’ Stokes layer thickness δ = λ/τω in the
limit τω � 1. Dissipative effects are characterized by a length scale δ−(τω) which
is of the order of the viscous Stokes layer thickness for τω � 1 and becomes of
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(a) (b)

(c) (d)
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100

10–1

100

10–1
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10–1

Figure 2. Non-dimensional fluid damping γ f (τω,AR) vs. non-dimensional frequency τω.
(a) ωo/2π = 32.7 MHz, AR =0. (b) ωo/2π = 24.2 MHz, AR = 1. (c) ωo/2π = 1.97 MHz, AR = 10.
(d ) ωo/2π =0.078 MHz, AR = 26. Open symbols represent experimental data. In the LBGK
simulations two boundary conditions are used. The solid lines (and closed circles) are the
result from D2Q37-H2 with DS at τω =0.001, 0.01, 0.1, 0.5, 1 and 10. Similarly, the dotted
lines (and closed circles) correspond to D2Q37-H2 with BB. The dashed lines are calculated
using the Newtonian fluid approximation. The dashed-dotted lines are the free-molecular flow
(DS) results.

the order of the mean free path as τω → ∞. Grid convergence tests corroborate
such previous dimensional analyses: while geometric dimensions of the oscillating
section were varied in a wide range (0.01 � Lx/λ� 100), simulation results showed no
significant variation for spatial resolution �x � δ/30 (i.e. �t ω � 1/30).

The simulation domain is a periodic box of approximate size ∼ 20–40Lx × 20 δ−
with an oscillating rectangular section (Lx × Ly) in the centre; a Cartesian grid
with uniform resolution is employed in all cases. For the employed numerical setup,
the damping of ‘longitudinal’ modes imposed a hard constraint on the minimum
length of the computational domain; this constraint becomes especially critical to the
computational cost in the high-frequency regimes as τω → ∞. Simulation results on
different resonators obtained by the D2Q37-H2 model for τω = 0.001, 0.01, 0.1, 0.5, 1
and 10 are compared against experimental data and available analytical expressions
for Newtonian and free-molecular flows in figure 2.

The employed LBGK models yield quantitative agreement with experimental
measurements over a wide range of non-dimensional frequency 0.001 � τω � 10 for
different device geometries and dimensions (table 1). On the other hand, Newtonian
fluid approximations such as (3.2) for the quartz disk (AR � 0) and (3.3) for the beams
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(AR � 1) (Sader 1998; Bhiladvala & Wang 2003; Paul & Cross 2004) give acceptable
agreement only within the low-frequency limit τω < 0.1. It is important to note that
all Newtonian predictions largely overestimate the fluidic dissipation in the frequency
range τω > 0.1. In the high-frequency limit τω � 1, only kinetic approaches such as
LBGK simulation and the free-molecular flow solution given by (4.7) are in good
agreement with the experiment.

6.2. Fluid–solid interaction and boundary schemes

Owing to the small amplitude of oscillation (|x(ω)| � Lx), the solid boundary can
be assumed to remain static. Only the boundary velocity Uw =Uo sin(ωt)i varies
in time with velocity amplitude Uo <ω�x such that the displacement amplitude is
smaller than the distance between neighbouring lattice nodes. Two boundary schemes
are employed in LBGK simulation when modelling the moving walls: the DS and
BB schemes described in § 4 (see Appendix A for implementation details). While a
properly implemented BB scheme (Zou & He 1997) renders no-slip as hydrodynamic
boundary condition, the DS model produces an effective slip velocity between the
body surface and the fluid immediately adjacent to it. Experimental results in figure 2
show that numerical schemes rendering no-slip at the wall overpredict the fluidic
dissipation when τω � 0.1. On the other hand, the DS scheme which models the
resonator surface as fully accommodating (σv = 1) yields a close agreement with the
experimental data in the entire studied range 0.001 � τω � 10.

6.3. Quality factor and fluidic effects

Since fluidic inertia is very small (βf � 1) for the studied flow conditions, the quality
factor of the fluid-immersed device is

Q = Qo

1

1 + ρ

√
θ

2

S

moγo

γ f (τω, AR)

. (6.2)

Evidently, dissipative effects quantified by the structural dissipation γo = ωo/Qo and
fluidic damping γf = ρ

√
θ/2 (S)/(mo)γ f determine the device performance. The

quality factors reported for the four studied devices are compared against numerical
predictions in figure 3. We observe that LBGK simulation (model D2Q37-H2 with
DS wall treatment) is in close agreement with experimental data obtained for different
cross-sections (0 � AR � 26) in a wide range of operation conditions (0.1 � p � 1000
Torr, 0.078 � ωo � 24 MHz).

7. Conclusions
Experimental measurements of fluidic effects on dissimilar electromechanical
resonators have been compared against available analytical approaches, i.e. the
Newtonian flow and free-molecular flow approximations, as well as against kinetic-
based simulations presented in § 5. Clearly, Newtonian and free-molecular flow models
fail to describe transitional flow in the region 0.1 � τω � 10. On the other hand,
LBGK simulation accounting for specific geometrical features accurately represents
the fluidic damping γf in the studied regimes: viscous or Newtonian (τω � 0.1),
viscoelastic (0.1 � τω � 10) and elastic (τω � 10).

7.1. Viscoelastic dynamics in high-frequency flows

An interesting outcome of our work is the quantitative description of an
experimentally observed viscoelastic transition at τω ≈ 1. In kinetic theory, the
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10–2 100 10–2 10–4

1.0

0.8

0.6

0.4

0.2

0

Figure 3. Normalized quality factor Q/Qo = (γo)/(γo + γf ) vs. pressure p (Torr). Open
symbols represent experimental data as above: (◦) ωo/2π = 32.7 MHz, AR = 0; (�)
ωo/2π = 24.2 MHz, AR = 1; (�) ωo/2π = 1.97 MHz, AR = 10; (�) ωo/2π = 0.078MHz, AR =
26. Closed dots and the solid lines are the results of LBGK simulations (D2Q37-H2 with DS)
at τω = 0.001, 0.01, 0.1, 0.5, 1 and 10.

breakdown of the NS equations at Kn = O(1) and/or Wi = O(1) is usually attributed
to ballistic dynamics or kinetic effects associated with the relatively low frequency
of inter-particle collisions. Kinetic equations predict that inertial forces become
dominant in the high-frequency limit (Wi = τω → ∞), while viscous terms vanish
in the hydrodynamic limit. The ‘viscoelastic’ response observed here at sufficiently
large Weissenberg number (Wi = τω � 1) is linked to the underlying microscopic
dynamics, i.e. kinetic and ‘viscoelastic’ effects correspond to the same phenomenon in
the studied systems.

The invalidity of Newtonian approaches as τω → ∞ is not only due to surface
effects, which might be absorbed by proper hydrodynamic boundary conditions,
but also due to the qualitatively different fluid dynamics in the bulk. LBGK
simulation closely reproduces the experimentally observed (figure 2) saturation of
density-normalized dissipation (γ f →const) in the high-frequency limit τω → ∞. This
remarkable phenomenon involves a gradual transition from viscous to viscoelastic
to purely elastic flow of a simple gas that has been reported by previous theoretical
(Yakhot & Colosqui 2007; Colosqui et al. 2009) and experimental (Karabacak et al.
2007) studies. The viscoelastic response of simple gases in the high-frequency limit is a
well-known phenomenon within the realm of transport theory and statistical physics
(Evans & Morriss 2008); diffusion processes in non-equilibrium systems can only
be established after a finite time TD ∼ τ of the order of the relaxation time. In the
short-time limit t < τ , where diffusion effects are still weak and transport coefficients
such as shear viscosity become frequency dependent (Evans & Morriss 2008), one
observes an ensuing decay in the dissipation of fluid momentum and energy.

7.2. Near-wall phenomena

Kinetic effects are significant within the so-called Knudsen layer, e.g. at distances from
the solid boundary that are smaller than one mean free path. Kinetic parameters,
such as the relaxation time and mean free path, are not easily determined in the
near-wall region where the gas–surface interaction plays a critical role. Even when
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τω � 1, Newtonian fluid models for the stress break down within a mean free path
from the wall and NS equations can only be applied outside the Knudsen layer. The
concept of having effective slip as proper boundary condition for the hydrodynamic
(coarse-grained) equations must be understood within this context. Our kinetic model
of the flow based on the BE–BGK is rather simple and does not accurately represent
the Knudsen layer; it relies on a single constant relaxation time τ = μ/p and kinetic
boundary conditions (4.4) determined by surface scattering kernels B(v′ → v) for a
perfectly elastic and isothermal surface. Nevertheless, the kinetic model in this work
accurately predicts hydrodynamic effects such as fluid resistance and mean energy
dissipation via adoption of a Maxwell scattering kernel with surface accommodation
σv = 1 (i.e. the DS scheme explained in § 4). The net effect of the studied gas–surface
interactions can be assessed by comparing results in figure 2 for DS (slip) and BB (no-
slip) schemes in the range 0.001 � τω � 10 for different cross-sections 0 � AR � 26.
The reduction in fluid damping solely due to effective slip is found in the interval 0–0.4.

7.3. Resonator performance beyond the Newtonian regime

The decay of the energy dissipated by the fluid as τω → ∞ has beneficial effects on
the resonator performance. Under relevant experimental conditions, fluidic damping
largely dominates over structural dissipation, γf � γo, and thus, Q ≈ ω/γf . In such
conditions, the quality factor will actually increase linearly with the operation
frequency, Q ∝ ω for τω > 1, instead of the square-root dependence, Q ∝

√
ω, observed

for Newtonian flow τω � 1. Therefore, it is advantageous to operate the resonator at
a frequency τω > 1 well within the viscoelastic regime. This could be accomplished
either by increasing the resonance frequency or by decreasing the effective relaxation
time of the fluid through less trivial mechanisms, e.g. through polymer addition or
foams for water. Other strategies that can potentially improve the device performance
include modifying the cross-sectional shape and surface properties. As observed
in figure 2 for the entire range 0.001 � τω � 10, bodies with small aspect ratios,
AR = Ly/Lx � 1, generate less fluidic damping at the same operation frequency and
surrounding gas conditions. On the other hand, the employment of super-hydrophobic
coatings for resonators in water can further increase the effective hydrodynamic slip
with a subsequent reduction of the resistance forces.

7.4. Lattice Boltzmann–BGK simulation of high-frequency flows

LBGK simulations are in close agreement with both analytical predictions and
experimental data over a wide range of pressure 0.1 � p � 1000 Torr and frequency
variation 0.001 � τω � 10. While some rigorous equations of motion may be superior
to the ad hoc BE–BGK model, we believe that our work demonstrates the ability of
the method to capture non-trivial features of high-frequency flows. This situation is
not unique; there exist many examples of successful applications of semi-qualitative
models to complicated physical problems.

The authors acknowledge Dr Hudong Chen and Dr Xiaowen Shan from EXA
corporation for their support in the development of the employed numerical tools.
This work was funded by the National Science Foundation (NSF) under grant
CBET-0755927.

Appendix A. The LBGK model D2Q37
Velocity abscissae and weights of the D2Q37 lattice model (Shan et al. 2006; Shan &
Chen 2007) are presented in table 2.
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vi/c
a States wi

(0, 0) 1 0.233150669132352000
(1, 0) 4 0.107306091542219000

(±1, ±1) 4 0.057667859888794800
(2, 0) 4 0.014208216158450700

(±2, ±2) 4 0.001011937592673570
(3, 0) 4 0.000245301027757717

(±1, ±2) 8 0.005353049000513770
(±1, ±3) 8 0.000283414252994198

Table 2. Model parameters D2Q37. aLattice constant: c = 1.19697977039307
√

θ .

31 18 30

2314 10 22 13

62432n 2 5 21 29

31119 37 1 9 17

72533 4 8 28

2615 12 27

34 20 35

16

36

Figure 4. D2Q37 lattice cell: solid boundary.

A.1. Boundary conditions

As determined by velocity abscissae in table 2, the D2Q37 lattice cell spans three
adjacent nodes in each direction (see figure 4). Realization of boundary conditions
requires prescribing the distribution function of, at least, three nodes within the
boundary interior. Note that geometric features of size smaller than a lattice cell, e.g.
sharp corners, can not be resolved and are therefore smoothed out. Boundary schemes
can be readily implemented for simple geometries, such as the ones studied here,
having constant surface-normal direction n = n1 i +n2 j with either n1 = 0 or n2 = 0. As
shown in figure 4, the opted scheme places the solid boundary, moving at velocity uwall ,
at the cell centre. A local equilibrium distribution fi = f

eq
i (ρ, uwall, θ) is prescribed for

nodes at the boundary and interior nodes lying along the negative normal direction
(−n). The DS boundary treatment is implemented with no further steps while the BB
scheme is realized by ‘reflecting back’ the non-equilibrium components f ne

i = fi − f
eq
i
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f ne
2 = f ne

4 f ne
14 = f ne

16 f ne
24 = f ne

28

f ne
5 = f ne

7 f ne
18 = f ne

20 f ne
29 = f ne

33

f ne
6 = f ne

8 f ne
21 = f ne

25 f ne
30 = f ne

34

f ne
10 = f ne

12 f ne
22 = f ne

26 f ne
31 = f ne

35

f ne
13 = f ne

15 f ne
23 = f ne

27 f ne
32 = f ne

36

Table 3. Bounce-back rule D2Q37.

according to the usual rule described in table 3. The standard advection step (5.4)
can be thus applied to all nodes outside the boundary.

Appendix B. Hydrodynamic approximation in �2

The lattice Boltzmann method can be rigorously formulated within the framework of
Galerkin methods (Shan et al. 2006). A second-order LBGK model thus derived seeks
a solution in the function space �2 spanned by Hermite polynomials of order� 2
(fi ∈ �2). The advection step in the LBGK (5.4) algorithm is not consistent with
standard Galerkin procedures where Galerkin coefficients are computed while the
approximate solution remains within a finite function space. Hence, the projection
of the post-advection distribution (see (5.6)) is critical for consistency with Galerkin
approximations. The formal approximation in �2 is given by the following Hermite
expansions:

f eq(x, v, t) = f M (v)

[
M (0)

eq +
1

θ
M (1)

eq : v +
1

2θ2

(
M(2)

eq − M (0)
eq θ I

)
: (vv − θ I)

]
, (B 1)

and

f (x, v, t) = f M (v)

[
M (0) +

1

θ
M (1) : v +

1

2θ2
(M(2) − M (0)θ I) : (vv − θ I)

]
, (B 2)

where f M = exp(−v2)/(2πθ)D/2 and Iαβ = δαβ . The relations above involve the n-order
velocity moments

M (n)(x, t) =

∫
f (x, v, t)vn dv (B 3)

and their equilibrium counterparts M (n)
eq =

∫
f eqvn dv, which are explicit functions of

low-order moments (n � 2) related to conserved quantities;

M (0)= M (0)
eq=ρ, M (1)= M (1)

eq=ρu, trace(M(2))=trace
(
M(2)

eq

)
= ρ(u2 + Dθ). (B 4)

The zero- and first-order moment equations (i.e. mass and momentum equations)
from BE–BGK are (

1 + τ
∂

∂t

)
M (0) + τ∇ · M (1) = M (0)

eq (B 5)

and (
1 + τ

∂

∂t

)
M (1) + τ∇ · M(2) = M (1)

eq . (B 6)

As usual, to define a closed system of governing equations for the studied isothermal
system, we need to express high-order moments entering (B 6) in terms of the conserved
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quantities (B 4). Multiply (B 6) by (1 + τ∂t ) and rearrange to get(
1 + τ

∂

∂t

)2

M (1) =

(
1 + τ

∂

∂t

)[
M (1)

eq − τ∇ · M(2)
]
, (B 7)

then take divergence of the moment equation for the second order(
1 + τ

∂

∂t

)
∇ · M(2) = ∇ ·

[
M(2)

eq − τ∇ · M(3)
]
. (B 8)

Using (B 8) in (B 7) gives(
1 + τ

∂

∂t

)2

M (1) =

(
1 + τ

∂

∂t

)
M (1)

eq − τ∇ · M(2)
eq + τ 2∇ · ∇ · M(3). (B 9)

We now compute the third-order moment above using (B 2) for fi ∈ �2:

M
(3)
αβγ (x, t) = ρθ(uαδβγ + uβδαγ + uγ δαβ). (B 10)

Recalling that M (1) = M (1)
eq = ρu (B 4), M(2)

eq = ρ(uu + θ I), and plugging (B 10) into (B 9)
leads to(

1 + τ
∂

∂t

)
∂

∂t
ρu + ∇ · (ρuu) = −∇ρθ + τ∇ · [∇(ρθu) + ∇T(ρθu) + ∇ · (ρθuI)]. (B 11)

In the case of nearly incompressible and isothermal flow (M � 1), (B 11) approximates
the NS equations for Newtonian fluids as τω → 0; this conclusion is a well-known
result for second-order LBGK models. For τω � 0, the same arguments employed
in § 3.1 allow for the linearization of the momentum (B 11) in the classical small-
amplitude limit M

√
θ/ω � Lx . For low-Mach number flow over small-amplitude

oscillating bodies, the hydrodynamic equations (B 7) and (B 8) then become

∂

∂t
ρ + ∇ · ρu = 0, (B 12)(

τ
∂2

∂t2
+

∂

∂t

)
ρu = μ∇2u − ∇p, (B 13)

after adopting μ = ρτθ and p = ρθ . Notice that expansions about equilibrium were not
employed in the derivation of (B 12) and (B 13). Within the framework of Hermite
space approximation f ∈ �2, we obtain a closed-form hydrodynamic description
based on the BE–BGK that is, in principle, not constrained to Newtonian regimes.
Provided that the Gauss–Hermite quadrature associated with the lattice has algebraic
degree of precision d � 4 and projection in �2 is enforced, the approximate LBGK
solution will converge to the exact solution of (B 12) and (B 13) as time–space
resolution increases (Colosqui et al. 2009).

The wave-diffusion equation (B 13), which becomes the telegrapher’s equation in
the case of unidirectional shear flow (∇p = 0), has already been successfully employed
to analytically predict the fluidic dissipation in small-amplitude oscillating flows over
a wide range of non-dimensional frequency τω (Karabacak et al. 2007; Ekinci et al.
2008).
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