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Kengo Deguchi†
School of Mathematical Sciences, Monash University, VIC 3800, Australia

(Received 16 October 2018; revised 19 December 2018; accepted 15 January 2019;
first published online 20 February 2019)

The large Reynolds number asymptotic approximations of the neutral curve of
Taylor–Couette flow subject to an axial uniform magnetic field are analysed. The
flow has been extensively studied since the early 1990s as the magneto-rotational
instability (MRI) occurring in the flow may explain the origin of the instability
observed in some astrophysical objects. Elsewhere, the ideal approximation has been
used to study high-speed flows, which sometimes produces paradoxical results. For
example, ideal flows must be completely stabilised for a sufficiently strong applied
magnetic field. On the other hand, the vanishing magnetic Prandtl number limit
of the stability should be purely hydrodynamic, so instability must occur when
Rayleigh’s stability condition is violated. Our first discovery is that this apparent
contradiction can be resolved by showing the abrupt appearance of the hydrodynamic
instability at a certain critical value of the magnetic Prandtl number. This is found
using the asymptotically large Reynolds number limit but with a sufficiently long
wavelength to retain some diffusive effects. Our second finding concerns the so-called
Velikhov–Chandrasekhar paradox, namely the mismatch of the zero external magnetic
field limit of the Velikhov–Chandrasekhar stability criterion and Rayleigh’s stability
criterion. We show for fully wide-gap cases that the high Reynolds number asymptotic
analysis of the MRI naturally yields the simple stability condition that describes
smooth transition from Rayleigh to Velikhov–Chandrasekhar stability criteria with
increasing Lundquist number.

Key words: Taylor–Couette flow, waves in rotating fluids

1. Introduction
Our study concerns the large Reynolds number fate of the magneto-rotational

instability (MRI), which could destabilise hydrodynamically stable rotating flows by
an imposed uniform magnetic field in the direction of rotation. The instability was
first pointed out by Velikhov (1959) and Chandrasekhar (1960), who proposed the
exceptionally simple stability condition: the azimuthal background flow Vb(r) is stable
if

d(r−1Vb)
2

dr
> 0 for all r, (1.1)
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High-speed standard magneto-rotational instability 493

namely the modulus of the angular velocity of the flow increases outwardly. That
stability condition for magnetised flows is more restrictive than the stability condition
for purely hydrodynamic flows given earlier by Rayleigh (1917) that the flow is stable
if

d(rVb)
2

dr
> 0 for all r, (1.2)

namely the modulus of the angular momentum of the flow increases outwardly.
Decades later Balbus & Hawley (1991) spotted that the MRI could destabilise
astrophysical flows under Kepler’s law, which is stable according to (1.2). Their
discovery surprised other astrophysicists, as turbulence triggered by the instability
might explain the unknown angular momentum loss in accreting astrophysical objects.

Since Taylor (1923), Taylor–Couette flow has widely been selected as the archetype
model for instabilities appearing in rotating flows because of its simplicity and
experimental feasibility. The effect of imposed magnetic fields on the stability of the
flow has been intensively studied by numerous researchers, as summarised in the
recent review by Rüdiger et al. (2018a). An advantage of using Taylor–Couette flow
to study the MRI is that the motion of the independently rotating cylinders can be
used to control the laminar flow profile to be within the stable or unstable regimes
in terms of (1.1) or (1.2). The laminar circular Couette flow is known as one of the
simplest Navier–Stokes solutions

Vb(r)= Rsr+ Rp/r, (1.3)

where the constants Rs and Rp are fixed by the cylinder speeds and correspond to
the intensity of the solid-body rotation part and the potential flow part, respectively.
The sign of those constants are useful to judge the stability of the flow, since the
inequalities appearing in (1.1) and (1.2) become −VbRp> 0 and VbRs> 0, respectively.
The gap between those stability conditions, called the anticyclonic regime (RsRp > 0),
is the most important in astrophysics, at it contains the Kepler rotation (more precisely,
in Taylor–Couette flow we can only realise quasi-Kepler rotation (2.7)).

Both of the stability conditions (1.1) and (1.2) are derived for ideal, axisymmetric
perturbations and only represent sufficient conditions for stability. Given specific
flow configurations, more accurate stability conditions can be found by numerical
computations of linearised viscous resistive magneto-hydrodynamic (MHD) equations.
The earliest computations of magnetised Taylor–Couette flow can be found in
Chandrasekhar (1953, 1961), where the inductionless approximation was used to
simplify the problem by taking the limit of vanishing magnetic Prandtl number.
Kurzweg (1963) solved the finite magnetic Prandtl number problem for the first time,
but with an oversimplified flow geometry and boundary conditions. The most complete
numerical study at that time was due to Roberts (1964), who proposed realistic
boundary conditions and removed the previously used axisymmetric assumption
on the perturbations. The aim of those early computational studies was to explain
experimentally observed suppression of the Rayleigh’s hydrodynamic instability
against the imposed axial uniform magnetic field (Donnelly & Ozima 1960, 1962;
Donnelly & Caldwell 1964; Brahme 1970). The focus of experimental studies then
shifted to the Rayleigh stable regime after Balbus & Hawley (1991), but the instability
has never been observed for quasi-Kepler rotation. A decade later Goodman & Ji
(2002) uncovered the reason why it is difficult to observe the MRI experimentally.
For the anticyclonic regime the critical magnetic Reynolds number tends to a constant
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494 K. Deguchi

for small magnetic Prandtl numbers P. This means that the critical Reynolds number
of O(P−1) should be very large, as the value of P is typically 10−5

∼ 10−7 for the
liquid metals used in experiments.

Nowadays the instability studied by Velikhov (1959) and Chandrasekhar (1960) is
called standard MRI because more recently Hollerbach & Rüdiger (2005) showed that
an additional azimuthal component of the external magnetic field dramatically reduces
the critical Reynolds number to O(P0); see Knobloch (1992) also. This new type of
instability, called helical MRI, indeed led to the experimental confirmation of the MRI
(Rüdiger et al. 2006; Stefani et al. 2006, 2007).

Parallel to those above global studies, so-called local stability analysis has also been
used as a conventional tool to explore the parameter space. The key assumption used
in the local analysis that the perturbation is locally periodic in all three directions
enables us to reduce the stability problem to a single algebraic equation. The local
analysis is sometimes referred to as Wentzel–Kramers–Brillouin (WKB) analysis,
perhaps because the algebraic stability equation derived in the local analysis is
equivalent to the eikonal equation governing the WKB phase. However, in order to
construct a rational global approximation, the solutions at each local station must be
connected through the WKB amplitude equation at higher order. Furthermore, usually
the asymptotic system is not closed unless the WKB solution is matched to the
near-wall boundary layer solutions. In short, the local analysis is not mathematically
equivalent to the WKB analysis, which serves as a rational approximation for global
short wavelength modes. Thus, there is occasionally a controversial disagreement
between the local and global studies, as seen in the helical MRI (Liu et al. 2006;
Rüdiger & Hollerbach 2007; Priede 2011). Nevertheless, for the standard MRI the
local results produce the stability boundary that is not too far from the global
results (Ji, Goodman & Kageyama 2001). In much the same spirit nonlinear local
computations that use a periodic shearing box have been intensively performed in
astrophysics; see Brandenburg et al. (1995), Hawley, Gammie & Balbus (1995).

The aim of this paper is to find accurate self-consistent approximations of the
neutral curve assuming large Reynolds numbers of astrophysical importance. The
matched asymptotic expansion on which our analyses are based is the mathematically
rational version of the flow scaling analysis, and has some similarity to the small
magnetic Prandtl number analysis of the neutral curve (Chandrasekhar 1953, 1961;
Goodman & Ji 2002; Willis & Barenghi 2002; Rüdiger, Schultz & Shalybkov 2003;
Hollerbach & Rüdiger 2005). However, unlike the previous studies, here we fix
the magnetic Prandtl number P as an O(1) quantity and choose the inverse of the
Reynolds number as the intrinsic small parameter of the approximation; in fact, P
is a constant no matter how small it is, because it should be fixed by the material
property of the fluid. For purely hydrodynamic Taylor–Couette flow, large Reynolds
number analysis successfully produced good approximations of the neutral curve; see
Deguchi (2016).

The conclusions drawn in many previous asymptotic analyses is, somewhat
counterintuitively, the largeness of the Reynolds number does not mean that the
diffusivity is always negligible. As a result, the ideal analysis sometimes produces
an outcome that contradicts the large Reynolds number limit of the full equations.
For example, it is widely known that at least one inflection point of the base flow is
necessary to destabilise ideal shear flows, but in reality the Tollmien–Schlichting wave
type of instability occurs without any inflection point (see Lin 1955; Drazin & Reid
1981); recently Deguchi (2017) found similar viscous destabilisation in Rayleigh
stable cyclonic Taylor–Couette flow. The most famous paradoxical ideal result in
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High-speed standard magneto-rotational instability 495

the MRI might be the so-called Velikhov–Chandrasekhar paradox, namely the zero
external magnetic field limit of the Velikhov–Chandrasekhar condition (1.1) does not
coincide with the purely hydrodynamic result (1.2). In fact, the ideal problem has a
discontinuous change of instability there (Kirillov, Pelinovsky & Schneider 2011). The
paradox has then been resolved by Kirillov & Stefani (2011) within the framework
of the local analysis of the dissipative problem, but not yet for the global context.

In the next section we shall formulate our problem based on the viscous resistive
MHD equations. Section 3 compares the ideal and full numerical results. We begin the
comparison from the local analysis to show that the ideal result by Velikhov (1959)
indeed gives a good approximation for some cases. The results are then extended
to narrow and wide-gap Taylor–Couette flows. The stabilisation effect by the ideal
analysis competes with the destabilisation effect of the hydrodynamic instability
when the magnetic Prandtl number becomes relatively small, thereby leading to
the breakdown of the ideal result. The reason for the breakdown is explained in § 4
using the asymptotic limit and by assuming a long wavelength perturbation. Section 5
concerns the asymptotic limit of the MRI, which appears at the Rayleigh stable region.
The simple limiting stability criterion describes the smooth transition from Rayleigh’s
condition (1.2) to the Velikhov–Chandrasekhar condition (1.1) with increasing the
magnetic field from zero. Finally, in § 6, we conclude with a brief discussion.

2. Formulation of the problem

Consider the non-dimensional incompressible viscous resistive MHD equations

(∂t +∇ · v)v − (b · ∇)b=−∇q+∇2v, (2.1a)
(∂t +∇ · v)b− (b · ∇)v = P−1

∇
2b, (2.1b)

∇ · v = 0, ∇ · b= 0 (2.1c)

in the cylindrical coordinates (r, θ, z). Here we write the velocity vector as v= uer +

veθ + wez, the magnetic vector as b = aer + beθ + cez and the total pressure as q.
The magnetic Prandtl number P is the ratio of the kinematic viscosity to the magnetic
diffusivity. Here we scale the magnetic field so that the pre-factor of the Lorentz force
term (b · ∇)b in (2.1a) is normalised. Also the normalised viscous term ∇2v in the
same equation means that our choice of the velocity scale is the viscous one, and
hence the Reynolds numbers should appear in the base flow. The flow is assumed to
be enclosed by two infinitely long co-axial cylinders placed at r= ri and r= ro, where
ro> ri. Our length scale is the half-gap of the cylinders, namely ro− ri=2. Thus using
the radius ratio η= ri/ro, we can express the positions of the cylinders as

ri =
2η

1− η
, ro =

2
1− η

. (2.2a,b)

Throughout the paper we assume the flow to be axisymmetric.
Rotating the cylinder walls with constant angular speeds, the well-known Taylor–

Couette flow is realised. We further apply a uniform axial magnetic field of non-
dimensional magnitude B0 to trigger the MRI. Note that we have to scale it by the
magnetic Prandtl number to get the Hartmann and Lundquist numbers

H = B0P1/2, S= B0P, (2.3a,b)
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496 K. Deguchi

respectively. The base flow can be written as

v = Vb(r)eθ , b= B0ez, (2.4a,b)

where the laminar velocity field of the Taylor–Couette flow Vb is the sum of the solid-
body rotation part and the potential flow part as shown in (1.3). In order to satisfy

Vb(ri)= Ri, Vb(ro)= Ro, (2.5a,b)

we must set

Rs =
Ro − ηRi

2(1+ η)
, Rp =

η−1Ri − Ro

2(1+ η)
r2

i . (2.6a,b)

Here the Reynolds number Ri/Ro is defined by the ratio of the inner/outer cylinder
speed and the viscous velocity scale made by the kinematic viscosity of the fluid and
the half-gap.

Kepler’s law states that the square of the period of the orbital motion should be
proportional to r3. If we apply this condition for all streamlines then we have the base
flow Vb(r) ∝ r−1/2, which is never realisable as a base flow. Thus in Taylor–Couette
flow studies Kepler’s law is only applied for the cylinders’ motion. The base flow in
this case, satisfying

Ri/Ro = η
−1/2, (2.7)

is called the quasi-Keplerian rotation. Note that elsewhere that terminology is also
used in a somewhat wider sense, to include any rotating flow in which the inequality
(1.2) is satisfied but the reverse of (1.1) is true.

The linear perturbation to the base flow can be expressed by normal modes so we
write

v = Vb(r)eθ + v̂(r) exp(σ t+ ikz), b= B0ez + b̂(r) exp(σ t+ ikz), (2.8a,b)

where k, σ are the axial wavenumber and the complex growth rate of the perturbation,
respectively. Substituting (2.8) into (2.1) and linearising the equations gives−2r−1Vbv

r−1(rVb)
′u

0

=−
Dq

0
ikq

+
(DD∗ − k2

− σ)u
(DD∗ − k2

− σ)v

(D∗D− k2
− σ)w

+ ikB0

a
b
c

 , (2.9a)

 0
−r(r−1Vb)

′a
0

= P−1

(DD∗ − k2
− σ)a

(DD∗ − k2
− σ)b

(D∗D− k2
− σ)c

+ ikB0

u
v

w

 , (2.9b)

D∗u+ ikw= 0, D∗a+ ikc= 0. (2.9c)

Here we have removed the hats for the sake of simplicity and D= ∂r,D∗ = ∂r + 1/r
are the usual Chandrasekhar notations. Dropping all the diffusive terms (i.e. the terms
proportional to (DD∗− k2) or (D∗D− k2)) from (2.9) and assuming u vanishes on the
walls, Chandrasekhar (1960) derived the integral equation
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High-speed standard magneto-rotational instability 497

(σ 2
+ k2B2

0)
2
∫ ro

ri

r(|D∗u|2 + k2
|u|2) dr

+ k2
∫ ro

ri

(
σ 2 1

r2

d(rVb)
2

dr
+ k2B2

0r2 d(r−1Vb)
2

dr

)
|u|2 dr= 0, (2.10)

where σ 2 should be real. The Velikhov–Chandrasekhar result follows by noting that
if (1.1) holds then σ 2 < 0 and hence there is no instability for the ideal flow. (We
also remark that if (1.2) holds and B0= 0 then σ 2 < 0. Synge (1938) showed that this
sufficient condition also holds for viscous axisymmetric linear perturbations.)

Now let us introduce the potentials satisfying u = ikφ, w = −(rφ)′/r, a = ikψ ,
c=−(rψ)′/r to transform (2.9) into the simpler form

(σ −4)4φ − ikB04ψ − ik(2Rs + 2r−2Rp)v = 0, (2.11a)
(σ −4)v − ikB0b+ ik2Rsφ = 0, (2.11b)
(σ − P−1

4)ψ − ikB0φ = 0, (2.11c)
(σ − P−1

4)b− ikB0v + ik2r−2Rpψ = 0, (2.11d)

where 4=DD∗ − k2. The no-slip conditions on the walls are satisfied if

φ =Dφ = v = 0 at r= ri, ro. (2.12)

For the magnetic field, perfectly conducting or insulating walls are frequently
considered; see Rüdiger et al. (2018a) and references therein. If we assume that
the walls are made of perfectly conducting materials the boundary conditions are

ψ =D∗b= 0 at r= ri, ro, (2.13)

whilst for the perfectly insulating walls we must impose the conditions

I1(kri)

I0(kri)
D∗ψ − kψ = b= 0 at r= ri, (2.14a)

K1(kro)

K0(kro)
D∗ψ + kψ = b= 0 at r= ro. (2.14b)

Here I0, I1 are the zeroth and first modified Bessel functions of the first kind, K0,K1
are the zeroth and first modified Bessel functions of the second kind. For finite
electrical conductivity of the cylinders more general conditions interpolating (2.13)
and (2.14) must be used (see Roberts 1964; Rüdiger et al. 2018b), but here we
restrict our attention to the two limiting cases.

Before we begin the large Reynolds number asymptotic analysis we note some
known asymptotic properties of the stability in the limit as P→ 0. Chandrasekhar
(1953, 1961) took this limit by assuming Vb, H ∼ O(P0), u ∼ O(P0), b ∼ O(P1/2)
and showed that the term on the left-hand side of (2.9b) should drop from the
leading-order system. Goodman & Ji (2002) proved that without that term the
axisymmetric instability in the anticyclonic regime is not possible for the narrow-gap
cases, and subsequently the proof was extended for the wide-gap cases by Herron &
Goodman (2006). Note that the helical MRI could be stimulated at the limit due to
some other extra terms involving the azimuthal background magnetic field (Hollerbach
& Rüdiger 2005).
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498 K. Deguchi

Goodman & Ji (2002) found another possible small P limit where the important
term mentioned above plays a role. In order to find the reduced system at the limit,
it is convenient to apply the scaling

V = B0R−1
p v, Φ = PB0φ, B= P−1R−1

p b, C=
RpP2B2

0

r2
oRs

(2.15a−d)

to convert the neutral and steady version of (2.11) to

4
2Φ

B2
0R2

pP3
+ ik
4ψ

R2
pP2
+ ik

(
1
C
+

r2
o

r2B2
0P2

)
2V
r2

o

= 0, (2.16a)

4V
B2

0P
+ ikB− ik

2Φ
Cr2

o

= 0, (2.16b)

4ψ + ikΦ = 0, (2.16c)

4B+ ikV − ik
2ψ
r2
= 0. (2.16d)

Here we assume that the scaled quantities (2.15) and k are O(P0). The purpose of
the scaling is to normalise the induction equations (2.16c) and (2.16d). The last
term on the left-hand side of (2.16d), corresponding to the important term spotted
by Goodman, Ji and Herron, never drops under this rescaled system. Goodman &
Ji (2002) kept the magnetic Reynolds number Rm = PRp, the Lundquist number
and Rs/Rp as O(P0) quantities to show that only the viscous terms in (2.16a) and
(2.16b) drop from the leading-order equations. As those terms possess the highest
derivative, their inductionless limit corresponds to a singular asymptotic limit where
the hydrodynamic boundary conditions cannot be satisfied. As a result passive near
wall boundary layers matching to the inviscid outer solution should appear as shown
by Goodman & Ji (2002).

When the base flow is close to the pure potential flow, Willis & Barenghi (2002)
showed that the stability is scaled by the Hartmann number rather than by the
Lundquist number. The corresponding asymptotic limit can be taken by assuming
H ∼ O(P0). In this case the only small term that drops out of the equations is the
term proportional to 1/C in (2.16a), and hence this is a regular asymptotic limit.
From these assumptions we can find that Rs/Rp must be O(P), namely the flow
is close to the potential flow (i.e. close to the Rayleigh line which separates the
unstable/stable regions in terms of (1.2)).

3. Full versus ideal stability analyses
As appreciated by many hydrodynamic researchers, the large magnitude of the

Reynolds number does not immediately mean that we can neglect diffusivity. Here
we shall clarify under which conditions the ideal results give a good approximation
of the full viscous resistive MHD results.

3.1. The narrow-gap limit
In the majority of this section we explore the parameter space taking the narrow-gap
limit η→ 1. Results of this simplified problem are then extended to the wide-gap
cases later. Let us write the gap coordinate as x = r − rm with the reference radius
rm ∈ [ri, ro]. The choice of rm is rather arbitrary but in our numerical computation it
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is fixed as the mid-gap point rm= (ri+ ro)/2 for the sake of definiteness. While taking
the limit (1− η)→ 0, the shear Reynolds number

R=−r(r−1Vb)
′
|r=rm =

2Rp

r2
m

, (3.1a)

and the inverse Rossby number

ω=
2(r−1Vb)|r=rm

R
=

2Rs

R
+ 1, (3.1b)

are assumed to be O((η− 1)0) quantities. The other variables/parameters x, σ , k,B0,P
are also assumed to be O((η− 1)0) quantities but rm ∼O(1/(1− η)) is very large.

The limiting form of (2.11) as η→ 1 can be found as

(σ −4)4φ − ikB04ψ − ikRωv = 0, (3.2a)
(σ −4)v − ikB0b+ ikR(ω− 1)φ = 0, (3.2b)

(σ − P−1
4)ψ − ikB0φ = 0, (3.2c)

(σ − P−1
4)b− ikB0v + ikRψ = 0, (3.2d)

where 4= ∂2
x − k2. From (2.12)–(2.14) the boundary conditions at the limit are

φ = φ′ = v =ψ = b′ = 0 at x=±1 (3.3)

for the perfectly conducting walls, and

φ = φ′ = v =ψ ′ ± kψ = b= 0 at x=±1 (3.4)

for the perfectly insulating walls. Here the prime denotes differentiation with respect
to x.

If we instead use the periodic boundary conditions in x, the narrow-gap problem
becomes identical to the local analysis or equivalent to the two-dimensional version
of the shearing box computation. As remarked upon earlier it is not a mathematically
consistent approximation of the global solution because there are two important
ingredients missing, namely the effects of curvature and the boundary conditions.
Nevertheless, the local analysis sometimes has the ability to capture some qualitative
features of global stability results. In the next two subsections we shall compare
the shearing box computations and the global analysis of the narrow-gap problem.
In order to make a better comparison to the other boundary conditions we set the
periodic boundaries at x = ±2. Then the steady shearing box solutions may also
satisfy

φ = φ′′ = v =ψ = b= 0 at x=±1 (3.5)

which is similar to (3.3); the conditions for the magnetic field are unchanged from
the perfectly conducting case, whilst the cross-streamwise velocities are required to
satisfy free stress conditions on the walls rather than the no-slip conditions.
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3.2. The shearing box computations
Velikhov (1959) found for ideal flows that a sufficiently strong magnetic field should
stabilise the MRI. In order to derive the ideal result we neglect all the diffusive effects
from equations (3.2). The neutral ideal perturbations are then governed by the single
equation which results from neglecting all but the last two terms in each of (3.2a)
and (3.2d):

4ψ +
ω

α2
ψ = 0, (3.6)

where

α =
B0

R
(3.7)

is the inverse magnetic Mach number. The solution is simply a sinusoidal function

ψ = cos
(nπ

2
x
)
,

ω

α2
− k2
=

n2π2

4
, n ∈N. (3.8a,b)

In order to observe the ideal stability boundary in the full stability calculations it
is convenient to fix α rather than B0. The use of the sinusoidal function in x converts
(3.2) into the single algebraic equation

(P−1l4
+ (kRα)2)2l2

+ (kRP−1)2ω(ω− 1)l4
−ωα2(kR)4 = 0, (3.9)

where l =
√

k2 + (nπ/2)2 and n ∈ N. Here we have assumed that σ = 0 because Ji
et al. (2001) proved that the neutral axisymmetric neutral modes are always steady.

It is important to note here that the purely hydrodynamic result

l6
+ k2R2ω(ω− 1)= 0 (3.10)

can be recovered if we set α= 0 or P= 0 in (3.9). The hydrodynamic neutral mode is
only possible for ω ∈ [0, 1]; note that this does not contradict Deguchi (2017) where
the unstable non-axisymmetric mode is found for the Rayleigh stable strongly counter-
rotating regime.

The algebraic equation (3.9) has been studied by many researchers to find simple
conventional stability conditions (see Sano & Miyama 1999; Ji et al. 2001; Velikhov
et al. 2006; Julien & Knobloch 2010; Kirillov & Stefani 2011, for example). The
key observation that made the previous local analyses so simple is that the shearing
box problem does not have a particular spatial length scale. In fact equation (3.9)
is invariant under the transformation (R, α, k, n) → (a2R, a−1α, ak, an) for any
constant a, which is the degree of freedom due to the free length scale. The previous
simplified stability conditions use the parameters normalised by the wavenumber and
hence they are not applicable for our neutral curve. Because of the maximum flow
scale introduced in the x direction we can no longer use the normalised parameters
and, more importantly, the wavenumber dependence of the stability curve must be
eliminated through the optimisation process to seek the most dangerous mode.

The easiest way to find the optimised neutral curve for a given P, α and ω is
to solve equation (3.9) for R2, which must be minimised against the wavenumbers
k and n. The neutral curves of the shearing box computations are summarised in
figure 1. The stability diagram is point symmetric in the ω–R plane, so hereafter we
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FIGURE 1. (Colour online) The neutral curves for the shearing box computation. The
black solid and blue dashed curves are the results for α = 1 and α = 0.1, respectively.
(a) P= 1, (b) P= 10−6. The thin red lines are the asymptotic results; see (3.11) for the
ideal limit, (5.6) for the high-rotation limit and figure 5 for the long wavelength limit.
The thick green curve in (b) is the purely hydrodynamic result (3.12).

only consider positive R. The flow is always stable when ω is negative so this region
is not shown throughout the paper. At the narrow-gap limit the inequalities (1.1) and
(1.2) become ω < 0 and ω(1 − ω) < 0, respectively. There are two Rayleigh stable
regions; cyclonic (ω< 0) and anticyclonic (ω> 1) regimes, where the Kepler rotation
ω= 4/3 (see (2.7), (3.1b)) belongs to the latter.

For large to moderate magnetic Prandtl numbers the shape of the neutral curve is
rather simple as can be seen in figure 1(a) where P= 1. There are two curves shown
for α = 1 (black solid curve) and α = 0.1 (blue dashed curve). Above the neutral
curves, the corresponding flow becomes linearly unstable. Decreasing α, the left-hand
branch is destabilised, while the right-hand branch is stabilised. Both branches appear
to converge towards some large Reynolds number asymptotic states, which are our
main interest here. The behaviour of the left-hand branch can be explained by the
ideal result (the right-hand branch converges to the high-rotation limit to be derived
in § 5). The optimised ideal mode at (k, n)= (0, 1) found by (3.8) gives the stability
boundary

ω

α2
=

(π

2

)2
, (3.11)

which corresponds to the thin red vertical lines in the figure. The larger the normalised
magnetic field α is, the larger the critical value of ω should be. Thus, (3.11) describes
the Velikhov’s stabilisation mechanism by the external magnetic field.
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Boundary conditions T ω/α2 S2/ω Rm

Shearing box 41.094 2.467 9.870 12.821
Perfectly conducting 106.73 2.467 3 6
Perfectly insulating 106.73 0 6.598 3.774

TABLE 1. The key numbers in the asymptotic analysis for the narrow-gap cases. T: the
critical Taylor number for the hydrodynamic limit (3.12). ω/α2: the critical value for the
ideal limit (see (3.11) and § 3.3). S2/ω: the critical value for the high-rotation limit (see
(5.6), (5.17) and (5.19)). Rm: the critical magnetic Reynolds number for the high-rotation
limit for all possible external magnetic fields (see (5.10) and appendix B).

The ideal result (3.11) is independent of P so one may expect to see similar
agreement for small values of P of experimental interest. However, we remarked
upon earlier that at the vanishing magnetic Prandtl number limit the stability of
the flow should become purely hydrodynamic. At first glance those two statements
might look inconsistent, because on one hand the ideal limit predicts that there is
no instability below the critical value of ω, which is large when the strong magnetic
field is applied, but on the other hand hydrodynamic instability should occur for
ω ∈ [0, 1].

The behaviour of the neutral curve for smaller magnetic Prandtl numbers can be
found in figure 1(b). Here we set P= 10−6 to compute the stability. The solid curve
for α= 1 shows the typical neutral curve when the magnetic field is strong. There are
actually two islands of instability, the right of which is an analogue to the result of
the previous panel and indeed the ideal result predicts the behaviour of its left-hand
branch. When the applied magnetic field is weaker and the ideal limit value of ω
is smaller than unity the ideal limit is not observable; see the dashed curve for α =
0.1 in figure 1(b), where the two islands of the instability merge. The neutral curve
appearing at the Rayleigh unstable region might be explained by the hydrodynamic
instability (3.10). In fact, for not too large R, the curve can be approximated by the
hydrodynamic result plotted by the thick green curve in figure 1(b). This curve can
be found by optimising (3.10) as

R2ω(1−ω)= T, (3.12)

where T is the well-known critical Taylor number 27π4/64≈ 41.094. The value of T
and some key numbers to be derived in the asymptotic analysis are summarised in
table 1.

However, it is not clear how the neutral curve in the top panel deforms into that in
the bottom panel at this stage. For large enough Reynolds numbers the hydrodynamic
approximation of the instability fails and the neutral curve tends to some constant ω.
We shall show in § 4 that the asymptotic analysis of this unknown large Reynolds
number state yields the critical value of P at which the instability of the Rayleigh
unstable region abruptly appears. That new asymptotic limit occurs when we select
small wavenumbers of O(R−1). We have seen that the optimum of the ideal limit also
occurs at small k, but we will see that it should still be larger than O(R−1) in the
asymptotic sense.

3.3. The perfectly conducting and insulating boundary conditions
For the other two magnetic boundary conditions (3.3) and (3.4) we must numerically
solve differential equations (3.2). Before developing the narrow-gap code, the
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FIGURE 2. (Colour online) The same picture as figure 1 but for the perfectly conducting
boundary conditions at the narrow-gap limit. The thin red lines are the asymptotic results;
see (3.11) for the ideal limit, (5.17) for the high-rotation limit and figure 7 for the long
wavelength limit. The blue circles correspond to the onset of the oscillatory mode.

wide-gap equations (2.11) were numerically solved to check the results with Goodman
& Ji (2002), Willis & Barenghi (2002) and some axisymmetric results listed in
Rüdiger et al. (2018a). The independent narrow-gap code is then tested against
the wide-gap code with η = 0.999. The equations are discretised by substituting
the modified Chebyshev expansions and evaluated at the collocation points; see
appendix A. The resultant linear eigenvalue problem for the eigenvalue σ can be
solved by LAPACK routines.

As in the previous section we fix α and P as some constants and seek the neutral
curve in the ω–R plane. The largest real part of the eigenvalues must be maximised
against k to find the most dangerous mode. The zero locus of the optimised value can
then be found by bisection to draw the neutral curve. The numerical resolutions are
tested using up to 600 Chebyshev modes.

Figure 2 shows the neutral curve for the perfectly conducting walls. The first thing
to note is that this figure is similar to figure 1, meaning that the ‘local approximation’
captures some qualitative aspects of the global stability result when the cylinders
are perfectly conducting and the gap between them is narrow. In particular, the
identical ideal limits can be seen, as shown in the upper panels. This is because the
ideal solution (3.8) for the most dangerous mode n = 1 also satisfies the perfectly
conducting boundary conditions for ψ shown in (3.3). (The other boundary conditions
can be accounted by inserting thin passive near wall boundary layers similar to § 5.)
The results shown in the lower panel for smaller P again indicate the emergence of
the instability in the Rayleigh unstable region. For not too large Reynolds numbers
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FIGURE 3. (Colour online) The same picture as figure 1 but for the perfectly insulating
boundary conditions at the narrow-gap limit. The thin red lines are the asymptotic results;
see (4.19) for the long wavelength limit, (5.19) for the high-rotation limit.

it can be approximated by the hydrodynamic result (3.12) but with T ≈ 106.73 for
no-slip boundaries (Taylor 1923).

Figure 3 displays the results for the perfectly insulating condition where we find
similar convergence to the hydrodynamic result for the small P limit. However, for
large R, the asymptotic property of the neutral curve is qualitatively different from
the previous two cases. The most striking feature of the upper panel is the apparent
absence of the ideal limit of ω below which the flow is stabilised. The fact is that the
threshold value for the perfectly insulating case is predicted to be zero, because the
optimised solution of the reduced differential equation (3.6) with the conditions for ψ
shown in (3.4) is merely ω= k= 0, n= 1, ψ = 1 for any α. Hence, the neutral curve
should tend to ω = 0 for large enough Reynolds numbers. However, before reaching
this limit the left hand branch of the neutral curve displays an unknown asymptotic
trend where Rω seems to converge towards some constant. The detailed asymptotic
analysis of this state will be studied in § 4.

3.4. The wide-gap cases
The ideal limit result for the perfectly conducting case can be extended to more
general wide-gap Taylor–Couette flow. Neglecting all the diffusive terms from
equations (2.11) we have

4ψ +
4
β2r2

(
Rs

Rp
+

1
r2

)
ψ = 0, (3.13)
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where β = B0/Rp is the inverse magnetic Mach number (note that this parameter is
redefined from the narrow-gap case for the sake of simplicity). The most dangerous
mode occurring at k= 0 can be found using Bessel functions of fractional order ±µ,
where

µ=

√
1−

4Rs

Rpβ2
. (3.14)

The boundary conditions for ψ , shown in (2.13), can be satisfied if the dispersion
relation

0= f (Rp/Rs, β, η)= Jµ

(
2
βri

)
J−µ

(
2
βro

)
− Jµ

(
2
βro

)
J−µ

(
2
βri

)
(3.15)

holds. Here Jµ is the Bessel function of µth order. The behaviour of the critical value
Rs/Rp found by (3.15) is shown in figure 4(a). The rescaled variable (Rs/Rp)(1 −
η)2/β2 is used for the vertical coordinate because this quantity tends to ω/α2 at the
narrow-gap limit. The convergence to the narrow-gap result (3.11), shown by the red
dashed line, can indeed be found in the figure when η approaches unity. For η< 1 the
rescaled variable in the figure does not become a constant, although it tends towards
a constant for large β.

Figure 4(b) compares the ideal result with the full stability for η= 0.5, β = 0.2 and
P= 1. The result is plotted in the Ro–Ri plane; here the entire counter-rotation regime
(RoRi < 0) and the region above the Rayleigh line Rs = 0 (Ri = η

−1Ro) is unstable in
terms of (1.2). In addition to the Rayleigh unstable regime, the MRI could also occur
in the anticyclonic regime, which is the wedge shaped region between the Rayleigh
line and the solid-body rotation line Rp=0 (Ri=ηRo). For the selected parameters, the
neutral curve sits in this region as shown by the thick blue dashed curve. This curve
was computed by solving differential equations (2.11) with the boundary conditions
(2.13) by the Chebyshev collocation method.

The behaviour of the upper neutral curve can be captured by the ideal result shown
by the thin red line. For given η and β the slope of the line can be found from
the upper panel. From the trend of the asymptotic result, we find that for larger β
values the ideal line approaches the solid-body rotation line. Thus, as we have seen in
figure 2(a), the ideal result describes the stabilisation effect by the applied magnetic
field. (Likewise the lower neutral curve corresponds to the high-rotation limit to be
shown in figure 5. When β is fixed, this limit coincides with the solid-body rotation
line.)

4. The long wavelength limits

When the wavelength is large (equivalently k gets small) some diffusive terms are
still retained even at the large Reynolds number limit. This is because the driving
mechanisms brought about by the shear and the magnetic field are multiplied by k
as seen in (2.11); hence the underlying physics of the limit is somewhat similar to
Prandtl’s boundary layer theory. Here, for the sake of simplicity, we focus only on
the narrow-gap limit equations. Parameters P and α are O(1) constants throughout
this section.
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FIGURE 4. (Colour online) (a) The ideal limit solutions for the perfectly conducting wide-
gap cylinders. Equation (3.15) is used. The horizontal red dashed line is the narrow-gap
result π2/4; see (3.11). (b) The comparison of the ideal result (thin red line) and the full
neutral curve for η = 0.5, β = 0.2, P= 1. The latter result found by the viscous resistive
MHD equations (2.11) predicts that the flow is unstable within the wedge shaped domain
formed by the blue dashed curve.

4.1. The shearing box computations
We start the asymptotic analysis for the periodic boundary conditions. First we note
that by writing

K =
P(kRα)2

l4
, Ω =

ω

α2
, P =

P
1−ω

, (4.1a−c)

equation (3.9) can be simplified to

(1+K)2l2
=KΩ(P−1

+K). (4.2)

In the long wavelength limit we fix (kR) as O(R0), while taking the limit of large R.
Equation (4.2) is unchanged, except that l= nπ/2 becomes independent of k.

The quantity K can be regarded as the square of the scaled axial wavenumber. Thus,
in order to find the approximation of the neutral curve we must optimise ω against K
for fixed P and α. Differentiating (4.2) by K and requiring ∂ω/∂K = 0, we find that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.67


High-speed standard magneto-rotational instability 507

the extremum occurs at

K =

Ω

2P
− l2

l2 −Ω
. (4.3)

Eliminating K from (4.2) and (4.3) gives

Ω = 4l2P(1−P). (4.4)

Hence, substituting (4.4) into (4.3) gives

K =
1

1− 2P
. (4.5)

The most dangerous perturbation arises for n= 1, so the neutral condition is simply

Ω =π2P(1−P) (4.6)

from (4.4). Figure 5(b) shows the asymptotic result for α = 0.1. Here we only plot
the curve satisfying 1− 2P > 0, because it is the inverse of K from (4.5) and hence
must be positive by definition (4.1). Increasing P from a very small value, the flow is
eventually stabilised until the sharp corner of the neutral curve that appears for P ∈
[0.1, 1]. This corner is associated with the limit of P→ 1/2, where the value of K
tends to infinite. On the right of the corner we have a horizontal line corresponding
to the ideal result (3.11). The neutral points about P = 10−6 (open reverse triangle)
and 1 (open triangle) were used for the asymptotic approximations for the blue thick
dashed curves depicted in figure 1.

Figure 5(a) is a similar result, but for α = 1. Unlike the previous case there are
two islands of instability, which are the counterparts of those seen in the full analysis.
The horizontal line at the Rayleigh stable region is the ideal result, whilst the curve at
the Rayleigh unstable region is the long wavelength limit result. The latter instability
disappears at the critical value of P ≈ 0.02675, below which there are three neutral
points. The three neutral points at P = 10−6 (filled square, diamond and reverse
triangle) and the one neutral point at P= 1 (filled triangle) are the asymptotic limits
seen in figures 1(a) and 1(b), respectively. The behaviour of the full stability curve
around the critical value of P is illustrated in figure 6. The disappearance of the long
wavelength limit exactly corresponds to the disappearance of the full instability in
the Rayleigh unstable regime.

4.2. The perfectly conducting conditions
A similar investigation is undertaken for the perfectly conducting cases. The long
wavelength limit equations are found from (3.2) by taking the limit R→∞, while
fixing kR as a constant. This is the regular limit that ensures all of the boundary
conditions (3.3). The computational results shown in figure 7(a,b) remain qualitatively
similar to those in figure 5. As the previous figure for the shearing box case, the
symbols on the curves represent the corresponding asymptotic results shown in
figure 2.

Most of the neutral perturbations are steady, although oscillatory neutral modes
are detected for some values of α. This is indicated by the green dashed curve
in figure 7(b). The behaviour of the steady modes are similar to the shearing box
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FIGURE 5. (Colour online) The neutral curve at the long wavelength limit for the shearing
box case. The unstable region is labelled by ‘U’, the stable region is labelled by ‘S’. (a)
α = 1, (b) α = 0.1.
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FIGURE 6. (Colour online) The disappearance of the instability in the Rayleigh unstable
regime with increasing P. The shearing box is used for α = 1. The solid curves are the
full neutral curves for P = 0.02, 0.026, 0.0267. The thin red lines are the corresponding
long wavelength asymptotic limits; see figure 5(a).

computation. Setting σ = 0, the long wavelength equations can be combined into the
single equation

{∂4
y + (P

1/2αRk)2}2ψ ′′ + (P1/2αRk)2
Ω

P
ψ ′′′′ +Ω(P1/2αRk)4ψ = 0. (4.7)

This equation suggests that the steady stability result obtained by optimising against
the scaled wavenumber (P1/2αRk) can be summarised by using Ω and P defined in
(4.1). Figure 7(c) displays the long wavelength results in terms of Ω = ω/α2 and
P = P/(1 − ω). For any choice of α, the steady modes are on the red curves in
the figure (horizontal line is the ideal result appearing when P1/2αRk → ∞). The
oscillatory mode only appears when α.0.2, as shown by the green dashed curve. The
oscillatory mode can be found at finite Reynolds numbers. For example, for the thick
blue dashed curve in figure 2 such a mode occurs around the Rayleigh line (more
precisely, such mode appears between the two blue circles).
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FIGURE 7. (Colour online) (a,b) The same results as figure 5 but for the
perfectly conducting boundary conditions. The red solid/green dashed curves are
the steady/oscillatory modes. (c) The results summarised in terms of ω/α2 and P/(1−ω).
The red solid curve is the neutral steady modes for various α. The green curves are the
neutral oscillatory modes for α = 0.1 and 0.2.

Another minor qualitative difference to the shearing box computation is that the
instability in the Rayleigh unstable region exists beyond the critical value of P found
by the asymptotic analysis. Figure 8 shows the behaviour of the full neutral curve
about the critical value P≈0.00248 for α=1; figure 7(a). Unlike figure 6(c), there is a
remnant of the instability enclosed by the neutral curve, but it reduces with increasing
P and vanishes at P≈ 0.00641.

4.3. The perfectly insulating conditions
As we have seen in figure 3 the asymptotic behaviour of the left-hand branch of the
perfectly insulating case is quite different from the other two boundary conditions.
Nevertheless, the asymptotic limit can be explained by the long wavelength limit kR∼
O(R0), but with fixed ωR.

In order to find the limiting reduced system it is convenient to choose k as a
perturbation parameter rather than R−1. Let us define the rescaled O(k0) parameters
k̃= P1/2αkR, ω̃= P1/2Rω/α and expand

ψ =ψ0 + kψ1 + · · · , P1/2Rωkv = v0 + kv1 + · · · , (4.8a)
Rωkb= b0 + kb1 + · · · , P1/2φ = φ0 + kφ1 + · · · . (4.8b)
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FIGURE 8. (Colour online) The same results as figure 6(c) but for the perfectly
conducting boundary conditions. The solid curves are the full neutral curves for the
P= 0.002, 0.004, 0.006, where equations (3.2) are solved for α = 1. The unstable region
shrinks with increasing P and disappear at the cross point when P = 0.00641. The red
lines are the long wavelength asymptotic result for P= 0.002; see figure 7(a).

Substituting these expansions into (3.2), at O(k0) we find

φ′′′′0 + îkψ ′′0 + iv0 = 0, v′′0 + îkb0 = 0, (4.9a)

ψ ′′0 + îkφ0 = 0, b′′0 + îkv0 = 0. (4.9b)

Note that ψ ′0 = φ0 = 0 must be satisfied at x=±1. This problem is exactly what we
saw in the ideal limit at the optimum value ω= 0. Within the asymptotic framework
we interpret this as the vanishing leading-order terms of O(R0) in the asymptotic
expansion of ω. Therefore, we must examine the higher-order term in the expansion,
namely ω̃, to determine the stability.

In order to fix the value of ω̃ we must find the next-order equations at O(k). Using
the leading-order solutions ψ0 = 1, φ0 = 0 we have

φ′′′′1 + ĩkψ ′′1 + iv1 = 0, v′′1 + ĩkb1 = 0, (4.10a)

ψ ′′1 + ĩkφ1 = 0, b′′1 + ĩkv1 = ĩkω̃, (4.10b)

which are solved with the higher-order boundary conditions

v1 = φ1 = φ
′

1 = b1 = 0, ψ ′1 ± 1= 0 at x=±1. (4.11a,b)

This is the inhomogeneous form of the leading-order equations and the solvability
condition gives the dispersion relation.

The easiest way to find that condition would be is to combine the equations in
(4.10) to

Ψ (8)

k̃4
+ 2

Ψ (4)

k̃2
+Ψ = 0, (4.12)

where Ψ =ψ ′′1 + ω̃/k̃. Assuming Ψ is an even function, the general solution of (4.12)
can be found as Ψ = A1SS + A2CC + A3κxSC + A4κxCS, where

SS = sin(κx) sinh(κx), CC = cos(κx) cosh(κx), (4.13a,b)
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SC = sin(κx) cosh(κx), CS = cos(κx) sinh(κx), (4.14a,b)

and κ = (k̃/2)1/2. The five unknown constants A1, A2, A3, A4 and ω̃ can be fixed by
applying the following five conditions found from (4.10) and (4.11):

Ψ (4)
=Ψ (1)

=Ψ (6)
+ k̃2Ψ (2)

= 0, Ψ =
ω̃

k̃
, at x= 1 (4.15a,b)

and ∫ 1

0
Ψ dx=−1+

ω̃

k̃
. (4.16)

After some algebra the dispersion relation can be found as

ω̃(k̃)=
k̃κγ3

(κγ1 + λ1)g1 + (κγ2 + λ2)g2 + (κγ3 + λ3)
, (4.17)

where

γ1 = {SC(C2
S + S2

C − S2
S +C2

C)− 2CSSSCC}, (4.18a)
λ1 = {(CC − SS)(S2

C −C2
S)/2− (SS +CC)CSSC}, (4.18b)

γ2 = {CS(C2
S + S2

C + S2
S −C2

C)− 2SCSSCC}, (4.18c)
λ2 = {(CC + SS)(S2

C −C2
S)/2− (SS −CC)CSSC}, (4.18d)

γ3 = {SS(SC −CS)+CC(SC +CS)}, λ3 =−(C2
S + S2

C), (4.18e)

g1 =−
SS −CC

4(S2
S +C2

C)
, g2 =−

SS +CC

4(S2
S +C2

C)
(4.18f )

are evaluated at x= 1.
The minimum for ω̃(k̃) can be found from (4.17) as 17.45 at k̃= 7.006. This leads

to the asymptotic result

R=
17.45α
ωP1/2

. (4.19)

The asymptotic lines in figure 3 capture the large Reynolds number behaviour of the
full neutral curve.

5. The high-rotation limits
5.1. The shearing box computations

In order to find the large ω asymptotic limits observed in figures 1–3, it is convenient
to use the normalised form similar to (2.16). We shall see that the limiting neutral
curve is governed by the non-dimensional parameter

C=
S2

ω
, (5.1)

which is the Rossby number multiplied by the square of the Lundquist number
S= RαP.
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The narrow-gap analogue of (2.16) can be found by substituting V = αv,
Φ = PRαφ, B= P−1R−1b into (3.2).

4
2Φ

R4P3α2
+ ik
4ψ

R2P2
+ ik

V
C
= 0, (5.2a)

4V
R2Pα2

+ ikB− ik
(

1
C
−

1
R2P2α2

)
Φ = 0, (5.2b)

4ψ + ikΦ = 0, (5.2c)
4B+ ikV − ikψ = 0. (5.2d)

The large R limit of this system is obtained by fixing the rescaled variables and k, α,
P, C as O(R0) quantities. From these assumptions and equation (5.1) we see that ω
is indeed asymptotically large.

From (5.2a) and (5.2b) the hydrodynamic part of the leading order solution is
simply

V = 0, Φ =CB. (5.3a,b)

Then for the other two equations we have the eigenvalue problem for C

4
2ψ −Ck2ψ = 0. (5.4)

As we have seen in the previous sections the sinusoidal function of wavelength
4/n, n ∈N can be used to derive the dispersion relation

C(k, n)=
((nπ/2)2 + k2)2

k2
. (5.5)

The minimum C=π2
≈ 9.870 found at k=π/2 and n= 1 gives the high-rotation limit

of the neutral curve

R=

√
π2ω

αP
, (5.6)

which agrees with the asymptotic prediction in figure 1.
The high-rotation limit line (5.6) describes the transition from the hydrodynamic

instability to the MRI in the anticyclonic regime. The key parameter is the Lundquist
number as pointed out in Kirillov & Stefani (2011) who used certain special property
of the algebraic equation (3.9) rather than the asymptotic approach. From figure 1 we
can see that for a given ω:

(i) If R�O(1/αP), namely the Lundquist number is small, then the flows satisfying
Rayleigh’s condition (1.2) are stable.

(ii) If R�O(1/αP), namely the Lundquist number is large, then the flows satisfying
the Velikhov–Chandrasekhar condition (1.1) are stable.

We remarked earlier that the stability must approach the purely hydrodynamic case
when either P or α approaches small values. The Velikhov–Chandrasekhar paradox
occurs because in this argument we have implicitly assumed that R is O(1), while
taking the limit. For large enough R, the limiting result (5.6) suggests that the MRI
must appear in the Rayleigh stable region no matter how small P and α are, as long
as they are finite. This conclusion is the same as Kirillov & Stefani (2011), but what
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FIGURE 9. (Colour online) The thick black curve is the envelope of the neutral curves for
various α. The periodic boundary conditions are used and P= 10−6. The thin grey curve
is the neutral curve for α = 1, taken from figure 1. The thick green curve is the purely
hydrodynamic result (α = 0). The horizontal dotted line is the high-rotation asymptotic
result for the MRI (5.10).

is remarkable here is that our asymptotic approach can be extended to more general
cases, as we shall see in the subsequent discussions.

For small P the magnetic Reynolds number Rm=PR becomes important (Goodman
& Ji 2002). Actually the high-rotation asymptotic approximation is valid only when
Rm is sufficiently large. Consider the critical value of Rm above which we can find an
appropriate size of the magnetic field to switch on the MRI; this is equivalent to draw
the envelope of the neutral curve for various values of α. The black solid curve in
figure 9 shows the envelope for P= 10−6. For this particular magnetic Prandtl number
clear separation of the hydrodynamic instability and the MRI is observed, where the
latter only occurs when Rm is large. Any neutral curve with fixed α should sit above
this envelope; see the thin grey curve computed for α = 1.

We can approximate the critical value of Rm from the high-rotation limit of the
envelope. Let us rewrite (3.2) using V = αv, ϕ = αφ, Rm = PR, A = α2/ω to have
the rescaled system

ω−1A−1
4

2ϕ + ikR(4ψ + A−1V)= 0, (5.7a)
ω−1A−1

4V + ikR(b− (1−ω−1)A−1ϕ)= 0, (5.7b)
4ψ + ikRmϕ = 0, (5.7c)

4b+ ikRmV − ikRmψ = 0. (5.7d)

Consider the large ω limit where k, V, φ, b, ψ, Rm, A are assumed to be O(ω0), then
equations (5.7) can be reduced to

4
2ψ − k2R2

mA(A4ψ +ψ)= 0. (5.8)

The use of the sinusoidal function then yields the dispersion relation

R2
m =

l4

k2(A− l2A2)
. (5.9)

The right-hand side is then minimised against the wavenumbers k, n and the
normalised magnetic field A to find the approximation of the envelope. The optimised
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value

Rm =
√

27
π2

4
≈ 12.821 (5.10)

at k = π/2
√

2 ≈ 1.111, n = 1, A = 1/2l2
≈ 0.1351 is the horizontal dotted line in

figure 9. If Rm is larger than this critical value, (5.6) can be used to approximate the
asymptotic behaviour of the MRI.

5.2. The narrow-gap limit results
Now let us include the effect of the walls. Since the viscous terms are removed in the
high-rotation limit we must consider near wall boundary layers to satisfy the boundary
conditions for the hydrodynamic parts. The asymptotic structure is similar to the small
P analysis given by Goodman & Ji (2002), but we are concerned with the different
asymptotic regimes.

First we consider the case for perfectly conducting walls. The limiting neutral
condition can again be found by (5.4) but now we must apply the boundary
conditions

ψ =ψ ′′′ − k2ψ ′ = 0 at x=±1 (5.11)

that ensures the magnetic boundary conditions ψ = B′ = 0 are satisfied on the walls.
The boundary conditions for the hydrodynamic parts are taken care of by the near-wall
boundary layer of thickness O(R−1). The boundary layer equations near x =±1 can
be obtained by considering Φ, V, ψ, B as a function of the stretched variable X =
(x∓1)/R in (5.2). Within the boundary layer ψ and B can be written by a local Taylor
expansion of the outer solutions, and hence they are merely a linear function and a
constant, respectively. Solutions V and Φ can be found by the rescaled hydrodynamic
equations

ΦXXXX

P3α2
+ ikC−1V = 0, (5.12)

VXX

Pα2
+ ikB− ikC−1Φ = 0, (5.13)

where V→ 0,Φ→CB as |X|→∞. There are three decaying and three growing roots
in the characteristic equation, so the inner solution that matches to the outer solution
can satisfy all the required boundary conditions on the walls. Clearly the boundary
layer is passive, in the sense that it does not affect the outer eigenvalue problem.

The minimum for C occurs as k → 0, and that limiting value can be found by
substituting the expansion

ψ =ψ0 + k2ψ1 + · · · (5.14)

into the outer equation (5.4). The leading-order problem is given as

ψ ′′′′0 = 0 (5.15)

with the boundary conditions ψ0 =ψ
′′′

0 = 0 at x=±1. Using the solution ψ0 = 1− x2

to the next-order problem, we have the inhomogeneous problem

ψ ′′′′1 − 2ψ ′′0 −Cψ0 = 0 (5.16)
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subject to ψ1=ψ
′′′

1 −ψ
′

0= 0 at x=±1. Integrating (5.16) once gives C= 3. Therefore,
the high-rotation limit for the perfectly conducting boundary conditions can be found
as

R=

√
3ω
αP

. (5.17)

For the perfectly insulating case we must solve (5.4) together with the magnetic
boundary conditions ψ ′± kψ = 0 and ψ ′′− k2ψ = 0 (The hydrodynamic conditions are
again satisfied through the boundary layer solutions that are similar to the perfectly
conducting case). The general solutions are exponential functions and the boundary
conditions are satisfied if the dispersion relation

f (C, k)= l+(tanh l+)− l−(tan l−)+ 2k= 0, l± =
√

k
√

C± k2 (5.18a,b)

holds. A little numerical work yields the minimum value C= 6.598 at k= 1.029. Thus,
the high-rotation limit for the perfectly insulating boundary walls is

R=

√
6.598ω
αP

. (5.19)

Both (5.17) and (5.19) predict the behaviour of the full numerical neutral curves
shown in figures 2 and 3, respectively. Similar to the shearing box case, those
approximations are valid when Rm is sufficiently large. The critical values of Rm,
similar to (5.10), can be derived for the wall bounded cases as derived in appendix B
and summarised in table 1.

5.3. Wide-gap cases
Finally, we extend the above high-rotation limits to the wide-gap cases. Here we fix
B0 rather than the magnetic Mach number; in fact most of the previous numerical
computations concerned constant magnetic field cases. This does not cause any major
change of the asymptotic structure discussed earlier. Thus, the outer region equations
can be found by taking Rp→∞ in the rescaled system (2.16).

From the hydrodynamic part of the equations, (2.16a), (2.16b), we find simple
solutions V = 0 and B = 2Φ/Cr2

o. Substituting those solutions into (2.16c), (2.16d)
we have the eigenvalue problem

4
2ψ −Ck2 r2

o

r2
ψ = 0, (5.20)

which must be solved subject to the magnetic part of the boundary conditions, namely
(2.13) or (2.14), and replacing b by 4ψ . Again thin near-wall boundary layers must
be inserted to satisfy the hydrodynamic part of the boundary conditions, but we omit
further analysis as they are passive. Given η we numerically find the minimum value
of the eigenvalue C against k; the results are summarised in figure 10(a).

From the definitions of C, Rp and Rs (see (2.15), (2.6)), we arrive at the conclusion
that the neutral curve in the Ri–Ro plane asymptotes towards the straight line

Ri =
C+ S2η2

η(C+ S2)
Ro (5.21)
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FIGURE 10. (Colour online) (a) The solution of the asymptotic problem (5.20). (b) The
neutral curves for η= 0.5, B0 = 2, P= 1. There are two thick blue dashed neutral curves
found by applying two boundary conditions (2.13), (2.14) for the full viscous resistive
MHD equations (2.11). Above those curves the corresponding flows are unstable. The two
red solid lines are the asymptotic results (5.21) with the values of C taken from (a).

which sits between the Rayleigh line and the solid-body rotation line. Figure 10(b)
compares the asymptotic and full numerical results, and we find excellent agreements
for both of the boundary conditions. (Similar to the previous cases, when P is
small such agreement could be found only when the magnetic Reynolds number
is sufficiently grater than the critical value; see appendix B.) The slope of the
asymptotic line is controlled only by the scaled Lundquist number C−1/2S. Increasing
the Lundquist number, the anticyclonic region is eventually destabilised. In particular,
we have the following limiting behaviours for the slope of the asymptotic line;

Ri/Ro→ η−1 (The Rayleigh line) as C−1/2S→ 0, (5.22a)
Ri/Ro→ η (The solid-body rotation line) as C−1/2S→∞, (5.22b)

which exactly correspond to the stability bounds predicted by Rayleigh’s condition
(1.2) and the Velikhov–Chandrasekhar condition (1.1), respectively. The coefficient C
carries information of the boundary conditions to the asymptotic stability result. From
figure 10(a) the conducting case is always more unstable than the insulating case. For
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a more general base flow, (5.20) becomes

4

{
(rVb)

′

r
4ψ

}
+ S2k2r

(
Vb

r

)′
ψ = 0 (5.23)

from which we can derive the same conclusion in view of (1.1)–(1.2).

6. Conclusion
The large Reynolds number asymptotic approximations of the neutral curve are

found for magnetised Taylor–Couette flow. For finite magnetic Prandtl numbers, the
formal asymptotic analysis is performed for the first time. The local analysis or
equivalently shearing box computation is first used to predict qualitative parameter
dependence of the stability, and then the result is extended to include the effect of
walls and curvature. The asymptotic results are compared with the numerical solutions
of the linearised MHD equations with the viscosity and resistivity fully retained.

In order to focus on the effect of the walls, we begin the analysis by considering
the narrow-gap cases defined for the shear Reynolds number R and the inverse
Rossby number ω. Neutral curves are obtained by imposing periodic conditions,
no-slip perfectly conducting conditions or no-slip perfectly insulating conditions;
figures 1–3. When the magnetic Prandtl number is not too small, there is one neutral
curve describing the MRI mode (the upper panels). The behaviour of the left-hand
branch can be explained by the ideal result, whilst the right-hand branch tends to what
is referred to as the high-rotation limit. For smaller magnetic Prandtl numbers (the
lower panels), the behaviour of the neutral curve is more complicated because there
is also a hydrodynamic mode of the instability emerging in the Rayleigh unstable
regime ω ∈ [0, 1]. More precisely, the large R asymptotic limit of the mode can be
described by the long wavelength limit derived in § 4. The richness of the asymptotic
limits suggests that the ideal limit is not sufficient to describe all of the large R
limiting behaviours of the neutral curve.

Although the ideal approximation is used in the early years of the MRI studies,
the omission of the diffusivity terms causes some contradictions to the full analysis.
According to the ideal result for the shearing box computation, there is a critical
value of ω below which the flow is predicted to be stable. The stronger the external
magnetic field is, the larger the critical value of ω should be, independent of
the magnetic Prandtl number. This presents the first inconsistency to the purely
hydrodynamic result at zero magnetic Prandtl number, where the instability should
occur when ω ∈ [0, 1]. Another paradox arises as the hydrodynamic result should
also be recovered for a vanishing applied magnetic field. The ideal result predicts
instability for ω > 0 in this case, although the anticyclonic regime ω > 1 must be
stabilised – this is the narrow-gap manifestation of the Velikhov–Chandrasekhar
paradox.

Those curious inconsistencies occurred because in the above discussions we did not
consider the size of the variables and parameters in detail. The asymptotic approach
accounts for all delicate balances of each term, thereby resolving the paradoxical
results. The former paradox is overcome on decreasing the magnetic Prandtl number
in the proper asymptotic limit to show that the hydrodynamic mode abruptly appears
at certain critical values of P. In order to find that critical value we must take
asymptotically long wavelengths of O(R−1). With this scaling the diffusive terms
must be retained and this is the reason why the corresponding instability cannot
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be predicted by the ideal result. Also the latter Velikhov–Chandrasekhar paradox
can be explained by the behaviour of the high-rotation limit, where the resistivity
remains the leading-order effect. The limiting stability is determined by the new
non-dimensional parameter that is given by the Rossby number multiplied by the
square of the Lundquist number. Therefore, by increasing the Lundquist number S
the anticyclonic region ω > 1 is destabilised gradually. This conclusion is certainly
consistent with Kirillov & Stefani (2011).

From figures 1 and 2 we find that the introduction of the perfectly conducting walls
causes some minor qualitative differences to the stability property; see the remark in
§ 4. The derivation of the ideal, long wavelength and high-rotation limit in this case
remains similar to the shearing box case, although for some cases we must insert
passive near-wall boundary layers. On the other hand, when the perfectly insulating
walls are used there is an important difference that the ideal limit can no longer serve
as an accurate prediction for the neutral curve (figure 3). The asymptotic analysis
reveals that to leading order the ideal result gives a rather trivial result, and hence
we must look into higher-order terms.

The extension of those narrow-gap results to the wide-gap cases is possible. The
ideal limit above predicts that there is a critical Rossby number for a given magnetic
Mach number. For the wide-gap case the ratio Ri/Ro controls the Rossby number of
the flow and hence in the Ro–Ri plane we can draw the critical line whose slope
depends on the magnetic Mach number; see figure 4. The slope of the line becomes
gentler by increasing the applied magnetic field. The approximation is valid for the
upper neutral branch, so again we have the stabilisation effect by the magnetic field
exemplified by Velikhov (1959). Likewise the lower neutral branch in the figure
can be approximated by the high-rotation limit, which represents the destabilisation
effect by the applied magnetic field. The slope of the corresponding critical line is
determined by the Lundquist number, as suggested by the narrow-gap analysis. The
simple analytic form (5.21) of the line, whose limiting cases (5.22) connect the two
ideal limits (1.1) and (1.2), give an excellent prediction for the high-speed MRI
stability boundary, as seen in figure 10.

Throughout the paper axisymmetry of the perturbations is assumed. We note
in passing that non-axisymmetric perturbations are actually not significant for the
long wavelength and high-rotation limits because in order to balance the azimuthal
derivative we must choose the azimuthal wavenumber m to be O(R−1). However, for
the ideal limit we can take a finite value of m so a non-axisymmetric mode may
be possible. In fact, Rüdiger et al. (2018a) reported that for some Rayleigh unstable
flows the m=1 mode becomes most unstable when the cylinders are made of perfectly
conducting walls. It should also be noted that non-axisymmetry of the perturbations
typically appears when the cylinders are counter rotating as widely recognised in
purely hydrodynamic Taylor–Couette flow studies. Hence it is of interest to extend
the recent asymptotic work by Deguchi (2016) to magneto-hydrodynamic flows in
the future.
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Appendix A. Numerical method
In order to numerically solve the differential equations (e.g. (2.11), (3.2)) modified

Chebyshev expansions are used. For the hydrodynamic parts we can use the
expansions

φ =

L∑
l=0

(1− x2)2Tl(x), v =

L∑
l=0

(1− x2)Tl(x) (A 1a,b)

which ensure the no-slip conditions φ′ = φ = v = 0 on the walls. Here Tl is lth
Chebyshev polynomial and the expansion is truncated at Lth mode.

The expansions for the magnetic parts are more tricky. The corresponding boundary
conditions are written in the form of Robin’s conditions

g′ +M±g= 0 at x=±1 (A 2)

with some constants M+ and M−. For the function g(x) we consider the expansion

g(x)=
L∑

l=0

(1− x2)Tl(x)+ χ0 + χ1x, (A 3)

where each basis function satisfies (A 2) when the constants χ0, χ1 are chosen as

χ0 = 2
(−1)l(1+M+)+ (1−M−)
(1−M−)M+ − (1+M+)M−

, (A 4a)

χ1 =−2
(−1)lM+ +M−

(1−M−)M+ − (1+M+)M−
. (A 4b)

After substituting those expansions into the differential equations, we evaluate them
at the collocation points

x= cos
(

l+ 1
L+ 2

π

)
, l= 0, . . . , L (A 5)

to obtain the algebraic equations used in the computations.

Appendix B. Optimised magnetic field
Here we shall find the critical value of Rm to observe the MRI for the wide-gap

cases, using the high-rotation limit. Rewriting (2.11) using V = βv, Φ = βφ,
Rm = P(2Rp/r2

m), A= r2
mβ

2Rp/4Rs, then

β−2
4

2ϕ + ikRp4ψ + ikRp

(
r2

m

2A
+

2
r2β2

)
V = 0, (B 1a)

β−2
4V + ikRpb− ikRp

r2
m

2A
ϕ = 0, (B 1b)

4ψ + ikRm
r2

m

2
ϕ = 0, (B 1c)

4b+ ikRm
r2

m

2
V − ikRm

r2
m

r2
ψ = 0. (B 1d)
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FIGURE 11. The critical Rm similar to (5.10) but for wide-gap Taylor–Couette flow.

Taking the limit of large β, Rs/Rp, we find the approximation of the critical value Rm
that is similar to the shearing box computation (see figure 9). If we keep Rm, A, and
all the rescaled variables to be O(1), the limiting equations are

4ψ + ikRmAb= 0, (B 2a)

4b− ikRm

(
A4ψ +

r2
m

r2
ψ

)
= 0, (B 2b)

where the boundary conditions for the magnetic part must be imposed. For a given
value of η, we search for the minimum eigenvalue Rm over k, A. Results are shown
in figure 11.

Further analytical progress can be made for the narrow-gap cases. For both of the
boundary conditions the optimum of Rm occurs as k→ 0. For the perfectly conducting
walls we substitute the small k expansions

b=
1+ k2b1 + · · ·

iRmA
, ψ = kψ0 + · · · (B 3a,b)

into the narrow-gap version of (B 1). The leading-order equations are

ψ ′′0 + 1= 0, (b′′1 − 1)+ R2
mA(Aψ ′′0 +ψ0)= 0. (B 4a,b)

Upon using the solution of the first equation ψ0= (1− x2)/2 into the second equation,
and integrating once gives,

R2
mA2
−

R2
mA
3
+ 1= 0. (B 5)

Here we require that φ0 = b′0 = 0 on the walls. From (B 5) it is easy to find that the
minimum Rm = 6 occurs at A= 1/6.

For the perfectly insulating case the appropriate expansions are

b= ikb0 + · · · , ψ = 1+ kψ0 + · · · , A=
A0

kRm
+ · · · . (B 6a−c)

The leading-order equations

A0b0 =ψ
′′

0 , (B 7a)
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A0ψ
′′

0 + Rm = b′′0 (B 7b)

yield

b0 =
Rm

A2
0

(
cosh A0x
cosh A0

− 1
)
, (B 8)

which satisfies b0 = 0 on the walls. Substituting this solution into (B 7a) and
integrating once we have the dispersion relation

Rm =
A2

0

A0 − tanh A0
. (B 9)

Here we used ψ ′0 ± 1 = 0 at x = ±1. The minimum Rm ≈ 3.774 at A0 ≈ 1.606 is
consistent with the results plotted in figure 11.
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