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A model is developed for describing mixing of several species under high-pressure
conditions. The model includes the Peng–Robinson equation of state, a full mass-
diffusion matrix, a full thermal-diffusion-factor matrix necessary to incorporate the
Soret and Dufour effects and both thermal conductivity and viscosity computed for
the species mixture using mixing rules. Direct numerical simulations (DNSs) are
conducted in a temporal mixing layer configuration. The initial mean flow is perturbed
using an analytical perturbation which is consistent with the definition of vorticity
and is divergence free. Simulations are performed for a set of five species relevant
to hydrocarbon combustion and an ensemble of realizations is created to explore the
effect of the initial Reynolds number and of the initial pressure. Each simulation
reaches a transitional state having turbulent characteristics and most of the data
analysis is performed on that state. A mathematical reformulation of the flux terms
in the conservation equations allows the definition of effective species-specific Schmidt
numbers (Sc) and of an effective Prandtl number (Pr) based on effective species-
specific diffusivities and an effective thermal conductivity, respectively. Because these
effective species-specific diffusivities and the effective thermal conductivity are not
directly computable from the DNS solution, we develop models for both of these
quantities that prove very accurate when compared with the DNS database. For two
of the five species, values of the effective species-specific diffusivities are negative
at some locations indicating that these species experience spinodal decomposition; we
determine the necessary and sufficient condition for spinodal decomposition to occur.
We also show that flows displaying spinodal decomposition have enhanced vortical
characteristics and trace this aspect to the specific features of high-density-gradient
magnitude regions formed in the flows. The largest values of the effective species-
specific Sc numbers can be well in excess of those known for gases but almost
two orders of magnitude smaller than those of liquids at atmospheric pressure. The
effective thermal conductivity also exhibits negative values at some locations and the
effective Pr displays values that can be as high as those of a liquid refrigerant.
Examination of the equivalence ratio indicates that the stoichiometric region is thin
and coincides with regions where the mixture effective species-specific Lewis number
values are well in excess of unity. Very lean and very rich regions coexist in the
vicinity of the stoichiometric region. Analysis of the dissipation indicates that it is
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dominated by mass diffusion, with viscous dissipation being the smallest among the
three dissipation modes. The sum of the heat and species (i.e. scalar) dissipation is
functionally modelled using the effective species-specific diffusivities and the effective
thermal conductivity. Computations of the modelled sum employing the modelled
effective species-specific diffusivities and the modelled effective thermal conductivity
shows that it accurately replicates the exact equivalent dissipation.

Key words: mixing, turbulent mixing

1. Introduction
Mixing of several species under high-pressure (high-p) conditions is encountered

in a variety of practical systems used for automotive, aeronautics and astronautics
propulsion. These systems include diesel, homogeneous charge compression ignition
(HCCI), gas turbine and liquid rocket propulsion engines; in all of these devices p
is generally larger than the critical pressure, pc (subscript c denotes the critical state),
of either fuel or oxidizer. In the combustion chamber of each of these systems, a
chemical species or a complex fuel is injected into another fluid (which can be an
oxidizer) which is at p > pc. Thus, high-p mixing is a precursor to combustion. The
evolution of the mixture during preignition, a phenomenon occurring at relatively
low-temperature (with respect to full combustion) and high-p conditions, has been
experimentally demonstrated to be a chemical-radical-deficient process (Fotache,
Kreutz & Law 1997; Egolfopoulos & Dimotakis 1998), a fact which necessarily
implies that molecular mixing is crucial to autoignition; details of molecular mixing
strongly influence the inception and development of autoignition. This preignition is
chemically dominated by pyrolysis, a process in which the fuel gradually decomposes
into its lighter species which mix with the remaining fuel and oxidizer. During
combustion, since the reaction is not uniformly distributed, reaction products evolving
at some locations may also mix with fuel and oxidizer at other locations. Thus,
turbulent mixing of several chemical species under high-p conditions is a crucial topic
of study relevant to a wide range of combustion devices and operating conditions.

The investigation of the fundamental processes occurring during p > pc mixing of
several species is best studied through direct numerical simulation (DNS) because
well-conducted DNSs present a unique opportunity to explore details which are only
approximated when using other computational methods (e.g. large eddy simulation
(LES)). Thus, the focus of the present study is to conduct DNSs of multi-species
mixing under p > pc conditions and analyse the results. First, we wish to elucidate
some of the similarities and differences between past DNS studies of p > pc binary-
species mixing (Okong’o & Bellan 2002a; Okong’o, Harstad & Bellan 2002) and the
present more complex and realistic situation. The most important difference between
the binary-species studies and the present one is in the new physics embedded
in the transport properties and in the real-gas thermodynamic complexities when
several species are involved. Because of the strong coupling between dynamics and
thermodynamics for p > pc flows, these new aspects are expected to lead to new
insights into the particular care with which simulations of such practical flows
must be approached. For example, the mixing of two species involves a single
Schmidt number, Sc ≡ µ/(ραDD) (where µ is the viscosity coefficient, ρ is the mass
density, αD is the mass-diffusion factor computable from the equation of state (EOS)
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(Okong’o & Bellan 2002a; Okong’o et al. 2002) and D is the diffusion coefficient),
whereas the mixing of several species involves many Sc numbers; this fact has
physical consequences which translate into computational requirements. That is,
because the relationship between the Kolmogorov scale, ηK , and the Batchelor scale,
ηB, is ηB = ηKSc−0.5, only if Sc . 1 (gas-like values) is the relationship ηB & ηK

ensured, and thus only then is the resolution for the flow dynamics sufficient for
describing species mixing; however, for multiple species, a single Sc is not expected
to portray the characteristic scales associated with mixing of all species. It would be
desirable to define a single Sc for each species, but such definition is absent so far.
Furthermore, because supercritical fluids have properties intermediate between liquid
and gas, even if a species-specific Sc were defined, it cannot be ensured that Sc . 1
holds for all Sc numbers at all times and locations; this fact may impose additional
computational demands in DNSs to resolve the smallest dissipation-relevant scales
due to mixing. There is a similar concern about resolving the thermal scales, ηθ ,
since ηθ = ηKPr

−0.5 (Goto & Kida 1999). Second, we wish to explore the impact
of the coupled thermodynamics and transport properties on the species, temperature
and equivalence ratio (ER) distribution. In particular, we wish to inquire whether
the stoichiometric region is thin, so that if this feature further holds for reactive
cases the flow may be in the ‘flamelet’ regime (Williams 1975). With reaction, the
stoichiometric region may be more distorted and thicker compared with that obtained
during mixing, but if it is not thin without reaction, the possibility of being thin when
reaction occurs is remote. With a potentially thin flame, one could conceivably use the
Peters (2000) flamelet model if the equations can be reformulated to fit that model.
Finally, we are interested in understanding the major fundamental aspects of multiple-
species mixing under supercritical p as a precursor to undertaking reactive-flow studies
in the future.

The model describing species mixing is presented in § 2. The species governing
equations are no longer in the molar form of the past (Okong’o & Bellan 2002a),
and instead have been restructured in mass-fraction format and the system has
been manipulated to solve for a number of independent species. The intricacies
of the multiple-species transport properties is then described in § 3. To the best
of the authors’ knowledge, only Giovangigli, Matuszewsky & Dupoirieux (2011)
and Giovangigli & Matuszewsky (2012) have modelled transport properties in such
detail in studies focused on steady one-dimensional laminar flames. The physical
configuration, boundary conditions and initial conditions are presented in § 4 and the
numerical method for solving the equations using DNS is explained in § 5. A database
of eight DNS realizations is constructed for a simple system of species relevant
to combustion, fuel (n-heptane, C7H16; subscript Hep), oxygen (O2; subscript Oxy),
nitrogen (N2; subscript N), water vapour (H2O; subscript Wat) and carbon dioxide
(CO2; subscript Car), and results are illustrated and discussed in § 6 highlighting
the effect of thermodynamics and transport properties. The choice of H2O and CO2

has practical applications to HCCI engines in which fuel is mixed with recirculated
exhaust gas that is compressed in the combustion chamber before ignition. After
discussing the evolution of the flow in § 6.1 we examine in § 6.2 the transitional states
achieved for each simulation. Most significantly, we show in § 6.2.2 that it is possible
to mathematically define effective species-specific diffusivities and an effective thermal
conductivity leading to effective species-specific Sc numbers, Scα,eff , and an effective
Prandtl number, Preff , and we propose a model for computing these numbers;
comparisons of the model with the database shows that the model is very accurate.
Both effective Sc and Pr number values indicate that the flow possesses characteristics
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far from those of gases, that some aspects are very much like those of liquids, that the
mixture is non-ideal and that some species experience spinodal decomposition under
certain conditions; we determine the necessary and sufficient conditions for spinodal
decomposition to occur. Also, we find in § 6.2.3 that the stoichiometric region is thin
and that the fluid mixture in that region has effective species-specific Lewis number
values larger than unity. As a way to gather the remaining information relevant to
transport properties and their effect on the flow, in § 6.3 we examine the dissipation
and its various contributions. A summary and conclusions are offered in § 7 with
special emphasis on the implications for simulations of p> pc reactive flows.

2. Governing equations
2.1. Differential conservation equations

The conservation equations derived in detail elsewhere (Okong’o & Bellan 2002a) are

∂ρ

∂t
+ ∂

∂xj

[
ρuj

]= 0, (2.1)

∂

∂t
(ρui)+ ∂

∂xj

[
ρuiuj + pδij − σij

]= 0, (2.2)

∂

∂t
(ρet)+ ∂

∂xj

[
(ρet + p) uj − uiσij + qj

]= 0, (2.3)

∂

∂t
(ρYα)+ ∂

∂xj

[
ρYα uj + Jαj

]= 0, (2.4)

where α ∈ [1,N − 1], t denotes the time, x is a Cartesian coordinate, subscripts i and j
refer to the spatial coordinates, ui is the velocity, et = e+ uiui/2 is the total energy (i.e.
internal energy, e, plus kinetic energy), Yα is the mass fraction of species α, N is the
number of species and σij is the Newtonian viscous stress tensor

σij = µ
(

2Sij − 2
3

Skkδij

)
, Sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.5)

where µ is the viscosity and Jαj and qj are the j-direction species-α mass flux and heat
flux, respectively.

Because of the different constitutive relations used for expressing Jα and q,
equations (2.1)–(2.4) under high-p conditions have ultimately a different form from
their equivalent form used under atmospheric-p conditions. The Jα and q expressions
used here are based on the full matrices of mass-diffusion coefficients and thermal-
diffusion factors derived by Harstad & Bellan (2004a). In order to ensure global mass
conservation, we choose to consider a set of independent (N − 1) species equations
rather than the set of N dependent species; in these (N − 1) equations, the original
molar-fraction fluxes and the heat flux were rewritten to account for only (N − 1)
gradients. The final form is

Jα =−ρ
[

Yα
(
DT,α

) ∇T

T
+ Yα

(
Dp,α

) ∇p

p
+

N−1∑
β=1

(
D′αβ

mα

mβ

)
∇Yβ

]
, (2.6)

q=−λ∇T +
N−1∑
α=1

Jα

[(
hα
mα

− hN

mN

)
− RuT

(
ᾱb

T,α

mα

− ᾱ
b
T,N

mN

)]
(2.7)
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where

DT,α =−
N∑
β=1

ᾱb
T,βDβα, Dp,α = p

RuT

N∑
β=1

vβDβα, (2.8)

Dαγ =
N∑
β=1

DαβαDβγ , (2.9)

ᾱb
T,α =

N∑
β=1

Xβα
b
T,βα, (2.10)

D′αβ = Dαβ −
(

1− mβ

mN

)(N−1∑
γ=1

DαγXγ

)
. (2.11)

Here, Xα = Yαm/mα represents the molar fraction, T is the temperature, mα is
the species molar mass, m is the mixture molar mass, m = ∑N

γ=1mγXγ , vα =
(∂v/∂Xα)T,p,Xβ (β 6=α) is the partial molar volume, where the molar volume is v = 1/n
and n = ρ/m is the molar density, hα = (∂h/∂Xα)T,p,Xβ (β 6=α) is the partial molar
enthalpy, where the molar enthalpy is h = G − T (∂G/∂T)p,X with G being the
Gibbs energy, Ru is the universal gas constant, Dαγ are the pairwise mass-diffusion
coefficients, αb

T,αβ are the binary thermal diffusion factors and λ is the thermal
conductivity. The mass-diffusion factors, αDαβ, are calculated from thermodynamics
as

αDαβ ≡ 1
RuT

Xα
∂µα

∂Xβ
= (δαβ − δαN)+ Xα(Rαβ − RαN), 1 6 α 6 N, 1 6 β 6 N − 1

(2.12)

Rαβ ≡ ∂ ln γα
∂Xβ

, 1 6 α 6 N, 1 6 β 6 N (2.13)

where µα is the chemical potential of species α written in terms of N − 1 species;
γα ≡ ϕα/ϕo

α where ϕ is the fugacity coefficient written in terms of N species and the
superscript o denotes the pure (Xα = 1) limit. Matrix elements Dβγ are the solution of
the mixing rules equations (Harstad & Bellan 2004a)

N∑
β=1

[
δαβ −

(
1− δαβ

)
Xβ

D̄α

Db
αβ

]
Dβγ

Xβ
= D̄α

(
δαγ − Yα

)
Xα

(2.14)

where

D̄α = 1
/ N∑

β=1
β 6=α

(
Xβ
Db
αβ

)
. (2.15)

Solutions for Dβγ may be obtained by an approximate inversion (Ern & Giovangigli
1998) as follows:

Dβγ ' XβD(1)
βγ , (2.16)

D(1)
αβ =

(1+ Yα)

Xα
D∗αδαβ +

(
1− δαβ

) D∗αD
∗
β

Db
αβ

− (σαD∗α + σβD∗β)+ N∑
γ=1

(
YγσγD

∗
γ

)
, (2.17)
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D∗α = (1− Yα) D̄α, (2.18)

σα = mα

m
(1+ Yα)+

N∑
β=1
β 6=α

Yβ
D∗β
Db
αβ

(2.19)

where Db
αβ is the full approximation binary-diffusion matrix. This method leads to a

singularity when the mixture is composed of only one species (as, for instance, in
pure fuel zones). In that case (2.15) is no longer used and the diffusion coefficients
are evaluated by means of the binary-diffusion matrix, by setting D∗α = Db

αN , where
N represents the index associated with the solvent. This method was tested against an
exact Gauss inversion (not shown) and it gave the same results, with an additional gain
in computational time. Defining Dαβ as the first approximation of the binary diffusion
matrix and realizing that the deviation of the ratio Db

αβ/Dαβ from unity is comparable
to uncertainties in binary diffusion coefficients values (Harstad & Bellan 2004a), we
assume Db

αβ = Dαβ . The computation of Dαβ and αb
T,αβ is described in § 3 along with

the other transport properties.

2.2. The equation of state
Equations (2.1)–(2.4) are coupled with the Peng–Robinson (PR) EOS

p= RuT

(vPR − bmix)
− amix(

v2
PR + 2bmixvPR − b2

mix

) (2.20)

from which T and p are obtained as an iterative solution which satisfies both values of
ρ and of e, as obtained from the conservation equations (Okong’o et al. 2002). Here
vPR is the molar PR volume, and v = vPR + vs where vs is the volume shift introduced
so as to improve the accuracy of the PR EOS at high p; amix and bmix are functions
of T and Xi (see appendix A). The vs computation was explained in detail elsewhere
(Okong’o et al. 2002).

3. Transport properties
Unlike for atmospheric-p flows where three transport properties are generally

sufficient (viscosity, diffusivity and thermal conductivity), for high-p conditions there
are four relevant transport properties.

3.1. Mixture viscosity
To compute the individual species viscosity, µvis

α , the Lucas method (Reid, Prausnitz
& Polling 1987) has been selected due to its high-p-accuracy capabilities. To compute
the mixture physical viscosity, µph, the Wilke method (Reid et al. 1987) is utilized
providing

µph =
N∑
α=1

Xαω
M
α µ

vis
α (3.1)

(ωM
α )
−1 =

N∑
β=1

φαβXβ (3.2)

φαβ =
[
1+ (µvis

α /µ
vis
β )

1/2
(mβ/mα)

1/4
]2

[
8(1+ mα/mβ)

]1/2 (3.3)
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where ωM
α are weighting factors (Reid et al. 1987). The Wilke method is chosen here

for the mixing rules because it is a subset of the Wassiljewa–Mason–Saxena method
(Reid et al. 1987) for computing thermal conductivities (see § 3.2) and provides
consistency between these two computations.

We distinguish between µph, the reference viscosity µR defined in § 4 and the
computational viscosity µ used to enable resolution to scales of O(ηK), as explained in
§ 4.

3.2. Mixture thermal conductivity
To compute the physical mixture thermal conductivity, λph, first the species
conductivities λα are calculated using the Stiel–Thodos method (Reid et al. 1987)
because of its validity at high p through the inclusion of an excess function, and then
the Wassiljewa–Mason–Saxena method is utilized to compute λph from λα as

λph =
N∑
γ=1

Xαω
Q
α λα (3.4)

where according to the assumption made by Reid et al. (1987)

ωQ
α = ωM

α . (3.5)

In § 4 we explain how a scaled thermal conductivity, λ, is computed that is used to
perform DNSs.

3.3. Binary mass diffusivities
Matrix elements Db

αγ are the building blocks of Dαγ and ultimately of D′αγ . To
compute Db

αγ = Dαγ , we adopt the method of Harstad & Bellan (2004b) which gives
(in cgs units)

nDαγ = 2.81× 10−5 fD,αγ (T)

rDv
2/3
c,αγ

[(
1

mα

+ 1
mγ

)
T

]1/2

(3.6)

where fD,αγ (T) is generically defined for each matrix element as fD(T) ≡ (Tred)
s

with ln s =∑5
ζ=0as

ζ (ln Tred)
ζ where the as vector has elements {−0.84211, −0.32643,

−0.10053, 0.07747, 0.0127, −0.00995} and rD is a constant O(1) which provides
an empirical adjustment for the specifics of the binary collisional interactions of a
selected pair of species to adjust the kinetic theory computations so as to match
experimental data. Here Tred,αγ ≡ T/Tc,αγ with Tc,αγ defined in appendix A; vc,αγ is
defined in appendix A as well. Values of rD are listed elsewhere (Harstad & Bellan
2004b) for species pairs relevant to combustion.

3.4. Binary thermal diffusion factors
According to Harstad & Bellan (2004a)

αb
T,αγ = ζαγ

(mαω
T
γ − mγω

T
α)

(mα + mγ )Dαγ

(3.7)

ωT
α =

ωQ
α λα

Run
, ζαγ = 6

5
C∗αγ − 1 (3.8)

where ωQ
α is computed from (3.2) and (3.5), and C∗αγ is given by Hirshfelder, Curtis

& Bird (1964) and is function of a normalized temperature including the characteristic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.70


Multi-species supercritical-pressure mixing 585

molecular interaction potential (Harstad & Bellan 2004a). This computation of αb
T,αγ is

based on kinetic theory and is thus valid for low-to-moderate pressures.

4. Configuration, boundary conditions and initial conditions
The configuration is that of a temporal mixing layer with periodic boundary

conditions in the streamwise (x1) and spanwise (x3) directions and non-reflecting
boundary conditions in the cross-stream (x2) direction (Okong’o & Bellan 2002b).
The domain size in the streamwise (L1) and spanwise (L3) directions is such that it
accommodates initially four vortices associated with the wavelengths λ1 and λ3 of
perturbations (see appendix B.2), respectively. The cross-stream domain size (L2) is
large enough so that there is no interference of the mixing region with the domain
boundaries.

4.1. Computational-transport-property selection
The initial Reynolds number was defined as Re0 ≡ [0.5(ρU + ρL)1U0δω,0]/µR where
ρU and ρL are mixture initial densities, with subscripts U and L labelling the upper and
lower streams, respectively; δω,0 = 1U0/ (∂u0/∂x2)max is the initial vorticity thickness
computed by using u0 which is the (x1, x3) planar average of the initial velocity in
the streamwise direction; 1U0 = UU − UL is the initial velocity difference across the
layer; and as already stated, µR is a reference viscosity. For the previous binary-
mixing simulations (Okong’o & Bellan 2002a), an initial µR was obtained from the
chosen Re0 value, and then used as a normalizing factor for the viscosity which was
expressed as a power of T normalized by an averaged temperature T0 = (TU + TL)/2.
The viscosity was then used for computing Pr and Sc through correlations involving
Yα and/or T . In the present study, first a physical initial mixture viscosity µph,0 is
computed based on the physical initial species viscosities (§ 3.1), then a reference
value µR is obtained from the chosen Re0 and finally a factor F ≡ µR/µph,0 is defined.
All transport properties computed during the simulation are then scaled by F , a
procedure which allows the computation of accurate dimensionless numbers. The value
of F was computed at the initial time, for the initial constant p0 and T0, using a
mixture composed of five species, each species being averaged over the entire domain.
In this way, a unique F value is employed in the computational domain. As an
example, for Re0 = 600, F was found to be O(104); see table 1. This scaling satisfies
the Batchelor (1999) principle of flow similarity stating that flow characteristics only
depend upon non-dimensional numbers rather than individual transport properties.

4.2. Initial profiles
The initial profiles are composed of mean quantities upon which perturbations are
imposed. The choice of mean profiles is usually based on an error function and a
similarity analysis; in the past, the perturbations have been related to the stability
of the layer, but their specification is rather ad hoc (Okong’o & Bellan 2004). In
appendix B, we show that it is possible to analytically derive a perturbation for
initializing the computation. Details about both the mean flow and the analytical
perturbation are provided in appendix B and these analytical expressions are here used
as initial profiles.

5. Numerical method
The differential equations of § 2.1 combined with the EOS described in § 2.2,

using the transport coefficient models presented in § 3, were numerically solved
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using a fourth-order explicit Runge–Kutta time integration and a sixth-order compact
scheme spatial discretization. Time stability was achieved by filtering the conservative
variables every five time steps using an eighth-order filter, with the exclusion of the
x2 boundary since high-order boundary filters were unstable. According to Kennedy
& Carpenter (1994), this filtering only removes spurious information without affecting
the physical content of the data as the filter only acts on the shortest wavelengths that
can be resolved on the grid and thus does not act as a turbulence model allowing
under-resolved computations.

The computations were parallelized using three-dimensional domain decomposition
and message passing. The tridiagonal solver for the compact derivative scheme was
efficiently parallelized using the method of Muller & Scheerer (1991).

The grid spacing, 1x, is uniform and is selected to ensure that the smallest scales
relevant to dissipation are resolved and that there is no accumulation of energy at
those scales (see § 6.2.1). The grid spacings used in various realizations are listed in
table 1. For the baseline computation R600p60, the number of grid nodes was first
chosen as equal to that of the past binary-species simulations at same p0 and Re0

values. Then, the number of grid points was sequentially increased to 125, 150 and
165 %. In each of these simulations a smooth and well-resolved transitional velocity
field was obtained. Finally, a grid corresponding to a grid-point increase of 150 %
was retained in order to provide a better local and instantaneous representation of
the smallest scales. This resolution should not be considered as optimal for such
a simulation; indeed, the same grid was successfully used for R1000p60 as well.
Scaling the grid with the value of Re is a standardized procedure for fully turbulent
flows (Tennekes & Lumley 1989): the grid points increase as a power law of Re,
suggested by the relationship l/ηK ∼ Re3/4 where l is the integral scale and ηK is
the Kolmogorov scale. But such scaling is less obvious for transitional flows where
turbulence is not fully developed and the small structures not yet defined. Moreover,
given the uncertainty as to whether the resolution is governed by the flow dynamics
or by scalar mixing, it is difficult to preliminarily rely on one criterion to determine
the resolution; more quantitative assessments are made in § 6.2.2. Therefore, a certain
amount of experimentation led to the grids listed in table 1. The domain lengths, Li,

are the same for all simulations in the x1 and x3 directions and determined in the x2

direction by the relationship L2 = L1 ∗ (N2 − 1)/N1 where Ni is the number of grid
nodes in the direction i.

Unlike in Okong’o & Bellan (2002a), but similar to Okong’o et al. (2002), the EOS
was solved through an iterative procedure.

6. Results

The simulations are performed here for a mixture of five species selected for their
relevance to combustion. The fuel is represented by C7H16 because it has similar
cetane number value to diesel fuel (CN of ≈56 versus ≈50); the significance of
CN is that it measures the ignition delay time. Air is here represented by its major
species: N2 and O2. Finally, the major products of complete combustion are CO2

and H2O, both of which complete the set of five species. Listed in table 2 are the
initial compositions of the free streams for all simulations. The properties of these five
species are listed in table 3. The interaction coefficients necessary to compute p from
the EOS for this set of species are provided in table 4; coefficients the value of which
is unknown are taken to be null.
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Run Stream YWat YCar YOxy YHep YN

All simulations U 0.01 0.035 0.2 0 0.755
(except R600p60∗, R600p60∗∗) L 0.01 0.035 0 0.955 0

R600p60∗ U 0.01 0.035 0.2 0 0.755
L 0 0 0 1 0

R600p60∗∗ U 0.02 0.07 0.2 0 0.71
L 0.01 0.035 0 0.955 0

TABLE 2. Initial mass fractions of water, carbon dioxide, oxygen, n-heptane and nitrogen
in the upper and lower streams.

Species Species mα Tc pc vc Ω

label (α) (kg kmol−1) (K) (bar) (10−3 m3 kmol−1)

H2O 1 18.015 647.3 221 57.1 0.344
CO2 2 44.01 304.1 73.8 93.9 0.239
O2 3 32.0 154.6 50.43 73.4 0.025
C7H16 4 100.2 540.2 27.4 432 0.349
N2 5 28.013 126.26 33.4 89.8 0.039

TABLE 3. Species properties. The species are listed in order of index α.

α γ k′

Alkane Alkane 0.0
Alkane N2, O2 0.15
Alkane CO2 0.11
Alkane H2O 0.093–0.006nc
CO2 H2O 0.095
CO2 N2, O2 −0.017
H2O N2, O2 0.17

TABLE 4. Values of k′ for species pairs. Here nc is the number of C atoms in the species.

Complete initial conditions for all computations are listed in table 1; in particular,
the values of λ1 and λ3 are λ1/δω,0 = 7.29 and λ3 = 0.6λ1 as in Moser & Rogers
(1991). Each realization reached a transitional state denoted by the subscript tr and
two important quantities, namely the non-dimensional transitional time t∗tr (time at
which the one-dimensional fluctuation-based energy spectra become smooth, except
for the forcing frequency) where t∗ = t1U0/δω,0, and the momentum-thickness-based
Reynolds number defined below in (6.1), also appear in table 1.

Because simulations with an analytical perturbation have not been performed in the
past and thus we are unfamiliar with how the layer grows under these conditions, we
first inquire in § 6.1 about the evolution of the global quantities up to transition. Then,
in § 6.2 we focus on the mixing layer characteristics at transition encompassing the
spectra in § 6.2.1, the transport properties in § 6.2.2, the thermodynamic characteristics
of the mixture in § 6.2.3 where we also discuss the equivalence ratio distribution.
Finally, since dissipation is a gradient-induced process which is due to transport
properties, we investigate in § 6.3 the irreversible entropy production (which is the
dissipation).
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All figures showing spatial distributions have had the range of values cropped at
both the small-value and large-value end so as to enable distilling the essence of
physics from the significant values. Thus, the points having a value in the range
outside the smallest or the largest value shown in the legend of each figure are
included in the corresponding end range.

6.1. Evolution of the global quantities
To understand the global evolution of the mixing layer perturbed with the analytical
perturbation developed by this study and detailed in appendix B.2, we compute and
examine here the momentum thickness

δm =

∫ x2,max

x2,min

[〈ρu1〉x2,max
− 〈ρu1〉

] [〈ρu1〉 − 〈ρu1〉x2,min

]
dx2(〈ρu1〉x2,max

− 〈ρu1〉x2,min

)2 , (6.1)

which is a measure of layer growth, where x2,min = −L2/2.5, x2,max = x2,min + L2

and 〈〉 symbolizes averages over homogeneous (x1, x3) planes. Figure 1 illustrates
δm/δω,0 as a function of t∗ for several of the runs listed in table 1. Concurrently,
we also calculate and analyse the domain-averaged positive spanwise vorticity〈〈
ω+3
〉〉
δω,0/1U0 which is an indication of small-scale formation in the layer

considering that all initial spanwise vorticity is negative, and the domain-averaged
enstrophy 〈〈ωiωi〉〉 (δω,0/1U0)

2 δm/δω,0 which is a manifestation of the stretching and
twisting aspects of turbulence where 〈〈〉〉 denotes entire domain averaging.

Clearly, the analytical perturbation has the advantage of accelerating the attainment
of a state close to self-similarity where the layer grows at a constant rate, here
determined by the slope of δm/δω,0. This constant rate abates once the layer approaches
the transitional state identified by the t∗ value at which the spectra are smooth (see
§ 6.2.1). Increasing Re0 from 600 to 1000 at the same p0 and the same perturbation
amplitudes F3D and F2D results in a slightly larger entrainment and thus growth
after t∗ ≈ 25, however, with increasing entrainment a larger portion of the heavier
lower stream is present in the layer, which damps its growth. Indeed, t∗ ≈ 60, when
the growth of R1000p60 becomes smaller than that of R600p60, corresponds to a
slight decrease in small-scale production initiated close to t∗ ≈ 50, at which time the
stretching and twisting aspects of the layer have culminated. The larger Re0 allows
the layer to recover from the temporary abatement of small-scale production but
this recovery does not exceed the peak occurring at t∗ ≈ 50, unlike for R600p60.
Increasing p0 to 80 atm at otherwise same initial conditions does not have a visible
impact on δm/δω,0, but due to the heavier fluid at the larger pressure the vortical
aspects of the layer represented by both

〈〈
ω+3
〉〉
δω,0/1U0 and 〈〈ωiωi〉〉 (δω,0/1U0)

2 are
diminished.

Computations with Re0 > 1600 required smaller values of F3D and F2D (see table 1)
because otherwise the computation showed lack of convergence at very early stages.
The smaller perturbations led to a delayed growth, but once the layer expanded, as
expected, its rate of growth exceeded the growth rate of the lower value Re0 layers,
as manifested by the slope of δm/δω,0. Consistent with the larger Re0 value, the
vortical features of R1600p60 and R2000p60 eventually surpass those of R1000p60,
and past Re0 = 1000 the peak of 〈〈ωiωi〉〉 (δω,0/1U0)

2 is approximately proportional in
magnitude to the Re0 value.

As an indication of turbulence level achieved, the value of Rem ≡ Re0δm/δω,0
corresponding to the δm/δω,0 value at transition, is provided in table 1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.70


590 E. Masi, J. Bellan, K. G. Harstad and N. A. Okong’o

(a)

Re600p60

Re1000p60

Re1000p80

Re1600p60

Re2000p60
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(b) (c)

FIGURE 1. Time-wise evolution of integral quantities: (a) δm/δω,0; (b)
〈〈
ω+3
〉〉
δω,0/1U0; and

(c) 〈〈ωiωi〉〉 (δω,0/1U0)
2 for some of the simulations listed in table 1.

6.2. Mixing layer characteristics at transition
6.2.1. One-dimensional spectra

Figure 2 displays the spanwise and streamwise spectra, E(k), of the streamwise
velocity u1, and of both scalars YHep and T at t∗tr, with the k−5/3 curve for comparison,
where k denotes the wavenumber. Because the relationship ηB = ηKSc

−0.5 assumes the
existence of a single Sc for the mixture which is not necessarily the case (see § 6.2.2),
examining the resolution for the mass fractions is just as important as assessing the
resolution of the dynamic scales, as the former cannot indubitably be inferred from
the latter. The relationship ηθ = ηKPr

−0.5 prompts us to also check the resolution
of the thermal scales. The spectra of all quantities show the smoothness associated
with turbulent characteristics (except for the small peak at the perturbation frequency)
and the excellent resolution, with no energy accumulation at the smallest scales. As
expected, the simulations at the larger Re0 values have spectra which extend over a
wider range of scales and have more energy in the smallest scales than at the smaller
Re0 values. Increasing p0 from 60 to 80 atm has no visible influence on the spectra.
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k k
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R600p60
R1000p60
R1000p70
R1000p80
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FIGURE 2. One-dimensional spectra at t∗tr for several simulations: streamwise spectra of (a)
u1, (c) YHep, (e) T; spanwise spectra of (b) u1, (d) YHep, (f ) T .

6.2.2. Transport properties features
In a turbulent flow, mixing occurs at many scales, the smallest one in the continuum

range being ηK . But mixing also occurs at scales smaller than ηK; this is molecular
mixing due to diffusion. Molecular mixing affects the continuum range of scales and
strongly influences phenomena such as chemical reactions since species can only react
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if they are brought together. The characteristic scale over which molecular diffusion
occurs is thus of paramount importance in understanding mixing. The Schmidt number,
which measures the importance of momentum transfer with respect to mass transfer,
can provide an estimate of this characteristic length, but the caveat is that Sc is
only well defined when there is a single mass-diffusion coefficient, i.e. for a binary-
species system. For a mixture of several species for which a complete diffusion matrix
applies, in principle, a Schmidt number can be defined in conjunction with each mass-
diffusion coefficient of the matrix. This definition is not useful because it does not
provide information about a single diffusion length scale associated with each species.
Moreover, for supercritical flows where Soret effects may be important, the species
diffusivity cannot entirely represent the species mass-diffusion scale. Species diffusion
is very important not only on its own, but also because the heat flux contains a term
expressing the transport of enthalpy with the species fluxes, and thus the definition of
an effective Schmidt number for a species, Scα,eff , has direct bearing on the definition
of an effective Prandtl number, Preff , which measures the importance of momentum
transfer with respect to heat transfer and can provide a characteristic scale for the
latter.

6.2.2.1. Formalism for deriving Scα,eff . To define Scα,eff , consider (2.4) here rewritten
to emphasize the diffusion flux

∂(ρYα)

∂t
+ ∂(ρujYα)

∂xj
= ∂

∂xj

(
ρYα

DT,α

T

∂T

∂xj
+ ρYα

Dp,α

p

∂p

∂xj
+ ρ

N−1∑
β=1

Dαβ

∂Yβ
∂xj

)
, (6.2)

where

Dαβ = D′αβ
mα

mβ

. (6.3)

For a mixture of five species, one may generically write

Y1 = f1(x, t), Y2 = f2(x, t), Y3 = f3(x, t), Y4 = f4(x, t) (6.4)

(with the consequence that Y5 = 1− f1(x, t)− f2(x, t)− f3(x, t)− f4(x, t)) and similarly

T = fT(x, t) and p= fp(x, t). (6.5)

Under the assumption that

Yα = g(fβ(x, t)), T = l(fα(x, t)), p= r(fα(x, t)) (6.6)

where β 6= α and where g, l and r are composite functions, one can write

∂Yα
∂xi
= ∂g(fβ(x, t))

∂xi
= δg(fβ(x, t))

δfβ(x, t)

∂fβ(x, t)

∂xi
(6.7)

and

∂T

∂xi
= ∂l(fα(x, t))

∂xi
= δl(fα(x, t))

δfα(x, t)

∂fα(x, t)

∂xi
(6.8)

with a similar expression for p where δ represents a functional derivative. The
assumption of (6.6) is reasonable in the mixing layer region since gradients are
generally non-null; furthermore

∑N
β=1Yβ = 1 and

∑N
β=1Jβ = 0 showing that all species

are related, and T and p are coupled to the species through the governing equations.
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Equations (6.6) become increasingly valid as the gradients are larger. Then, one can
write

∂(ρYα)

∂t
+ ∂(ρujYα)

∂xj
= ∂

∂xj

(
ρYα

DT,α

T

δT

δYα

∂Yα
∂xj
+ ρYα

Dp,α

p

δp

δYα

∂Yα
∂xj

+ ρ
N−1∑
β=1

Dαβ

δYβ
δYα

∂Yα
∂xj

)
(6.9)

∂(ρYα)

∂t
+ ∂(ρujYα)

∂xj
= ∂

∂xj

[
ρ

(
Yα

DT,α

T

δT

δYα
+ Yα

Dp,α

p

δp

δYα

+
N−1∑
β=1

Dαβ

δYβ
δYα

)
∂Yα
∂xj

]
(6.10)

∂(ρYα)

∂t
+ ∂(ρujYα)

∂xj
= ∂

∂xj

[
ρĎα

∂Yα
∂xj

]
(6.11)

where

Ďα ≡
(

Yα
DT,α

T

δT

δYα
+ Yα

Dp,α

p

δp

δYα
+

N−1∑
β=1

Dαβ

δYβ
δYα

)
(6.12)

represents a single species diffusion coefficient accounting for the entire flux matrix
pertaining to species α. One can thus define an effective species Schmidt number as

Scα,eff = µ

ρĎα

. (6.13)

6.2.2.2. Formalism for deriving Preff . Similar to the above, equation (2.3) can be
written as

∂(ρet)

∂t
+ ∂

[
(ρet + p) uj − uiσij

]
∂xj

= ∂

∂xj

(
λ
∂T

∂xj
−

N−1∑
α=1

Jα,jAα

)
(6.14)

where

Aα =
[(

hα
mα

− hN

mN

)
− RuT

(
ᾱb

T,α

mα

− ᾱ
b
T,N

mN

)]
, (6.15)

and further manipulations similar to those for (6.9)–(6.11) lead to

∂(ρet)

∂t
+ ∂

[
(ρet + p) uj − uiσij

]
∂xj

= ∂

∂xj

[
Λ
∂T

∂xj

]
, (6.16)

where

Λ≡
{
λ+ ρ

N−1∑
α=1

Aα

[
Yα

(
DT,α

T
+ Dp,α

p

δp

δT

)
+

N−1∑
β=1

Dαβ

δYβ
δT

]}

=
(
λ+ ρ

N−1∑
α=1

AαD̆α

δYα
δT

)
(6.17)
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which represents a local effective conductivity accounting for the entire heat flux
pertaining to all species. Therefore, Λ can serve to define an effective Prandtl number

Preff = Cpµ

Λ
. (6.18)

6.2.2.3. Modelling of Scα,eff and Preff . The definitions of (6.12) and (6.17) are
convenient but because δT/δYα, δYβ/δYα, δYβ/δT , δp/δYα and δp/δT are usually
not available or not easily calculable, the Scα,eff and Preff definitions can only be useful
if a model for computing Ďα and Λ is proposed. The real test of the model accuracy
is the recovery of the fluxes computed from the database according to the definitions
(2.6) and (2.7); this is the same methodology as a priori modelling used, for example,
in the context of subgrid-scale models (e.g. Selle et al. 2007).

To model δT/δYα, δYβ/δYα, δYβ/δT , δp/δYα and δp/δT in (6.12) and (6.17), we
define the following coefficients

Cβα ≡ δYβ
δYα

, CβT ≡ δYβ
δT
, (6.19)

CTα ≡ δT

δYα
, (6.20)

Cpα ≡ δp

δYα
, CpT ≡ δp

δT
, (6.21)

that also exactly satisfy

Cβα

∂Yα
∂xi
= ∂Yβ
∂xi

, CβT
∂T

∂xi
= ∂Yβ
∂xi

, (6.22)

CTα
∂Yα
∂xi
= ∂T

∂xi
, (6.23)

Cpα
∂Yα
∂xi
= ∂p

∂xi
, CpT

∂T

∂xi
= ∂p

∂xi
, (6.24)

where α ∈ [1,N − 1] and β ∈ [1,N − 1]. Because there is only one Cβα, yet
(6.22) shows that in principle it could be computed using derivatives in any of the
i directions, the expectation is that the variation according to direction should be
small and only depend on numerical aspects if the functional dependency assumption
of (6.6) is satisfied. To eliminate potential directional variations, we compute these
coefficients using a model employing contracted products that is insensitive to such
directional variations

Cβα =
(
∂Yβ
∂xi

∂Yα
∂xi

)/(
∂Yα
∂xi

∂Yα
∂xi

)
, CβT =

(
∂Yβ
∂xi

∂T

∂xi

)/(
∂T

∂xi

∂T

∂xi

)
, (6.25)

CTα =
(
∂T

∂xi

∂Yα
∂xi

)/(
∂Yα
∂xi

∂Yα
∂xi

)
, (6.26)

Cpα =
(
∂p

∂xi

∂Yα
∂xi

)/(
∂Yα
∂xi

∂Yα
∂xi

)
, CpT =

(
∂p

∂xi

∂T

∂xi

)/(
∂T

∂xi

∂T

∂xi

)
. (6.27)

Not only does the model, (6.25)–(6.27), render the coefficients independent of
directional variation, but it also avoids potential singularities occurring when there are
very small gradients (the limit of applicability of (6.6)). Only some of the relationships
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(6.25)–(6.27) are independent, and 5 coefficients out of the total 25 must be computed
(without counting coefficients Cαα = 1).

We label as ‘reformulated’ the formalism in which the coefficients Cβα, etc. are
computed according to (6.22) and (6.24), with the result that in principle there are
three quantities Ďα,i which could vary according to direction. In contrast, we denote as
‘modelled’ the formalism in which the coefficients Cβα, etc. are computed according to
(6.25)–(6.27) and which leads to a single quantity Ďα.

The model, (6.25)–(6.27), is assessed through comparisons of modelled fluxes
(defined as the terms in the square brackets in (6.11) and (6.16) multiplied by (−1),
in combination with (6.25) and (6.27) to compute the coefficients) and exact fluxes
JHep2, JWat2 and q2 (i.e. equation (2.6) and (2.7)), where the choice of the x2 coordinate
is motivated by the fact that diffusion is predominantly cross-stream. For C7H16 and
O2, diffusion is generally one way in the x2 direction whereas for CO2 and H2O
diffusion changes according to the location in the x2 direction since these latter two
species are initially present in both streams for all simulations except R600p60∗. (If
the initial mass fraction of CO2 and H2O is the same in the two streams but TU 6= TL,

diffusion is initiated by the Soret effect and by the contribution in JWat and JCar

of the diffusion coefficients describing the diffusional interaction of CO2 and H2O
with the other species.) Results are depicted in figures 3–5 for R1000p60, R1000p80
and R2000p60 at the respective t∗tr. The assessment is performed from examination
of conditional averages computed over the entire mixing layer 0.01 6 YHep 6 0.945,
and from inspection of joint probability density functions (p.d.f.s) representing a more
demanding requirement than conditional averages because they are pointwise functions.
The results show that independent of the simulation, the conditional averages for
JHep2 and q2 are excellently modelled and indistinguishable from the perfect 45◦ line,
while JWat2 is very well reproduced with only very minor deviations from the exact
values. The joint p.d.f. for C7H16 also shows a very high-fidelity duplication by the
model of the actual flux. For H2O the model shows the preferential direction of the
exact flux, but it appears that the coefficients Cβα as defined by (6.19) are not equal
for all directions, which creates a moderate discrepancy between model and actual
values. For example, visualizations of CHep,Wat computed according to (6.22) in the xi

directions are illustrated in figure 6 (where the coefficient is called C41) showing that
the coefficient values are similar but not the same. This indicates that the assumption
of (6.6) is generally but not always verified for H2O, this being attributed to the
fact that YWat is initially uniform in the entire domain for R1000p60, R1000p80 and
R2000p60 and thus diffusion is not vigorous; this fact is indicated by the much smaller
values of JWat2 than JHep2 (a factor of 102 for R1000p60, R1000p80 and R2000p60).
Obviously, the model is more prone to being in error trying to reproduce smaller
rather than larger flux values since it is based on the premise of substantial gradients.
Regarding q2, the joint p.d.f. shows that the model reproduces considerably well the
actual value for all of the simulations.

6.2.2.4. Modelling results for Ďα and Scα,eff . Having shown that the model is an
excellent to a very good representation of the exact flux, we are now in a position
to examine Ďα and thus, Scα,eff . Results for ĎHep, ScHep,eff , ĎWat and ScWat,eff in the
x3/L3 = 1/16 plane are illustrated in figure 7 for R1000p60, R1000p80 and R2000p60
at the respective t∗tr. The O2 (and N2) results are similar to those of C7H16, and those
of CO2 are similar to those of H2O. The shown Ďα values are those unscaled by
F . ĎHep > 0 (figure 7a–c), varying by approximately a factor of six within the layer,
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FIGURE 3. Conditional averages of the modelled with respect to the exact (solid line) for
JHep2, JWat2 and q2 (a,c,e) and joint p.d.f. of the modelled and exact YHep, JWat2 and q2 (b,d,f ),
both computed into the mixing layer (0.01 6 YHep 6 0.945) at t∗tr for R1000p60. For the
conditional averages the dashed line represents the 45◦ slope indicating perfect agreement.
The joint p.d.f. is evaluated in the range of ±3 times the standard deviation from the mean
value.
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FIGURE 4. Conditional averages of the modelled with respect to the exact (solid line) for
JHep2, JWat2 and q2 (a,c,e) and joint p.d.f. of the modelled and exact YHep, JWat2 and q2 (b,d,f ),
both computed into the mixing layer (0.01 6 YHep 6 0.945) at t∗tr for R1000p80. For the
conditional averages the dashed line represents the 45◦ slope indicating perfect agreement.
The joint p.d.f. is evaluated in the range of ±3 times the standard deviation from the mean
value.
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FIGURE 5. Conditional averages of the modelled with respect to the exact (solid line) for
JHep2, JWat2 and q2 (a,c,e) and joint p.d.f. of the modelled and exact YHep, JWat2 and q2 (b,d,f ),
both computed into the mixing layer (0.01 6 YHep 6 0.945) at t∗tr for R2000p60. For the
conditional averages the dashed line represents the 45◦ slope indicating perfect agreement.
The joint p.d.f. is evaluated in the range of ±3 times the standard deviation from the mean
value.
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FIGURE 6. Coefficients C41,x1 (a), C41,x2 (b) and C41,x3 (c) where subscripts 4 and 1 denote
C7H16 and H2O, respectively. The coefficients have been computed according to (6.22). The
computation is for R1000p60 at t∗tr and in the plane x3/L3 = 1/16. The mixing layer is defined
as the region where 0.01 6 YHep 6 0.945.

reaching values as large as or larger than 0.8 × 10−6 m2 s−1 and having the largest
values in the upper part of the mixing layer; intermediate values populate the entire
layer while the smallest values appear at the lower boundary of the layer. Islands
where ĎHep is large at the boundary and (generally) progressively decreases towards
the interior are evident in the upper stream. Here ScHep,eff (figure 7d–f ) follows a
combined variation of ĎHep, µ and ρ; it is positive and has values as large as or
larger than 1.8. Indeed, Scα,eff > 1 is expected at supercritical pressures and the Scα,eff

physically reasonable values displayed in figure 7 by the model are consistent with
the excellent recovery of JHep2 by the model. Clearly, not only is ScHep,eff > 1 in most
of the layer but there are ScHep,eff & 1.8 regions which mostly occur in the upper part
of the layer. The fact that ScHep,eff > 1 over an overwhelming portion of the layer
indicates that if the relationship between ηK and ηB holds according to ηB = ηKSc

−0.5
α,eff

(the validity of this relationship has not been proved for multi-species mixing), then
the good resolution of the scalar field is the criterion which must determine the grid
spacing rather than the resolution of the dynamic field based on the Re value criterion
(Pope 2000); whereas for atmospheric-p flows it is the resolution of the dynamic
field which determines the grid spacing. The realization that mixing governs the grid
spacing supports the above-discussed difficulty (see § 5) of finding an optimal grid
for simulations in which the finest scales are due to mixing, because a quantitative
criterion similar to that based on Re is not available for Sc. As p0 increases from 60 to
80 atm, ĎHep considerably decreases whereas as Re0 increases, ĎHep maintains similar
values. Correspondingly, with increasing p0, ScHep,eff assumes values of 1.8 or larger
over a larger portion of the mixing layer rather than only in isolated parts of the layer,
and as Re0 increases these ScHep,eff & 1.8 regions remain relegated mainly to the upper
periphery of the layer.

A quantitative measure of the global variations of ĎHep and ScHep,eff with p0 and Re0

is presented in figure 8 through the p.d.f.s computed over the entire three-dimensional
mixing layer at t∗tr. Figure 8(a) shows that ĎHep has two peaks: the first peak is
at small values which are clearly associated with regions close to the lower stream
while the second peak which is at larger values of ĎHep is more representative of the
central part of the mixing layer. The largest values of ĎHep are attributed to regions
close to the upper stream. With increasing p0, ĎHep values clearly decrease and the
first peak becomes now preponderant. This decrease of ĎHep with p0 is a new result

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.70


600 E. Masi, J. Bellan, K. G. Harstad and N. A. Okong’o

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

15 2510 2050 15 2510 2050 15 2510 2050

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

15 2510 2050 15 2510 2050 15 2510 2050

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

15 2510 2050 15 2510 2050 15 2510 2050

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

1510 200 15 2510 2050 15 2510 2050

0.10 0.28 0.45 0.63 0.80 0.10 0.28 0.45 0.63 0.80 0.10 0.28 0.45 0.63 0.80

0.40 0.75 1.10 1.45 1.80 0.40 0.75 1.10 1.45 1.80 0.40 0.75 1.10 1.45 1.80

–0.5 –0.1 0.3 0.7 1.1 1.5 –0.5 –0.1 0.3 0.7 1.1 1.5 –0.5 –0.1 0.3 0.7 1.1 1.5

–3.0 –1.8 –0.6 0.6 1.8 3.0 –3.0 –1.8 –0.6 0.6 1.8 3.0 –3.0 –1.8 –0.6 0.6 1.8 3.0

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j ) (k) (l)

255

FIGURE 7. Model of ĎHep (a–c), ScHep,eff (d–f ), ĎWat (g–i) and ScWat,eff (j–l) for R1000p80
(a,d,g,j), R1000p60 (b,e,h,k) and R2000p60 (c,f,i,l). All at the respective t∗tr and in the plane
x3/L3 = 1/16. Here Ďα is not F -scaled and units for it are 10−6 m2 s−1. The mixing layer is
defined as the region where 0.01 6 YHep 6 0.945.

since we only know that Dαγ decrease with increasing p0 (Reid et al. 1987) but
there is no theoretical development to ascertain the variation of Dαβ with p0, and
there is no analysis to indicate the variation of coefficients such as ĎHep with p0. As
Re0 increases, diffusion close to the lower stream is not affected but the increased
entrainment of fluid in the mixing layer slightly increases the most preponderant
values there. The ScHep,eff p.d.f.s displayed in figure 8(b) show that the distributions are
also double peaked. An increase in Re0 has almost no impact on the ScHep,eff p.d.f., but
an increase in p0 shifts the p.d.f. to larger values as well as it increases the probability
of a wider range of large values. The most likely values are in all three cases for
ScHep,eff > 1. For R1000p60 and R2000p60, the most likely value is ScHep,eff ' 1.15
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FIGURE 8. The probability density functions for R1000p60, R1000p80 and R2000p60
computed over the three-dimensional mixing layer (defined as the domain where 0.01 6
YHep 6 0.945) at t∗tr. ĎHep (a), ScHep,eff (b), ĎWat (c), ScWat,eff (d), Λ (e) and Preff (f ).
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whereas for R1000p80 the most likely value is ScHep,eff ' 1.5. For all three cases,
values ScHep,eff 6 1 have approximately the same very small probability, although the
probability for R1000p80 is even smaller than for the other two cases. The likelihood
of ScHep,eff ' 1.8 doubles and the probability of ScHep,eff ' 2 increases by more than
one order of magnitude as p0 increases from 60 to 80 atm. Values ScHep,eff ' 0.7 are as
likely as values ScHep,eff ' 2 at p0 = 60 atm and ScHep,eff ' 2.5 at p0 = 80 atm, and the
probabilities are very small. The slight influence of Re0 on these results bodes well for
the applicability of these results to the range of much larger Re values encountered in
practical applications.

In contrast to ĎHep, ĎWat (figure 7g–i) exhibits regions of both positive and
negative values; |ĎWat|max > (ĎHep)max which is attributed to the H2O molecule being
lighter than that of C7H16 (there are other considerations than molecular mass
involved in determining diffusivity that are, for the sake of simplicity, not addressed
here). Although not yet identified for the situation of interest in the present study,
negative values of the mass-diffusion matrix elements have been measured for ternary
liquid mixtures (Rehfeldt & Stichlmair 2007, 2010). The negative values in the
present situation indicate counter-gradient diffusion and are indicative of spinodal
decomposition (Nauman & He 2001; Balluffi, Allen & Carter 2005) which is a well
recognized feature of non-ideal mixtures (Nauman & He 2001). To show that spinodal
decomposition is a genuine characteristic of H2O in the system and not the result of
a modelling inaccuracy as one would perhaps be tempted to conclude from figures
3(d), 4(d) and 5(d), illustrated in figure 9 are the reformulated ĎWat computed along to
the xi direction and the joint p.d.f.s between actual and reformulated JWat for all three
directions; clearly, the reformulated ĎWat exhibits negative values in all three directions
and the joint p.d.f.s show excellent agreement between the reformulated and actual
values of the fluxes.

Sometimes, spinodal decomposition is also called ‘phase separation’ in the context
of binary-species mixing, although in the present case such a terminology would
be a misnomer since only CO2 and H2O display this feature; we could not find
examples of multi-species mixing in the literature that would provide a guide for
established terminology when such a phenomenon is observed for more than two
species. To explore whether phase separation does occur for the entire mixture,
a calculation of the mixture critical locus would be necessary to inquire whether
at each spatial locality the mixture is in the single-phase or in the two-phase
region of the thermodynamic diagram. Unfortunately, an accurate such calculation
is currently unfeasible when H2O is present (T. J. Bruno, Personal communication,
4 June 2012), and thus it is postponed to a future time. Therefore, we physically
interpret spinodal decomposition as a species’ segregation into regions of low and high
partial density (alternatively to computing the compositional field using the present
governing equations, a Cahn–Hilliard-like equation (Cahn & Hilliard 1958) could be
proposed to obtain the concentration field if spinodal decomposition is suspected; but
modelling diffusion and coupling to the Navier–Stokes and energy equations would
still be necessary). That is, from a uniform initial composition of a species (here
H2O and CO2), regions of larger and smaller than the initial uniform species mass
fraction appear due to molecular diffusion. Because spinodal decomposition is due
to molecular diffusion which occurs over the entire spatial domain (i.e. wherever
there are species, temperature and/or pressure gradients), this is a process classified
as a continuous transformation (Balluffi et al. 2005), unlike nucleation which is a
discontinuous transformation and is due to fluctuations in thermodynamic variables
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FIGURE 9. Reformulated diffusivity ĎWat,xi computed according to (6.12), (6.19)–(6.21) and
(6.22)–(6.24) (a–c); and joint p.d.f. between reformulated JHep,2 using ĎWat,x2 and actual JHep,2

computed from (2.6) (d–f ) for R1000p60 at t∗tr and in the plane x3/L3 = 1/16. Here ĎWat,xi is
not F -scaled and units for it are 10−6 m2 s−1. The mixing layer is defined as the region where
0.01 6 YHep 6 0.945.

which occur at very localized sites. Whereas spinodal decomposition is small in degree
(i.e. linear stability of the free energy) and large in spatial extent, nucleation is large
in degree (i.e. nonlinear instability of the free energy) and small in spatial extent.
Spinodal decomposition occurs when the composition is inside the spinodal line in
the temperature-versus-composition phase diagram, whereas nucleation occurs when
the composition is outside the spinodal line but still within the miscibility gap of the
phase diagram. Physically, spinodal decomposition is due to the strong influence of
thermodynamics on mass diffusion. Mathematically, this influence manifests through
the αDβγ matrix computed according to (2.12) and its inclusion in the computation
of the mass-diffusion matrix coefficients calculated according to (2.9). The result of
positive and negative values of ĎWat are correspondingly positive and negative values
of ScWat,eff (figure 7j–l). For example, examining the results for R1000p60, the average
value of ScWat,eff in the mixing layer is '0.6 which is smaller than the average value
of ScHep,eff ' 1.2; however the largest value of ScWat,eff is considerably higher than the
largest local value of ScHep,eff . This indicates that H2O is closer to a liquid in those
regions of largest ScWat,eff values than is C7H16 in its regions of highest ScHep,eff values;
however, H2O is not here in liquid form since Sc for liquids is at least O(102) for
binary mixtures at standard T and p conditions.

The p.d.f.s of ĎWat and ScWat,eff over the three-dimensional mixing layer are
illustrated in figure 8(c,d). The Gaussian-like form of ĎWat with the single peak
located close to null values is symptomatic of the initial uniformly distributed H2O
in the entire domain. Increasing p0 from 60 to 80 atm results in slightly decreased
ĎWat-magnitude values, whereas the doubling of the Re0 value has practically no
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FIGURE 10. Results for YHep (a–c) and YWat (d–f ) for R1000p80 (a,d), R1000p60 (b,e) and
R2000p60 (c,f ), all at the respective t∗tr and in the plane x3/L3 = 1/16.

effect on the p.d.f.. The ScWat,eff p.d.f. has a wing null-centred shape. Reflecting the
inverse dependency on ĎWat, null values of ScWat,eff are not defined. Positive values
'0.7 are almost twice as likely as the corresponding negative values, but at larger
values the probability becomes more similar on either side of the curve. Increasing p0

corresponds to an increase in ScWat,eff magnitude. Compared with the large changes for
different p0 values seen with ĎHep and ScHep,eff , the corresponding changes of ĎWat and
ScWat,eff are small. The influence of the Re0 value on the ScWat,eff p.d.f. is extremely
small. Similarly to the situation for ĎHep and ScHep,eff , the minor influence of Re0 on
the p.d.f.s indicates that general features of species spinodal decomposition will be
encountered at the larger Re values of practical interest in engines.

To show the effect of spinodal decomposition on the species composition, illustrated
in figure 10 are YHep and YWat corresponding to the results shown in figure 7. The
YHep field displays a complex distribution with gradual transition between the large
values in the lower portion of the layer and the small values in the upper part of
the layer. In contrast, YWat displays regions of larger values than the initially uniform
value of 0.01 immediately adjacent to regions of smaller values. These ‘pockets’ are
the manifestation of species spinodal decomposition which, from the uniform initial
field, produces a non-uniform field of segregated high and low concentrations. With
increasing p0, the regions of high mass fraction values appear more enlarged in
area, a fact which is attributed to the more advanced species spinodal decomposition
due to increasing mixture non-ideality. At larger Re0, species spinodal decomposition
occurs primarily towards the periphery of the mixing layer; the interior of the layer is
conjectured to be subject to increasingly effective mixing which prevents these regions
from being established (see § 6.2.2.6). This finding is in concert with that of Pine et al.
(1984) who experimentally found that spinodal decomposition can be suppressed in a
two-species mixture by turbulent mixing.
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FIGURE 11. Results for λ (a–c), Λ (d–f ), Preff (g–i) and LeHep,eff (j–l) for R1000p80
(a,d,g,j), R1000p60 (b,e,h,k) and R2000p60 (c,f,i,l), all at the respective t∗tr and in the plane
x3/L3 = 1/16. Here λ and Λ are not F -scaled and units for them are W (m K)−1. The mixing
layer is defined as the region where 0.01 6 YHep 6 0.945.

6.2.2.5. Modelling results for Λ and Preff . Results obtained for λ, Λ and Preff are
illustrated in figure 11 in the x3/L3 = 1/16 plane at t∗tr. Although λ is a positive
quantity (figure 11a–c), Λ (figure 11d–f ) is mainly positive but negative values also
occur in the mixing layer. The negative values are physically due to the transport of
enthalpy with the species mass flux as evident in the computation of Λ from (6.17).
Physically, the effect of Λ < 0 at any location is the transport of heat against the
temperature gradient and thus the formation of localities of relatively low temperature
within domains of high temperature or the opposite. The prevalence of the Λ < 0
locations increases with increasing Re0 (compare figures 11e and 11f ) because of
decreasing of λ due to the mixing. Indeed, figure 11(a–c) shows that the smaller λ
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regions are in the mixing layer. Furthermore, the larger the Re0 value is (figures 11b
and 11c; figures 11e and 11f ), the larger is the area of the small λ values and
Λ < 0 values. The prevalence of Λ < 0 locations, seems, however, insensitive to
increasing p0 (cf. figure 11e,d). Since the λ values are sensitive to p0, the relative
insensitivity of Λ to p0 can only be attributed to the compensating effect on λ of
the other terms in (6.17). The consequence of Λ having both positive and negative
values is that the same holds for Preff (figure 11g–i) the values of which span at
least [−1, 5] for R1000p60. These values should be compared with the well-known
values of 0.7–0.8 for air and other gases at atmospheric p, 4–5 for R-12 refrigerant
and approximately 7 for liquid H2O. Examining figure 11 it is evident that only at
sparse locations does Preff have values consistent with an atmospheric-p gas; in most
of the domain Preff > 1 and in a very large part of the domain Preff has values similar
to the high-pressure refrigerant R-12 which is a liquid. The prevalence of Preff ≈ 5
regions appears similar or slightly reduced with increasing p0 (compare figures 11g
and 11f ) while they appear similar or slightly increased with increasing Re0 (compare
figures 11h and 11i) meaning that such Preff values are almost certainly encountered
under realistic engine conditions. The fact that Preff > 1 over a large portion of the
mixing layer supports our display of E(T) in figure 2 since it is clear that in these
simulations the resolution is dictated by the mixing and thermal scales.

Finally, of interest is the effective Lewis number, Leeff ; since Ďα varies according to
the species, Leα,eff ≡Scα,eff /Preff . Depicted in figure 11(j–l) is LeHep,eff . In contrast to
Leeff computed for supercritical binary-species mixing by Harstad & Bellan (1999) in
the context of conservation equations satisfied by defined dependent variables which
were combinations of Yα and T that had the property of diagonalizing the set of
equations, the present Leα,eff is for the same set of variables as the original system
of equations, and is thus more relevant. Values of LeHep,eff range from a minimum
of at least −0.1 to an excess of 1.5; negative values are more prominent for the
larger Re0. As p0 increases, so does the average value of LeHep,eff computed over the
three-dimensional mixing layer (not shown).

An enhanced understanding of the Λ and Preff range of values can be obtained
by examining figure 8(e,f ) showing the p.d.f.s of these quantities over the three-
dimensional mixing layer at t∗tr. The p.d.f. of Λ is single peaked with the peak centred
approximately at 0.02. Positive values are most likely, but negative values (e.g. −0.02)
are as possible as larger than 0.02 positive values (i.e. 0.06). The doubling of Re0 has
almost no impact on the Λ p.d.f., but an increase of 33 % in p0 shifts the p.d.f. to
slightly larger values. The p.d.f. of Preff has a complex shape but in all three cases
the most likely value is '3. A gas-like value of 0.7 is approximately as likely as
the value 7 and the value of 1 is almost as likely as a value of 5, showing that the
mixture has characteristics far from the well-studied atmospheric flows. Increasing Re0

increases imperceptibly the probability of finding Preff larger positive values while
increasing p0 has the opposite effect. The p.d.f. of LeHep,eff (not shown, for brevity) is
centred at approximately 0.3 for R1000p60 and R2000p60, and at 0.5 for R1000p80.
The value of 1 is approximately as likely as that of −0.2 for R1000p60 and R2000p60
and as likely as 0 for R1000p80, indicating the unconventional nature of the situation
with respect to atmospheric flows. Given the very low sensitivity of these results to
Re0, this unconventional nature is conjectured to persist at much larger Re values
unattainable in DNS.

The corresponding T distribution in the x3/L3 = 1/16 plane and the temperature
fluctuations (T

′ = T − 〈T〉) in the mixing layer of that plane (not meaningful elsewhere
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FIGURE 12. Temperature T in the entire plane (a–c) and T ′ = T − 〈T〉 in the mixing layer
(d–f ) for R1000p80 (a,d), R1000p60 (b,e) and R2000p60 (c,f ), all at the respective t∗tr and
in the plane x3/L3 = 1/16. Units are in Kelvin. For (d–f ), the mixing layer is defined as the
region where 0.01 6 YHep 6 0.945.

in the domain) are portrayed in figure 12. Clearly, in all of the illustrated flows there
are mixing layer regions having pockets of small temperature, some where T < 600 K,
interspersed in a field where T is much larger. The formation of pockets of large and
small T would clearly be undesirable in the cold-ignition regime which motivated this
study because the intent is to facilitate heat transfer from hot air to the injected cold
fuel so as to help ignite the mixture.

At this junction, two remarks are in order for § 6.2.2.4 and § 6.2.2.5. First, although
the presented results were at the respective t∗tr of the simulations, examination of
the states produced by the layers past the first pairing (not shown) exhibit the
same features as the transitional states in terms of spinodal decomposition and its
consequences. Second, it is clear that the Ďα quantitative features are primarily
dependent on the value of p0 and are almost independent of the Re0 value, a fact
which bodes well for the relevance of future studies using the DNS database for LES
modelling. Since the model for Λ is based on that for Ďα, that is, on small-scale
gradient processes, the quantitative change of Λ must necessarily be included in
LES using subgrid-scale modelling as otherwise they would be absent at the LES
grid-spacing resolution. Such subgrid-scale models do not currently exist and must be
the subject of future studies.

6.2.2.6. Necessary and sufficient condition for obtaining species spinodal
decomposition. The above analysis shows that spinodal decomposition occurs for H2O
(and CO2; not shown) but not for C7H16 (and N2 or O2; not shown). To understand
the conditions which promote spinodal decomposition and those which prevent it, two
additional simulations were conducted such that in one of them (R600p60∗) H2O and
CO2 were initially present only in the upper stream, while in the other simulation
(R600p60∗∗) H2O and CO2 were present initially in both streams, but, in contrast
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FIGURE 13. Model of ĎWat (a–c) and ScWat,eff (d–f ) for R600p60 (a,d), R600p60∗ (b,e) and
R600p60∗∗ (c,f ), all at the respective t∗tr and in the plane x3/L3 = 1/16. Here ĎWat is not
F -scaled and units for it are 10−6 m2 s−1. The mixing layer is defined as the region where
0.01 6 YHep 6 0.945.

to R600p60, each species mass fraction had a different value in the lower stream and
in the upper stream (see table 2). Simulation R600p60∗ is very similar in character
(values of (ρL/ρU)0, t∗tr, etc.) to the binary species C7H16–N2 DNS conducted by
Okong’o & Bellan (2002a) since H2O and CO2 are only present mixed with air
in the upper stream and have very small mass fractions, while only pure fuel is
present in the lower stream. Comparisons of the results for ĎWat and ScWat,eff appear
in figure 13 at the respective t∗tr. The evidence is that, as indicated by the sign of
ĎWat, spinodal decomposition of H2O, and generally of a species, only occurs if
that species is not initially segregated into one stream, independent of whether the
distribution of that species is initially uniform over the entire domain. When H2O does
not experience spinodal decomposition, as is the case for R600p60∗, ScWat,eff generally
varies at least in the range [0.5, 1.5] confirming the fitting for Sc as a function of YHep

(i.e. Sc = 1.5 − Y2
Hep) in the binary species C7H16–N2 DNS performed by Okong’o &

Bellan (2002a). When spinodal decomposition is obtained, ĎWat is considerably more
non-uniform and assumes more extreme values when the initial composition of H2O is
initially uniform than when it is not, whereas the opposite occurs for ScWat,eff . In both
R600p60 and R600p60∗∗ cases, values of ScWat,eff at least as small as −3 and at least
as large as 3 (figure 13d,f ) occur throughout the flow in contrast to the much reduced
range of values, from 0.5 to 1.5, for R600p60∗ (figure 13e).

Since R600p60∗ reached transition considerably later than R600p60 and R600p60∗∗,
it is clear that not only are the effective transport properties affected by spinodal
decomposition but that the vortical aspects of the flow are also modified by its
occurrence. Measures of small-scale creation and flow topological complexity are〈〈
ω+3
〉〉
δω,0/1U0 and 〈〈ωiωi〉〉 (δω,0/1U0)

2, respectively, both of which are illustrated
versus t∗ in figure 14. The indication is that R600p60∗ has reduced small-scale and
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FIGURE 14. Measures of small-scale creation and flow topological complexity〈〈
ω+3
〉〉
δω,0/1U0 (a) and 〈〈ωiωi〉〉 (δω,0/1U0)

2 (b), respectively, for R600p60, R600p60∗ and
R600p60∗∗ listed in table 1.

topological complexity compared with R600p60 and R600p60∗∗. We attribute the
more turbulent aspects of the spinodal-decomposition-affected layers to the increased
compositional, and thus of density, non-uniformities (not shown); indeed, experimental
evidence from Hannoun, Fernando & List (1988) shows that the large-magnitude
|∇ρ| regions act similarly to hard boundaries and modify the turbulent field by
redistributing turbulence and increasing the turbulence anisotropy of the large scales.
Basically, the large-magnitude |∇ρ| regions (see § 6.2.3 for discussions on |∇ρ|) act
in the flow similarly to a solid mesh which increases turbulence. Therefore, while
spinodal decomposition inherently hinders mixing it also promotes turbulence which
increases mixing. The result of these coupled counteracting processes is complex and
not predictable without simulations.

6.2.2.7. Extended significance of the reformulated equations and of the Scα,eff

and Preff models. The above derivation and the successful models for Scα,eff and
Preff show that even for the complex form of the species and heat fluxes under
consideration (equations (2.6) and (2.7)) which couple all thermodynamic variables,
it is possible to effectively diagonalize the system of differential equations for these
variables. This diagonalization does not stem from uncoupling the system of equations;
that is, this is not a diagonalization of the complete flux matrix, a procedure which in
the best of cases would only be possible at each location and thus eigenvectors would
be location dependent, an attribute that would not be very useful. The uncoupling of
the flux matrix through diagonalization would have entailed a change of dependent
variables, whereas the present procedure maintains the original set of dependent
variables. In contrast to what might have been expected from the instinctive idea
that the set of equations can only be diagonalized by uncoupling them, the present
diagonalization takes advantage of the natural coupling among all variables and
therefore obeys physics in an innate way. Also, the type of diagonalization proposed
here is always feasible in regions of non-null gradients, whereas the uncoupling-type
diagonalization may not always be possible. The present formalism for diagonalization
is exact, but a model is required to actually obtain values of the quantities resulting

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.70


610 E. Masi, J. Bellan, K. G. Harstad and N. A. Okong’o

from the diagonalization (a model would not have been necessary for an uncoupling
through change-of-dependent-variables diagonalization); the model developed above
was shown to be very accurate. This strategy for diagonalizing the system of equations
may be very helpful when attempting to use the flamelet model of Peters (2000)
in multi-species combustion simulations if conserved scalars can be defined through
combinations of the species mass fractions that allow the elimination of reaction terms
and if Leα,eff ≈ 1.

Not only is the developed model of Ďα permitting insights into the transport
processes occurring in non-ideal mixtures, but it also allows evaluation of some
assumptions that are of interest for combustion simulations. Such an evaluation
is presented in appendix C and shows that although the diffusion matrix Dαβ

is diagonally dominated, neglect of the off-diagonal terms results in missing the
physics of species spinodal decomposition as well as using diffusion coefficients of
qualitatively incorrect spatial distribution and of quantitatively erroneous range of
values.

6.2.3. Thermodynamic characteristics of the mixture
The above analysis showed the strong influence of the thermodynamics on the

compositional, thermal and dynamic features of the layer and thus motivated farther
examination of these aspects.

Okong’o & Bellan (2002a) have shown that for binary species C7H16–N2 mixing,
regions of large |∇ρ| were formed and that for Re0 = 600 the typical magnitude
of |∇ρ| was of the order of 104 kg m−4. For the same Re0 = 600, when H2O and
CO2 are present in trace amounts with compositions initially uniform, leading to
their spinodal decomposition, similar values to those of Okong’o & Bellan (2002a)
are obtained according to the illustration of figure 15(a). With increasing Re0 values
(compare figure 15(a–c,e) the regions of higher |∇ρ| values become more prevalent
as well as more convoluted and penetrate further within the layer. When p0 increases
(compare figure 15b,d,f ), the sharpness of the |∇ρ| regions increases.

In figure 15, the thick black line denotes regions where 0.99 6 ER 6 1.01,
corresponding to a thin equivalence-ratio band centred at the stoichiometric value.
In all cases, the stoichiometric region is thin compared with other features of the
flow indicating that if this aspect prevails for reactive flows, the flow will be in
the flamelet regime (Williams 1975) and the flamelet model (Peters 2000) could
perhaps be used in the future. The stoichiometric region is at the upper-stream limit
of the mixing layer, at the boundary where C7H16 meets O2, but isolated pockets
of stoichiometric mixture also penetrate the interior of the layer. This conceptual
picture is independent of the Re0 and p0 values. Some islands of stoichiometric mixing
enclose regions of very intense mixing (see figure 15d,f ). Figure 16(a–c) show that
these stoichiometric regions fall thermodynamically in regions where the compression
factor, Z = p/(ρTRu/m) ' 1, with Z being one measure of the departure from perfect
gas for which Z = 1. However, the mixture is not a perfect gas there because in
addition to Z = 1, the partial pressure of species α, pα, must satisfy pα/p = Xα.
According to the findings of § 6.2.2, the mixture is thus non-ideal in the stoichiometric
region. Independent of Re0 and p0 values, in most of the layer Z ranges between
0.9 and 1, although locations with Z as small as 0.6 can also be seen within the
layer. For example, for all three simulations illustrated in figure 16, the regions of
Z ' 0.6 directly and predominantly correspond to those where T . 600 K within
the layer (compare figure 16a–c with figure 12a–c), highlighting the importance of
departures from perfect gas behaviour during supercritical-p species mixing. In the
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FIGURE 15. Results for |∇ρ| in 103 kg m−4 for R600p60 (a), R1000p60 (b), R1600p60
(c), R1000p70 (d), R2000p60 (e) and R1000p80 (f ), all at the respective t∗tr and in the
plane x3/L3 = 1/16. The black line in each figure represents the equivalence ratio region
0.99 6 ER 6 1.01.

lower stream, Z ' 0.56 for p0 = 60 atm and Z . 0.53 for p0 = 80 atm. Moreover,
examination of figure 15 in conjunction with figure 11 shows that in the stoichiometric
region LeHept,eff & 1.5 (1.5 is the upper value of the plotted range), indicating that if
this aspect persists for reactive flows, a conventional flamelet model (Peters 2000) may
not be applicable.

According to figure 16(d–f ), regions of ER as large or exceeding 8.0 and as small
or smaller than 0.01 are found in close proximity to the stoichiometric region; the
plots were made by eliminating regions of ER < 0.01 which dominate the upper
stream. Independent of the Re0 and p0 values, regions of very small ER coexist
with regions of very large ER illustrating the complexity of the composition. As Re0

increases, the spatial extent of the region included in the range [0.01− 4] decreases.
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FIGURE 16. Results for Z (a–c) and ER (d–f ) for R1000p80 (a,d), R1000p60 (b,e) and
R2000p60 (c,f ), all at the respective t∗tr and in the plane x3/L3 = 1/16. The black line
represents the equivalence ratio region 0.95 6 ER 6 1.05.

6.3. Irreversible entropy production
Since the quantity that includes all transport effects is the dissipation, this quantity
is here examined to further elucidate the impact of the intertwined influence of
thermodynamics and transport properties on the flow. The dissipation is the irreversible
entropy production which is the source term in the entropy equation.

The entropy conservation equation has been derived in the past (e.g. de Groot
& Mazur 1984) but that formulation does not account for the transport coefficient
calculation through the mixing rules. In the present context, if S is the entropy per unit
mass,

∂(ρS)

∂t
+ ∂(ρSuj)

∂xj
=−∂Σj

∂xj
+ g (6.28)

where Σj represents the flux of entropy and g is the rate of irreversible entropy
production which is the focus of our interest. From thermodynamics,

T
DS

Dt
= De

Dt
+ p

D(1/ρ)
Dt

−
N∑
α=1

µα

mα

DYα
Dt

(6.29)

so that

ρ
DS

Dt
= ρ

T

De

Dt
+
(
−p+

N∑
α=1

µαρYα
mα

)
1
ρT

Dρ
Dt
−

N∑
α=1

µα

Tmα

DρYα
Dt

, (6.30)

which leads to

Σj = 1
T

(
−qj +

N∑
α=1

µα
Jαj

mα

)
(6.31)
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and

g= µ
T

(
2SijSij − 2

3
SkkSll

)
︸ ︷︷ ︸

gvisc

− qj

T2

∂T

∂xj︸ ︷︷ ︸
gheat

−
N∑
α=1

Jαj

mα

∂

∂xj

(µα
T

)
︸ ︷︷ ︸

gmass,flux

. (6.32)

Part of the third term in (6.32) can be recast using

∂

∂xj

(µα
T

)
= 1

T

(
−sα

∂T

∂xj
+ vα ∂p

∂xj
+

N∑
β=1

∂µα

∂Xβ

∂Xβ
∂xj

)
− µα

T2

∂T

∂xj
(6.33)

where sα is the partial molar entropy. Further manipulation of (6.33) taking
into account that the chemical potentials are the partial molar Gibbs functions,
µα = hα − Tsα, yields

∂

∂xj

(µα
T

)
=−hα

1
T2

∂T

∂xj
+ 1

T
vα
∂p

∂xj
+

N∑
β=1

(δαβ + XαRαβ)
Ru

Xα

∂Xβ
∂xj

(6.34)

where Rαβ is defined by (2.13). Additional mathematical manipulations lead to the
quadratic form of g written as the addition of three terms accounting for contributions
from viscous, thermal and species transport, gvisc, gtemp and gmass

g= µ
T

(
2SijSij − 2

3
SkkSll

)
︸ ︷︷ ︸

gvisc

+ λ 1
T2

∂T

∂xj

∂T

∂xj︸ ︷︷ ︸
gtemp

+ 1
2

N∑
β=1

N∑
α=1

Ru

(−Dαβ)

ρ

mαYβ
ΠαβjΠαβj︸ ︷︷ ︸

gmass

(6.35)

where ((−Dαβm)/(Yαmβ)) is a symmetric positive semi-definite matrix (Keizer 1987;
Giovangigli et al. 2011) and

Παβj =−XβDαβ

[(mα

m
ᾱb

T,β −
mβ

m
ᾱb

T,α

) 1
T

∂T

∂xj
+ mαmβ

mRuT

(
vα

mα

− vβ

mβ

)
∂p

∂xj

]

−
N−1∑
γ=1

(
mβ

mγ

DβααDαγ − mα

mγ

DαβαDβγ

)[
∂Yγ
∂xj
− Yγ

N−1∑
δ=1

(
m

mδ

− m

mN

)
∂Yδ
∂xj

]
(6.36)

with Πααj = 0, Παβj = −Πβαj. The g form of (6.35) is the multi-species equivalent of
the binary-species form provided by Okong’o & Bellan (2002a). Of note, gtemp is not
the same quantity as gheat since the portion of q containing the enthalpy transported
by the species is not contained in gtemp and has instead been apportioned to gmass.
Having diagonalized the species conservation equations and provided models for the
effective diffusion coefficients in § 6.2.2, the modelled flux of species α from (6.11)
and modelled heat flux from (6.16) are

J∗αj =−ρĎα

∂Yα
∂xj

, (6.37)

q∗j =−Λ
∂T

∂xj
, (6.38)

and we model

gT = (gtemp + gmass)= (gheat + gmass,flux) (6.39)
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FIGURE 17. Planar averages in (x1, x3) planes of the three modes, gvisc, gtemp and gmass of
the irreversible entropy production g, for R1000p80 (a), R1000p60 (b) and R2000p60 (c), all
at the respective t∗tr. The values of the transport coefficients are not F -scaled and units are
W (m3 K)−1.

as

g∗T =Λ
1

T2

∂T

∂xj

∂T

∂xj︸ ︷︷ ︸
g∗heat

+ ρRu

N∑
α=1

Ďα

mαYα

∂Yα
∂xj

∂Yα
∂xj

.︸ ︷︷ ︸
g∗mass,flux

(6.40)

Notably, Ďα has been defined and computed for only four out of the five species since
the equations were written for only an independent number of species by eliminating
the conservation equation for N2. To obtain the necessary quantities to compute the
N2 contribution in the last term of (6.40), we used the flux conservation

∑N
α=1J∗αj= 0

to compute ĎN(∂YN/∂xj), mass conservation
∑N

α=1Yα = 1 to compute YN, and the
gradient of the mass conservation ∇(∑N

α=1Yα) = 0 to compute ∂YN/∂xj all of which
are utilized to calculate the N2 contribution in the summation of (6.40). In (6.40), g∗heat
is a functional model of gheat but g∗mass,flux is not a functional model of gmass,flux.

Because Ďα and Λ assume both positive and negative values, as seen in § 6.2.2.4
and § 6.2.2.5, the form of equation (6.40) does not necessarily indicate positivity for
g∗T; indeed, the sign of g∗T is determined from other considerations. The contribution to
g given by gT as defined by (6.39) is such that gT > 0 since gT is the sum of quadratic
terms. Thus, it may be expected that g∗T > 0 although there is no such expectation
for its individual contributions. Examination of (6.25)–(6.27) shows that because the
denominator in each expression has a quadratic form which is also encountered in g∗T ,
the modelled coefficients are in fact exact in g∗T . As a consequence, the contribution
g∗heat based on q∗j (6.38) which uses exact coefficients is a ‘reformulated’ form of gheat

rather than a model. Instead, although also g∗mass,flux uses exact coefficients, it represents
only a heuristic model of gmass,flux; this is in direct contrast to the derivation in § 6.2.2.3
where the fluxes were exact but the coefficients entered the computations of these
fluxes as an approximation through the model. To inquire whether the model of § 6.2.2
preserves positivity of the irreversible entropy production and is accurate, g, gT and g∗T
are computed, analysed and compared.

Illustrated in figure 17 are gvisc, gtemp and gmass for R1000p60, R1000p80 and
R2000p60 computed as (x1, x3) plane averages. Similar to the binary-species results
of Okong’o & Bellan (2002a), gmass is the largest contribution to g while gvisc is
the smallest. But in contrast to the findings of Okong’o & Bellan (2002a) for binary
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FIGURE 18. gT (a–c) and g∗T (d–f ) for R1000p80 (a,d), R1000p60 (b,e) and R2000p60 (c,f )
in the x3/L3 = 1/16 plane, all at the respective t∗tr. The values of the transport coefficients are
not F -scaled and units are W (m3 K)−1.

species, now g is no longer totally dominated by gmass because gtemp is almost similar
in magnitude to gmass. Either larger p0 or higher Re0 result in an increase in the
dissipation. For larger p0, this increased is conjectured to be the result of the increased
non-ideality of the mixture which produces more prominent |∇ρ| regions and thus
larger gradients. For higher Re0, this increase is due to both a wider range of small
scales and more energy in the small scales as illustrated in figure 2.

Since the computation of the product between the coefficients modelled using
(6.25)–(6.27) and the respective quadratic form of the gradients is exact in g∗T, a
comparison between gT and g∗T is a suitable indicator of the accuracy of the model of
gT through g∗T . Visualizations of gT and g∗T are displayed in figure 18 for R1000p60,
R1000p80 and R2000p60 showing that independent of the simulation, the model of
gT through g∗T is excellent. For larger Re0, the high dissipation regions have a more
filamentary and more widely distributed aspect. The variation of these high-dissipation
regions with p0 change is less distinctive. In all cases, the dissipation is very large
in the stoichiometric regions and in regions enclosed by stoichiometric boundaries,
this coincidence being a manifestation of intense mixing. Regions having T values
below the minimum initial temperature experience very high dissipation (compare
figure 18a–c with figure 12a–c) indicating that T would have decreased even further
were it not for the heat provided by the dissipation.

A more quantitative evaluation of how well the model replicates the exact
dissipation is presented through conditional averages in figure 19, first comparing the
modelling of gheat by g∗heat and then the modelling of gT by g∗T over the entire mixing
layer rather than in a single x3 plane as in figure 18. The vertical line in figure 19(d–f )
indicates the mean over the mixing layer. Clearly, as expected, g∗heat exactly reproduces
gheat over the entire range of its values as the conditional average essentially coincides
with the 45◦-slope line. Regarding g∗T, it represents gT very accurately at and around
the mean, but as the values deviate more substantially from the mean, the heuristic
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FIGURE 19. Conditional averages of g∗heat with respect to gheat (a–c) and g∗T with respect to
gT (d–f ) represented by the solid line: R1000p80 (a,d), R1000p60 (b,e) and R2000p60 (c,f ),
all computed into the mixing layer (0.01 6 YHep 6 0.945) at t∗tr. The dashed line represents
the 45◦ slope (perfect agreement). The evaluation is performed in the range of ±2 times the
standard deviation from the mean value. The vertical line in (d–f ) represents the value of the
mean over the entire domain. The values of the transport coefficients are not F -scaled and
units are W (m3 K)−1.

model for gmass,flux represented by g∗mass,flux increasingly overestimates the exact value;
however, the deviation of the value obtained using the model from the exact value is
very small. Either an increase in p0 or in Re0 results in a marginally perceptible loss of
g∗T accuracy that is slightly more pronounced for increasing p0 rather than Re0.

We conjecture that the very good agreement between g∗T and gT is here due to the
combined effect of the exact coefficient values in the calculation of g∗T, and of g∗T
generally being a reasonable functional model for gT . We also note that the species
for which Ďα may be negative have small gradients and have thus small species-
mass fluxes as compared with the other species; these species-mass fluxes are small
because the species undergoing spinodal decomposition must initially be distributed
over the entire domain rather than segregated in one stream. The indication is that
the dissipation will be here smaller than average in regions of spinodal decomposition.
The species-mass flux is much larger if a species is initially segregated in one stream,
but in that case the species does not undergo spinodal decomposition, as discussed in
§ 6.2.2.6, and therefore Ďα will be positive. Therefore, the species dissipation (usually
called scalar dissipation) has an inherent mechanism to maintain positivity. Because
positivity of the heat dissipation is entirely determined by the sign of Λ, an equivalent
argument cannot be made for the heat dissipation.

7. Summary and conclusions
A modelling-and-simulation study of multi-species mixing under supercritical

pressure has been conducted to identify the salient phenomena relevant to the cold
ignition regime in Diesel, HCCI and gas turbine engines. The model encompasses
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the differential conservation equations with a complete flux matrix including Soret
and Dufour effects, a real-gas equation of state and accurate transport properties
(mass-diffusivity matrix, thermal-diffusion matrix, thermal conductivity and viscosity)
computed using mixing rules. For supercritical pressure flows, the mixing rules couple
molecular transport phenomena with thermodynamics. The configuration for all DNSs
was that of a three-dimensional mixing layer and the DNSs followed, for each
realization, the evolution of the layer from an initial laminar state to a transitional state.
Initially, the lower stream of the layer was composed of heptane vitiated with water
and carbon dioxide and the upper stream was composed of nitrogen, oxygen, water
and carbon dioxide; the amount of water and carbon dioxide was parametrically varied
among simulations. The other two parameters varied among simulations were the
initial pressure and initial Reynolds number. The eight DNS realizations thus obtained
presented a comprehensive view of multi-species supercritical-pressure mixing.

A general conclusion is that at the Reynolds (Re) number values achievable in
DNSs, the smallest flow scales are determined by the variation of scalars (i.e.
the species mass fraction and temperature; i.e. the thermodynamics and diffusion)
rather than by the motion (i.e. the dynamics) of the flow. We reached this
conclusion by reformulating the complex form of the fluxes in the species and
energy conservation equations to obtain effective species-specific diffusivities and an
effective thermal conductivity which allowed the corresponding definition of effective
species-specific Schmidt (Sc) numbers and an effective Prandtl (Pr) number. Because
the reformulation involved quantities not directly computable from the DNS database,
models were developed to calculate these effective species-specific diffusivities and
the effective thermal conductivity. The models were evaluated by comparison with
the database and proved to be very accurate. When water and carbon dioxide were
initially present in both lower and upper stream, with each species not necessarily
in equal quantities in the two streams, spinodal decomposition of these two species
was obtained. The diagnostic of spinodal decomposition for these species was the
existence of regions of negative effective diffusivity, meaning that diffusion occurs
in counter gradient fashion; that is, these species segregated into regions of lower
and higher contiguous concentrations. To the best of the authors’ knowledge, this
is the first time that species spinodal decomposition has been identified in: (a)
a three-dimensional, turbulent flow and (b) a multi-species (i.e. more than two
species) mixture having initially non-uniform chemical composition and in which
only some of the species experience spinodal decomposition. We showed that a
necessary and sufficient condition for species spinodal decomposition occurrence is
that the particular species be initially present in both streams; this is why heptane,
nitrogen and oxygen never experienced spinodal decomposition during the physical
time of the simulation. We also found that there is no requirement that each species
undergoing spinodal decomposition be initially uniformly distributed, as it is usually
specified in the literature (Nauman & He 2001); in fact, non-uniformity will promote,
through gradients, the diffusion causing spinodal decomposition. Because chemical-
composition uniformity is not a requirement for species spinodal decomposition,
we conjecture that the high-density-gradient magnitude regions observed even when
species were initially segregated, are the precursors to eventual spinodal decomposition
in the mixture which is formed by molecular and turbulent processes undergone by the
initially segregated species, i.e. this formed mixture represents the initial condition for
which spinodal decomposition may occur.

The effective Sc number values exceeded 1.8 for heptane in regions of
stoichiometric conditions, these being values significantly larger than those for
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gases, but still much smaller than those for liquids which are O(102). Equivalent
computations of the effective thermal conductivity revealed that it is negative over
substantial portions of the layer and the negative values were shown to originate from
the enthalpy transported by the species. The effective Pr values were as large as and
exceeding 5, with many portions of the mixing layer displaying values in the range
1–5 that is similar to the Pr values of 4–5 of R-12 which is a liquid refrigerant.
Increasing the initial value of the Reynolds number had small quantitative effect on
these non-ideal mixture characteristics, but increasing the initial pressure exacerbated
these effects, as expected. Although the illustrations were overwhelmingly presented
at the transitional states, these flow characteristics were observed throughout the flow
evolution.

We also found that flows experiencing species spinodal decomposition display
amplified turbulent aspects compared with those that do not. The amplified turbulence
was traced to the enhanced high-gradient regions which form in the process of species
mixing by the species segregation; these gradients act akin to solid boundaries
in promoting turbulence production within the flow. Because species spinodal
decomposition inherently hinders mixing through species segregation but promotes
higher turbulence which enhances mixing, the final mixing outcome is a complex
combination of these two counteracting effects and cannot be simply predicted without
appropriate simulations.

The stoichiometric region was shown to be thin and located at the upper boundary
of the mixing layer where it encounters the upper stream. The thin aspect of the
stoichiometric region indicates that if this aspect prevails in supercritical-pressure
reactive flow, the flame can be classified as a flamelet. However, because the
effective species-specific Lewis number was larger than unity in the stoichiometric
region, we must await results from a corresponding reactive-flow DNS before making
a pronouncement as to applicability of the flamelet models of Peters (2000) for
supercritical-pressure combustion. The stoichiometric region was also shown to be
surrounded by lean and rich regions which coexist in close proximity to each other.

Calculations of the dissipation showed that among the three contributions, viscous,
heat and species diffusion, the largest portion came from the species and the
smallest from viscous effects. The sum of the heat and species contribution were
functionally modelled to be calculable using the effective species-specific diffusivities
and the effective thermal conductivity. This functionally modelled portion of the
dissipation computed with the modelled effective species-specific diffusivities and the
effective thermal conductivity was shown to accurately duplicate the exact equivalent
dissipation.

A thorough comparison (made in appendix C) between the diagonal elements of
the species mass-diffusion matrix and the corresponding effective species-specific
diffusion coefficients elucidated the crucial effect of the off-diagonal terms of the
species mass-diffusion matrix, all of which are by a factor of O(101)–O(102) smaller
than the diagonal terms. If one were to neglect these off-diagonal terms, then: (a)
a major portion of the diffusivity small-scale structure in the mixing layer would
be missed; (b) no species spinodal decomposition would be observed for the species
for which it occurs; (c) the qualitative aspect of diffusion would be distorted from
reality (i.e. incorrect placement of high- and low-diffusivity regions) for a species
as important as oxygen; and (d) the magnitude of the diffusivity for light species
(e.g. oxygen) could be in error by a factor of two implying a correspondingly
erroneous mixture ignition delay time. Clearly, without the off-diagonal terms, the
physics of the problem would be entirely missed. Therefore, we caution about utilizing
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the popular zeroth-order approximation of the diffusion matrix which describes the
diffusion of each species into the mixture (Hirshfelder & Curtis 1949; Giovangigli
1991) and results in a diagonal matrix which not only would be entirely inadequate for
portraying small-scale molecular mixing but would additionally be unable to describe
species spinodal decomposition because all of the matrix elements are positive. Of
note, Ern & Giovangigli (1994) state that a diagonal approximation of the diffusion
matrix is only appropriate if the diagonal elements are equal. Mathematically, the
importance of the small off-diagonal terms is consistent with asymptotic expansion
concepts wherein the crucial behaviour is embodied in a small parameter.

Because transport properties operate at small scales unresolved in LES, the
importance of modelling the flow using accurate effective transport properties indicated
the need for correspondingly appropriate subgrid-scale models in LES to describe
these small-scale processes.

The general methodology introduced here will be extended to supercritical-pressure
reactive-flow DNSs to investigate whether the conclusions obtained from this mixing
study also hold for reactive flows. Projecting the present findings to the pyrolysis
reaction regime which is the precursor to ignition, we can foresee that species formed
during pyrolysis will be distributed by the turbulent flow over the entire field, at
which point their spinodal decomposition will be eventually inevitable unless they are
consumed by reaction faster than they are transported by turbulence or that turbulence
is so vigorous as to impede spinodal decomposition.
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Appendix A. Relationships for the EOS

Miscellaneous relationships relevant to the EOS are

amix =
∑
α

∑
γ

XαXγ aαγ (T) , bmix =
∑
α

Xαbα, (A 1)

where indices do not follow the Einstein notation, and

aαγ = (1− k′αγ )
√
ααααγ γ , (A 2)

ααα(T)≡ 0.457236 (RuTc,α)
2

[
1+ cα(1−√Tred,α)

]2

pc,α
, (A 3)

cα = 0.37464+ 1.54226Ωα − 0.26992Ω2
α, (A 4)
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where Tred,α ≡ T/Tc,α, Tc,α is the critical temperature and Ωα is the acentric factor.
Also,

bα = 0.077796
RuTc,α

pc,α
, (A 5)

Tc,αγ =
(
1− kαγ

)√
Tc,αTc,γ with kαα = 0, (A 6)

vc,αγ = 1
8

(
v1/3

c,α + v1/3
c,γ

)3
, (A 7)

Zc,αγ = 1
2

(
Zc,α + Zc,γ

)
, (A 8)

pc,αγ = RuTc,αγZc,αγ

vc,αγ n
, (A 9)

with Tred,αγ ≡ T/Tc,αγ ,Zc,α being the critical compression factor with the compression
factor defined as Z = p/(ρTRu/m), vc,α being the critical volume and pc,α being
the critical pressure. kαγ is an empirical mixing parameter. The relationship between
parameters kαγ and k′αγ is

(1− kαγ )= (1− k′αγ )
(vc,αvc,γ )

1/2

vc,αγ
. (A 10)

and for all pairs not in table 4, k′αγ = 0 is used.

Appendix B. Initial profile derivation
B.1. Mean profiles

The mean profiles are only functions of x2

u1(x2)= u1(x2,min)+
[

1+ erf

(√
πx2

δω,0

)]
1
2

[
u1(x2,max)− u1(x2,min)

]
(B 1)

T(x2)= T(x2,min)+
[

1+ erf

(√
πx2

δω,0

)]
1
2

[
T(x2,max)− T(x2,min)

]
(B 2)

Yα(x2)= Yα(x2,min)+
[

1+ erf

(√
πx2

δω,0

)]
1
2

[
Yα(x2,max)− Yα(x2,min)

]
(B 3)

p= p∞, u2 = 0, u3 = 0 (B 4)

∂u1

∂x2
=
[
u1(x2,max)− u1(x2,min)

]
δω,0

exp

[
−
(√
πx2

δω,0

)2
]

= 1U0

δω,0
exp

[
−
(√
πx2

δω,0

)2
]

(B 5)

where u1(x2,max) = U1 and u1(x2,min) = U2 where L2 is the length of the domain in
the x2 direction. The values of U1 and U2 are obtained by invoking a null convective
velocity Uc computed according to Papamoschou & Roshko (1988) as

Uc =
√
ρ1U1 +√ρ2U2√
ρ1 +√ρ2

. (B 6)
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For Uc = 0, and defining as the speed of sound,

U1 = 2Mcas1(
1+ as1

as2

√
ρ1

ρ2

) , U2 =−
√
ρ1

ρ2
U1. (B 7)

B.2. Perturbations
The simulations are started with streamwise and spanwise vorticity perturbations
superimposed on the mean initial velocity profile

ω1(x2, x3)= F3D
λ31U0

Γ1
f2(x2)f3(x3) (B 8)

ω3(x1, x2)= F2D
λ11U0

Γ3
f1(x1)f2(x2) (B 9)

where Γ1 and Γ3 are the circulations, and λ1 and λ3 are wavelengths

f1(x1)= Ak sin
(

2πx1

2kλ1

)
(B 10)

f2(x2)= exp

[
−π
(

x2

δω,0

)2
]

(B 11)

f3(x3)= Bk sin
(

2πx3

2kλ3

)
. (B 12)

Unlike for our simulations for binary-species systems (Okong’o & Bellan 2002a;
Okong’o et al. 2002), for each vorticity component (ω1, ω3), the velocity components
are computed from the analytical solution of a system consisting of the vorticity
component equation

ω1 = ∂u3

∂x2
− ∂u2

∂x3
, ω2 = ∂u1

∂x3
− ∂u3

∂x1
, ω3 = ∂u2

∂x1
− ∂u1

∂x2
(B 13)

and the divergence-free condition. To ensure divergence-free initial conditions, the
analytical perturbation is obtained separately for each wavelength (2kλ1 and 2kλ3) and
then the perturbations are added together after being weighted according to Ak or
Bk. The analytical perturbation at a given wavelength is separately derived for the
spanwise and streamwise directions.

Let ui and ωi be the generic perturbation velocity and perturbation vorticity fields. In
a x3 plane, for the spanwise vorticity

∂u2

∂x1
− ∂u1

∂x2
= ω3 (B 14)

∂u1

∂x1
+ ∂u2

∂x2
= 0. (B 15)

Introducing wavelength nλ1 (wavenumber αn = 2π/ (nλ1)) we define

α∗n = αnδω,0, x∗2 =
x2

δω,0
, ω̂∗3 = ω̂3δω,0 (B 16)

and the perturbations

u1 = û1

(
x∗2
)

exp
(
iα∗nx∗1

)
, u2 = û2

(
x∗2
)

exp
(
iα∗nx∗1

)
ω3 = ω̂3

(
x∗2
)

exp
(
iα∗nx∗1

)
(B 17)
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where û1, û2 and ω̂3 are the perturbation amplitudes. Solving (B 14) and (B 15) for
the form of (B 17) and applying far-field boundary conditions û2(x2,min) = 0 and
û2(x2,max)= 0 yields

û1 = ia1 exp
(
α∗nx∗2

)− ia2 exp
(−α∗nx∗2

)
, (B 18)

û2 = a1 exp
(
α∗nx∗2

)+ a2 exp
(−α∗nx∗2

)
, (B 19)

where

a1 = i
1
4

exp

[(
α∗n

2
√
π

)2
][

erf

(√
πx∗2 +

α∗n
2
√
π

)
− 1
]
, (B 20)

a2 =−i
1
4

exp

[(
α∗n

2
√
π

)2
][

erf

(√
πx∗2 −

α∗n
2
√
π

)2

+ 1

]
. (B 21)

A similar solution is obtained for the streamwise vorticity perturbation by solving
the equations

∂u2

∂x3
− ∂u3

∂x2
=−ω1, (B 22)

∂u3

∂x3
+ ∂u2

∂x2
= 0, (B 23)

in a x1 plane with boundary conditions û2

(
x2,min

) = 0 and û2(x2,max) = 0. Formally,
we replace x1 by x3, λ1 by λ3 (the relevant wavelength is nλ3 (wavenumber
αn = 2π/ (nλ3))), u1 by u3 and ω3 by (−ω1). The final result is

û3 = ia1 exp
(
α∗nx∗2

)− ia2 exp
(−α∗nx∗2

)
(B 24)

û2 = a1 exp
(
α∗nx∗2

)+ a2 exp
(−α∗nx∗2

)
(B 25)

with the same formal expressions (B 20) and (B 21) for a1 and a2, but where α∗n is now
related to λ3 instead of to λ1.

Appendix C. Further considerations on diffusion and effective-diffusion
coefficients

We wish to examine here several aspects that are of interest for mixing and
combustion simulation. First, since the matrix of diffusion coefficients Dαβ is
diagonally dominant with the elements off-diagonal being by O(10)–O(102) smaller
than the diagonal ones, it would be tempting to assume that the off-diagonal terms are
null and conduct calculations using a diagonal matrix. We inquire whether the physics
of the situation would be preserved by this assumption. Second, a common assumption
in combustion models is that ρDαβ is a spatially independent quantity. We evaluate
this assumption by visualizing ρDαα; results for R2000p60 are displayed in figure 20
where we also illustrate ρĎα to inquire if it could be considered uniform. Assessment
of the ρDαα and ρĎα uniformity indicates here the accuracy of this assumption
for mixing studies. Nevertheless, the validity of the results is expected to only
change quantitatively rather than qualitatively for combustion applications; however,
a more definitive assessment will be made in the future using a reactive-flow database.
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FIGURE 20. Diagonal elements ρDαα of the species mass-diffusion matrix (a,c,e,g) and ρĎα

(b,d,f,h) for H2O (a,b), CO2 (c,d), O2 (e,f ) and C7H14 (g,h), all for R2000p60 at t∗tr in the
plane x3/L3 = 1/16. The mixing layer is defined as the region where 0.01 6 YHep 6 0.945.
Units are 10−6 kg (m s)−1.

Third, because the Soret effects are relatively small in these multi-species simulations
(not shown), comparing the diagonal term ρDαα with ρĎα reveals the influence of the
off-diagonal terms.
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The illustrations of figure 20 show that the general features of ρDαα are very
much species dependent whereas for ρĎα the behaviours can be categorized in two
distinct aspects: that of H2O and CO2 (figure 20b,d), and that of O2 and C7H16

(figure 20f,h). With the exception of C7H16, for all species ρDαα and ρĎα have
a different spatial variation, a fact which is a clear manifestation of the influence
of the off-diagonal terms in the diffusion matrix. For C7H16, its much larger molar
mass makes the diagonal term surpass in magnitude all other terms involved in the
computation of ĎHep, and thus the large-scale features are very similar for ρDαα

and ρĎα. However, even for C7H16 the small-scale variation observable for ρĎα is
lost when considering the corresponding ρDαα. In fact, all ρĎα show considerably
more small-scale structure than the respective ρDαα, an aspect which is of great
importance for combustion studies because reaction occurs locally according to the
mixture composition. Moreover, except for C7H16, the relative placement of the low-
and high-diffusivity regions is different in ρDαα and ρĎα; for example, for O2, ρDαα

indicates that the low-diffusivity regions are where ρĎα shows high-diffusivity regions,
and vice versa. Evaluating the range of ρDαα variation, the conclusion is that this
range is rather narrow for each of the species although within that narrow range
there is substantial non-uniformity; thus, as a crude approximation, the assumption that
ρDαα is uniform may be acceptable. The situation is totally different for ρĎα where
although the range of variation for the major species is still narrow, that for the minor,
light species is very wide; therefore, the assumption that ρĎα is uniform would be
catastrophic for the accuracy of a simulation. Finally, comparing the range of variation
of ρDαα and ρĎα, it is clear that it is vastly different for all species except C7H16

for which, as discussed previously, the off-diagonal terms have negligible influence.
The conclusion is that not only would the fine structure of the field be missed
by neglecting the off-diagonal terms, but also that the quantitative values would be
extremely different (e.g. for O2 the significant range of [52, 56] for ρDαα and [24, 28]
for ρĎα, and for H2O the significant range of [55, 65] for ρDαα and [−30, 30] for
ρĎα; units are 10−6 kg (ms)−1) with major consequences in the prediction of species
mixing and thus of the mixture ignition delay time. Since all ρDαα are positive
whereas for CO2 and H2O the values of ρĎα are both positive and negative, it is
evident that spinodal decomposition would not be obtained if one were to only use
the diagonal terms of Dαβ . This highlights the pivotal role of the off-diagonal terms in
describing the correct physics.
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