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ON CANONICAL BASES AND INDUCTION OF
W-GRAPHS

JOHANNES HAHN

Abstract. A canonical basis in the sense of Lusztig is a basis of a free module
over a ring of Laurent polynomials that is invariant under a certain semilinear
involution and is obtained from a fixed “standard basis” through a triangular
base change matrix with polynomial entries whose constant terms equal the
identity matrix. Among the better known examples of canonical bases are the
Kazhdan—Lusztig basis of Iwahori-Hecke algebras (see Kazhdan and Lusztig,
Representations of Cozeter groups and Hecke algebras, Invent. Math. 53 (1979),
165-184), Lusztig’s canonical basis of quantum groups (see Lusztig, Canonical
bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3(2)
(1990), 447-498) and the Howlett—Yin basis of induced W-graph modules
(see Howlett and Yin, Inducing W-graphs I, Math. Z. 244(2) (2003), 415-431;
Inducing W-graphs II, Manuscripta Math. 115(4) (2004), 495-511). This paper
has two major theoretical goals: first to show that having bases is superfluous
in the sense that canonicalization can be generalized to nonfree modules. This
construction is functorial in the appropriate sense. The second goal is to show
that Howlett—Yin induction of W-graphs is well-behaved a functor between
module categories of W-graph algebras that satisfies various properties one
hopes for when a functor is called “induction,” for example transitivity and a
Mackey theorem.

81. Introduction

The ring Z[v*!] of Laurent polynomials has an involutive automorphism
— defined by 7:=v"L

If M is a free Z[v*!]-module equipped with an —-semilinear involution ¢
and a “standard” basis (t;)zcx then a canonical basis with respect to (t,)
and ¢ in the sense of Lusztig is a basis (¢;) of M such that ¢(c;) = ¢, and
cz €ty + 3, x VZ[v]ty hold.

Kazhdan and Lusztig showed in [15] that the Iwahori-Hecke algebra of
any Coxeter group (W, S) has a canonical basis with respect to the standard

basis (Ty)wew and the involution ¢(7T,) = Tl;_ll, which is now known simply
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2 J. HAHN

as the Kazhdan—Lusztig basis. (Note that Lusztig used a slightly different
construction in [17] which essentially replaces vZ[v] with v~!Z[v~!] though
this does not change results significantly.) The special features of the action
of the Hecke algebra on itself with respect to this basis are captured in the
definition of W-graphs in the same paper.

In [12] Howlett and Yin showed that given any parabolic subgroup
Wy < W and a Wj-graph (€, I, m) representing the H j-module V', then the
induced module Ind# ,(V):=H ®p, V is also represented by a W-graph.
They constructed the W-graph explicitly in terms of a canonical basis of
Ind# (V) and developed their ideas of inducing W-graphs further in [13].

In [9] Gyoja proved that given any finite Coxeter group (W,.S) all
complex representations of the Hecke algebra can in fact be realized by
a W-graph. His proof was not constructive but introduced the W-graph
algebra as an auxiliary object which I investigated further in my thesis
[10] and in my previous paper [11]. The fundamental property of the W-
graph algebra () is that the Hecke algebra is canonically embedded into
Z[vTQ in such a way that a representation of H given by a W-graph
canonically extends to a representation of 2. And conversely given an -
module with a sufficiently nice basis, a W-graph can be obtained that
realizes the associated representation of H (see 3.10 for details). In this
sense W-graphs can (and I am advocating that they should) be understood
not as combinatorial objects encoding certain matrices but as modules of
an algebra.

This paper is organized as follows: Section 2 is about modules over
(generalized) Laurent polynomial rings equipped with an ~-semilinear
involution. It defines canonical modules and canonicalizations of modules.
The main theorem in this section is Theorem 2.11 which proves a sufficient
condition to recognize canonical modules and also shows that under the
conditions present in the context of Hecke algebras (though no reference to
Hecke algebras is made in this section) the canonicalization is unique and
functorial with respect to positive maps.

Section 3 recalls the definition of Iwahori—Hecke algebras, W-graphs and
W -graph algebras.

Section 4 proves that Howlett—Yin induction is well defined as a map
Q 7-mod — Q2-mod. The proof is inspired by Lusztig’s elegant treatment
of the p-values in [17] instead of the more laborious proof in Howlett and
Yin’s paper. The proof in the style of Lusztig has the additional bonus that
it provides an algorithm to compute p-polynomials and p-values without
having to compute r-polynomials as an intermediate step. Specifically, this
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is Algorithm 4.11. It is shown how this theorem recovers earlier results,
including Howlett and Yin’s. As an application it is proven that the W-graph
algebra associated to a parabolic subgroup Wj; < W can be canonically
identified with a subalgebra of the W-graph algebra of W.

Section 5 then proves that Howlett—Yin induction has many of the nice
properties one expects: it is indeed a functor between the two module
categories, it can be represented as tensoring with a certain bimodule, it
satisfies a transitivity property and an analogue of the Mackey theorem.

Section 6 then applies these findings. An improved, more efficient algo-
rithm to compute p-values is given which generalizes ideas from Geck’s
PyCox software (see [6]). Additionally a very short proof of a result of Geck
on induction of Kazhdan—Lusztig cells (from [5]) is given.

§2. Canonicalization of modules

Fix a commutative ring k£ and a totally ordered, abelian group (', +, <),
i.e., < is a total order on I" such that x <y = = + 2 <y + z holds.

Consider the k-algebra A := k[I']. As is common when considering group
algebras of additively written groups, we will denote the group element v € T’
as v7 € A and think of A as the ring of “generalized Laurent polynomials
in v” with coefficients in k. This k-algebra has an involutive automorphism

— defined by v7 :=v7.

We also consider the smash product A:= A4 x (1) where (1) is a cyclic
group of order two acting as — on A.! An A-module is therefore the same
as an A-module M equipped with an —-semilinear involution ¢ : M — M.

DEFINITION 2.1. Define A-¢ as the k-submodule of A spanned by all
vY with v > 0. Similarly define A-¢, A< and A—g.
Note that A is a subalgebra of A and A~ an ideal inside it.

DEFINITION 2.2. Let M be an arbitrary k-module. The scalar extension
A ®j, M is naturally an A-module and via L( ®m):=a®m it is also an
A—module which will be denoted by M. Any A-module V that is isomorphic
to M for some M 1 € k-mod is called a canonical module and any A-module
isomorphism c: M — V is called a canonicalization of V.

TRemember that given any k-algebra A, monoid G, and any monoid homomorphism
¢: G — (End(A), o) the algebra A x4 G is defined as the k-algebra that has A ®, k[G] as
its underlying k-module and extends the multiplication of A and k[G] via (a ® g) - (b® h)
:=ag(g)(b) ® gh. It is also denoted by A x G if the morphism ¢ is understood.

Saying that V is a A X4 G module is equivalent to saying that V' is an A-module and
comes with an action of G on V such that g(a - v) = ¢(g)(a) - gv holds.
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If M is free and (by).ex is a basis of M, then the image of (1 ® by)zex
under a canonicalization c is called the canonical basis of V associated to
(bz)zex and c.

REMARK 2.3. Note that M+ M and fr— id4 ®f is a faithful func-
tor k-mod — A-mod. It is left adjoint to the fixed point functor V —
{zr eV |iv) =10}

EXAMPLE 2.4. As we will see, the Kazhdan—Lusztig basis (Cy)wew of

—

an Iwahori-Hecke algebra H = H(W, S) is a canonical basis of the Z[v+!]-
module V := H where ¢: H — H is defined by «(T,) = T;,ll.

The module M is the Z-span of the “standard basis” M := @, ey ZT-
Kazhdan and Lusztig’s classical result that an t-invariant Z[v*!]-basis of H
exists is now precisely the statement that Ty, — C,, defines a canonicaliza-
tion map. In this sense (Cy)wew is the canonical basis of H associated to
the standard basis.

ExaMPLE 2.5. Canonical bases of quantum group representations in the
sense of Lusztig and Kashiwara (cf. [16] and [14]) are examples of canonical
basis in the sense of the definition above. .

In Lusztig’s notation B C £ is a canonical basis of the Z[v*1]-module V :=
L + £ which is the Z[v*!]-span of any PBW-basis of U*. The Z-module M
corresponds to £/v~!L (which is also isomorphic to £ N £ as well as £/vL)
and the standard basis of M is the image of any PBW-basis of U™ in
L/v1L.

EXAMPLE 2.6. Obviously most A-modules are not canonical. For exam-
ple the only canonical A-module that is finitely generated over k is the zero
module. Hence V = k[i] = k[z]/(2? + 1) is not canonical where v operates as
multiplication by ¢ and ¢ operates as ¢ — —i. Therefore the question arises
how one can recognize if a given module is canonical and how one can find
a canonicalization.

An obvious restatement of the definition is the following:

PROPOSITION 2.7. LetV be an arbitrary A-module. Then'V is canonical
if and only if there exists k-submodule M of V such that

(&) V=@,cr v'M as a k-module.
(b) ¢ operates as 1 on M, i.e., t-m=m for all m € M.

In this case c: M — V,a ® m — am is a canonicalization.
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DEFINITION 2.8. Let V be an A-module and (X, <) a poset. A X-graded
shadow of V' is a collection (M, )zex of k-submodules of V' such that

(a) V=recx v M, as a k-module and
vyel
(b) ¢-meem,+ 3., ., AM, for all m, € M..

REMARK 2.9. In light of the above proposition a shadow is something
like a canonicalization “up to lower order error terms.” Theorem 2.11 shows
that these error terms can be corrected by a “triangular base change” if
the poset satisfies a finiteness condition. It therefore provides a sufficient
criterion for the existence of a canonicalization which is inspired by the
construction of the Kazhdan—Lusztig basis of Iwahori—-Hecke algebras as well
as similar constructions by Howlett and Yin, Deodhar, Geck and many more.
Theorem 2.11 is precisely the common thread in all these constructions.

First we need a lemma.

LEMMA 2.10. LetV be an .%Al—module,(X, <) a partially ordered set and
(My)zex a X-graded shadow of V. Furthermore let f €V be an arbitrary
element with f =3, cx, fo for some finite Xo C X and fy € AsoM,.

If f satisfies v - f = f, then fr, =0 for all z € Xj.

Proof. Assume the contrary. Without loss of generality, we can also
assume f, # 0. Otherwise we could just shrink the set Xg. Let X7 C X
be the subset of all maximal elements of Xy and Xs := X \ X;. Thus

fE Z -/4>0-Z\4:137L Z A>0Mx C Z ~A>0]\4907L Z Z-AMy
reX r€Xo reX zeXo y<z
Because f, € A~oM,, it is a A ¢-linear combination of elements of M., say
fz =21 Gigmiy for some aj; € Asg and mig € M.

Also note that ¢« maps every subspace of the form

because (M, ).cx is an X-graded shadow. Thus

of € Z t(aizmiz) +t Z Z AM,

z€X1,1=1..ny z€Xo y<zx

= Z @irt(miz) + Z ZAMy

rze€X1,i=1..ng reXo Yz

= Z Qi My + Z ZAMy

rze€X1,i=1..ng reXo y<z

C > AcoMat > D AM,.

zeXy reXy y<z

AM, into itself

y<sz
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X1 is a nonempty subset because Xy is nonempty and finite. Comparing
the z-components of f and +f for x € X1 we find f, € AsgM, N AcoM, =0
contrary to the assumption f, # 0. U

THEOREM 2.11.  Let (X,<) be a poset such that (—oo,y]:=
{r e X |z <y} is finite for ally € X.

(a) If an A-module V has an X-graded shadow (My)scx then it is
canonical and there exists a unique canonicalization c: M —V where
M =@, cx My such that c(1®@m) € m+ AsoM for allm e M.
More precisely it satisfies c(1 @ mg) € mg + >, ., AsoMy for all
My € M.

(b) The canonicalization above depends functorially on the shadow with
respect to positive maps. More precisely let Vi, Vo be two A-modules with
X -graded shadows (M; 3)zex and canonicalizations c; : ]\/4\@ — V; and let
¢: V1 — Vs be an A-linear map with ¢(AsoM71) C AsoM,.
There is an induced map M; = AsoMy/AsoM; 2, AsoMs/ As oMy =
My and this induces an A-linear map 5: ]\/4\1 — ]\/4\2 This map satisfies
C9 0 $: ¢ ocy holds, i.e., the diagram in Figure 1 commutes.

y<x

__ ¢ __
M, » My

C1

IR
S
IR

Vi

Va

Figure 1.
Functoriality of canonicalization of shadows.

Before we begin the proof observe that any A-linear map f : AM, — AM,
is uniquely determined by its restriction M, — AM, which is a k-linear map
and can be written as f(m.) =>_ .y v fy(m;) with uniquely determined
k-linear maps f., : M, — M, that have the property that {7 | fy(m.) # 0} is
finite for each m, € M, so that the sum is indeed well defined. Having this
way of writing these maps in mind we can define f : AM, — AM, to be the
A-linear map with f(m,) := Z’yEZ v_“’fv(mzl for all m, € M,. Note that
is compatible with composition, i.e., fog= fog.

We will use this notation for the proof to simplify the notation.
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Proof. The uniqueness of ¢ follows from the above lemma because if
c, M — V are two canonicalizations satisfying the stated property then
f=c(1®@m)— (1 ®m)isanelement of AsoM with ¢ - f = fsothat f =0
by Lemma 2.10.

Concerning the existence consider the A-linear maps py, : AM, — AM,
defined by

VYm, €M, :t-m,= Z Pyz(mz).
y
By assumption p,, =0 unless y < z and p..(m;) = m,.

Following the usual construction of the Kazhdan—Lusztig polynomials
and R-polynomials we will recursively construct .A-linear maps 7. : AM, —
A>oM, such that:

e Ty, =0 unless y <z and m,,(m;) =m,

® Tyy = ngygz Py © Tyz.

The first step is to observe

L iday, ifx=z,
(1) Z Pzy © Pyz = {

v<gez 0 otherwise.

This follows from the fact that ¢ has order two:

My =1L LMy

-3

Pyz (m.)
ot —_——

€AM,

= Z (PwyO@)<mz)'

TLY<2

Fix z € X. Define 7,,(m,) :=m, and 7., :=0 for all z £ z. If z < z then
assume inductively that m, is already known for all x <y < 2. It is therefore
possible to define

Olgy 1= E Pry © Tyz.

T<y<z

This map satisfies

Qgy = E Pxy © § Pyw © Tz

<Y<z YySw<Lz

= g Pzxy © Pyw © Twz

r<y<w<z
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= Z Z pmyopyﬁ O Tz

r<w<z \z<ysw

= Z (0_,012520%7)07710,2

r<w<z
= E —Pzw © Twz
r<w<z

= —Ogy.

Therefore we obtain «g =0 in the decomposition oy, = Z'yEF v7 o, Now
define 7, 1= Z'y>0 vy so that oy, = mg, — T, holds. This shows that
Taz(Mmy) € AsoM, as well as

E Pxy © Myz = Prg O Mgz + Olgy = Tgz + Qgz = Tz
TLYKZ

Thus the existence of all m,, is established and we can define the A-linear
map c: M —V by

VYm, € M, :c(1®@m,): Zﬂm my) mz—{—Zﬂ'zZ(mz).

r<z rx<z

It is bijective because it is “upper triangular with unit diagonal.” The map
is also A-linear because

c(l®@m,) ZL Wyzmz

Yz

> payyz(m.)

e<y<z

= Z Tz (mz)

r<z
=c(1®m,)
=c(t-(1®my)).
Finally we have to show that ¢ is functorial. Let M7, Ms, ¢ be as in the
statement of the theorem and fix an arbitrary mi € M. Then c¢;1(mq) €

m1 + AsoM; so that ¢(01(m1)2\€ <z§(m1) + A>9\M2. AISOAQZ(ml) S ¢(m1) +
AsoM; by construction of ¢ so that ca(d(mq)) € ¢(my) + AsoMy =
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¢(m1) + AsoMs. Therefore f:=d(c1(m1)) — ca(¢(m1)) € AsoMs. Addi-
tionally, since all four maps are A-linear and mq € M; is t-invariant
f satisfies ¢f = f so that Lemma 2.10 implies f=0. This proves the
commutativity of the diagram. 0

COROLLARY 2.12. Let (X, <) be a poset such that {x € X |z <y} is
finite for all y € X. Furthermore let V' be an .,Zl\—module, U an A-submodule
of V and (My),ex an X-graded shadow for V. Define N, :=U N M, for all
reX.

If U is generated as an A-module by > - No, then (Ng) is an X -graded
shadow for U, (My/N,) is an X-graded shadow for V/U, the canonical-
ization M —V restricts to the canonicalization N — U and induces the
canonicalization M/N — V /U on the quotients.

Proof. This follows immediately from functoriality of canonicalization
applied to the embedding U < V and the quotient map V' — V/U, respec-
tively. [

REMARK 2.13. In terms of canonical bases this corollary recovers the
theorem that if (¢;),ex is an A-basis for V and U is spanned as an A-module
by a subset (¢;)cy of that basis, then the canonical basis for U is the subset
(¢z)zey of the canonical basis ¢, := ¢(t;) of V and the canonical basis of the
quotient V/U is spanned by the vectors (c;)zex\y (more precisely by their
images under the quotient map V' — V/U).

REMARK 2.14. An important special case of this corollary is the case
where U is of the form U =3 __; AM, for some order ideal I <X (i.e., a
subset with the property z € I Ay <z = y € I). Note that all such U are
A-submodules by definition of X-graded shadows.

83. Hecke algebras, W-graphs and W-graph algebras

For the rest of the paper fix a (not necessarily finite) Coxeter group
(W, S), a totally ordered, additive group I' (which soon will be further
restricted to be Z) and a weight function L: W — T, i.e., a function with
l(zy)=Uz)+(y) = L(zy) = L(z) + L(y). We will use the shorthand
vy := v € Z[I'] and the standard assumption L(s) >0 for all s € S.

DEFINITION 3.1. (Cf. [7]) The Iwahori-Hecke algebra H = H(W, S, L)
is the Z[I']-algebra which is freely generated by (Ts)ses subject only to the
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relations

T?2=1+ (vs —v; )Ty and T Ts...=TT:T;. ..,

ms: factors mst factors

where mg; denotes the order of st € W.
Because of the braid relations and Matsumoto’s theorem (cf. [18]), we
can define the standard basis elements as

Tw = T81T82 T TS”

where w = 5159 . .. s; is any reduced expression of w € W in the generators.
Note that T} = 1.

For each parabolic subgroup W; < W the Hecke algebra H (W, J, Ly, )
will be identified with the parabolic subalgebra H j := spangry {Ty | w € Wy}
CH.

DEFINITION 3.2. (Cf. [15] and [7]) Let k be a commutative ring. A W-
graph with edge weights in k is a triple (&€, I, m) consisting of a finite set €
of wvertices, a vertex labeling map I:€ — {J|J C S} and a family of edge
weight matrices m® € k%*¢ for s € S such that the following conditions hold:

(a) Vz,ye&:img, #0 = sel(x)\ I(y).
(b) The matrices
—v;t ifz=y,s€l(z),
W(Ts)zy == 4 Vs ifr=y,s¢I(x),

S

mxy

otherwise,

induce a matrix representation w : k[v™|H — k[v®1]¢x¢,

The associated directed graph is defined as follows: The vertex set is €
and there is a directed edge x <y if and only if m3, # 0 for some s € S. If
this is the case, then the value mj, is called a weight of the edge. The set
I(x) is called the vertex label of x.

REMARK 3.3. In the equal-parameter case (i.e., I' =Z and L(s) =1 for
all s € S) one can show mj, =m!, for all s,t € I(z)\ I(y) so that it is well
defined to speak of the weight of the edge x + y.

This does no longer hold in the multiparameter case, so that one could
say that the edges have a tuple of weights attached to them.
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REMARK 3.4. Note that condition (a) and the definition of w(T)
already guarantee w(7s)% =1+ (vs — vg)w(Ts) so that the only nontrivial
requirement in condition (b) is the braid relation w(7Ts)w(T})w(Ts) .. .=
w(Ty)w(Ts)w(T) - . ..

Given a W-graph as above the matrix representation w turns k[I']® into
a module for the Hecke algebra. It is natural to ask whether a converse is
true. In many situations the answer is yes as shown by Gyoja.

THEOREM 3.5. Let W be finite, K CC be a splitting field for W and
assume I' =7 and L(s) =1 for all s € S. Then every irreducible representa-
tion of K(v)H can be realized as a W -graph module for some W -graph with
edge weights in K.

REMARK 3.6. The same is true in the multiparameter case if Lusztig’s
conjecture P15 or similar properties like Geck and Jacon’s (#) and (é&)
hold for (W, S, L), see [7, 2.7.12] or [10, 4.3.5] for a proof.

REMARK 3.7. Gyoja also provides an example of a finite-dimensional
representation of the affine Weyl group of type A,, that is not induced by a
W-graph.

Convention. For the remainder of the paper we will assume I'=7
(although we will still write I' when referring to the group of exponents
of the Laurent polynomials).

It is not strictly speaking necessary to do this since the results also
hold in the general case, but the general definitions and proofs are much
more technical because one has to work with infinite series of the form
> L(s)<v<L(s) 75,07 and must ensure their convergence in the appropriate
sense in all proofs.

By restricting to I' =7 all the relevant sums become finite sums and
separate convergence arguments are unnecessary.

DEFINITION 3.8. (The W-graph algebra) Assume I'=7Z and consider
the free algebra Z(e,, x5 |s € S, —L(s) <y < L(s)). Define

§(Ts) = —v; tes +vs(1 —e) + Z Vg € LT Qg Zies, s ~)
—L(s)<y<L(s)
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for all s,t € S and write

Y@y (s, t) = J(T)HTHTL) .. = JT)HT)IT) - ..

~
vel mst factors mst factors

for some 7 (s, t) € Z{es, ).
Define € to be the quotient of Z(es, x5 ,) modulo the relations

2 _ _
a) e; =es, €56t = €teq,
b
¢

d

~— —

€sTsy = Tsy, LsyCs = 0,

~—

Tsy = Ts_~ and
y'(s,t)=0.

AA/\,\
~—

for all s,t€ .S and all vy €T
Finally define the element

Tg 1= Z vz, € Z[T)Q.
vyel
REMARK 3.9. The definition immediately implies that Ty j(T5)
defines a homomorphism of Z[I'|-algebras j : H — Z[I'|€. In fact this is an
embedding as shown in [11, Corollary 10]. We will identify H with its image
in Z[I']©2 and suppress any mention of j from now on to simplify the notation.
Note that Cs =Ty — vs = —(vs + v5 Hes + xs.

REMARK 3.10. W-graph algebras have the distinguishing feature that
each W-graph (€, I, m) with edge weights in k not only defines the structure
of an H-module on k[I']® but that it induces a canonical k£-module

structure on k¢ via
_ {3 s€1(3),
€s 3 =

0 otherwise,

Ts 3= Z Mgt
rec
for all 3 € €. Then k[T'|%*¢ is a k[')Q2-module and restriction to an H-module
gives back the H-module in the definition.

Conversely if V' is a kQ-module that has a k-basis € with respect to
which all es act as diagonal matrices, then V' is obtained from a W-graph
(€, I, m) in this way: m?® is the matrix representing the action of x, and
I(3) ={s€ S |es3=3}. In this way one can interpret 2-modules as W-
graphs up to choice of a basis. (See [11, Theorem 9] or [10, 4.2.18] for a
detailed proof of these claims.)
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Of course V does not need to have a basis at all if k is not a field so that
kQ-modules are indeed more general than W-graphs.

REMARK 3.11.  Every kQ-module V' is also a k-module and gives us
a canonical k[T]-module V = k[I] ®; V which is also an k[I]H-module by
restriction along k[T'|H — k[L']Q.

The results about Howlett—Yin induction will all be proved via canonical-
ization of k[I'| H-modules on which we will define the appropriate £Q-module
structure.

EXAMPLE 3.12. The trivial group is a Coxeter group (1,0) and its
associated W-graph algebra is just Z.

A cyclic group of order 2 is a Coxeter group ({1, s}, {s}) of rank 1 and its
associated W-graph algebra is as a free Z-module with basis {es, 1 —es} U
{zs, | 0< vy < L(s)}. The multiplication of the basis elements is com-
pletely determined by the relations because s, s, = Ts (esxsm) =
('rs”h es)xs,“fz =0.

8§4. Howlett—Yin induction

Let M be any k€2-module. Then k[['| M is naturally a k[I']kQ-module and
by restriction of scalars it is also a k['] H-module which we will (somewhat
abusing the notation) denote by Res% M.

Given any €)j-module M, its restriction to H; can be induced to a H-
module. The goal of this subsection is to prove that Indg S Res%JJ M not
only has the structure of an 2-module but that this module structure can
be chosen functorially in M. The specific construction of this functor is a
generalization of such a construction Howlett and Yin gave in the equal-
parameter case and for the special case that M is given by W-graph. We
will prove it in the general case using ideas by Lusztig (see [17]).

4.1 Preparations

PROPOSITION 4.1.  Let M be a kQ-module and a € Res¥ (M) be an
arbitrary element. Then the following holds for all s € T: Tsa = —v; 'a <=
€50 = G.

Proof. The forward implication can be seen as follows

—v;ta = (—vites 4+ vs(1 — es) + 25)a

— 0= ((v;' +vs)(1 — es) + z4)a
(07t + )1 —es)? + (1 —e5)zy)a
T/

= 0= (
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= (v;' +vs)(1 —es)a
= 0= (1-ey)a,

where we used in the last step that Res$ (M) = k[I'| @, M as k[[']-modules
to cancel vs_l + vs. The backward implication is trivial: Tsa = Tsegsa =

1,2, _ .1
—v; resa = —v; a. [

We will need the following well-known facts about cosets of parabolic
subgroups:

LEMMA AND DEFINITION 4.2. Let JCS be any subset and Wy the
associated parabolic subgroup. Then the following hold:

(a) Dy:={zeW |VseJ:l(xs)>I(x)} is a set of representatives for the
left cosets of Wy in W. Its elements are exactly the unique elements
of minimal length in each coset. They have the property l(zw) =1(z) +
l(w) for all we Wj.

(b) Deodhar’s lemma (cf. [2])
For allw € Dy and all s € S exactly one of the following cases happens:

(i) sw>w and swe Dy
(i) sw>w and sw ¢ Dy. In this case s¥ :=w lsw € J.
(ili) sw < w. In this case sw € D; holds automatically.

Thus for fized s € S there is a partition Dy = Djs U D&S U D75, and
similarly for fized w € D there is a partition S = D7 (w) U DY (w) U
D7 (w) where

D7 =A{w|sw>w,swe Dy} D¥(w):={s|sw>w,swe Dy}
D97S::{w|sw>w,sw¢DJ} DY (w):={s|sw>w,sw¢ Dy}
Dy i={w|sw <w} D7 (w) :={s|sw<w}.
If J C K C S is another subset, then furthermore
(c) D? =DjNWgk s the set of distinguished left coset representatives
for Wy in Wk and D3 x Df — D§, (z,y) — zy is a length-preserving
bijection.
(d) If x € DY and y € DI, then
D (zy) = {s¢€ DY (z)]s% € D¥(y)} UDL(z)
Df(xy) = {s € Di(z)| s" € Dy(y)}
D}'(wy) = {S IS D%(az) | s¥ € D;(y)} UDg(x).
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Proof. See [8] for example. 0

To apply the previous observations about canonical modules we need a
semilinear map on our modules.

LEMMA AND DEFINITION 4.3. If M is any kQ-module, then we will
fix the notation v for the canonical — -semilinear map a @ m+—a @ m on
k] @ M.

Then the following hold:

(a) In the special case of M = k) itself, v is ring automorphism of k[T']Q
with o(Ty) =T =Ty — (vs —v71). In particular v restricts to a —-
semilinear involution of H.

(b) For general M, furthermore t(ax) = t(a)i(z) holds for all a € k[T,
x € k[[|M.

Now let M be a kQ j-module and V := Res%; (M) its associated k[['|H j-
module.

(c) t(h®x):=uh)®(x) is a well-defined —-semilinear involution on
Indf} (V)=H®u, V.

(d) The k-submodules Vi :={T, @m|me M} C Inng(V) for we Dy
constitute a D y-graded shadow on Inng(V) where Dy is endowed with
the Bruhat—Chevalley order.

(e) The maps py,: Vy — k[I'|Vy and 7y, : V, — k[[|V,, in Theorem 2.11 are
of the form

Paz(T@m) =T, @ry.m and 7e(T, @ m) =T, ® pg.m
for elements 5, € Z[L'|Qy, py > € Z[T'>0|Q; that are independent of M.

Proof. (a)+(b) The statements follow directly from the definition.

(¢) For all a€ H;y one has t(ha)® t(z)=1t(h)i(a)® i(z)=1(h)®
t(a)e(z) = t(h) ® t(ax) which proves the well-definedness of h ® x +— 1(h) ®
u(z).

(d) Note that

UT.@m)= > Ry.Ty@m= > T,® Y Ruy.Tym,
weW €Dy yeW,

T,z

where R, . € Z[I'] are the Kazhdan-Lusztig R-polynomials, i.e., the poly-
nomials defined by +(T%) =, ciw Buw,zTw-
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Now note that R, . # 0 implies zy < z so that x < zy < z and thus the
summation only runs over xz with z < z. If furthermore = z then zy < z
can only be true if y = 1. But we know R, , = 1. Therefore (V,,) really is a
D j-graded shadow of V.

(e) The claimed property for p,. follows from the equation above. The
analogous property for m,, follows from the recursive construction of the
2. in Theorem 2.11. 0

LEMMA AND DEFINITION 4.4.  There is a unique family p5 , € Z[T]$,;
forx,z€ Dy, s €S such that the following properties hold

(a) w5, =0 unlessx <z, z€DJ U D9,37 and x € D?Ls U D7 hold.

(b> Mi,z - Mi,z
(c) Ifz€ D}:S UD§, and x € Dy U D7, then

Hy . + R+ Z Payltl » € Z[T50]Q

r<y<z

where

—Csepa,z zeDj,, xe Dy,
vy P zeDj,, xeDj,,
p2,:Csz — Csapp . z€ DY, xe Dy,
Pe:Cs: + 0 'ps. 2€ DY, €Dy,

These elements satisfy:
(d) Us,ufmz € Z[F>0]QJ.

Proof. Conditions (a)—(c) are precisely designed to give a recur-
sive definition of g7 ,: the recursion happens along the poset
{(z,2) € Dy x Dy |x <z} with the order (x, 2) C (2/,2/) :==2<2' V(2 =
2 Na>al).

First note that this is a well-founded poset since intervals in the Bruhat—
Chevalley order are finite so that no infinite descending chain can exist and
recursive definitions really make sense.

Now if pj . is known for all (x,z)C (2, 2') then (c) determines the
nonpositive part of u?, ,, and by the symmetry condition (b) u3, ., is
completely determined. This shows how to define ot o for o’ <2/ 7

The last property of pj ., follows by induction from this recursive
construction. Note that vsR € Z[['s0]Q2; in all four cases because p, . €
Z[T'50]S2y for all < 2. Assuming that vspy , € Z[['50€2; already holds for
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all (y, z) C (z, z) we find that

US/‘Li,z = _USR - Z px7yvs,uz7z =0 mod Z[F>O]QJ

r<y<z
holds. [

4.2 Induction is well defined

THEOREM 4.5. Let M be a kQj-module and HYS5(M) the k-module
@Duep, M. Denote elements of the w-component of HYS(M) as w|m.
Further write p . as ZfL(s)<'y<L(s) pzl - v with pzyl € Q.

With this notation HYS (M) becomes a kQ-module via

0 ZEDjS,
es - zlm = ¢ zles=m zEDgs,
zlm ze€ Dy,
( | $%Ym, + | e Dt -0
z|pylm + szlm z 757 =0,
r<z
S, +
mex;ﬁm ze€ Dy, v#0,
Ton - 2|M 1=  a<z
g T\ pyTm + z|we m zeDf},s,
r<z
0 ze Dy

and the canonicalization cpy : Res$h HYS(M) — Indg(] Res%:’](M), z|lm —
>y Ty ® py,2m is k[U'|H-linear.

REMARK 4.6. Comparing with [12, Theorem 5.3], this theorem gives
a more general result. It includes [12, Theorem 5.3], as we will see in
Proposition 4.10, but it also encompasses the multiparameter case (which
Geck considered in [5] for the special case that M is a left cell module).

We will also see in Theorem 5.1 that the construction is functorial in the
appropriate sense which is also not included in Howlett and Yin’s theorem.
This more general, more abstract way of looking at induction will allow us
to prove transitivity which was not included in Howlett and Yin’s paper. It
also allows for simplification of many known results.

Proof of the main theorem. We want to define a representation w: Q —
End(HY%5(M)) and we already have a definition of w(es) and w(xs ). Extend
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these k[I']-linearly to
w:spang) {1, €5, Tsy | s €5, —L(s) <v < L(s)} — k[I'] End(HY*(M)).

We need to show that w satisfies all the relations of 2, that is

(€s)? = wles), wles)w(er) = wler)w(es),

(€5)w(ws7) = w(ws), w(Tsy)w(es) =0,

(s )—w(xs —~) and

W(Ts)w(Ty)w(Ts) . .. =w(T)w(Ts)w(Tt) ... as an equation in k[I]

S

L
€

T~ N S
o o
~ —
€

~
mset factors ms¢ factors

End(HY ;(M)) where mg := ord(st).

The equations w(es)? =w(es), wles)w(er) =w(e)w(es) and w(wsy) =
w(xs,—vy) follow directly from the definitions and the properties of s.

To prove that w(Ty) satisfies the braid relations, we use the k[[']-linear
bijection ¢ and show c¢(w(Ts)z|m) = Tsc(z|m) for all z € Dy and all m € M.
Since Ind¥ J Res%{’} (M) is a k[I')H-module, the braid relations hold on the
right hand side and will therefore also hold on the left hand side. Because
of the equality Cs =Ts — v, this is equivalent to showing c(w(Cs)w|m) =
Csc(w|m). We compare these two elements of IndZ ; Resg{] M:

One the left hand side we find:

c(w(Cs)zlm) = e((—(vs +v5 Ves + ) - 2|m)
c (sz\m—l—Zy\uz,Zm) ZEDIS,

2|(—(vs + v5 Vess + zg2)m + Z y|u§7zm> z € DJS7
y<z

—(v;t 4 vg)e(z|m) z€ Dy,

y<z

(vszlm+ szlm + Zymyz ) z€ DJS,

a Z|Cszm+zyyuyz ) zEDjsa
y<z
—(vs + vg V)e(z|m) z€ Dy,
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Z T, ® Pa,szM + E pz,y,u;zm S DJ57
$ED‘]7S TLY<z

Z T:x ® px,zcszm + Z p;p,y/lzz’zm z 6 DE)],S,

€Dy s TYy<z
1 _
E Ty @ (—vs — vy )P,z zGDJ,S.
SCED‘LS

On the right hand side we find:

Cse(zlm) = Z TTy @ pypom + Ty @ (—Vs)pg,2m
QSED‘LS

= Z Tz & Pz, M + T, ® (_'Us)pz,zm
IED;S

+ Z T, ® Tszp:c,zm +T,® (_Us)px,zm

acEDf}s
+ Z sx + )Tx) ®px,zm +71,® (_Us)px,zm
zeDj,
Z T X Psx,zM + Z T, ® Uspmzm
zeDj zeDT,
+ Z Ty @ (Tse — vs)pg,-m
xGDS’S
Z Tx & psa:,zm + Z Tx & (_Ugl)px,zm
zeD} zeDy
Z Tac ® (ps:c,z - Uspx,z)m
:EEDIS
+ Z T:v & Cszpac,zm
xeD(},S
Z T, ® (psx,z - Ug_lp:r,z)m
xeD},S

https://doi.org/10.1017/nmj.2018.26 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.26

20 J. HAHN

Comparing the T, ® M components we find an equation of elements of
Z[T']Q2; that needs to be satisfied. More specifically it is the equation in
part (a) of Lemma 4.7 below.

Similarly the equations

w(es)w(zs) =w(rs) and w(zs)w(es) =0

translate into equations of elements of Z[']Q2;, the two equations in part
(c) and part (d) of Lemma 4.7 below.

LEMMA 4.7.  The elements py. ., p; . of Z[L'|Q; satisfy the following
equations:

(a) Forallz€ Dy and all x € Dy

Pasz+ Y Payhtl,  2€DJ,,

S D}_,s ps:v,z - Usp;t,z r<y<z
0 —
veDj, Csebrz 0= § PreCo + N7 pagr. z€DY,,
S DJ75 Psz,z — Vs D,z €<y<z
—(vs + V5 )P,z z€Dj ..

(b) Forall z € D&S and allx € Dy:

+
—UsPsz,zCs% HAS DJ,S’
Pz,2€s2 = \ €52 Py €57 T e D((}’Su

-1 _
—Vg Psz,z€s* :ceD‘LS.

(c) Forallze Dy and all x € Dg,s-' esofly = Hy
(d) Forall z € D&S and all v € Dy: py es2 =0

The proof of this lemma can be found in the appendix of this paper.
It is inspired by Lusztig’s proof of the analogous equations in [16], but is
significantly longer. 0

4.3 First applications
4.3.1 Recovering well-known examples of induced modules

We will start off by proving that our result encompasses several classic
W-graph existence results, including Howlett and Yin’s [12, Theorem 5.1].

EXAMPLE 4.8. Starting with J =0 and the regular module Qy=7
we obtain the special case HYS(Z)::KLS. As an H-module this is
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isomorphic to Indgw(H@) = H and the basis {z|1 | z € W} is identified with
the Kazhdan—Lusztig basis {C, | z € W} via the canonicalization map.

Thus we recover Kazhdan and Lusztig’s result (cf. [15, 1.3]) that the
regular H-module is induced by a W-graph. The elements y;, ,, € Z[I'|Qg =
Z[I'] equal the p-values defined in [15] and [17] (in the case of unequal
parameters) up to a sign. The elements p,, € Z[I'] are related to the
Kazhdan—Lusztig polynomials via

Doy = (_1)l(x)+l(y)vL(w)—L(y)@_

EXAMPLE 4.9. Starting with an arbitrary J C .S and arbitrary one-
dimensional 2 y-module? M , one obtains a W-graph structure on the induced
module Inng (M).

This module is called M” by Doedhar in [3]. The elements p, ,, € Z[T']Q,
act on M by multiplication with polynomials which are related to Deodhar’s
and Couillens’s (cf. [1]) parabolic Kazhdan-Lusztig polynomials P;/ y i a
similar way as the polynomials in the previous example are related to the
absolute Kazhdan—Lusztig polynomials.

We now show that Howlett—Yin induction is appropriately named, i.e.,
that it really recovers the construction in [12].

PROPOSITION 4.10. Assume L(s)=1 for all s€ S.

Let J C S be arbitrary and M a kQ j-module with a k-basis € C M with
respect to which es acts diagonally (i.e., a module given by a W -graph) for all
s€J. Let c: Rest (HYS(M)) — Inng (Res%f](M)) be the canonicalization
isomorphism.

Then c(x|x) = Cyy for all x € Dy, r € € where Cypy denotes the canonical
basis defined by Howlett and Yin in [12, Theorem 5.1]. The W -graphs given
by the basis {x|t |z € Dy, x € €} and by the basis {Cpy |z € Dy, r €€} are
the same.

Proof.  Our involution ¢ on V := H ®p, k[I'|M is the same as Howlett
and Yin’s involution — defined in the introductory paragraph of [12,
Section 3.

Let c:k[TJHYS(M)—V be the canonicalization isomorphism and
Cyyp = c(z|r). Then {Cpy | € Dy, x € €} is a k[[]-basis of V that satisfies

ZRemember that all one-dimensional H;-modules are given by a unique W-graph so
that there is absolutely no difference between H ;- and ) j-modules in this case
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é:):,x = C’x’; as well as éx,; €T, @t + Y s Tw ®k[I'so]M. Howlett and
Yin’s theorem (as well as Theorem 2.11) shows that there is a unique basis
with this property. Therefore C’x,; = Cy; as claimed.

That the W-graphs are identical follows from the fact that the es; act
identical on both bases. In Theorem 4.5 we have chosen our definition such
that

eS{L‘|F:fE|F e xEDiS\/(JZED&SAeszp:g)
= (sz<z)V(sze>zAsz¢ DjAs®€l(r)).

In [12, Theorem 5.3 the W-graph structure on V is defined in such a way
that (using Howlett and Yin’s notation A})

es - Cpy=Chy <= (x,1) €A
= (sz<z)V(sz>xAsr¢DjAs®el(p)).

Because the canonicalization map c is H-linear, H acts identical on both
bases too. x is a linear combination of e, and T so that xs acts identical
on both bases too, i.e., the edge weight matrices are also identical which
proves that the two W-graphs are identical. 0

4.3.2 An algorithm to compute p and pu

Note that part (a) of Lemma 4.7 and the recursive definition of the
lead to the following recursive algorithm to compute p, . and pj , for all
r,z€ Dy and all s€ S.

The recursion is again along the (well-founded!) order (z,z)C
(@, )= z2<dV(z=2Ne>2")on {(x,2) €Dy x Dy|x <z}

Algorithm 4.11. Input: JC S and x,z€ W.
Output: p . € Z[[')Q; and p; , € Z[[']Q; for all s € 5.

1. Ifz Lz then p; . =0 and p; , =0.
. Ilfz=z then py.=1and p; , =0.
3. If x < z, then choose any t € S with tz < z and consider the following
cases:

3.1 Ifte Dj(a:), then p, . = —vpis, -
3.2 Ifte Dg(x), then py . = Crepg,tz — Zy<tz pz,yué,tz-
3.3 Ifte D; (1‘), then Pzr,z = Ptatz — vt_lpl‘,tz - Zy<tz pxﬂ”g/,t?«”
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4. Forall sesS:

4.1 If s € Df(x) or s € Dy (z), then 5 , =0.

4.2 Otherwise compute a:=—-R— Ex<y<z Pyl ., Where R is
defined as in 4.4. Write a = a— + ap + a4 where a_ € Z[I' ],
g € 2y, ay € Z[50)2y. Then i , = a— + ap +a—.

4.3.3 More about the algebraic structure of €2

The fact that m +— 1|m is an injective map M — HY(M) provides a
simple proof to [10, Conjecture 4.2.23] from the author’s thesis.

PROPOSITION 4.12. Let k be a commutative ring. Then the parabolic
morphism j : kSdy — kQ, es > es, Ts 5 > T~ 18 Injective.

Proof. Consider the Howlett-Yin induction M :=HY5(Q) of the reg-
ular £Qj -module. It is a kQ-module so that f:kQ— M,a—a-1|1 is a
morphism of kQ-left-modules. For all s € J one finds f(j(es)) = 1|es and
f(J(zsy)) = 1|25, so that f(j(a)) = 1|a holds for all a € k€2;. In particular
we find that f o j is injective so that j is injective. [

We will therefore suppress the embedding altogether and consider k2
as a true subalgebra of k{2 from now on.

The Howlett—Yin induction also provides the correction to a small error
in the proof of [10, Corollary 4.2.19] in the author’s thesis.

ProproSITION 4.13.  Let k be a commutative ring. Define Ej:=
[Tseses Ises\s(1 — €s) € k2. This element is nonzero in k€.

The fallacious argument in my thesis considered the Kazhdan—Lusztig W-
Graph KL® and assuming falsely that each J C S occurs as a left descent
set Dr(w) for some w € W. I concluded that E; must act nontrivially on
this W-graph. This only works for finite Coxeter groups because a subset
J C S in fact occurs as a left descent set if and only if W is finite (cf. [3,
Lemma 3.6]). In particular S itself does not occur as a left descent set if W
is infinite. Nevertheless S occurs in the W-graph of the sign representation
and Eg € k() is therefore nonzero. This is the idea of the following proof:

Proof. Consider the sign representation M =k - mg of kQy, i.e., esmg =
mo, xsmo =0 for all s € J. The element 1|mg € HY?(M) satisfies:

1’777,0 seJ,
esllmo =
0 sé¢J,

for all s € S so that Ej-1|mg=1|mg and therefore E; # 0. N
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85. Categorial properties of Howlett—Yin induction

We prove now that Howlett—Yin induction is very well-behaved. In
particular it is a functor between module categories, given by tensoring
with a certain bimodule, satisfies a transitivity property and a Mackey-type
theorem.

5.1 Howlett—Yin induction as a functor between module cate-
gories
THEOREM 5.1. Let M, My, My be kS j-modules,and ¢ : My — My a
kQ y-linear map.

(a) Using the notation from Theorem 4.5, the map
HYS(¢) : HY S (M1) — HY 5 (Ms), 2|mq — 2|¢(my)

is Q-linear. In particular HY is a functor kQ;-Mod — kQ-Mod.
(b) HYS(¢) commutes with the two canonicalizations, that is the diagram
i Figure 2 commutes.

id®@HYS (¢)
Res HYS (M) 4 Res? HY S (My)
Cj\/[1 C]\/[2
H Q H Q
Indy, Resy” My o Indy, Resy” Mo
J
Figure 2.

Functoriality of Howlett—Yin induction.

In other words: the canonicalization ¢ is a natural isomorphism
Res% o HYS — Indgj o Res%; .

Proof. That HY§ (¢) is Q-linear is readily verified with the definition of
the Q2-action.

Inng(qﬁ) is certainly H-linear. Therefore ¢(T, ® M) =T, ® ¢(M1) C
T, ® Ms holds for all x € Djy. It also commutes with ¢. By functoriality
of canonicalization, the diagram in Figure 2 commutes. 0

REMARK 5.2. The ordinary induction functor Ind& is given by a
tensoring with the Q-0 j;-bimodule €. It is therefore natural to ask whether
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HY§ can be described as a tensor functor and whether it satisfies a property
similar to the Hom—tensor adjunction. The next proposition answers these
questions in the affirmative.

ProrosiTION 5.3.  The functor HY§ 1s exact, commutes with direct
sums and satisfies

(a) There is a sub-Q-Q-bimodule J5 < Q such that a®@ m+—a-1jm is a
natural isomorphism QI35 ®q, M — HY(M).
(b) HY?(M) has the following universal mapping property in kQ-mod:

Hom(HYS (M), X) = {f : M — Resg,(X) | 35 - f(M) =0},
where the isomorphism is given by F — (m— F(1|m)).

Proof. 1t is clear from the definition that HY§ is exact and commutes
with direct sums.

The Eilenberg—Watts theorem (which characterizes cocontinuous and
right-exact functors between module categories, cf. [4, 19]) implies HY§ =
Q ®q, — for some -0 ;-bimodule . In fact the proof is constructive.
It shows that one can choose ) to be HY§(Q s) and the isomorphism as
HYS(Qy) @ M — HYS (M), zla @ m — z|am.

Furthermore HY* () is generated by the element 1|1: the -submodule
generated by 1|1 is 1/Q; and in general 1|M generates HYS(M) as an Q-
module. Therefore HY*J(€;) is isomorphic to some quotient Q/J5 via a +
35— a- 11

The universal property follows from this presentation of the functor:
Tensor the exact sequence 3§ —Q— Q/3§ — 0 with M. Right exactness
of — ® M implies that

75 ®a, M = Q®q, M —HYS(M) -0

is exact. This provides a universal property of HY?(M ) as the quotient
of @ ® M modulo the image of TJ§ ® M — Q® M. Combining this with
Hom-Tensor-adjunction Hom(2 ® M, X) = Hom(M, Res%J (X)) we obtain
the result. [

5.2 Transitivity

REMARK 5.4. Having a concept of “induction” directly leads to ask
additional questions such as whether this is a transitive construction.
Howlett and Yin did not address this question in their original papers. If I
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were to guess I would say that the proliferation of indices and combinatorial
formulas made such a proof infeasible. Here our more abstract approach to
induction pays off by encapsulating all the work with recursive formulas
involving p and p.

LEMMA 5.5. Let Vi, Vo be two kQ2-modules and f: V3 — Vo a k-linear
map.

Then f is kQ-linear if and only if the induced map k'] @ Vi — k[['] @y
Vo is H-linear and f(esm) = esf(m) holds for all m € V.

Proof. Because T,= —v;les + vses + s the assumptions imply
f(zsm) =xz5f(m) as elements of k[I'] ® Vo =P, v7Va. Now by definition
Ts =) ., Tsyv? S0 that 3 f(zsym)v? =3 x5, f(m)v?. Comparing coef-

ficients gives ()-linearity. The reverse implication is clear. 0

THEOREM 5.6. Howlett—Yin induction is transitive. More precisely, if
JCKCS, then

v s HY L (HYE (M) = HYS (M), w|z|m — wz|m

18 a natural kQ-module isomorphism.

Proof. Consider the diagram in Figure 3. Here t: Indgf( o Indgf —
Indg‘j is the natural isomorphism mapping hy ® (he ® m) — hihs @ m.

id RTm
Qs s K 1CkIr] Qs s
ResHSHYKHYJ M RebHS HYS; M
Sy K (ar)
Hs Qx K
IndHK Resyy HY; M cm
Indgf( (C]y])
Hs Hp Qg Hs Qg
Indy? Indp" Resy” M » Indp% Resy” M
Figure 3.

Transitivity of Howlett—Yin induction.

We will show that this diagram commutes. Note that ¢ and c¢ are
natural H-linear isomorphisms. In particular this expresses idy @7y as
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a composition of Hg-linear natural isomorphisms. We will easily verify that
Ty is in fact Qg-linear so that 7y really is a natural isomorphism between
Qg-modules.

To prove the diagram commutes we will show that the counter-clockwise
composition of arrows from Res%“z HY§ M to Indgi Res%fj M equals the
canonicalization cjy. -

First note that all maps in the diagram are in fact k[[']-linear: idr ®7a

is trivially k/[ﬁ—linear. CHY (A1) is k/[ﬁ—linear because it is a canonicalization.
Indgi (car) is l:[ﬁ—linear because ¢y is and Indgi maps k/[I\’]—linear maps to

/c/[?]—linear maps. That ¢ is also k/[ﬁ—linear can readily be verified.

Reszll({ (M)
Next we prove that the counter-clockwise composition maps zy|m into
Ty @ m + 3 e ps Tw @ k[T]50M for all (z,y) € D7 x DX

d® 1
1@ zylm ——2 1@ z|y|m
“ay K (m)

— ST, @ym+ Y T.®k[]so HYS (M)
ueDf{
Inde{(cM)
— = o heT,omt+ > T80T, @k[]s0M
(up)eDy x DE
tRes J(M)
%Txy(@m‘f‘ Z Tuv®k[ ]>0M
quDS

Theorem 2.11 shows that cys is the only kT[I:]-linear map that maps 1 ®
xy|m into Tpy @ m + ZwEDS Ty @ k[[']soM. This completes our proof that
idy ) ®7as is H-linear and natural in M.

Furthermore 7y (esz|y|m) = estar(z|y|m) follows directly from Lemma
4.2 and the definition of the Q-action so that 7;; is 2-linear by Proposi-
tion 5.5. i

5.3 The Mackey theorem for Howlett—Yin induction

REMARK 5.7. The next natural question is whether there exists a
Mackey decomposition for the Howlett—Yin induction. Recall that the
Mackey formula for group representations says

w W, d
Resy}, Indj}, @Indw mayy, Resy 7 (V)
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for all k[Wj]-modules V. Here the sum runs over a set of representatives
d for Wg-Wj-double cosets and ¢(—) denotes conjugation by d. The
conjugated representation 4V is isomorphic as a k[Wx N 4W ]-module to
d®V CIndy, (V).

One can show that parabolic subgroups of Coxeter groups are well-
behaved in that W N2W,; = Wxna, if one chooses d of minimal length
in its double coset.

A similar formula also holds at the level of Hecke algebras:

Resfi Indff (V)= @ Indy" (V)
for all Hj-modules V. Here d runs over the set of representatives of Wi-
W -double cosets of shortest length and @V is the Hjcra -module Ty ® V C
Inng (V). The reason for both of these formulas is that W decomposes
as disjoint union of double cosets and H decomposes as a direct sum of
Hpg-H j-bimodules accordingly.

Unfortunately there is no reason to expect that HY?(M ) decomposes
into a direct sum over double cosets because 2, unlike k[W] and H, does
not have such a direct sum decomposition (and in fact HY5(M) can be
an indecomposable ©-module). Instead we will find a filtration indexed by
the double cosets whose layers play the role of the direct summands in the
Mackey decomposition.

LEMMA 5.8. Let J, K CS. Define Dij:= D' N Dy. Then

(a) Dy is a system representative of Wi -Wy-double cosets in W. More
precisely d € Dy if and only if it is the unique element of minimal
length within its double coset.

(b) Dj = Haeny, Dflgmdj d.
(¢) Forde€ Dgy and x € D[Igmdj:
Dy(xd) N K = Dy ras(2) N K,
where x € {+,0, —}.
Proof. See [8, 2.1.6-2.1.9]. [

REMARK 5.9. Fix some d € Dy ;. For any €) ;-module M one can define
an Qg ~a;-module “M by

es-4m:=%eam) and - m =Yz am).
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Similarly for any Hj-module V one can define a H y~a;-module 4V by
T, - v = 4T av).

Note that ¢V is isomorphic to the H-a;-submodule Ty @ V C Indgi V.

THEOREM 5.10. Let J, K CS. Furthermore let M be a kS j-module
and V = Res%f] M its associated kH j-module. For all d € Dy define the

following k-submodules of HYS(M) and Indgi (V), respectively:

FYRYS(M) == ) walM
a€Dg j,a<d

K
WED R o

FUIdfs (V)= Y Twa®V.

a€Dg y,a<d

K
wWED g

The following hold for all d € Dy j:

(a) FSCHYS(M) is a Qx-submodule, F<? Indgi(V) is a Hi- and /{:/[F]—
submodule and the canonicalization map cpy identifies these with each
other.

(b) The map \I/%/[ : HngdJ

defined by w|*m — wd | m for all w € D
of Qg -modules.

(M) — FSTHYS(M)/F<*HYS (M) which is
K
KndJ

s a natural isomorphism

REMARK 5.11. In [13] Howlett and Yin also proved a Mackey-style
theorem, which is a bit weaker than what is claimed here. Howlett and
Yin only identify sub-Wg-graphs of the induced W-graph and prove that
they are the same as the Wi -graphs for summands appearing in the Mackey
formula.

Speaking in terms of modules this proves that Hngd J(dM ) appears as
some subquotient of Resgi (HYS(M)). This is similar to describing a module
by listing its composition factors. The new theorem states not only that
these composition factors arise somewhere in the module but also identifies
an explicit filtration in which they arise. (And also generalizes the result to
the multiparameter case and nonfree modules.)

Proof. That FS?HYS(M) is a Qg-submodule follows directly
from the definition of the Q-action on HY9(M) and the observation
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w'd <wd = d < d for all w,w' € W, d,d' € Dg;. That F<4Indjjs (V)
is a Hg-submodule follows from the fact that it is equal to
> acaspan {Ty, |w € WxaW,;} @ V.

To prove the second claim, observe that the given map is certainly a k-
linear bijection. Next we will show that it makes the diagram in Figure 4
commute.

d
‘IIM

FEIHYS(M)/F<CHYS(M) HY iy (M)
o Cdm
H
Fdendgj (V)/F<d Indgi (V) y IndHide (dV)

Tea@m T, @ “m

Figure 4.
Mackey isomorphism for Howlett—Yin induction.

This will again be done by utilizing the uniqueness of the canonicalization
map. Observe that all maps involved in the diagram are k[I']-linear bijec-
tions. It is also readily verified that both the counter-clockwise and the clock-
wise compositions map w|%m into Tyg ® m+ >, pr . Tra @ Ek[TsoM so
that the diagram indeed commutes by uniqueness (;{fmthe canonicalization
map.

Because canonicalization is Hg-linear, we conclude that \Ilﬁ/[ is also Hg-
linear. It follows directly from the above lemma that ¥4, (es - w|%m) = e, -
¥4, (w|?m) for s € K. Proposition 5.5 implies again that W4, is indeed Q-
linear. [

§6. More applications

6.1 An improved algorithm to compute p and p

Denote with pJ , and (157 the elements in Z[[')Q; from Definitions 4.3
and 4.4, respectively, to make the dependence from J C S explicit. Note
that these elements do not depend on S in the sense that for any parabolic
subgroup W; C W CW with z,z € Wi the elements computed with
respect to the inclusion J C S are the same as when computed with respect
to the inclusion J C K.

https://doi.org/10.1017/nmj.2018.26 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.26

ON CANONICAL BASES AND INDUCTION OF W-GRAPHS 31

PROPOSITION 6.1. Suppose J C K CS. Let u,x € DIS( and v,y € Dﬁ(.

K K
Furthermore let wf]( Qg — Q?J “PJ be the matriz representation induced

by the action of Qi on HYX (Qy) = @vefo v|Qy.

() Ifusa, then pii ey and pl, ,, = 0.
(b) Ifu=ux, then

J . J
and Puv,zy = Doy

1'7J
’us,J — Mf}vy s € D?((x>
wory 0 otherwise

(¢) Ifu<uz, then

s K sK J J KK
Py oy = W (Mu,:p )va and Puvgy = E : Py -wy (pu,z)ty‘
teDY
v<t

Proof. Considering that the diagram in Figure 3 is commutative, one
finds that z|y|m € HY’ (HY% (M)) is mapped both to

Z Z LT, ® pq{,tw:l]{(puK,x)ty ~m  and to Z Ty ® piv,xy m.

uLr v<t u,v

Setting M = Q; and m = 1, we obtain the equations for p;{v,xy.
We consider the identification HY% HYX(M)=HY5(M) from
Theorem 5.6 and the action of x5 on both modules:

;

sTy|m + Z uv ui’z){xym s € D¥ (xy),
uv
Ts - xylm = Y| Tsaym + Z uv uig{wm s € DY(zy),
uv
0 s € Dy (xy),
selylm + > ulpy -ylm s € Dy (x),
u<x
T - z|ylm = { z|rge y|m+Zu|qu§ cylm s € DY%(z),
u<zx
L0 s€ Dy (x),
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.
salylm+ S ulus - ylm s € Df(a),
u<w
z|sTy|m + Z x\v\,u;i,l}‘]m
<y
+ ) ulpyk ylm s € Dy (x), s" € D (y),
o u<x
) z|y|zsevm + Z x\vmf),zj}m
v<y
+Zu\ui§y\m s € DY (), s* € DY(y),
u<x
0 s€ D% (z),s* € D7 (y),
s € Dy (x),
Therefore
>l - ylm s € D (2),
u<r
y > alolus g m
Z u‘”’uuyv,mym =\ <y X
u + ) ulugk ylm s € DY (x), s* € D} (y) U DY(y),
u<w
0 otherwise.

Comparing the component u | HYX (M), we find

s, K
R
st J _ 0
ZU|MZbJ,xym: Zv\,uv’y m u=uzx,s€ Dy(x),
> <y
0 otherwise.
Now set M :=Q; and m := 1. [

This suggests the following algorithm for computing p{m and ufu‘lz for all
w,z€D§ and all s € S:

Algorithm 6.2. Input: J C S.
Output: py e, fy, » € Z[LQ2y for all w,z € Dy and all s € S.

1. Chooseaflag J=KoC K1 C---CK,=85.
2. Foralli=0,...,n—1allu,z € Dllg“, and all s € K; 1 compute pff,;
and &' € Qg with Algorithm 4.11.
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3. Fori=0,...,n—1compute p;, , and (s for all w, z € Dfi“ and all
s € K11 as follows:

3.1 Write w=wuv, z =y with u, z € Dfé“ and v,y € D?i.
3.2 If u g z, then u5’ =0 and p;i,z =0.
piy’  s€DY ()

J K;
k and py, , = p;i.
0 otherwise = vy

3.3 If u=x, then MZ}:IZ = {

3.4 If u <z, then compute w’(ufh") and wh (pX). Assemble the
. K ~K;
p) , with v/, y' € D" into the matrix P € (Z[T50]Q,)Ps P,

J ; K; i i
Then py> = Wﬁ(l (' )vy and pi{;,z =(P- Wf (puK,é))v,y-

REMARK 6.3. Note that the action of Qg, on HYLI,Q(Q J) only involves
values of uf;,’i, where w', 2/ € Dfi and s’ € K; which are already known by
the previous iteration of the loop.

The big advantage of this algorithm over a direct computation of all M‘Z,Jz
with Algorithm 4.11 is that the expensive recursion over D§ is replaced by
n collectively cheaper recursions over Df((;, Dg?, cey Dlig:il so that fewer
polynomials p,, . need to be computed and the computed elements are less
complex (measured for example by the maximal length of occurring words
in the generators es, s of 2) and therefore need less memory.

Additionally the n calls to Algorithm 4.11 in step 2 are independent of
each other and can be executed in parallel which can lead to a sizeable
speed-up.

REMARK 6.4. The Mackey isomorphism ¥? from Theorem 5.10 trans-

lates into the equation

J KN4y
'U’Zd,wd = “d(:u;,wn )

for all d € Dk, all y,w € D;({ﬂdJ’ and all s € K where kg : Qpna; = Qpans
is the isomorphism eg — ez, Ts — Tyd.

Provided one knows all ,uf;f forall TC K, all u,v € Djff ,and all s € K,
one can use that knowledge to partially calculate uf,’i. This in turn might
be used to give the recursion from Algorithm 4.11 a head start and reduce

the necessary recursion depth.

6.2 Induction of left cells
Transitivity of Howlett—Yin induction also enables us to effortlessly
reprove a result of Geck regarding the induction of cells (see [5]).
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REMARK 6.5. Recall the definition of (left) Kazhdan-Lusztig cells:
Define a preorder < on W by defining {y € W |y =<, 2} to be the
smallest subset € C W such that the subspace spangm {Cy |y € €} is an
H-submodule of H. The preorder then defines an equivalence relation ~
asusual by z ~, y :<= = <, y <, x. The equivalence classes of this relation
are called left cells.

PROPOSITION 6.6.

(a) €CW is <g-downward closed if and only if spany {z|1|x € €} is a
Q-submodule of HYg(Q@).

(b) If €C Wy is a union of left cells, then D§ € CW is also a union of
left cells.

Proof.  Consider the Kazhdan—Lusztig W-graph HYS (©Qp). Then
{z|1 |z € W} constitute a Z-basis of this module which (under the canon-
icalization map) corresponds to the basis {C, |z € W}. That € is a <-
downward closed means that spang {Cy |z € €} is an H-submodule of
H. Because es-z|1€{0,z|1} for all z and s, every subset of the form
spany, {z|1 | z € €} is closed under multiplication with es. Since e; and T}
together generate () this proves the first statement.

Now let € CW; be <,-downward closed and M :=spany {z|l |z € €}
be the corresponding submodule of HY% (Qp). Then HYS(M)=
spang, {w|z|1 |w € DY,z € €} is a submodule of HYS HY‘d(Q@) = HYS(Q@).
In other word D§ - €is a <X-downward closed set of W. Because every union
of cells can be written as a set difference €; \ €5 for some downward closed
sets €, C € C W, this proves the second statement. [

REMARK 6.7. Modifying Algorithm 6.2 such that only p-values for
elements in D§ - € are computed, we recover Geck’s PyCox algorithm for
the decomposition into left cells.

Appendix A. Proof of Lemma 4.7

We will prove the four equations in Lemma 4.7 simultaneously with a
double induction. We will induct over /(z) and assume that all four equations
hold for all pairs (z/, 2’) with [(2") < I(z). For any fixed z we will induct over
[(z) —l(x). Observe that all equations are trivially true if [(z) >1(z) +1
because all occurring p and o are zero. We will therefore assume that the
equations also hold for all pairs (2/, z) with I(z’) > I(z).
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Proof of part (a) of Lemma 4.7. We denote with f,, the difference
between the right hand side and the left hand side of the equation. Then by
the above considerations:

c(w(Cs)zlm) — Cse(z ZT ® frzm.

We will show f,, € Z[['s]Q2; and conclude f,, =0 using Lemma 2.10.
Note that both c¢(w(Cs)z|m) as well as C sc(z|m) are t-invariant elements

of IndH RGS%J M because c is k:[ I'|-linear and ¢(Cs) = Cs.

Case 1l: z € D

Case 1.1.+1.2: :J:EDO UxGD_

In both cases f.. € Z[F>0]QJ by deﬁmtlon of .

Case 1.3.:x € DJS

Observe that z;sw,z =l sr=2¢=>T=524=>prs. =1 so that
Dsa,z — Pa,sz 1S always an element of Z[I's]€2;. Thus

foz = Dz,sx — Psz,z + VsPz,z + pr,y:u;,z
EZ[F>0}QJ EZ[F>0}

= pr yhy . mod Z[['5o]€2;

= Z pxy,uyz—&- Z px,yﬂyz+ Z pxy“yz

0
yEDJs :0 ED yEDJs
:E<y<z a:<y<z

Now since x € D s We cannot have x =y in both the second and the third
sum so that we can use part (a) of Lemma 4.7 for (z,y) and part (c) of
Lemma 4.7 for (y, z) in the second sum as well as part (a) of Lemma 4.7 for
(x,y) in the third sum so that we obtain

Joz = Z (_Us_l)(px,ycsy — Pszy t Z px,y’/ﬁ;/,y)(esyﬂz,z)

yeDY <Y’ <y
TYy<z

T2 Py (00

el EZ[F>o] €Z[I>0]

= Z (—Ugl)(p$7ycsy — Powyy T pr’yluz,’y)esy,u,;,z mod Z[I's]Qy.

yED(iS Y
TY<z
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Now y < z so that we can use part (d) of Lemma 4.7 for (3, y) and obtain

fxz = Z (_Ugl) (pa:,ycsy — Psz,y + Zpa;,y’ NZ’J/) €Esy N;,z
' SN———

yeDy y
ryY<z

- Z (—vs_l)(pz,ycsyesy _psz,yesy)ﬂz,z

yeDf}’S
r<y<z

=0

= Z (_Us_l)(px,y(_vs - Us_l)esy — Psay€sv)Hy,z-
yeDY
r<y<z

Applying part (b) of Lemma 4.7 to (z,y) we find

Jzz = Z (_U;1)<_Uspsz,y€sy(_vs - Us_l) _psm,yesy)ﬂz,z
yeD

= Z (_Us_l)(vgpsx,yesy):u;,z
yeDy

= Z —Pszy Esv USM;Z
yeDY v
J,s EZ[F>O]QJ GZ[F>0}QJ
=0 mod Z[F>0]QJ.

Case 2: z € D97S.

Case 2.14+2.2: x € Dg}s Ux € Dis

In both cases f,. € Z[I's0)Q by definition of p.

Case 2.3 z € DIS.

In this case sz # z so that psy . € Z[['s0]Q. Therefore:

fxz = p:p,zosz + Z pm,y:u“gsl,z — Psz,z + VsPzx,z
y<z

= pgj,szz + pr,y:u;Z mOd Z[F>O]QJ
y<z

Because 2 := sz satisfies 2’ >z and 2’ € D, we can use the induction
hypothesis for (2, z) and (2/, y) so that
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§ : s
fxz = psx’,szz + Psa’ ylly »
y<z

— pm/7zcsz + ’Us_]'px/72 =+ pr’,y’ﬂgs/,z Tsz + Z pLy /J/Z’Z

" ~
:px/,szl v yGD‘]’S =0

s

+ > | peaCor + 0 puy + D paryriyy | 15

eny - y'
) J,s :pm/7yTsyl
-1 -1 s

+ E (_(US + v )px’,y + U pz’,y)uy,z

yED;S

S
e pw/’z —|— E px’,y’uy’,szz

~— R

EZ[F>0]QJ TSY' <z

~1
T et D peiyy | H

yeDY | 'Sy’ <y
'y
S
+ — Daly Usfly.
SN~ \-v—/

yED;vS EZ[FZO]QJ €Z[F>0]QJ

= N pogsl (v e +us(1 - eg) + )

<y’ <z
-1, s s s
X g ParyTow 1y, + E P’y oyt by~ Od Z|T<0]2.
?/GD&S yEDg’S,y’EDJ
<y ' <y <y<z

Because z < 2’ we can use part (d) of Lemma 4.7 for (¢/, z) in the first sum,
part (c¢) of Lemma 4.7 for (y, z) in the second and the third sum as well as
part (d) of Lemma 4.7 for (¢/, y) in the third sum to obtain

fxz = Z px/7y/ /’LZ/,Z’US (]. — 652)

/g /<
TSy ZGZ[F>0}QJ €Z[T0]Q

-1
+ § : Pty Tou €sv iy . + § : Pat,y Hay y€sv Iy
~— ——

yeDg,s =—Vs€gy yeDg,s’yeDJ =0
z'<y ' <y’ <y<z
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= Z pwvy —esv) Usfly,  mod Z[['s0]Qy
~——

yeDJ s EZ[F>0] EZ[F>O]QJ
'y

=0 mod Z[I'so]Q;

which is what we wanted to prove.

Case 3: z€ D7 .
Case 3.1: x € D7 .
In this case sz € Djs so that sz # z and thus ps, , € Z[I's0]2;. We infer

fxz = Psx,z — Ug_lpz,z + VsPx,z + Us_lpz,z = Pszx,z + VsPx,z € Z[F>O]QJ-

Case 3.2: z € Df}’s

In this case the equation is equivalent to (1 — es)p, . =0 by Proposi-
tion 4.1. If £ z then this is vacuously true because p; ., = 0.

Since z € D, we can write z = sz’ for some 2’ € DJr with 2/ < z. We can
apply part (a) of Lemma 4.7 to (z, 2') and find:

(1 — Cgx )p:p,z = (1 - esw)pz sz’
=(1-es) (Cs Pz — pry:uyz
—_—

=C,z
_ E s
- (1 — €Egz )px,y luy,z/
+ S~~~
yEDJ,s =0
§ : s § : s
- (1 — €sz )px,y.uy,z/ - (1 — €sz )px,y/‘y,z"
yeDY yeD],
r<y<z’ r<y<z’

Because 2’ < z we can apply part (¢) of Lemma 4.7 to (y, 2’) in the second
sum and part (a) of Lemma 4.7 to (z,y) (in the equivalent formulation
(1 — es2)pyy =0) in the third sum so that we obtain

(1— e )px,z == Z (1—es )pxyyesy,u;z/.
yEDLO]’s
r<y<z’

Using part (b) of Lemma 4.7 for (x, y) all the summands vanish.

https://doi.org/10.1017/nmj.2018.26 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.26

ON CANONICAL BASES AND INDUCTION OF W-GRAPHS 39

Case 3.3: x € DL}FS.
In this case @' := sx satisfies 2’/ > 2 and 2’ € D] _ so that we find

—1
fxz = Dsz,z — UsPz,z + UsPz,z + Vg Dz.z

= P’ 2 + Uglpsx’,z
which—using the induction hypothesis for (2/, z)—equals

= Py'z T+ Us_l(_vspx’,z)
=0. [

Since we have now proven part (a) of Lemma 4.7 we can use it to prove
the other equations:

Proof of part (b) and part (d) of Lemma 4.7. If x € DT, we can multi-
ply the equation in part (a) of Lemma 4.7 with es- from the right:

+1 s s
(psm,z — Vg pm,z)esz = pz,zcszesz + My »€s2 + E Pz ylly ~Cs>
r<y<z

—1 s s
= Pr,o(—Vs — V5 )ess + g es + E Payhy, 252
r<y<z

Now we can apply part (d) of Lemma 4.7 to (y, z) in the sum and obtain:

—1 s
= Pao(—Us — Vg )ess + i €5

E— 1
(pSLZ + ’U;F pm,z)esz = M;Zesz.

If z € DIS, then My, =0 so that pes . = —vs_lpLZ and Hy €52 = 0. If x €
D7, then the left hand side is contained in Z[I'5(]€2; because sz, x # z
while the right hand side is ~— -invariant so that both sides equal to zero.

Now consider the case x € D& - Then the following holds by part (a) of
Lemma 4.7 for (z, z):

-1
(7)5 + v )px,zesz = _px,zcszesz

§ : s
= _Cszpa:,zesz + Hz,2€s7 + px,yﬂy,zesz-
r<y<z

In the sum we can use part (d) of Lemma 4.7 for (y, z) and find:

-1
(US + vg )pw,zesz = _Cssz,zesz + Mo, 2€s=
—1
- M;,zesz = (CSI + Vs + U )px,zesz
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- ((US + Ugl)(l - 65) + xs)pz,zesz
= ((US + Us_l) + 33‘3)(1 - eS)px,zesz-

Now consider the exponents that occur at both sides of the equation: On the
left hand side all exponents are < L(s). On the right hand side this means
vs(1 — es)pg €52 = 0 because p, , € Z[I'>]Q ;. Therefore (1 — e5)pg €52 =0
and py es: =0. il

Proof of lemma part (c) of Lemma 4.7. Without loss of generality, we
assume x < z and z € DI LU Dg, s since otherwise u; , = 0. Because p , =
pz. . we only need to prove (1 — eg)u; . =0 mod Z[['>0)€.

Lemma part (a) of Lemma 4.7 for (x, z) implies

0=(1- esx)csxpm,z

(1 - es“)px,sz FAS D}_,s}
(1 — esw)pa:,zC'sz z e D?Ls

+ Z (1 — €5 )Pa,ylly, .-

r<y<z

= (1 - esz)px,axlu':sr:,z + {

Because z € Df}’s, x = sz cannot hold in the first case so that p,,. €
Z[T'<0]€2s. In the second case we use Cs= = e4:Cy= and the now proven part
(b) of Lemma 4.7. We obtain

0= (1 - eS:”):U’:SE,z + Z (1 - esx)pﬂf,y,ugs;,z

yED&S
r<y<z
+ Y (L—esw)paypy. mod Z[T5o)Q.
yED;,S
r<y<z

Note that (1 — esz)pg,y =0 for y € D7 by part (a) of Lemma 4.7 applied to
(z,y) and py , = esupy , for y € Dg,s by part (c) of Lemma 4.7. Using part
(b) of Lemma 4.7 we find

0=(1-es)y;,+ Z (1= ese)Payesy iy .
—_——

yeDy =0
r<y<z

= (1 - eSz)M;,z' []
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